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Robust measure for characterizing generalized synchronization
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Generalized synchronization between two coupled systems can be characterized by recently proposed inter-
dependency measures calculated from two simultaneously observed time series from them. However, numeri-
cal tests have shown that these measures cannot consistently indicate the direction of the coupling for strongly
coupled systems or in situations with a large phase space neighbor size. An interdependency measure is
proposed here quantifying how close a conditional neighbor is to a true neighbor in terms of the degree of
alignment of their principal axes. Numerical tests are carried out on time series generated from a coupled
Hénon map and a Lorenz model driven by a Rossler model. Given that a driving system is more dependent on
a response system, the results show that the direction of the coupling is consistently detected by using the
proposed measure even in those unfavorable cases for the measures mentioned above.
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I. INTRODUCTION

Generalized synchrony is a state where the temporal e
lutions of dynamic systems are synchronized but not ne
sarily identical. The technique of time delay embedding@1#
has made it possible to investigate this phenomenon by c
pletely depending on discrete observations of the sys
states without any knowledge of the internal system eq
tions. Following this line has led to the recent invention
several dynamical interdependency measures between
simultaneously recorded time series@2–5#. In addition to be-
ing able to characterize the nonlinear correlations betw
two signals, these measures are also inherently asymme
such that the calculated degree of dependency of one sy
on another is different from that calculated vice versa. T
last property makes them very promising in discovering
direction of the coupling for situations where one system
driven by another without having significant feedback on
driving system.

The core of the computation of the aforementioned int
dependency measures is the formation of conditional ne
bors as originally proposed in Ref.@3#. It was reasoned that i
two systemsA and B are in a synchronized state, the co
temporary states ofB corresponding to the neighbors of th
state ofA at time t should also be close to the state ofB at
time t. Suppose that two trajectoriesxi and yi , i
51, . . . , N, are reconstructed from two simultaneously r
corded time seriesx andy. Furthermore, letdn, j denote the
time index of thej th nearest neighbor point ofxn on the
trajectoryx and r n, j denote the time index of thejth nearest
neighbor point ofyn on the trajectoryy. With these nota-
tions, a k nearest conditional neighbor ofxn on yn is
xr n, j

, j 51, . . . ,k and thusydn, j
, j 51, . . . ,k designates thek

nearest conditional neighbor ofyn on xn . Next, we proceed
to briefly summarize some of the publicized interdepende
measures.

The definition of the interdependency measure in Ref.@3#
is the average of the following ratio of a set of referen
pointsxn andyn:
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P~n!5
uxn2xr n,1

u

uxn2xdn,1
u

uyn2ydn,1
u

uyn2yr n,1
u

~1!

where uxu represents the squared length of the vectorx.
Theoretically, the above ratio should be close to 1 whex
andy are synchronized; otherwise it should be much grea
than 1. As pointed out in Ref.@5#, this measure can be easi
contaminated by noise; thus it is only suitable for data g
erated from theoretical models. Furthermore, it is not asy
metrical.

A prediction error calculated using a zero-order nonline
cross predicator was adopted in Ref.@4# for defining an in-
terdependency measure as

d~xzy!5

(
n51

N Uxn2~1/k!(
j 51

k

xr n, jU
(
n51

N

uxn2 x̄u

, ~2!

wherek is the number of neighbor points for constructing t
predictor,N is the total number of points on the trajector
and x̄ is the arithmetic average ofxn . d(yzx) can be defined
in the same manner as above. Ideally, when two systems
completely independent,d(xzy) will be 1, while smalld(xzy)
indicates a strong dependency ofx on y.

Two interdependence measures were proposed in Ref.@5#,
the first one being

Sk~xzy!5
1

N (
n51

N Rn
k~x!

Rn
k~xzy!

~3!

and the second one being

Hk~xzy!5
1

N (
n51

N

log2

Rn
N21~x!

Rn
k~xzy!

, ~4!

whereRn
k(x) is computed as
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Rn
k~x!5

1

k (
i 51

k

~xn2xdn,i
!2 ~5!

andRn
k(xzy) is

Rn
k~xzy!5

1

k (
i 51

k

~xn2xr n,i
!2. ~6!

By its construction,Sk(xzy) is in (0,1#. A low value of
Sk(xzy) indicates weak dependencies betweenx and y. As
for theH measure, ideally, whenx andy are from two com-
pletely independent systems,Hk(xzy) will be zero. A large
value ofH indicates synchronization between them.

In addition to characterizing the coupling strength, it h
been proposed that one can infer the direction of the c
pling by using the asymmetrical measures reviewed abo
However, it is this most desired application that has be
problematic, as discussed in comprehensive numerical
periments performed in Ref.@6#. Specifically, theS and H
measures as defined in Eq.~3! and Eq.~4!, respectively, were
studied using bivariate time series generated from a unidi
tionally coupled discrete-time map and a unidirectiona
coupled continuous-time system. It was demonstrated
the H measure differentiated more consistently betwee
driving and a response system based on the criterion tha
time series observed for a driving system is more depen
on that from the corresponding response system. Howe
this criterion holds only in a certain range of neighborho
size k, outside which the inverse of the criterion becom
true. The dependency of driver-response direction as
tected using either theS or theH measure onk is not desir-
able for processing real data where no prior knowledge
garding how to choose an appropriate neighbor size
available.

It is the purpose of the present work to propose an as
metrical measure of interdependency that is more robus
neighbor size as well as more sensitive to the direction
coupling. It was realized that the interpoint distance, wh
unfortunately is directly affected by the size of the neighb
is the only information that has been explored by exist
interdependency measures. To capture a more complete
metric picture of the neighborhoods, the proposed measu
based on the degree of the alignment between the mat
principal axes of a conditional neighbor and a true neighb

More recently, several publications@7–9# discussed the
intrinsic limitation of detecting generalized synchronizati
for two coupled systems posing a nondifferentiable synch
nization function. Results in these publications have sho
that any measure of dependency based on the assumpti
a continuous synchronization function will probably fail
correctly characterize the degree of the synchronization
conventional neighborhood formulation is assumed. A p
sible corrective procedure as discussed in@8# was to use two
nontrivial neighborhood formulation methods. Their usef
ness was demonstrated using the«max2d test@8# for detect-
ing synchronization, and later in the work by Rulkov a
Afraimovich from a more theoretical perspective@9#. Never-
theless, it remains unknown whether or not the adoption
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these two nontraditional neighborhood formulations can b
efit the existing measures of coupling strength in charac
izing generalized synchronization. To shed light on this i
portant issue, two coupled maps with a nondifferentia
synchronization function were used for calibrating the p
posed measure and the existing ones in their abilities to
vest two neighborhood formulation algorithms for an app
priate characterization of generalized synchronization.

II. METHOD

A. Coupling strength based on degree of principal
axis alignment

To proceed, singular value decomposition~SVD! of two
true neighbor matrices and two conditional neighbor ma
ces is to be obtained as the following

@xdn,1
, . . . ,xdn,k

#5UxSxVx
T , ~7!

@xr n,1
, . . . ,xr n,k

#5UxuySxuyVxuy
T , ~8!

@yr n,1
, . . . ,yr n,k

#5UySyVy
T , ~9!

@ydn,1
, . . . ,ydn,k

#5UyuxSyuxVyux
T . ~10!

SVD was introduced to the field of nonlinear dynam
analysis in Ref.@10#. Here, only a brief description is pro
vided for the convenience of later discussion. A detai
treatment of SVD can be found in the textbook@11#. SVD of
a M3N matrix A results in two orthonormal matrice
UM3M , VN3N , and aM3N singular value matrixS whose
off-diagonal entries are all zero and whose diagonal ent
are termed singular value. Their relationship is

A5USVT. ~11!

As a convention, the columns ofU are organized with regard
to their corresponding singular values in a descending fa
ion. What is relevant in motivating the proposed measure
geometric interpretation of the SVD. Each column ofA can
be looked upon as a point in anM-dimensional space. Hence
A is a ‘‘cloud’’ of N such points whose geometric structure
revealed via SVD. Each column ofU represents an axis o
this M-dimensional space while its corresponding singu
value gives the variability of the cloud in the direction of th
axis. In a synchronized state, the two clouds represented
conditional neighbor matrix and a true neighbor matrix w
be similar in their ‘‘shape.’’ Thus, quantifying the degree
alignment of these two clouds will result in a measure
coupling strength. SinceU is an orthonormal matrix, a mea
sure ofx’s dependency ony can hence be defined succinct
as

C~xuy!5
tr~ uUx

TUxuyu,d!

d
, ~12!

and similarlyy’s dependency onx as
6-2
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C~yux!5
tr~ uUy

TUyuxu,d!

d
, ~13!

where tr(uAu,d) is the summation of the absolute values
the firstd diagonal entries of the matrixA. Here, the axes o
Ux and Uxuy are paired with regard to their singular valu
order.C(xuy) andC(yux) are in the range of@0,1#. A greater
C(xuy) indicates a stronger dependency ofx on y.

B. Formulation of neighborhoods

Formation of neighborhoods itself is a straightforwa
procedure. The only concern was the computational is
which has been largely alleviated by using a K-dimensio
tree searching algorithm@12#. This algorithm scales up wel
with the dimensionality of the searching space as well as
number of points available for searching. However, in a
cent paper@7#, Soet al.pointed out the inherent limits on th
detectability of the generalized synchronization that
caused by the complicated nondifferentiable geometric st
ture of the synchronization function that associates the d
ing and response state variables. Existing numerical meth
for quantifying interdependencies including the one p
posed here are all based on the assumption that this fun
is continuous; therefore a straightforward way of formulati
neighborhoods as conventionally employed will proba
lead to a failure of detection of generalized synchronizat
using these interdependency measures. Facing these li
tions, the authors of@8# have proposed two remedies, both
which utilize some nontrivial neighborhood formulating a
gorithms. The essence of the proposed algorithms is to
pose additional constraints on the neighborhood candida
Those constraints were chosen to be the conditions that
images of the current neighborhood should satisfy. Spe
cally, the first remedy was the ‘‘dp neighbor’’ approach. In
addition to the condition that a conventional neighborho
xdn, j

, j 51, . . . ,k, should satisfy, i.e.,uxdn, j
2xnu,d, neigh-

bor points in adp neighborhood should also satisfy

uxdn, j 2 i2xn2 i u,d, i 51, . . . ,p. ~14!

This means that thep preimages of a conventional neighbo
hood should also be a neighborhood. It is clear thatd0 can be
used to represent a conventional neighborhood formulat
which is just a special case withp50. Their second remedy
was an even stronger one, which was termeddp,q neighbor
searching. To be qualified as being adp,q neighbor point of
xn , the following criterion should be satisfied in addition
Eq. ~14!:

uydn, j 2 i2yn2 i u,d, i 51, . . . ,q. ~15!

Therefore, adp,q neighborhood requires that theq preimages
of simultaneous states of the response systemy, correspond-
ing to those of adp neighbor, should be a neighborhood
well.
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III. NUMERICAL EXPERIMENTS

For comparison of theC measures with existing ones, w
first conducted numerical experiments as in Ref.@6#. Two
coupled systems were studied. In the first system, the Ros
system is the driving system

ẋ152a~x21x3!,

ẋ25a~x110.2x2!,

ẋ35a@0.21x3~x125.7!#, ~16!

and the response system is the Lorenz system with an a
tional input from the above Rossler system as

ẏ15210~y22y1!,

ẏ2528y12y22y1y31gx2
2 ,

ẏ35y1y22
8

3
y3 . ~17!

The parameterg thus controls the coupling strength.a56
anda510 were tested. The above equations were integra
using theODE45 solver implemented inMATLAB™ 6.0 and
sampled atts50.003. The same embedding dimensions
selected in Ref.@6# were used here withmx54 andmy55.
The delay time for embedding was chosen to be 0.3 as u
in Ref. @6#.

The second system is composed of two coupled He´non
maps with driving equations

x1~n11!51.42x1
2~n!1b1x2~n!,

x2~n11!5x1~n! ~18!

and the equations

y1~n11!51.42gx1~n!y1~n!1~12g!y1
2~n!1b2y2~n!,

y2~n11!5y1~n! ~19!

for the response. Again,g controls the coupling strength
b150.1, b250.3 andb150.3, b250.1 were tested. The em
bedding dimension for this coupled system was set as 4
the delay time was chosen to be 1.

In addition to the above two systems, two coupled ma
with a nondifferentiable synchronization function~denoted
as a ‘‘wrinkling’’ case in Ref.@7#! were also used for testing
the two neighborhood formulation algorithms. This syste
has a two-dimensional driving map consisting of

un115H lun , vn,a,

l1~12l!un , vn>a,
~20!

and

vn115H vn /a, vn,a,

~vn2a!/~12a!, vn>a,
~21!
6-3
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and its response map is

yn115gyn1cos~2pun11! ~22!

with 0,a,1 and 0,l,1. The constanta was chosen as
0.7 with l as 0.8 in the numerical test. When the controlli
parameterg satisfiesugu,1, the response is asymptotical
stable for allu and thus the system should always be in
generalized synchronization state. Consequently, any m
sure of coupling strength should in principle approach
However, asugu increases from 0 to 1, the degree of ‘‘wrin
kling’’ also increases, leading to a decreasing apparent c
pling strength if conventional neighborhoods are formulat
This phenomenon is actually caused by the increasing n
ber of nondifferentiable regions asugu increases.

IV. RESULTS

The parameterd in Eqs.~12! and~13! controls the number
of axial directions for checking the degree of alignment. T
effect of this parameter on the final calculatedC measures is
shown in Fig. 1 and Fig. 2. Due to the fact that system un
examination is a low dimensional system, a smalld is
enough to provide adequate sensitivity for telling the dir
tion of coupling when the coupling strength is weak, as
the case ofd51. On the other hand, to detect the directi
of coupling in a highly synchronized situation,d should be
increased. However, an excessively larged might be harmful
because a comparison of those directions correspondin
very small singular values might not be relevant for comp
ing two spaces. This is due to the fact that very little var
tion is manifested in these directions. Nevertheless, in th
two experiments, the direction of the coupling was alwa
correctly detected even with a highd. Further investigation
of this issue is necessary, especially for a noisy data set.
proposedC measure is capable of telling the coupling dire

FIG. 1. C(xuy) and C(yux) at various numbers of direction
compared for calculating interdependencies. This numberd is
marked in each panel. The bivariate time series generated from
Lorenz system uniquely driven by a Rossler system with param
a56 is used.
02620
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tion even in a strongly coupled situation. In contrast, t
existing measures cannot differentiate the coupling direc
in such cases.

Next, we will investigate the performance of theC mea-
sure at different neighbor sizes. Shown in Figs. 3–6 are
C measures calculated atk510, 20, 30, 40, 50, and 60 fo
the four bivariate time series generated as described ab
Clearly, the proposedC measure is robust with regard to th
neighborhood size in detecting the direction of coupling.
reported in Ref.@6#, theH measure was the most robust o
among the existing measures tested, but at a neighbor siz
k530 and for strong coupling (g.2), the H measure be-
came inconsistent in detecting the direction of the coupl
between the two systems.

Three measures of interdependency including the p

he
er

FIG. 2. Same as Fig. 1, but the coupled He´non map is stud-
ied.

FIG. 3. C(xuy) and C(yux) at various coupling strengths (g)
and at various neighborhood sizes (k) as calculated from the bivari
ate time series from a Lorenz system uniquely driven by a Ros
system. The parametera in the driving equations is 6.k is marked
in each panel.
6-4
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ROBUST MEASURE FOR CHARACTERIZING . . . PHYSICAL REVIEW E69, 026206 ~2004!
posedC measure, theH measure, and theS measure for
coupled systems with a non differentiable synchronizat
function were calculated using different neighborhood f
mulation algorithms with an embedding dimension chosen
3, delay time as 1, andd53. These results are shown
Figs. 7–9. Although theoretical analysis indicates that
system is always in a general synchronization state as lon
ugu,1, as can be seen from those figures, the nondiffe
tiability of the synchronization function will affect the dete
tion of generalized synchronization if a conventional neig
borhood formulation procedure is adopted because all
tested independency measures start to decrease aroug
50.5. This happens because the ‘‘wrinkling’’ effect becom
more widespread at this point. While the adoption of thed6

andd3,3 neighborhood formulation this effect lessens for
the measures; theC measure seems to be able to achieve
most significant improvement by recognizing that there
almost no decrease of theC measure with increasingg on

FIG. 4. Same as Fig. 3, witha510.

FIG. 5. Same as Fig. 3 except the bivariate time series are
erated from two coupled He´non maps withb150.3 andb250.1.
Coupling strengthg increases from 0 to 1 with a step size of 0.
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using ad3,3 neighborhood formulation. It is also expecte
that thed3,3 should help more than thed6 method for han-
dling a ‘‘wrinkling’’ synchronization function@8# like the one
produced in this numerical experiment.

V. DISCUSSION

Although the proposedC measure and the existing inte
dependency measures share the concept of the condit
neighbor as a common theoretical basis, they are fundam
tally different in the way the information regarding the inte
dependency is extracted from these neighborhoods. First
C measure relies on the difference between a conditional
a true neighbor for quantization of the coupling, thus alwa
being normalized in each individual system. In this way,

n-

FIG. 6. Same as Fig. 5, withb150.3, b250.1.

FIG. 7. C measure of interdependency calculated using th
different neighborhood formulation algorithms for two coupled sy
tems with a ‘‘wrinkling’’ synchronization function. The top pane
shows the result obtained using the conventionald0 neighborhood
while the results using ad6 and ad3,3 neighborhood are displaye
in the middle and bottom panels, respectively.
6-5
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avoids the problem that the existing measures might refl
the complexity of the individual system instead of the co
pling strength@6,13#. Second, it does not depend on the s
of the neighborhood for measuring the difference betw
two spaces but on the degree of alignment of their princ
axes. In this way, the interdependency measure is not dire
affected by the neighbor size and thus, as the numerica
sults indicate, it is more robust than the existing measu
with regard to neighbor size.

As made clear by recent research, a complicated non
ferentiable synchronization function might destroy the abi
to detect generalized synchronization by interdepende
measures. Although this is true for all the interdepende
measures with an underlying continuity assumption, our
merical results demonstrate that theC measure responde
most to the adoption of adp as well as adp,q neighborhood
for handling complicated geometries of a synchronizat
function. This is a highly desirable feature of an interdep
dence measure for practical use.

There is still one more point that needs clarification b
fore concluding the paper. Throughout, we have sugge
that a driver system depends more on a response syste
indicated byC(xuy).C(yux). This is a little bit counterin-
tuitive considering that the driver is usually an autonomo
system. It should be realized that calculation of the propo
interdependency measure and other types of measure
ferred to in the paper involves the formulation of condition
neighborhoods. This inevitably introduces a type of neig
borhood for any point on the driving system’s trajectory th
is dependent on the way it drives the response system. Th
fore, this naturally leads to the possibility of defining a d
pendency measure that has been termed the dependencx
on y. In essence, this dependency ofx on y like its counter-
part, the dependency ofy on x, reflects only howx drivesy.

FIG. 8. Same as Fig. 7 except interdependency was chara
ized usingH measure.
02620
ct
-

n
l

tly
e-
s

if-

cy
y
-

n
-

-
ed
, as

s
d
re-
l
-
t
re-
-
of

Then why would one define such an ‘‘x dependent ony’’
measure if it represents essentially the same thing as
more intuitive ‘‘y dependent onx’’? The answer is that it
provides a potential way to differentiate between a drivi
and a response by virtue of the asymmetry betweenC(xuy)
andC(yux). However, for a unidirectionally coupled system
the difference betweenC(xuy) and C(yux) does not mean
that there exists any dependency difference. Instead, this
ference mainly reflects the nontrivial geometries of the s
chronization function associatingx to y. As discussed in Ref
@6#, the observed relationshipC(xuy).C(yux) may be
mainly due to the fact that a response system usually h
more complicated phase portrait than a driving system an
more active.

VI. CONCLUSION

A different way of using the conditional neighbor conce
for inferring the coupling strength and its direction has be
proposed. The proposedC measure performed well in th
standard numerical experiments. The incorporation
nontrivial neighborhood formulation algorithms may ev
make theC measure applicable to more general nondiffere
tiable situations often encountered in generalized synchr
zation studies. Its further calibration with real patients’ i
tracranial pressure and cerebral blood flow velocity data
being conducted.
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er- FIG. 9. Same as Fig. 7 except interdependency was chara
ized usingS measure.
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