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Influence of noise on chaos in nearly Hamiltonian systems
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The simultaneous influence of small damping and white noise on Hamiltonian systems with chaotic motion
is studied on the model of periodically kicked rotor. In the region of parameters where damping alone turns the
motion into regular, the level of noise that can restore the chaos is studied. This restoration is created by two
mechanisms: by fluctuation induced transfer of the phase trajectory to domains of local instability, which can
be described by the averaging of the local instability index, and by destabilization of motion within the islands
of stability by fluctuation induced parametric modulation of the stability matrix, which can be described by the
methods developed in the theory of Anderson localization in one-dimensional systems.
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I. INTRODUCTION by the properties of the heat bath alone. The problem of
simultaneous influence of small dissipation and weak noise
From the point of view of chaotic dynamics, the Hamil- on the features of chaotic motion in the original Hamiltonian
tonian systems are marked out by the omnipresence of chaosonautonomous system is the main concern of this paper.
for nearly any Hamiltonian system with not less than one and The studies of the influence of noise on chaotic motion
a half degrees of freedofwith the exemption of completely were pioneered by Lieberman and Lichtenbgsg just by
integrable models that are nonrobust and therefore excepmnalysis of the effect of fluctuations on the Hamiltonian non-
tionally rarg the chaotic motion is possible for some initial autonomous system. However, the modern paradigm of the
conditions. On the contrary, for the dissipative systems of thelomain was formed later by Crutchfield and co-workér$§]
same complexity of the structure chaotic motion on strangevho switched the attention to the exploration of strongly
attractors either could be attained only in limited domains ofdissipative systemee later review Ref6]). The influence
the parameter space or is not accessible dtla®). of noise on the Hamiltonian systems has been discussed re-
Inclusion of the dissipative terms, even arbitrarily small,cently in the context of the problem of decay of metastable
in the canonical equations of motion of the Hamiltonian sys-chaotic state§7,8], but in general the field does not seem to
tem can change the character of the motion drastically. Ime fully investigated.
particular, such addition can banish the chaos: for example, On the contrary, the influence of small dissipation on the
for the autonomous Hamiltonian systems with added-  Hamiltonian chaos is well understood: Afraimovich,
cous damping the only possible attractors are stable fixedRabinovich, and Ugodnikof9] have shown that with
points. It must be noted that this abrupt change may be baswitching on a small dissipation phase trajectories of stable
sically formal, resulting from the presence of the transition toperiodic motions of the Hamiltonian nonautonomous sys-
the infinite time limit in the rigorous definitions of important tems become attractors with regular motion, and chaos dis-
characteristics of chaotic motion, such as the Lyapunov exappears. With the further increase pthese attractors may
ponent and correlators of dynamic variables. In many experitose their stability; annihilation of the last one turns the sys-
mentally relevant models the ratio of the dissipatipto the  tem back into chaotic motion on a strange attractor that re-
typical frequency of motiornw may take very small values. sembles the chaotic motion of the original Hamiltonian sys-
Thus, for radiation damping of vibrations of polyatomic mol- tem. This pattern needs two specifications. First, the strange
ecules one hag/w~101% the same order of magnitude of attractor may emerge before vanishing of the last of regular
vYlw turns out for the tidal friction of the celestial bodies of ones—the system could be multistable. This case, mentioned
the solar system. In these situations the duration of the “tranin Ref.[9] as “logically possible,” will be met in our model.
sient chaos” phas&~ y~ ! is so long that accurate determi- Second, if the Hamiltonian system has no islands of stability
nation of characteristics of the chaotic motion can be carriethat correspond to periodic motion, then the transition from
out without the account of dissipation. Hamiltonian to dissipative chaos can occur immediately.
Physically the introduction of dissipation in the equationsThis case, apparently, will be present in our model too.
of motion is a form of description of the interaction of an  The aforesaid permits us to specify the main problem of
isolated (in the zeroth approximatignsystem with its our paper: what intensity of noise is necessary to restore the
environment—a “heat bath” with practically infinite number chaos, repressed by dissipation?
of degrees of freedom, continuous spectrum of eigenfrequen- The rest of the text is organized as follows. In Sec. Il the
cies, and internal dynamics that is independent of the state dfasic model is introduced. Sections Il and IV treat two
the selected system. This heat bath may be considered alsomgchanisms of restoration of chaos by noise: fluctuation
a source of noise—that is, acting on the selected system ratransfer to domains of local instability and parametric desta-
dom forces, whose statistical characteristics are determinésilization of motion within stability islands. Section V treats
the influence of strong noise on the Lyapunov exponent and
correlation functions of chaotic motion. Section VI contains
*Electronic address: pve@shg.phys.msu.su the summary of results and their discussion.
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Il. THE BASIC MODEL 1.00
We start from the well-known periodically kicked rotor—

the nonautonomous model with the Hamiltonian 0.75-

|2 - -
H(I,0,t)=5+Kcosen_Zw S(t—n), (D g os0f

a k=

g

—

wherel and # are the dynamic variablgsanonically conju-
gated momentum—action and coordinate—angteis the

control parameter, and(z) is the Dirac delta-function. The
stroboscopic mapping that links values of dynamic variables g 44
at the moments of tim@—0 andn+1—0, preceding two 5.2 56 6.0 6.4 6.8
consequent kicks,

0.25-

control parameter K

I'=1+Ksing, 0'=60+1", i) FIG. 1. The dependence of the fractibof the trap area, cov-
ered by the basin of attraction of the strange attractor of the system,
is known as the standard, or Chirikov-Taylor, mapping andegs. (5), on the control parametét. The damping value/=0.05.
thoroughly studied in Ref.10]. For each value oK 100 uniformly distributed initial conditions
The generalization of the modél) that includes dissipa- were taken.

tion and noise will be described by the equation of motion
for the angular variable, For K>K the leading attractor is the symmetric cy€lg of
two points that are related by equatioh's=—1,6'=27x
— 6. It is stable while

O+ y0—Ksing D, S(t—n)=&®1), (3)
e m(1+a)

K<Kp=——fp—=~2m

7
. . . . 1+ — yz) . (8)
wherey is the damping constant. Thigt) in the right-hand 12

side (rhs) is the Langevin random force that is a stationary,

distributed by a Gaussian lawicorrelated random process For K=K, the leading attractors are two asymmetric cycles

(white noisé with zero mean and the correlator of length 2,C3" and C5°. The phase coordinates of their
points are related by equation's= —1, 8’ =+ 6. They are
(E(D)E(t+17))=2y08(7), (4)  stable in the domain

where ® =kgT is the noise temperature in energy urits 1 > 5 5
the system of scales of the mogdéThe model given by Eqgs. K<K3_5‘/T’ (1+a)?+3+a°~2n"+1(1+0.152).

(3) and (4) has three parameter&:, v, and ©. We shall 9
restrict ourselves by the domain of small dampinggl,
where the system is nearly Hamiltonian. In general case the system defined by H&$.is multi-
In the absence of noise, &=0, the stroboscopic map- stable. From the first of these equations it follows that the

ping for this model is given by equations strip

I"'=a(l+Ksind), 68'=6+b(l+Ksing), 5

( ) ( ), (5 WL a0
expy—1

where

is the trap(the absorbing sgiof the system: any phase tra-
a=e”, b=y X1-e). (6)  jectory that comes within this strip never leaves it. To deter-

mine the comparative roles of basins of attraction of strange
The two-parameter mapping given by EgS) is a special  and regular attractors of the model the fractioof chaotic
case of the four-parameter Zaslavsky mapping that has begfjectories among the set with random initial conditions,
introduced in Ref[11] and studied in Refg12-14. The  yniformly distributed within the trap, was calculated. The
main efforts of these studies were applied to the cas&.  results are presented in Fig. 1. It can be seen that the strange
Here we describe in brief the properties of our model for theattractor is born within the domain of stability of the cycle
case of small dampingy<1. 5, and after the loss of stability of cycl&3® andC%?, in

At sma_ll and moderate values of the c_ontrol par_am&ter the rangeK >Ks(y), it remains the only apparent attractor

the most important attractor of the mapping, E@, is the ¢ the system.
fixed pointl =0,0=, which is stable in the range For ®>0 the stroboscopic mapping for the system &3.

has the form

2(1 7
(1+a) ( ) @

K<K;= ~4| 1+ 1—2y2

b I"=a(l+K sing)+ v, (12)
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0'=6+b(l1+K sing)+ ¢, [10,16. Since our model is nearly Hamiltonian, we may try
to use this approach.
where v and ¢ are the random incrementfuctuationg of The stability matrix for the mapping given by Eq41) is

action and angle for the unit interval of time. Fluctuatians
and ¢ at the moment of time after the beginning of the
motion with definite initial conditions have the Gaussian dis-
tributions with the dispersions

a aKcosé

A= b 1+bKcosé

. (16)

The local instability index depends only on the angldor

D,=0(1—e M), (12 k<2
S S\? 5
27 Vl2

whereS=a+1+bK cosé is the trace ofA andD=a is its
determinant. For smaly almost everywhere in the interval
7/2<0<3w/2 the index is negative and constant(6)
2 =—1+/2, and the motion is locally stable. Most probably the
D,=2y0, D,=570. (13)  system stays in this domain, but under the influence of noise
it can sporadically enter the domains of local instability. For
Fluctuationsv and ¢ are positively correlated that has arge enough values @ their contribution can compensate
clear physical meaning: positive increment in velodityat the weak squeezing of phase trajectories in the central part of
is numerically equal to the actipat the unit interval of time ~ the attractor.
leads, most probably, to the positive increment of coordinate.

o(6)=In , (17)

0 -yt — 2yt
D¢=7(2yt—3+4e —e M,

respectively{ 15]. In our caseyt=y<1 and Eqgs(12) could
be replaced by their asymptotics

The correlatoiM = (ve) by the moment after the beginning A. Small K
of motion can be calculated by the method described in Eqr small valuek <1 in the absence of dampirig=0)
Ref.[15]: the evolution of the periodically kicked rotor nearly every-
0 where in the phase space can be described by the time aver-
M=—(1—-e M2 (14  aged(and thus time-independgriamiltonian of the system
Y that is given by Eq(1):
For yt=y<1 the asymptotic value of this correlator _ I
=0+y. The joint distribution of fluctuations of action and H(,0)=H(1,0,1)= 5 +Kcosd. (18)

angle has the form

For an autonomous Hamiltonian system the inclusion of vis-
cous damping and connection to the Langevifnite noise
heat bath lead to the canonical distribution of probability in

. . the phase space,
In the presence of noise the phase trajectory can reach any

point of the phase space of the system. However, for fipite ﬁ(| ,0)

the system with overwhelming probability will stay in the W(I,0)=N exp- —g—, (19
strip with limited action values that is much narrower than

the trap given by Eq(10). For the description of this domain where N is the normalization constant. For the averaging
of concentration of the probability density the term “attrac- ;=(4(6)) one needs to know the angular distributhf{ 6).
tor” will be used. Its normalized form could be found from Eq4.8) and (19):

J3 1
W(v,(p)=2ﬂ_y® ex%—y—®(3¢2—3cpv+ ) |. (15

Ill. THE THRESHOLD OF CHAOS: TRANSFER

K
TO THE DOMAIN OF LOCAL INSTABILITY exp- ) cosd, (20

1
WO = 5 KI©)

The condition of existence of chaos is, by definition, theywherelo(z) is the zeroth-order modified Bessel function of

positive value of the Lyapunov exponemt Numerical cal-  the first kind. Since nearly all probability density is concen-
culation shows that in our model at moderate valueKof trated in the stability interval, where cés:0, the contribu-
=5.4, when the motion of the system in the absence of noisgon of this domain to the averaged value is
is regular, the Lyapunov exponent increases v@ttand at
some value o® passes through zero. 04

We turn to the theoretical description of the onset of g-="5" (22)
chaos. For conservativéarea-preserving mappings with
strong chaos rather accurate estimate for the Lyapunov ex- To calculate the contributions of zones of local instability
ponent could be obtained by averaging of the local instabilitywe neglect the damping; then we havd 0)~ K cosé.
index—the logarithm of the maximal in absolute eigenvaluePositive contribution of two instability strips could be esti-
of the stability matrix—over the domain of chaotic motion mated by following integral:
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FIG. 2. The dependence of the temperature threshold of chaos, FIG. 3. Numerically found dependence of the temperature

®,, on dampingy for K=0.3. Calculation by Egqs21) and (22)

(line) and numerical calculatiofpoints.

1 fzw K 0
— wlo(K/O) 37r/2ex 0

(O

VK cosfdd. (22

threshold of chao¥),, on the control parametdt for the damping
value y=0.1.

The numerical calculation confirms this suggesti@ee
Fig. 3.

For the area-preserving mapping, Ef), reduced to the
basic square (&1<27)(0<6<2m), for largeK the cha-
otic motion takes place in the chaotic component that covers
the largest part of the phase spifm K>2 the measure of

The threshold value®, found by averaging of the local
instability index and by direct numerical calculation are

compared in Fig. 2. the chaotic componenk(K)>0.78]. For the system with

If K/®>1, the integral can be calculated analytically: . : . .
replacing the Bessel function by its asymptotics for |argedamp|ng and noise, Eq11), we shall retain the name “cha-

value of the argument, and approximating the cosine by thgtifz component™ for the part of the attractor that inpludes the
linear function. we obt,ain points of the chaotic component of the conservative system,

and the complementary part will be referred to as “islands of
1 K stability.” Limiting ourselves to the casé <4, we will take
oi~\|= O exp— —. (23)  into account only one island of stability that surrounds the
2K ® stable fixed point =0,0= 7.
From the conditioo)=o_+ o, =0 the threshold value of
temperature is determined by the root of the equation
5 K for one time step receives the incremarnt=K sin 6 with the
y= \/: O exp— —. (24)  averaged square valye|?)~K?/2. For the motion in the
K O chaotic component the correlations of the consequent values
of §are smal[17,18, and we can depict the evolution of the
K (25) (13) we have the estimat®* ~K?/4y>1. In this approxi-
mation the distribution of phase density in the chaotic com-
ponent will become canonical one, with uniform distribution
of angles and the Gaussian distribution of action,
B. Large K
The results of the preceding section shows that for small
without any noise. For the reasons of continuity we may
expect that there may exist a range of value& afhere the
dependenc® y(K) at the constant dampingis decreasing.

90~y

Some properties of chaotic motion of the system with
damping and noise in the chaotic component could be de-

scribed by the following simple model. The action variable
This expression yields the asymptotic erendence of th@ystem as the motion of the rotor with the dampipgnder
temperature threshold of chaos for sntéllit has the form  ne influence of some Langevin force, a white noise coming

from the source with an effective temperat@&. From Eq.
and possesses a logarithmic accuracy.

Y 2y,
W(I,0)= mex _Pl . (26)

K the threshold®, grows with the increase of the control _ o )
parametelK, ®,%K. On the other hand, as it was noted in This expression is applicable for smalland largeK.
the Sec. lI(see Fig. 1, for K>K; chaos in the dissipative Let us assume that in the island of stability the probability

H(|,a)) -

Wi(l,0)=Nexp< e
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whereH(l, 6) is an effective Hamiltoniafia function that is 0
constant on the invariant curves of the standard mapping
(2)], andN is the normalization constant. This assumption is a.
plausible in view of Eq(19); additional support for it will be
obtained in the following section.

If yand® are sufficiently small, then the phase trajectory
can leave the island of stability or return to it only by passing
through the narrow strip of the width~/y® along the
border of the island of stability. The probabiliBof finding
a phase point in the chaotic component could be found from
the balance considerations by equalizitg andW, on this
border. ForP<1 we can neglect the nonuniformity of the
distribution Eq.(26) in action and obtain the estimate

r
)

f probability In
A

logarithm o

PaKE [ A i 4 5 & 1
PN Y eXp(_6)’ 28 inverse temperature p

. . ) e~ FIG. 4. Dependence of the probabili®/of finding a trajectory
whereA is the value of the effective Hamiltoniati(l,6) on of motion of the system with damping and noise in the place of the

the border of the island of stability. At present we can Nnotchaotic component of the standard mapping on the inverse tempera-
calculate this quantity analytically, but from its value takenyre g=@© ~* for the valuesk =3 andy=0.05. Numerical calcula-

from the numerical calculation@nd depending only oK)  tion (point and linear fit to the pointgline).
by Eq.(28) we can find the dependence Bfon ® and y.

In the numerical experiment the basic square<(0 IV. THE THRESHOLD OF CHAOS: PARAMETRIC
<2m)X(0=6<2m) has been separated into“16ells. A DESTABILIZATION IN THE ISLANDS OF STABILITY
chaotic trajectory of the standard mapping E2). in this ]
square was calculated for L@ime steps, and all cells, in Although the agree_men_t betvyeen the theor_ethal curve_and
which the trajectory came at least once, were marked as tH8€ numerical points in Fig. 5 is rather convincing, the in-
mask of the chaotic component. Then for the trajectories ofrease of discrepancy at very smalls strange: just in this
the system with damping and noise, Edfl), the probability domain the damping must have espeg:lally little mﬂgence,
P has been calculated as the fraction of points of the trajecand the picture of transfer between the island of stability and

tory whose projections on the basic square got into one of thi€ chaotic component promises to be asymptotically exact.
cells of the mask. Furthermore, this discrepancy could not be neglected from

The results of numerical calculations for the values the quantitative point of view, since for the sharp dependence
=3 andy=0.05 are shown in Fig. 4. Fit of the linear depen- 0f P(®) small variations of® at low temperatures produce
dence of IrP on the inverse temperatugg=© ~* for these large changes in the positive contribution to the Lyapunov
points gives valued=1.07 andN=0.057. exponento . = o(K)P. For example, foK =3 and y=0.01

From the assumption that the motion inside the stabilitySubstitution of the numerically found valé=0.086 in Eq.
island gives to the Lyapunov exponent the negative contri{28) gives P=2.6X10 ° and ¢,=18x10 °=35
bution o_=—v/2, and that the positive contribution from

the motion in the chaotic componentds. = o(K) P, where ]
o(K) is the Lyapunov exponent value of the Hamiltonian 0.25-
system, for the temperature threshold of chaos we obtain the _ ]
' ®
equation = 0201
[=]
A(K) = '
@0= . (29 £ 015
In[o(K)NV8 K2y 3] o .
=]
® 0.104
The threshold value®, found by calculating the prob- & ]
ability of transfer to the chaotic component by this formula g 0.05-
and by direct numerical calculation are compared in Fig. 5. ]
From Eq.(29) it is seen that essentially , is proportional to 00

the “activation energy”’A(K); the dependence on other pa- " 0.00 0.02 0.04 0.06 0.08 0.10
rameters is only logarithmic. The general behavior of the

. ; dampin
dependence on Fig. 3 could be explained by decrease of the ping ¥
size of the stability island with the increase Kf the dip FIG. 5. The dependence of the temperature threshold of chaos,
aroundK =4 reflects the restructurization of the regular at-®,, on dampingy for K=3. Calculation by Eq(29) (line) and

tractor. numerical calculatiorfpoints.
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X 10 3(y/2). Thus we must conclude that there exists an-values ofK that are not too close t§=0 or K=4. In our
other mechanism creating the instability that acts on the partsase(s)#0, but we can include this value in the parameter
of phase trajectories that are localized within the islands ok this renormalization will change its value int6=K(1
stability. _ o _ _ —(x»/2). Inwhat follows we shall retain the designatign

In the domain 2K <4, in which the island of stability for the fluctuating quantity with zero meanp=K(x?
surrounds the fixed stable point0,0=, we can consider —(x2))/2. To use Eq(32) we have to determine statistical
the dynamic variables=¢—m andy=1 to be small. Then characteristics of the variablg: its dispersion and correla-
by the substitution cos=1—x72 the matrix of stability tion function. It must be noted at once that for calculation of
could be represented in the form these quantities the account of damping is essential.

a —aK+ang
b 1-bK+by

(30) A. Invariant density in the island of stability

’

Since for low temperature® the phase trajectory nearly
where 7=Kx2/2 are small corrections. The quantitiesare all the time is located in the vicinity of the stable fixed point,

fluctuating under the influence of noise and could be treatelP" finding the invariant distribution of the probability den-

as random. The stochastic modulation of parameters of thgity W(x,y) we may use the linearized mappihg

mapping leads to destabilization of the motion. The corre- L .

sponding exponent of instabilityr, , we will calculate in x'=by+(1-bK)x, y'=ay—aKx. (39

the conservative approximation, since the contribution to therpo motion of the system on a unit time interval can be

common Lyapunov exponent from damping, =— /2,  geparated into two stages: the first is the evolution under the

and from stochastlt_: modulaqu for small y are add|t|ve: mapping, Eq(35), the second is addition of the fluctuation
The transformation of variables determined by matr'cesincrements[cf. Eq. (11)]. The probability of coming in the

Eq. (30) at y=0 can be reduced to the three-term recurren;iinjty of the point (u,v) after the first stage is proportional

relation for the angular variable: to the value of the invariant density in the vicinity of its

Xn11—(2— K= 57)X,+ X 1=0. (3 prototypel. ~*(u,v). The influence of noise can be described
by the convolution of the obtained distribution with the dis-

This expression can be interpreted as an equation for ampliribution of fluctuation incrementw/(v,¢), Eq. (15). Thus
tudesx,, of the stationary wave function in the quantum one-for the invariant density we obtain the following integral
dimensional tight-binding model with unit nondiagonal ma- equation:
trix elements (transfer integrals between adjacent sites,
random sitg energiean, aqd thg energy eigenvallj';e=2 W(x,y)=a‘1f f du de(u_ Ev, Ku+
—K (one-dimensional chain with diagonal disorderhe a
calculation of the Lyapunov exponent for this system was

1-bK )
v

carried out in the context of the theory of Anderson localiza- % V3 exp{ — i[3(u—x)2

tion. For the case in whicly, are independent random vari- 27y0 0484

ables with zero mean)=0, and small dispersion,»?)

<1, the Lyapunov exponent has been calculated by Derrida —3(u—x)(v —y)+(v—y)2]]. (36)
and Gardnef19]. Correlations between consequent values of

7, Were taken into account by Tessieri and Izrail20]. The

stochastic Lyapunov exponent is proportional to the disper- We will look for its solution in the form of a canonical
. yap p . Prop PE€Tistribution with the effective Hamiltonian that is bilinear in
sion of fluctuating parametey:

actiony and anglex:

(7%) 1
T+ = Ak —K?) S (32 W(x,y)=exp- g (AX*+Bxy+Cy?). (37)
The correlation facto€(w) in this expression has the form After substituting this expression in E€6), integrating and
® equalizing the coefficients at the identical powers of dynamic
Clw)= 1+22 b, (k)cog 2wk) (33) variables, in the lowest order ip we obtain the parameters
= ’ of Eq. (37):
whereb, (k) are normalized correlation functions of the ran- 3K 3K 3
dom variable, b, (K)=(7,7;,)/(7%), and A<k B ek CTex  ®
2—K Now we can calculate the moments of dynamic variables,
w= arccosz— (34 eqg
is the average angle of rotation of a vector by the linearized o 12-2K _ 6-K
: : : (X)= 5229, (XY)= 5220, (39
standard mapping. Formula E¢32) is applicable for the 12K - 3K 12-3K
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and the dispersion of the fluctuating quantity, 12
s 1[12-2K)2 o (@)
(=313 @ (40 o 0.8
c
that enters in the rhs of E¢32). 2 1
5 0.4
B. Correlation function é 1 A h
With the known form of the invariant density, the corre- 8 0.0
lation function of the angular variablecould be calculated & ] \/
by the direct integration. For the linearized mapping, Eq. © 04
(35), the values ofB,(n)=(xjx;+,) could be expressed )
2 T T T ¥ T T T T
through two momentgx“) and(xy). For example, 3 z T e
Bu(0)=(x?), By(1)=(1-bK)(x?)+b(xy), (41) discrete time
B,(2)=[1—bK(2+a)+b?KZ|(x?)+ (a—bK+ 1)(xy). 1.2
For small y the normalized correlation functiom,(n) 2 (b)
=B,(n)/B4(0) can be expressed in the form ;a 0.8
s
bx(n)=cos{a')n)ex;{ — zn) . (42 E 0.44
2 =] ]
: ) A
. : . S 00
Here the tilde ovew reminds that the renormalized value of % v hJE
K must be used in calculations. This formula is compared to @ ]
the numerical calculations in Fig. 6. g -044
The normalized correlation function of the fluctuating
variable » can be calculated in a similar way: 0.8, . : i : . :
0 5 10 15
b,(n)=coS(wn)exp(— yn). (43 discrete time »

With this expression one can calculate the correlation factor FIG. 6. Normalized correlation functioh,(n) of the angular
C(w) [see Eq(33)]. For smallyitis given by the expression variable for the values of parametes=3 and y=0.2. (a) For
C(w)~(27) L. With it, from the conditiono_+ o, =0 fol- ~ ©=0.05 and(b) for ©=0.2. Calculation by Eq(42) (line) and
lows the estimate of the temperature threshold of chaos, humerical calculatioripoints.

12-3K -
00=2VAK—K? . (44) Oo~c\y, (46)

where constant is about unity. The fit of the law, Eq46),

This formula is too crude for the practical application: it to the points in Fig. 5 gives~0.88.
gives only the estimate @, from below. Here is the reason
for this limitation: Egs.(42) and (43) for the correlation
functions are valid only for small temperaturé3=vy. For V. STRONG NOISE
larger values the nonlinear terms that are present in the exact |n this section we will look at the effects of noise with
mapping, Eq.(11), change the frequency of oscillations of temperature much higher than the chaos threstigjd
the correlation functiorb,(n) [see Fig. @)]; by this they
spoil the resonance with the cosine factor under the summa-
tion sign in EQ.(33) and considerably decrease the value of
C(w), down to the value about 2—3 on the threshold of With the increase of the noise temperature the Lyapunov
chaos. The numerical calculation shows that aro@gdthe ~ €xponent increases monotonously and tends to some finite
temperature dependence of the Lyapunov exponent is acclimit o., (see Fig. 7.
rately described by the formula Since with the increase of noise the typical values of in-
crements of the angle and of the actionv grow, ¢~v
~/y0 [see Eq.(13)], for >y ! all correlations of dy-
namical variables vanish. Therefore the limiting vatag is
equal to the Lyapunov exponent of the infinite product of the
with a coefficientx about unity. From Eq(45) the simple  matrices, Eq(17), with uncorrelated values df, uniformly
approximation for the temperature threshold follows: distributed in the interval € 6<27. For smallK the value of

A. The Lyapunov exponent

0'2—%+K2 (45

026205-7
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FIG. 7. The dependence of the Lyapunov exponerdn the
noise temperatur® for K=3 andy=0.1 obtained from numerical
calculation (pointg. Parabola in the left part(solid line—
calculation by Eq(45) with k=1. Horizontal dashed line marks the
limiting value o.,=0.538.

0. can be calculated from the result of R¢L9] for the
localization length at the band edge, namely,

O,=— 7 4 0.22%25,

. (47)

The dependence given by this equation is in good agreemer

with the numerical data up to the valuekf1 (see Fig. 8

It may be noted that from Eq47) it follows that for a
given value of damping there exist a range of values of the
control parameteK <3.23y%2 in which chaos could not be
reached for any intensity of the noise. For large valles
=3 the limit o, does not differ noticeably from the
Lyapunov exponent(K) of the original Hamiltonian sys-
tem.

0.20

0.15

0.10-

0.054

0.00

Lyapunov exponent ¢

©
[}
[3]]

0.4 06 0.8

control parameter X

0.0

0.2 1.0

FIG. 8. The dependence of the limiting value of the Lyapunov
exponento,, on the control parametdt for y=0.1. Calculation by
Eq. (47) (line) and numerical calculatiofpoints.
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FIG. 9. Dependence of the correlation functiBg(1) of the
angular variables=sin# on the noise temperatur®. (a) For K
=0.3, y=0.01. Calculation by Eq(49) and numerical calculation
(pointg. (b) For K=3, y=0.05. Calculation by Eq50) (line) and
numerical calculatioripoints.

B. The angular correlations

In the theory of the standard mapping it is customary to
study the angular correlations through the properties of the
variables=sinf [17,18. From the symmetry considerations
it has zero mean;s)=0.

Let us consider the correlation of two consequent values
of this variable:

Bs(1)=(sin#sing’). (48)

When the invariant density/(l1, #) is known, the calculation
of the correlation, Eq(48), is reduced to the twofold inte-
gration. For smallK the distribution can be taken as the
canonical one with the averaged Hamiltonian, Eg). Ap-
proximating the angular distribution by the Gaussian func-
tion, for small dampingy we have the expression

14 o] 2o -2)

20
K

2

Bo(1)=5 (49

026205-8
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It is compared to the numerical data in Figap regular at arbitrarily intense noissee Sec. VA The in-
For large values ofKk=2 and small temperatures the crease of the noise intensity raises the Lyapunov exponent.
value ofBg(1) could be calculated from the distribution, Eg. In wide context this fact is not quite trivial, since there is an

(37): example of the system for which noise diminishes (ihesi-
5 tive) Lyapunov exponent, eventually turning it negati2d].

By(1)=(1—K)(x?)+(xy)= 12—-8K+K 0. (50 (2) The temperature threshold of chaos depends on the

s 12K —3K? strength of chaos of the Hamiltonian system in a nonmonoto-

nous way(see Fig. 3. For weak chaos it increases with the

It is compared to the numerical data in FigbP The nu-  strength[in our model by linear law, see E(R5)], since the
merical calculation shows in this case the decread®s(f)  effective “potential well” corresponding to the island of sta-
with © for sufficiently high temperatures. The reason for it is bility becomes deeper, whereas for strong chaos the thresh-
qualitatively clear. We have two competing contributions toold decreases due to the shrinking of the islands of stability.
Bs(1): a negative one from the island of stability and a  (3) There are two essentially different mechanisms of the
smaller positive one from the motion in the chaotic compo-chaotization of motion by noise. The first one is the fluctua-
nent. The increase of the temperature leads to the increase @nal transfer of the motion from the stability island to the
the probabilityP of the motion within the chaotic compo- |ocally unstable regions of the phase space; its contribution
nent, which eventually suppresses the negative contributione the Lyapunov exponent depends on the noise temperature
The way of accurate calculation &(1) for high tempera- by the “activation law,” o, = exp(—A/®) [see Eqs(23) and
tures at present is not known. (28) and Fig. 4. The second is the parametric destabilization

Then both for small and large values of the control pa-inside the islands of stability created by small fluctuations of
rameterK the increase of the noise temperatdfrem zerg  nonlinear terms of the stroboscopic mapping; its contribution
induces first the increase of the correlation of the consequem the Lyapunov exponent depends on the noise temperature
values of the angular variabke=sin ¢ up to some maximal by the power lawg, «0®? [see Eqs(32) and(40) and Fig.

value, and then its decrease. 7]. Any one of these mechanisms could be dominating, de-
pending on the combination of parameters.
VI. CONCLUSION (4) Around the threshold of chaos the motion of the sys-

: - . tem with damping and noise differs strongly from the chaotic
we have studied ab(_)ve the model of.perlod|cally I('CKdeotion of the original Hamiltonian system. It is concentrated
rotor with added damping and white noise. We expect tha[.go

. ) . ainly within the islands of stability with only rare excur-
some of the established features and relations are typical ang, <" the domain of the phase space occupied by the cha-

will hold at least qualij[atively for marny reprefsentat_ive non- qtic component of the prototype. In this aspect the restora-
autonomous Hamiltonian systems with chaotic motion. W'thtion of chaos *by noise’ differs radically from the

thisin yiew, in this §ection we s_ummarize main results of this estoration of chaos “by dampind'9]. The similarity to the
paper in a generalized way. Since the growth of the contro riginal motion could be reached in the domain of strong

parameter of the standard mappikgincreases both the .~ 4 high noise temperatur®s; 1 (see Fig. 7.

amount (given dbt); thet'”V*?‘tr'af?t mebaSLEr,e of the ChaOt'Ct Lastly it must be noted that the existence of the range of
componentand the intensitygiven by Lyapunov exponen parameters where the transition from Hamiltonian to dissipa-

‘T)hOf ]E:k:laos we wil "refer tK as ;he strt()angé]h OE chaos. In 4ve chaos is immediatésee Fig. 1 may be specific for the
what fo OV&’S (as Weh als everyvx; (ra]re ?1 Qvthe Lyapunov oy died model of periodically kicked rotor. In this range the
exponent denotes the largest of the characteristic exponengy, o ce of noise on chaos has qualitative peculiarities: e.g.,

of the_ stroboscopic m?PPi”Q of the system that_ can tak‘f."‘ne increase of noise could reduce the Lyapunov exponent
negative as well as positive valugane has to keep in view e\ 2 o0 y=0.1 at®=0 ¢=1.2603), and at®=100

that for system flows with finite phase velocity there is al'o-=1.22&3)]. The scenario of the immediate transition and

ways one zero c.haracteristi.c Il_y_apgnov e_xponent that COM&o|ated problems for noisy systems may deserve a special
sponds to evolution of the infinitesimal displacement anngs

the phase trajectoyy

(1) If chaos in a Hamiltonian system is suppressed by
addition of small dissipation, then addition of white noise
can, as a rule, restore the chaotic motion. The exception is This research was supported by the “Russian Scientific
found only for very weak chaos, when the system remaingchools” program(Grant No. NSh-1909.2003.2
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