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Robust measure for characterizing generalized synchronization
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Generalized synchronization between two coupled systems can be characterized by recently proposed inter-
dependency measures calculated from two simultaneously observed time series from them. However, numeri-
cal tests have shown that these measures cannot consistently indicate the direction of the coupling for strongly
coupled systems or in situations with a large phase space neighbor size. An interdependency measure is
proposed here quantifying how close a conditional neighbor is to a true neighbor in terms of the degree of
alignment of their principal axes. Numerical tests are carried out on time series generated from a coupled
Henon map and a Lorenz model driven by a Rossler model. Given that a driving system is more dependent on
a response system, the results show that the direction of the coupling is consistently detected by using the
proposed measure even in those unfavorable cases for the measures mentioned above.
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I. INTRODUCTION |Xn_xfn,1| |yn_ydn,1|
R T v @
Generalized synchrony is a state where the temporal evo- N Adpgl Y,

lutions of dynamic systems are synchronized but not neces- x| s th d lenath of th ot
sarily identical. The technique of time delay embeddif where |x| represents Ihe squared fengih ot the veotor

has made it possible to investigate this phenomenon by Com'l:heoretlcally, the above ratio should be close 1o 1 wken

pletely depending on discrete observations of the syste andy are synchronized; otherwise it should be much greater

states without any knowledge of the internal system equa- an 1. As pointed outin Ref5], this measure can be easily
. : y KN 9 Y ' €9Uaz 5 ntaminated by noise; thus it is only suitable for data gen-
tions. Following this line has led to the recent invention of

S erated from theoretical models. Furthermore, it is not asym-
several dynamical interdependency measures between etrical

simultaneously recorded time ser[@s-5]. In addition to be- A prediction error calculated using a zero-order nonlinear

ing able to characterize the nonlinear correlations betweepggg predicator was adopted in Rgf] for defining an in-
two signals, these measures are also inherently asymmetricghdependency measure as

such that the calculated degree of dependency of one system
on another is different from that calculated vice versa. This
last property makes them very promising in discovering the

k
X — (1/k)j2l an,j‘

direction of the coupling for situations where one system is s(xXly)= , 2)
driven by another without having significant feedback on the S | _—|
driving system. =4 KX

The core of the computation of the aforementioned inter-
dependency measures is the formation of conditional neighwherek is the number of neighbor points for constructing the
bors as originally proposed in R¢B]. It was reasoned that if predictor,N is the total number of points on the trajectory,
two systemsA and B are in a synchronized state, the con- and is the arithmetic average of, . 5(y|x) can be defined
temporary states d corresponding to the neighbors of the jn the same manner as above. Ideally, when two systems are
state ofA at timet should also be close to the stateBBt  completely independens(xly) will be 1, while smalls(xly)
time t. Suppose that two trajectoriex; and vy;, i indicates a strong dependency>obn y.

corded time seriez andy. Furthermore, letl, ; denote the e first one being

time index of thejth nearest neighbor point of, on the

trajectoryx andr, ; denote the time index of thigh nearest N R¥(x)

neighbor point ofy,, on the trajectoryy. With these nota- SK(xly) =< >, kn 3

tions, a k nearest conditional neighbor of, on vy, is Na=1 Ri(xly)

Xro j=1,... kand thusydn'j, j=1,... k designates thk d th q bei

nearest conditional neighbor gf, on x,,. Next, we proceed and the second one being

to briefly summarize some of the publicized interdependency 1 N RV1(x)

measures. . _ HXly)= = > log,— , @)
The definition of the interdependency measure in R&f. N =1 Rﬁ(x|y)

is the average of the following ratio of a set of reference

pointsx,, andy,: WhereRﬁ(x) is computed as
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1 kX these two nontraditional neighborhood formulations can ben-
Rﬁ(x)zE Z (xn—xdni)2 (5) efit the existing measures of coupling strength in character-

=1 ' izing generalized synchronization. To shed light on this im-

K i portant issue, two coupled maps with a nondifferentiable
andRy(xly) is synchronization function were used for calibrating the pro-
posed measure and the existing ones in their abilities to har-

k
R B 1 2 5 6 vest two neighborhood formulation algorithms for an appro-
nOY) =1 2 On=Xe )% 6 priate characterization of generalized synchronization.
By its construction,S*(x]y) is in (0,1]. A low value of Il. METHOD

S(xly) indicates weak dependencies betweeandy. As
for theH measure, ideally, whex andy are from two com-
pletely independent systemidX(x|y) will be zero. A large
value ofH indicates synchronization between them. To proceed, singular value decompositi@VD) of two

In addition to characterizing the coupling strength, it hastrue neighbor matrices and two conditional neighbor matri-
been proposed that one can infer the direction of the couees is to be obtained as the following
pling by using the asymmetrical measures reviewed above.

A. Coupling strength based on degree of principal
axis alignment

However, it is this most desired application that has been [Xd, - aanyk]:szxVL 0

problematic, as discussed in comprehensive numerical ex-

periments performed in Ref6]. Specifically, theS andH [x X 1= Uy Vo (8)
Tha' " " ok xly<xly Vxly

measures as defined in E§) and Eq.(4), respectively, were
studied using bivariate time series generated from a unidirec-

— T
tionally coupled discrete-time map and a unidirectionally [yfn,f T 'yrn,k]_UyEyVy' ©)
coupled continuous-time system. It was demonstrated that
the H measure differentiated more consistently between a [Va, - - den,k]:Uyley\xvglx- (10

driving and a response system based on the criterion that the

time series observed for a driving system is more dependent g\/p \was introduced to the field of nonlinear dynamic
on that from the corresponding response system. Howeveg,avsis in Ref[10]. Here, only a brief description is pro-
this criterion holds only in a certain range of neighborhood,;ijeq for the convenience of later discussion. A detailed
size k, outside which the inverse of the criterion becomes;.oatment of SVD can be found in the textbddd]. SVD of
true. The dependency of driver-response direction as d&; \jx N matrix A results in two orthonormal matrices
tected using either th8 or theH measure ork is not desir- Upsms Vixn, and aM X N singular value matri whose

. . X L] X 1
able for processing real data where no prior knowledge réas jiagonal entries are all zero and whose diagonal entries

garding how to choose an appropriate neighbor size i§ e termed singular value. Their relationship is
available.

It is the purpose of the present work to propose an asym- A=USVT (11)
metrical measure of interdependency that is more robust to '

neighbor size as well as more sensitive to the direction OfAs a convention. the columns bf are organized with reaard
coupling. It was realized that the interpoint distance, whichto their corres (;ndin sinaular valuesgin a descending tash-
unfortunately is directly affected by the size of the neighbor;; P g sing 9

. . : ... ’jon. What is relevant in motivating the proposed measure is a
is the only information that has been explored by existing o .

. eometric interpretation of the SVD. Each columnfotan
interdependency measures. To capture a more complete g % looked upon as a point in Akdimensional space. Hence
metric picture of the neighborhoods, the proposed measure Eis a "cIoug” of N su?:h oints whose eomet?ic st}ucture i's
based on the degree of the alignment between the matchéd P 9

principal axes of a conditional neighbor and a true neighborre.vealed. via SVD. Each colur_nn M represents an axis of
More recently, several publicatiofd—9] discussed the this M-dimensional space while its corresponding singular

P X . ... _value gives the variability of the cloud in the direction of that
intrinsic limitation of detecting generalized synchronization axis. In a svnchronized state. the two clouds represented by a
for two coupled systems posing a nondifferentiable SynChroE:on(;iitionaIynei hbor matrix :;md a true nei hbci))r matrix WiIIy
nization function. Results in these publications have show% similar in thgeir “shape.” Thus uantifyir? the dearee of
that any measure of dependency based on the assumption q‘? Pe. > 'g 9

. R : . . alignment of these two clouds will result in a measure of
a continuous synchronization function will probably fail to . . : .

. .2 .. .. coupling strength. Sincl is an orthonormal matrix, a mea-
correctly characterize the degree of the synchronization if %ure ofx’s dependency om can hence be defined succinctl
conventional neighborhood formulation is assumed. A pos: P y oy y
sible corrective procedure as discussefBihwas to use two
nontrivial neighborhood formulation methods. Their useful-
ness was demonstrated using thg,— & test[8] for detect- C(xly)=
ing synchronization, and later in the work by Rulkov and
Afraimovich from a more theoretical perspectiid. Never-

theless, it remains unknown whether or not the adoption oénd similarlyy’s dependency om as

tr(|UxUyyl,d)

T (12
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tr(JUJU, . d) Iil. NUMERICAL EXPERIMENTS

Clybo=——"5"—, (13

For comparison of th€ measures with existing ones, we
first conducted numerical experiments as in Héf. Two
coupled systems were studied. In the first system, the Rossler

where tr(A|,d) is the summation of the absolute values Ofsystem is the driving system

the firstd diagonal entries of the matriX. Here, the axes of
Uy and Uy, are paired with regard to their singular value
order.C(x|y) andC(y|x) are in the range df0,1]. A greater
C(x|y) indicates a stronger dependencyxadn y.

X1= — a(Xp+Xg),
)-(2: a(X1+ 0.2(2),

B. Formulation of neighborhoods 5(3: a[0.2+X3(x1—5.7)], (16)

Formation of neighborhoods itself is a straightforward
procedure. The only concern was the computational issu
which has been largely alleviated by using a K-dimensiona
tree searching algorithifl2]. This algorithm scales up well
with the dimensionality of the searching space as well as the
number of points available for searching. However, in a re-
cent papef7], Soet al. pointed out the inherent limits on the
detectability of the generalized synchronization that are 8
caused by the complicated nondifferentiable geometric struc- Ya=Y1Yo— = V3. (17)
ture of the synchronization function that associates the driv- 3
ing and response state variables. Existing numerical metho
for quantifying interdependencies including the one pro
posed here are all based on the assumption that this functi
is continuous; therefore a straightforward way of formulating . . i
neighborhoods as conventionally employed will probablySampled ats=0.003. The same embedding dimensions as

lead to a failure of detection of generalized synchronizatiorpe!ected in Refl6] were used here wit,=4 andm, =5.
using these interdependency measures. Facing these limithh€ delay time for embedding was chosen to be 0.3 as used
tions, the authors d] have proposed two remedies, both of N Ref-[6]. _ }

which utilize some nontrivial neighborhood formulating al- "€ seécond system is composed of two coupleddtie
gorithms. The essence of the proposed algorithms is to imMaPs With driving equations

pose additional constraints on the neighborhood candidates.
Those constraints were chosen to be the conditions that pre-
images of the current neighborhood should satisfy. Specifi-

and the response system is the Lorenz system with an addi-
ﬁonal input from the above Rossler system as

yl: —10(y,— Y1),

Y2=28y1—Yo—Y1ys+ X3,

fjlshe parametety thus controls the coupling strength=6
&pdaZ 10 were tested. The above equations were integrated
using theoDE45 solver implemented iIMATLAB™ 6.0 and

X1(N+1)=1.4—x3(n)+byx,(n),

cally, the first remedy was thes® neighbor” approach. In Xp(N+1)=x4(n) (18

addition to the condition that a conventional neighborhood;nq the equations

xdnj,j =1,... Kk, should satisfy, i.e.lxdnj—xn|<5, neigh-

bor points in as neighborhood should also satisfy y1(n+1)=14— yxy(n)y1(n)+(1—y)yi(n) +byy,(n),
|Xa, ~i~Xn-il <6, T=1,...p. (14 Yo(n+1)=y,(n) (19)

) ] ) ] for the response. Againy controls the coupling strength.
This means that thp preimages of a conventional neighbor- b,=0.1,b,=0.3 andb;=0.3,b,=0.1 were tested. The em-
hood should also be a neighborhood. It is clear #fatan be  pedding dimension for this coupled system was set as 4 and
used to represent a conventional neighborhood formulationhe delay time was chosen to be 1.
which is just a special case wifh=0. Their second remedy |n addition to the above two systems, two coupled maps
was an even stronger one, which was ter_n@éﬂ neighbor  with a nondifferentiable synchronization functigdenoted
searching. To be qualified as beings&? neighbor point of  as a “wrinkling” case in Ref[7]) were also used for testing
Xn, the following criterion should be satisfied in addition to the two neighborhood formulation algorithms. This system

Eq. (14): has a two-dimensional driving map consisting of
Vo, —i—Vnoil<6, i=1,...49 (15) M, Un<a, 20
gt A T RS PENE B S TR 20
Therefore, a9 neighborhood requires that tgreimages and
of simultaneous states of the response systeoorrespond- / -
ing to those of as® neighbor, should be a neighborhood as o=@ Unm G 21)
well. " (vpmae)(1- @), v,=a,
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FIG. 1. C(x|y) and C(y|x) at various numbers of directions  FIG. 2. Same as Fig. 1, but the couplednide map is stud-
compared for calculating interdependencies. This numibes ied.
marked in each panel. The bivariate time series generated from the

Lorenz system uniquely driven by a Rossler system with parametetion even in a strongly coupled situation. In contrast, the

a=6 is used. existing measures cannot differentiate the coupling direction
. . in such cases.
and its response map is Next, we will investigate the performance of tlemea-
sure at different neighbor sizes. Shown in Figs. 3—6 are the
Yn+1= ¥Ynt+ COS 27Uy 1) (22 ¢ measures calculated kt= 10, 20, 30, 40, 50, and 60 for

the four bivariate time series generated as described above.

with 0<a<1 and 0<A<1. The constan was chosen as Clearly, the propose@ measure is robust with regard to the

0.7with\ as 0.8 in the numerical test. When the controlling neighborhood size in detecting the direction of coupling. As
parametery satisfies|y|<1, the response is asymptotlca}lly reported in Ref[6], the H measure was the most robust one
stable fpr allu and thgs the system should always be in aamong the existing measures tested, but at a neighbor size of
generalized synchronization state. Consequently, any meg-_ 35", for strong couplingy>2), the H measure be-
sure of coupling strength should in principle approach 1 '

. " ~came inconsistent in detecting the direction of the coupling
However, ady| increases from 0 to 1, the degree of “wrin- between the two systems
kI|_ng” also Increases, Iegdlng to a decreasing apparent cou- Three measures of interdependency including the pro-
pling strength if conventional neighborhoods are formulated.

This phenomenon is actually caused by the increasing num-
ber of nondifferentiable regions &g| increases.

1
09 /M\/ o8 //—‘_H\—#/"
08 1
IV. RESULTS o7 0.6
’ k=10

The parameted in Egs.(12) and(13) controls the number ST 4 e s 10 AT 4 s s 1o
of axial directions for checking the degree of alignment. The s ——
effect of this parameter on the final calcula@dneasures is ¢ og // N !
shown in Fig. 1 and Fig. 2. Due to the fact that system under °’8./W
examination is a low dimensional system, a smdllis 06 st
enough to provide adequate sensitivity for telling the direc- k=30 04 k=d0
tion of coupling when the coupling strength is weak, asin ° 2 *+ ¢ 8 AL S
the case ofl=1. On the other hand, to detect the direction !
of coupling in a highly synchronized situatiod,should be o.a/w o.am
increased. However, an excessively ladgaight be harmful o8 /*W el w
because a comparison of those directions corresponding t oo a5 I
very small singular values might not be relevant for compar- ®*%— 2 4 & s 1 M2 4 & 8 1
ing two spaces. This is due to the fact that very little varia- Couplng srength
tion is manifested in these directions. Nevertheless, in these giG. 3. c(x|y) and C(y|x) at various coupling strengthsy)
two experiments, the direction of the coupling was alwaysand at various neighborhood sizéq @s calculated from the bivari-
correctly detected even with a high Further investigation ate time series from a Lorenz system uniquely driven by a Rossler

of this issue is necessary, especially for a noisy data set. Thgstem. The parameter in the driving equations is & is marked
proposedC measure is capable of telling the coupling direc-in each panel.

1

1
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FIG. 4. Same as Fig. 3, with=10. FIG. 6. Same as Fig. 5, with;=0.3,b,=0.1.

posedC measure, theH measure, and th& measure for using a &3 neighborhood formulation. It is also expected
coupled systems with a non differentiable synchronizatiorthat the >3 should help more than thé® method for han-
function were calculated using different neighborhood for-dling a “wrinkling” synchronization functiori 8] like the one
mulation algorithms with an embedding dimension chosen aproduced in this numerical experiment.

3, delay time as 1, and=3. These results are shown in
Figs. 7-9. Although theoretical analysis indicates that the
system is always in a general synchronization state as long as
|y|<1, as can be seen from those figures, the nondifferen- Although the propose€ measure and the existing inter-
tiability of the synchronization function will affect the detec- dependency measures share the concept of the conditional
tion of generalized synchronization if a conventional neigh-neighbor as a common theoretical basis, they are fundamen-
borhood formulation procedure is adopted because all thally different in the way the information regarding the inter-
tested independency measures start to decrease arpunddependency is extracted from these neighborhoods. First, the
=0.5. This happens because the “wrinkling” effect becomesC measure relies on the difference between a conditional and
more widespread at this point. While the adoption of fie  a true neighbor for quantization of the coupling, thus always
and %2 neighborhood formulation this effect lessens for all being normalized in each individual system. In this way, it
the measures; th€ measure seems to be able to achieve the

most significant improvement by recognizing that there is * * - -
almost no decrease of ti@ measure with increasing on 05

V. DISCUSSION

1 1 0811 e~ Gy i
08 3 08 - My
; : 07 . . . . . . . .
W% W 0 0.1 0.2 03 04 4 05 06 07 08 0.9 1
08 0.6}
0.4 04 1 R O '
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0.2 0.2 09t & 4
0 02 04 08 08 1 o 02 04 06 08 1 8
1 1 . 08H o Oy i
08 /—‘\4/*—'— o — Gy,
c 07 L . . . . . . .
08 N 0] 0 0.1 0.2 0.3 04 05 06 0.7 0.8 0.9 1
04 0.4 ——e ———% & ——t— ]
02 k=30 0z k=40
o 02 04 06 08 1 0 02 04 06 08 1 odr JEN il
1 1 s c, ]
08 0.8 =+ O
06 o 06 0'70 0.1 0.2 0.3 04 4 05 0.6 0.7 0.8 0.9 1
0.4 04l o
0z k=50 02 k=80 FIG. 7. C measure of interdependency calculated using three
: VY Y : ) X ¥ 1 i i i i -
0 02 04 08 08 A esregn 02 04 08 08 different neighborhood formulation algorithms for two coupled sys

tems with a “wrinkling” synchronization function. The top panel
FIG. 5. Same as Fig. 3 except the bivariate time series are gershows the result obtained using the conventiasfaheighborhood
erated from two coupled Hen maps withb; =0.3 andb,=0.1. while the results using a® and a2 neighborhood are displayed
Coupling strengthy increases from 0 to 1 with a step size of 0.1. in the middle and bottom panels, respectively.
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~ FIG. 8. Same as Fig. 7 except interdependency was character- FIG. 9. Same as Fig. 7 except interdependency was character-
ized usingH measure. ized usingS measure.

avoids the problem that the existing measures might reflecthen why would one define such arx ‘dependent ory”

the complexity of the individual system instead of the cou-measure if it represents essentially the same thing as the

pling strength6,13]. Second, it does not depend on the sizemore intuitive “y dependent orx”? The answer is that it

of the neighborhood for measuring the difference betweemprovides a potential way to differentiate between a driving

two spaces but on the degree of alignment of their principaind a response by virtue of the asymmetry betw@éxly)

axes. In this way, the interdependency measure is not directigndC(y|x). However, for a unidirectionally coupled system,

affected by the neighbor size and thus, as the numerical rehe difference betwee@(x|y) and C(y|x) does not mean

sults indicate, it is more robust than the existing measurethat there exists any dependency difference. Instead, this dif-

with regard to neighbor size. ference mainly reflects the nontrivial geometries of the syn-
As made clear by recent research, a complicated nondifehronization function associatingto y. As discussed in Ref.

ferentiable synchronization function might destroy the ability[6], the observed relationshi©(x|y)>C(y|x) may be

to detect generalized synchronization by interdependencmainly due to the fact that a response system usually has a

measures. Although this is true for all the interdependencynore complicated phase portrait than a driving system and is

measures with an underlying continuity assumption, our numore active.

merical results demonstrate that tlemeasure responded

most to the adoptlop of &° as well as P nelghborhqod. VI. CONCLUSION

for handling complicated geometries of a synchronization

function. This is a highly desirable feature of an interdepen- A different way of using the conditional neighbor concept

dence measure for practical use. for inferring the coupling strength and its direction has been
There is still one more point that needs clarification be-proposed. The proposed measure performed well in the

fore concluding the paper. Throughout, we have suggestestandard numerical experiments. The incorporation of

that a driver system depends more on a response system, rantrivial neighborhood formulation algorithms may even

indicated byC(x|y)>C(y|x). This is a little bit counterin- make theC measure applicable to more general nondifferen-

tuitive considering that the driver is usually an autonomoudiable situations often encountered in generalized synchroni-

system. It should be realized that calculation of the proposedation studies. Its further calibration with real patients’ in-

interdependency measure and other types of measures ieacranial pressure and cerebral blood flow velocity data is

ferred to in the paper involves the formulation of conditionalbeing conducted.

neighborhoods. This inevitably introduces a type of neigh-

borhood for any point on.the.driving system’s trajectory that ACKNOWLEDGMENTS

is dependent on the way it drives the response system. There-
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