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Deterministic stochastic resonance in a Ro¨ssler oscillator

Kenichi Arai, Shin Mizutani, and Kazuyuki Yoshimura
NTT Communication Science Laboratories, 2-4, Hikaridai, Seika-cho, Soraku-gun, Kyoto 619-0237, Japan

~Received 15 August 2003; published 24 February 2004!

We discuss the characteristics of stochastic resonancelike behavior observed in a deterministic system. If a
periodically forced Ro¨ssler oscillator strays from the phase locking state, it exhibits the intermittent behavior
known as phase slips. When the periodic force is modulated by a weak signal, the phase slips synchronize with
the weak signal statistically. We numerically demonstrate, in terms of interslip intervals and signal to noise
ratio, that the maximum synchronization can be achieved with the optimum intensity of chaotic fluctuations. It
is shown that the stochastic resonancelike behavior can be observed regardless of the choice of parameters. The
frequency dependence of the signal indicates that there is an optimum frequency for the maximum resonance.
The phase slip rate is derived based on the fact that the phase slips are caused by a boundary crisis caused by
an unstable-unstable pair bifurcation. The interslip distributions obtained from the derived slip rate and the
approximation theory of the time-dependent Poisson process agree with those obtained by numerical simula-
tions. In addition, the maximum enhancement of a weak signal is shown to be achieved by adjusting the
chaotic fluctuations even if a signal becomes mixed with noise.

DOI: 10.1103/PhysRevE.69.026203 PACS number~s!: 05.45.Xt, 05.45.Pq, 02.50.Ey
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I. INTRODUCTION

Stochastic resonance~SR! has been a subject of great in
terest in nonlinear physics since the concept of SR was
proposed in answer to questions about the periodically re
rent ice ages@1–3#. SR has been considered a counterint
tive phenomenon: the maximum enhancement of a weak
riodic signal buried in noise can be achieved with a nonz
optimum amount of noise although it is usually thought to
easier to detect a weak signal when the noise is smaller.
mechanisms of the SR effects have been elucidated by m
theoretical approaches~see Refs. @4–7# and references
therein!. On the other hand, SR has been studied experim
tally in various kinds of systems including electrical, optic
and neuronal systems~see Ref.@4# and references therein!. In
particular, SR has come to be significant for sensory n
ronal systems since it is believed to be used by sensory
rons to detect a weak signal in a real noisy environment@8#.

Most SR studies have been carried out on bistable or m
tistable systems, typically realized by an overdamped p
ticle driven by periodic and random forces in a double-w
potential. Some dynamical systems possessing a single s
point and a reinjection dynamical process, where after es
ing from the stable point, a trajectory returns to the sta
point deterministically, have the potential to yield SR a
they form another important class of SR. The typical reali
tion of this kind of dynamics is given by the equatio
du/dt5A1sinu and FitzHugh-Nagumo~FHN! models
@9,10#, which can describe the dynamics in Josephson
vices or sensory neurons, respectively. In fact, some SR s
ies have been based on the FHN model in order to un
stand the mechanisms of biological sensory systems bec
it is believed that sensory neurons utilize the SR effect i
noisy environment@11,12#.

Meanwhile a number of studies on SR have been car
out for systems with deterministic noise, that is, chaotic fl
tuation. It is natural to look for SR-like phenomena in
deterministic chaotic system since chaotic fluctuation is si
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lar to noise on a coarse-grained time scale. In fact, a num
of SR-like phenomena in chaotic systems have been
ported. One approach consists of adding the chaotic forc
generated by a logistic map to a double-well system alo
with a harmonic signal and observing the SR fingerpr
@13#: the dependence of SNR versus the amplitude of
chaotic forcing has a bell-shaped maximum. Another sor
SR-like phenomenon has been reported in terms of the in
mittent hopping between two chaotic states such as two w
of a periodically forced double-well Duffing oscillator@14#,
two phases of a period-doubled single-well Duffing oscilla
@15,16#, two single scrolls of Chua’s circuit with a harmon
signal @17,18#, two chaotic repellers in a periodically modu
lated cubic map@19#, two formerly disjoint attractors in a
one-dimensional piecewise-linear map@20#, and two sym-
metric attractors in a Lorenz model@19#. These reports
showed that the intermittent events resonate with the sig
and the resonance can be maximized by the chaotic fluc
tion. Some authors discussed more effective methods for
nal enhancement by SR-like phenomena in chaotic syst
@18,21,22#. In addition, SR-like phenomena have been e
perimentally observed in noiseless systems such as ch
spin-wave dynamics@23# and a CO2 laser@24#.

Few SR-like phenomena have been found for monosta
chaotic systems with a reinjection mechanism. We dem
strated SR-like behavior in chaotic systems with a reinject
mechanism, employing a forced Ro¨ssler oscillator, and the
SR-like behavior in a deterministic chaotic system is refer
to asdeterministicstochastic resonance~DSR! @25#. In this
paper, we focus on phase slips, which are intermittentp
phase jumps in quasiphase synchronization, and report
correspondence betweeninterslip interval distribution~ISID!
and the residence-time distribution in SR. In addition,
show that thesignal to noise ratio~SNR! behavior coincides
with that of SR. We also describe some properties of th
phenomena.

Certain authors have pointed out a relationship betwee
crisis and DSR@15,16,19,26#. Lately, we have described th
©2004 The American Physical Society03-1
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dynamical mechanism of DSR, that is, a theoretical expla
tion of DSR in terms of its dynamics@25#. In this paper, we
refine the previous explanation in that we show the p
played by a boundary crisis in the occurrence of DSR a
that the bifurcation parameters of the crisis play central ro
as regards inputing a signal and controlling fluctuation
DSR. We specifically emphasize that the DSR mechan
can be explained using the scaling law of bifurcation para
eters and a Poisson process approximation.

We show that DSR-like behavior can be observed eve
a signal is mixed with noise: the maximum enhancement
weak signal can be achieved by adjusting the internal fl
tuation depending on the noise intensity. This phenomeno
called noisy DSR.

This paper is organized as follows. In Sec. II, we intr
duce some of the basic characteristics of phase synchro
tion and phase slips, which appear just after the phase
chronization is broken. We numerically demonstrate D
and show some of its characteristics in Sec. III. Then,
explain the dynamical origin of DSR in Sec. IV, applying th
scaling law of the crisis and the Poisson process approxi
tion. In Sec. V, we report the DSR-like behavior that occu
when a signal is contaminated with noise. Finally, we p
vide the conclusion in Sec. VI.

II. PHASE SLIP

A. Phase synchronization of Ro¨ssler oscillator

Let us consider a Ro¨ssler oscillator driven by a sinusoida
force:

ẋ52ny2z,

ẏ5nx1ay1K sin~Vt !, ~1!

ż5b1z~x2c!,

wherea50.2, b50.2, andc54.8 andK, V, andn can be
varied depending on the situation. With a smallK, this dy-
namical system yields a chaotic attractor similar to the or
nal nonforcing one and its trajectories rotate around thz
axis.

Frequency locking in a chaotic system can be describe
terms of the observed mean angle velocity

V̄5 lim
t→`

2p
Nt

t
, ~2!

whereNt is the number of intersections between a traject
and a reference surface such as a half-plane (y50 and x
.0), during an observation intervalt. Figure 1 shows the

angle velocity differenceDV5V̄2V between the Ro¨ssler
oscillator and the external force as a function ofV and K.
We can see the plateau region where the differenceDV is
zero, where the oscillator frequency is locked by the exter
force. It is noted that this figure is similar to the one obtain
for the synchronization of periodic oscillators.
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The phase of an oscillator has to be defined in orde
describe a phase synchronization@27#. However, in general it
is difficult to define the phases of chaotic rotations. Nev
theless, since we employ only proper Ro¨ssler oscillators,
namely, their trajectories rotate around thez axis, we can use
the angle variable,

u5arctan
y

x
, ~3!

as the phase, satisfying the following conditions for t
phase: the phase is set at 2pn (n50,1,2, . . . ) on therefer-
ence plane and the phase of a rotation monotonically
creases with time. Let theu value be continuous with respec
to time: i.e., integer multiples of 2p differences inu are
distinguished. It should be noted that the mean angle velo
obtained by the angle variable is asymptotically coincid
with that obtained by Eq.~2!. Since a cylindrical coordinate
is useful for the following discussion, we introduce the a
plitude of rotations:r 5Ax21y2.

When the Ro¨ssler oscillator is not synchronized with th
forcing, the largest Lyapunov exponent has a positive va
and the second exponent is practically zero. Roughly spe
ing, the second exponent corresponds to the angle varia
Due to chaotic fluctuation, the angle variable diffuses a

fractional Brownian motion with the driftV̄t @28#. The Hurst
exponent of our chaotic diffusion is almost exactly 0.5
shown in Fig. 2 and so the diffusion can be regarded as
ordinary Brownian motion.

When the forcing strengthK becomes large or the extern

frequencyV approachesV̄, the second exponent becom
negative and then the phase diffusion is suppressed. He
ter, let us focus on the phase differenceDu between the
Rössler oscillator and the external force

Du5u2Vt. ~4!

In Fig. 3, we can see thatDu with K50.15 is almost con-
stant while the force is insufficiently strong to restrain t
chaotic fluctuation of the amplitudes, whereV51.0077 and

FIG. 1. Mean angular velocity differenceDV between the
Rössler oscillator and the forcing frequencies is plotted as a fu
tion of the coupling strengthK and the forcing periodV with n
51.0. In the plateau region, the frequency of the Ro¨ssler oscillator
is locked to that of the external force.
3-2
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n51.0038. This is called chaotic phase synchronizati
Chaotic phase synchronization can be observed ifK is larger
than a critical valueKc , which is 0.1403 whenV51.0077
andn51.0038. Hereafter,V51.0077 andn51.0038 unless
otherwise mentioned.

B. Demonstration of phase slip

When K is smaller than the critical valueKc , Du in-
creases with intermittent 2p jumps althoughDu is almost
constant except for these jumps, as shown in Fig. 3 foK
50.035 and 0.036. This is called a phase slip@29–32#. It
should be noted that theK values employed in the exper
ments are much smaller than the critical value since m
longer intervals are needed to observe phase slips witK
close to the critical value. In addition, we modified th
Rössler oscillator in order to see a sufficiently large num
of phase slips as follows:

FIG. 2. ~a! Probability distribution of the first-return time ofu

2V̄t. The slope of the distribution for larget is 21.5 and so the
Hurst exponent is almost exactly 0.5.~b! The phase differenceu

2V̄t of the 50 example trajectories is plotted whenn51.0, V

51.077, K50.001, and V̄51.077 46. The solid line show
60.0203At, and we can see that the diffusion of the difference
proportional toAt. These figures confirm that the phases diffuse
a way that is similar to a Brownian motion.

FIG. 3. Plot of phase differences between the Ro¨ssler oscillator
and the external force~a! and amplitudes~b! when n51.0038,V
51.0077, anda50.0. With K50.15, the phase difference is a
most constant, which indicates the phase synchronization, while
behavior of the amplitude remains chaotic. WithK50.0035 and
0.0036, phase slips~intermittent phase jumps! are observed. We can
see the more phase slips withK50.0035 than withK50.0036.
02620
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ẋ5s~2ny2z!,

ẏ5s~nx1ay!1K sin~Vt !, ~5!

ż5s@b1z~x2c!#,

wheres511a(r 22 r̄ 2) and r̄ is the averager value for an
ordinary Rössler oscillator, i.e.,a5K50. The positive sca-
lar factors on the right-hand side of Eq.~5! affects the mo-
tion of a state point so that the state point is accelerated
from the origin and decelerated near the origin. Thus,
factor s enlarges the fluctuation of the angular veloci
driven by the fluctuation of the amplitude. Therefore, asa
increases, the fluctuation of the angular velocity increas
Figure 4 shows the time courses ofDu for certain values of
a and confirms that phase slips occur more frequently aa
increases. In the following,a50.002.

III. DEMONSTRATION OF DETERMINISTIC
STOCHASTIC RESONANCE

In this section, we demonstrate DSR, using a modifi
Rössler oscillator driven by a periodical force whose co
pling is modulated by a weak signal

ẋ5s~2ny2z!,

ẏ5s~nx1ay!1K@11e sin~vt !#sin~Vt !, ~6!

ż5s@b1z~x2c!#,

where, with a modulation signal,e50.05 and v56.0
31024 unless otherwise mentioned. It should be noted t
the modulation signal is much slower than the chaotic os
lation and the external forcing. While noise, together with
periodic signal, is added to a system to observe ordinary
only a periodic signal is inputed into a system to obse
DSR since the chaotic fluctuation itself acts like noise. He
the signal is inputed using a method whereby the amplit
of external forcing is modulated. The frequency modulati
can also be employed and both are compared in Ref.@18#.

he

FIG. 4. Phase slips fora50.0, 0.0020, and 0.0040 withn
51.0038 andV51.0077. More phase slips occur asa increases.
3-3
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ARAI, MIZUTANI, AND YOSHIMURA PHYSICAL REVIEW E 69, 026203 ~2004!
Several measures of SR have been developed over
past decade. It has become common to quantify SR by u
SNR, which describes the quality of a signal in the prese
of background noise. An analytical expression of SNR
found in Ref.@11#. While an SNR curve has a resonance-li
shape as a function of noise level, it does not have a m
mum when the frequency of driving force is varied. Oth
measures of SR, based on the residence-time distribution
bistable, periodically driven system, have been introduce
characterize SR@33,34#. Longtin et al. compared the inter-
spike interval histograms of sinusoidally stimulated audito
nerve from cat with return-time distribution of the period
cally driven bistable system@35#. Zhou et al. studied the
heights of peaks in the residence-time distribution at o
multiples of the half-period of the driving force@36#. The
peak heights pass through a maximum as a function of n
intensity. Gammaitoniet al. @37# introduced the area unde
the peak of the residence-time distribution at the half-per
of the driving force as a measure for SR. In addition, th
have shown that the area passes through a maximum
function of the driving frequency as well as the noise level
should be noted that the noise strength that maximizes
area under the peak does not match the noise level that m
mizes the SNR. The analytical expressions of the reside
time distribution have been provided by Choiet al. @38#.
Other sorts of quantities for characterizing SR have b
discussed. A correlation function was introduced for SR-ty
behavior with aperiodic input signals@39#. Goychuk @40#
found an analytic expression for the rate of information g
and showed that it is proportional to SNR when the signa
weak. Since we focus on intermittent events, namely, ph
slips, in time series, we mainly employ the interslip interv
distribution ISID to quantify DSR. In addition, we ma
safely say that ISID has advantages as regards discus
SR-type behavior when the frequency of external force
varied.

A. Interslip interval distribution „ISID …

Figure 5 shows the probability distributionr(t) of inter-

FIG. 5. Probability distribution of interslip intervals withK
50.070. ~a! Without a signal, the distributions form exponenti
tails except whent is small. Asn increases, the distribution be
comes steep, in other words, the mean interslip interval beco
small. ~b! When the coupling strength is modulated by a sign
there are multipeaks centered at integer multiples of the pe
2p/v (.1.0473104) of the modulation signal.
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slip intervals, which are the durations between two conse
tive slips fore50 ~a! ande50.05~b!. Without a modulation
signal ~i.e., e50), the ISID is unimodal and decays exp
nentially for a larget. The figure shows that the ISID dev
ates from the exponential form in the smallt range: phase
slips cannot occur in a short-period succession and it is c
sidered that there is some refractory time. The exponen
form, i.e., r(t).l exp(2lt), in the larget range implies
that the occurrence of phase slips is well approximated b
Poisson process: successive phase slips are statistically
pendent and the probability of a phase slip occurring dur
a short periodDt is given bylDt, with no memory.l indi-
cates the index of the exponential distribution, which can
estimated by the mean phase slip rate, and this grows aK
decreases orn increases in the parameter range we used

A small modulation signal causes a slight change in
shape of the attractor, compared with a nonsignal attrac
However, the ISIDre(t) changes greatly, in other words,
develops multipeaks as shown in Fig. 5~b! for severaln val-
ues. The peaks are centered at integer multiples of the pe
2p/v of the modulation signal. In addition, we can see th
the heights of these peaks decrease exponentially with t
order. These results are very similar to the residence-t
distribution of SR in excitable systems and imply that pha
slips occur in statistical synchronization with the modulati
signal. The phase slips are most likely to occur for a cert
phase of the modulation signal: the maximum probability
a phase slip visits every period of the modulation signal
the system misses the first good chance to slip, it has ano
good opportunity after one cycle and so on.

Although the system has no stochastic features, it beha
as if it were a stochastic system due to the chaotic fluct
tion. We have to vary the intensity of the chaotic fluctuati
rather than that of the noise in order to confirm the existe
of SR-like phenomena in the Ro¨ssler oscillator, namely, the
bell-shaped peak height of the ISID as a function of t
chaotic fluctuation. We saw that the parameter values,n or
K, change the phase slip rates and we consider that the p
slip rates are determined by the intensity of the internal fl
tuation. This implies that by adjusting then or K value, we
can control the system fluctuation. It should be noted t
althoughn was often employed for controlling the phase s
rates rather thanK in these experiments,n can play the same
role asK.

Figure 6 showsDrn obtained numerically as a function o
n to verify the SR-like behavior.Drn indicates the difference
between thenth peak heights in the ISID with and without
modulation signal: Drn(n)5r(tn ;n,e50.05)2r(tn ;n,e
50) where, for a givenn value, r(tn ;n,e50.05) and
r(tn ;n,e50) represent the peak height in the ISID fore
50.05 ande50, respectively, attn52pn/v. Here, we con-
sider that the phase slips without a modulation signal
caused by background noise and then the nonsignal I
should be subtracted from the ISID with the modulation s
nal. The differenceDr1 for the first peak increases until
reaches a maximum value atn.1.0038 and then decrease
monotonically. For the second peak,Dr2 also has a unimo-
dal shape and it has a maximum point atn.1.0036, which is
smaller thann for Dr1. Since the peak heightsDr1 can be

es
,
d

3-4



ea
al
n
en
th
-

tu
th
is

v
nc
R

tim

a
h

io
n

o

k-
ight
cy
the

f

so-
es

ed
um

y
in

ram-

bi-
iva-
us-
ns.

er

tion
ed

s are
eter
du-
s
with

t is

an

o

la-

a
tics.
tion
ters.

DETERMINISTIC STOCHASTIC RESONANCE IN . . . PHYSICAL REVIEW E69, 026203 ~2004!
regarded as the magnitude of the resonance, Fig. 6 m
that the system resonates most with the modulation sign
the optimumn values. In other words, the optimum cohere
behavior with the signal is achieved for an appropriate int
sity of internal randomness. It should be emphasized that
resonant behavior inDrn coincides with the SR characteris
tics, simply exchanging noise for chaotic fluctuation. Ac
ally, we can say that the weak modulation signal make
system yield SR-like phenomena, exploiting the determin
tic fluctuation as noise. Therefore, we call this DSR.

B. Signal to noise ratio„SNR…

Another piece of evidence confirming the SR-like beha
ior in a deterministic system is given by the SNR as a fu
tion of the internal fluctuation. Here, we obtain the SN
from time series data where pulses are placed at the
when phase slips occurred. Figure 7~a! shows the power
spectrum of the pulse-train data forn51.0038. We can see
high and sharp peak at the external force frequency. T
means that the system behaves periodically with fluctuat
in other words, the system synchronizes with the exter
force statistically. We can also see the higher harmonics
the enhanced signal in the figure at the integer multiples
the modulation signal.

FIG. 6. The peak height differenceDrn(n) is plotted vsn for
n51,2 withK50.070. Each curve has a bell-shaped maximum
this coincides with the SR characteristics.

FIG. 7. ~a! Power spectrum of pulse-train data forn51.0038. A
sharp peak is seen atf .9.5531025, which is the frequency of the
external signal.~b! The SNR has a unimodal shape as a function
n and it is also confirmed that the Ro¨ssler system exhibits SR-like
behavior in terms of SNR.
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The SNR is the power ratio of the signal to the bac
ground noise. The power of the enhanced signal is the he
of the d-function-like spike at the external force frequen
and the power of the background noise is calculated as
mean power around thed spike except for its immediate
neighborhood. Figure 7~b! shows the SNR as a function o
parametern. We can see that the SNR increases asn in-
creases, reaches a maximum value atn51.0042, and then
decreases in other words, the system exhibits optimal re
nance for an appropriate chaotic fluctuation. This coincid
with the SR behavior; the existence of DSR is confirm
again in terms of SNR. It should be noted that the optim
resonance is realized for a larger value ofn than that ob-
tained from the peak height differences of the ISID.

C. Controlling and modulated parameters

Thus far, we have chosenn as a parameter for controlling
the internal fluctuation andK as a parameter modulated b
the external signal. It is natural to ask which parameters
the systems can be used as controlling and modulated pa
eters to yield DSR. As described in detail in Sec. IV,n andK
are bifurcation parameters for an unstable-unstable pair
furcation, which relates to phase slips, and they are equ
lent in terms of bifurcation. Here, we demonstrate DSR,
ing the bifurcation parameters in different role combinatio

First, we exchange the roles of parametersn andK: n is
modulated by a signal andK becomes the control paramet
of the chaotic fluctuation. Figure 8~a! shows the height dif-
ference at the first and second peaks in the ISID as a func
of K. The DSR in the system is confirmed by the bell-shap
dependence of the height difference onK. DSR can be ob-
served as we expected, even if the roles of the parameter
exchanged. We also examine another choice of param
roles:K is used as a controlling parameter as well as a mo
lated parameter. Figure 8~b! plots the peak differences versu
K and it can be seen that the system synchronizes best
the external signal for an appropriateK value. We can see
DSR even when just one parameter plays both roles. I

d

f

FIG. 8. The peak-height difference with and without a modu
tion signal for the first peaksDr1 and the second peaksDr2. ~a!
The peak-height differences are plotted vsK whenn is modulated
and K is used as a controlling parameter.~b! The peak-height dif-
ferences are plotted vsK whenK is modulated as well as used as
controlling parameter. Both curves show the DSR characteris
This shows that DSR can be observed no matter which bifurca
parameters are employed as modulated and controlling parame
3-5
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ARAI, MIZUTANI, AND YOSHIMURA PHYSICAL REVIEW E 69, 026203 ~2004!
revealed that DSR can be observed in a system where s
bifurcation parameters are modulated and the same or di
ent bifurcation parameters are used to control internal fl
tuation.

D. Frequency dependence

We investigated the frequency dependence of DSR. F
ure 9 shows the peak-height difference as a function of
controlling parametern and the frequencyv of the modula-
tion signal. For each signal frequency, the peak-height dif
ence has a bell-shaped maximum, that is to say, the sy
exhibits DSR. In addition, the optimumn value increases
slightly as the frequency increases. We can see that the
tem has the optimum signal frequency for detection. Wh
the modulation signal period is so small, the system har
resonates with the signal due to the refractory time and, t
it is thought that the peak heights become low. When
period is too long, the interslip intervals are distribut
widely and peaks are thought to be gently sloping.

IV. ANALYSIS OF DETERMINISTIC
STOCHASTIC RESONANCE

A. Boundary crisis and unstable-unstable pair bifurcation

In this section, we describe the phase slip in terms o
dynamical system. When the phase of a Ro¨ssler oscillator is
locked to an external force, trajectories are confined wit
chaotic attractors in the (Du,r ,z) space. In this space, ther
are an infinite array of chaotic attractors, which are arran
in the Du direction spaced by 2p because of the invarianc
of the system~5! to the transformationu°u62p. This
means that the phase differenceDu fluctuates only within a
certain range whose width is less than 2p.

A stroboscopic map is useful for visualizing the dynam
cal processes in a Ro¨ssler system. The stroboscopic mapM
is defined by sampling the flow of system~5! at every period
of the external force, i.e.,Du i5Du(t52p i /V), r i5r (t
52p i /V), andzi5z(t52p i /V), wherei is an integer:

M :R3→R3,~Du i ,r i ,zi !°~Du i 11 ,r i 11 ,zi 11!. ~7!

It is shown in Ref.@31# that attractors lie on a near two
dimensional manifold in the (Du,r ,z) space in the phas

FIG. 9. The peak-height difference with and without a modu
tion signal as a function of the control parametern and the signal
frequencyv. The system resonates most with a signal whose
quency is 6.031024.
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synchronization state. Therefore, in Fig. 10~a! we can clearly
see an attractor and basins projected onto the (Du,r ) plane.
Orbits initially distributed in an appropriate region in
(Du,r ,z) space with the three-dimensional volume approa
the two-dimensional manifold within a few cycles@31#.
Then, in Fig. 10, we plotted the resulting orbits with th
exception of the first few cycles as attractors or as basins
Fig. 10~a!, the black and red points indicate an attractor a
its basin, respectively. The blue points show the basin of
next attractor on the right: the blue points on the manifo
will move towards the right attractor displaced from the p
sented one by 2p. There is no path that connects differe
attractors. In the stroboscopic map, the phase differenceDu i
is confined within one of these chaotic attractors when
phase is locked to the external force.

When the system is in the desynchronization state,
regions that were previously occupied by isolated attract

-

-

FIG. 10. ~Color! ~a! Attractor and basins projected on the (Du,
r ) plane whenK50.15. The black points represent an attractor a
the red points indicate its basin. The blue points show the basi
the next attractor.~b! Attractor remnant and basins whereK
50.085. The blue points, namely, the basin of the next attrac
touch the black points. In other words, channels connecting
attractor remnants are formed. Trajectories in the black area
escape to next attractor remnant via the channel.

FIG. 11. ~Color! The trajectory passing through the channel
the next attractor remnant is plotted with the yellow diamondsL.
This is an example of phase slip trajectories.
3-6
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which are called the attractor remnants, are connected
certain trajectories. However, when the system is near
bifurcation point, the attractor remnants have shapes tha
similar to those of the original attractors and still lies on
near two-dimensional manifold. Near the transition point,
observe the chaotic transient, that is, trajectories stay in
attractor remnants for a long time and then intermitten
move to the next attractor remnant via a created path. In
10~b!, we can actually see that the blue region, which w
the basin of the next attractor, touches the black region,
the attractor remnant. In other words, paths are created
boundary crisis: the collision of an attractor with a period
orbit at its basin boundary@41–43#. Trajectories that experi
enced the chaotic transient can accidentally land on the
region and move to the next attractor remnant. This is
phase slips process.

In Fig. 11, the yellow diamondsL moving from left to
right represent the trajectory of a phase slip. The traject
passes through a narrow channel and the channel appea
be the only dominant channel in the parameter range u
The motion of the trajectory indicates that the transition
tween the phase synchronization state and the phase slip
is caused by an unstable-unstable pair bifurcation@29,31,42#.
This bifurcation process is illustrated in Fig. 12. Suppose t
there are a saddle and a repeller and the stable manifo
the saddle is identified with the unstable manifold of t
repeller, as shown in Fig. 12~a!. As the parameter approache
a bifurcation value, these fixed points approach each ot
When the parameter coincides with the bifurcation value,
fixed points coalesce, as seen in Fig. 12~b!, and then, if the
parameter increases through the critical value, the fi
points disappear and a trajectory can move through a cha
from right to left, as seen in Fig. 12~c!.

In order to reveal the process of an unstable-unstable
bifurcation in the Ro¨ssler oscillator, we used the displac
mentdmin of mapM as a function ofDu:

dmin~Du!5min
r ,z

iM ~Du,r ,z!2~Du,r ,z!i , ~8!

whereM (Du,r ,z) stands for the image of a point (Du,r ,z)
given by the stroboscopic mapM . The behavior of fixed
points can be observed via this map since the defini
states thatdmin is zero at a fixed point. Figure 13 showsdmin
plotted as a function ofDu for n51.0038 and someKs. In
Fig. 13, there are sharp decreases indmin at two points for a
large K, which correspond to fixed points. AsK increases,
these two fixed points approach each other. The coalesc

FIG. 12. Process of unstable-unstable pair bifurcation. There
two unstable fixed points~a! and they approach each other. Th
fixed points coalesce~b!. The points have disappeared~c!.
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of the two fixed points is observed atK50.1403, which
corresponds to the bifurcation point. With a smallerK, we
cannot see any sharp decrease indmin , which means the
fixed points have disappeared. This behavior coincides w
the unstable-unstable pair bifurcation process and confi
that such bifurcation takes place in the crisis. In addition,
can determine the bifurcation value asK50.1403 since the
displacement map has one sharp decrease at the bifurc
point.

B. Super persistent chaotic transient

Phase slips can occur after the crisis. However, whe
system is near a bifurcation point, trajectories experie
long term chaotic transients and, therefore, we seldom
serve phase slips. Thus, in practice we employ param
values that are considerably smaller or larger than a crit
value to allow us to observe a sufficient number of pha
slips in numerical simulations. The long term chaotic tra
sient is called the super persistent chaotic transient and
show why the chaotic transients are so long by deriving
phase slip ratef as a function of bifurcation parameters.

As mentioned above, the crisis is caused by the unsta
unstable pair bifurcation. After the bifurcation, unstable fix
points disappear and channels for the phase slips are d
oped. However, there are multiplicators near the chann
One multiplicator~approximately in theDu direction, which
we call the weakly unstable direction! has a value close to
one and another~approximately in ther direction, which we
call the strongly unstable direction! has an absolute valu
larger than one, which we denote bym. The other multipli-
cator is disregarded since the motion is restricted to the t
dimensional manifold. The dynamics in the weakly unsta
direction is the same as that for a usual saddle-node bifu
tion. Therefore, for anyK, a timetsl needed for a trajectory
to pass through the channel in the weakly unstable direct
the so-called laminar length, can be scaled by@43#

tsl;@Kc~n!2K#21/2. ~9!

re

FIG. 13. Displacement map dmin5miniM (Du,r ,z)
2(Du,r ,z)i is plotted for severalK values. The sharp decrease
indicate fixed points. There are two fixed points (K50.1420). The
two fixed points coalesce (K50.1403) and disappear (K
50.1380). This supports the fact that an unstable-unstable pai
furcation has occurred.
3-7
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It should be noted that the notationKc(n) represents the
dependence ofKc on then value. When we expandKc with
respect ton2n0, we have the first-order approximation

tsl;FKc~n0!1
]Kc

]n U
n5n0

~n2n0!2KG21/2

. ~10!

This expresses the dependence of the laminar length on
bifurcation parametersK andn. The first-order expansion i
indeed a good approximation sinceKc relatesn with an al-
most first-order relationship, as shown in Fig. 14~a!.

A phase slip can occur if a trajectory is rather close to
center of a channel. The trajectory is rapidly repelled in
strongly unstable direction while it passes through the ch
nel in the weakly unstable direction. Thus, if the trajectory
so close to the center of the channel that it remains in
channel aftertsl , then the phase slip occurs successfully. T
distanceD(t) of the trajectory from the channel center in th
strongly unstable direction grows exponentially with time

D~ t !.D~0!umu t. ~11!

Since the phase slip can occur ifD(tsl) is smaller than the
half-width C18 of the channel, we have the condition for
phase slip

D~0!,C18umu2tsl. ~12!

The trajectory initially has to visit a very small region th
satisfies Eq.~12! to pass through the channel. If we assum
uniform invariant probability density in the neighborhood
the channel in the attractor remnant, the probability of
trajectory visiting the above small region during a unit tim
is also proportional toC18umu2tsl. This probability gives us
the slip ratef. Therefore, using the scaling law Eq.~10! for
tsl , we arrive at

f ~K,n!.C1 expF2C2H Kc1
]Kc

]n
~n2n0!2KJ 21/2G .

~13!

In Fig. 14~b!, we plot numerical results forf (K,n) deter-
mined by the index of the exponential ISID against@Kc(n)
2K#21/2 for several values ofn. The theoretical result, Eq

FIG. 14. ~a! Plot of theKc dependence onn. The dots lie almost
all on a straight line.~b! The slip rate against the distance from t
bifurcation point is plotted. The dots are almost on the line and
confirms Eq.~13!.
02620
he

e
e
n-

e
e

a

e

~13!, is also shown by a solid line. Here, we determine th
n051.0034,Kc(n0)50.1362, and]Kc /]n510.25 from the
dmin calculations and thatC153.3731033 andC2523.1 by
applying a curve-fitting method to the numerical results of.
The results are in good agreement. This means that the p
ability of the phase slip decreases exponentially as the
rameters approach a bifurcation point. This causes a s
persistent chaotic transient.

C. Poisson process with periodic rate

In the previous section, we described the phase slip rat
a function of two bifurcation parameters. Based on this ra
we clarify the DSR mechanism: we derive the behavior
the peak-height difference, which has a bell-shaped m
mum as a function of the bifurcation parameters, based
the approximation theory of the time-dependent Poisson p
cess@11,38#.

From the numerical simulation, the distributionr(t) for
e50 can be well fitted to an exponential distribution exce
when t is small, i.e.,r(t).l0 exp(2l0t) @see Fig. 5~a!#.
The exponential form ofr(t) implies that phase slips occu
as a Poisson process.

With eÞ0, r(t) has multipeaks as stated above. We d
cuss only the case of a slowly varying periodic signal, i.
v!1. This condition allows us to use an adiabatic appro
mation: only the ratel is modulated by the periodic signal.
follows that the occurrence of phase slips obeys a Pois
process with thetime-dependentrate l(t), which has a pe-
riod T52p/v. For the sake of simplifying the notations, w
define the following symbols:

E
0

t

l~t!dt5L~ t !, E
0

T

l~ t !dt5L~T!5L,

E
0

T

l2~ t !dt5L2 . ~14!

Suppose that a phase slip occurs att5t0 and without loss
of generality we can taket0P@0,T) by shifting the time ori-
gin. We introduce the new time variable ast5t2t0 and the
time-dependent rate is given as a function oft and t0, i.e.,
l(t1t0). The probability distribution that the next phas
slip occurs at timet can be given by

P~tut0!5l~t1t0!expF2E
t0

t1t0
l~ t !dtG

5l~t1t0!exp@2$L~t1t0!2L~ t0!%#. ~15!

Suppose thatt1 is in @0,T) and that the timet1 relates tot as
t1t05t11mT, where m51,2, . . . , if t1,t0 and m
50,1, . . . , if t1>t0. If we change the variablet to t1 in Eq.
~15!, we can obtain the probability distributionPm(t1ut0)
that the next phase slip occurs att15t1t02mT:

P~tut0!5l~ t1!exp@2L~ t1!1L~ t0!2mL#[Pm~ t1ut0!.

~16!

The probability distributionP(t1ut0) that a phase slip occur
at t1 if the previous phase slip occurred att0 is given by

is
3-8
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P~ t1ut0!5 (
m5m0

`

Pm~ t1ut0!5H l~ t1!exp@2L~ t1!1L~ t0!#~12e2L!21, t1>t0

l~ t1!exp@2L~ t1!1L~ t0!#e2L~12e2L!21, t1,t0 ,
~17!
r

ed

e
n

a
il-

b

wherem051 if t0.t1 andm050 if t0<t1.
Let W(t0) be the probability distribution of phase slips fo

the timet01mT, wheret0P@0,T). In the equilibrium state,
W(t0) has to satisfy the integral equation

W~ t1!5E
0

T

P~ t1ut0!W~ t0!dt0

5~12e2L!21l~ t1!e2L(t1)H E
0

t1
eL(t0)W~ t0!dt0

1e2LE
t1

T

eL(t0)W~ t0!dt0J . ~18!

By differentiating both sides, we have

W8~ t1!5~12e2L!21@$l8~ t1!2l2~ t1!%

3e2L(t1)~12e2L!l21~ t1!eL(t1)W~ t1!

5l8~ t1!l21~ t1!W~ t1!. ~19!

Finally, with the normalization condition, this can be solv
as

W~ t !5
1

L
l~ t !. ~20!

Figure 15~a! shows the probability distributionW(t) ob-
tained from the numerical simulations and by Eqs.~20! and
~24!. The two curves are coincident.

The probability distribution of the interslip interval can b
found by averaging the conditional probability distributio
P(tut0) over a periodT:

r~t!5E
0

T

P~tut0!
1

L
l~ t0!dt0 . ~21!

FIG. 15. ~a! Plot of the probability distributionW(t) againstt
P@0,T) with v52.031024 ande50.05. ~b! Theoretical curve of
first peak of ISID obtained by Eqs.~13! and ~26! is plotted along
with results obtained by the simulation. The good agreement
tween the two curves confirms the DSR analysis.
02620
Since thenth peak ofr(t) is located attn5nT, we can
calculate thenth peak height as

r~tn!5
1

LE
0

T

l~ t0!l~nT1t0!

3exp@2$L~nT1t0!2L~ t0!%#dt0 ~22!

5
1

LE
0

T

l2~ t0!exp~2nL!dt05
L2

L
e2nL.

~23!

We consider the system Eq.~6!. When the modulation
signal is imposed, the time dependence ofl(t) arises from
the modulation of variableK in f (K,n). If we substitute
K@11e sin(vt1f0)#, we have

l~ t !5 f ~K@11e sin~vt !#,n!

5C1 expH 2A

A12msin~vt !
J

;C1 expH 2AS 11
m

2
sinvt D J , ~24!

where

A5
C2

AKc1
]Kc

]n
~n2n0!2K

,

m5
eK

Kc1
]Kc

]n
~n2n0!2K

.

We can obtain the ISIDr(nT) by substituting Eq.~24! into
Eq. ~23!

r~tn!5l0

I 0~Am!

I 0S Am

2 D e2nTl0I 0(Am/2), ~25!

where I 0 indicates a modified Bessel function. Without
modulation signal,l0 is identified as the phase slip probab
ity distribution f (K,n), i.e., l05C1e2A. It should be
noted that, for e50, the distribution r(nT;e50)
5l0exp(2nTl0) coincides withr(tn) with m50 in Eq.
~25!. If we subtractr(tn ;e50) from r(tn ;eÞ0), we obtain
the differenceDrn in thenth peak height betweene50 and
eÞ0 as follows:

e-
3-9
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Drn~n!5l0

I 0~Am!

I 0S Am

2 D e2nTl0I 0(Am/2)2l0 exp~2nTl0!

~26!

;
32nTl0

16
A2m2l0e2nTl0. ~27!

The differenceDrn can be regarded as a function ofn. Fig-
ure 15~b! shows the theoretical curve ofDr1 obtained from
Eqs. ~26! and ~13!, along with the simulation curve of th
first peak difference. Both curves actually show the D
behavior and there is good agreement between them.

In Eq. ~26!, the slip ratel0 andAm are quantities that can
be determined in a signal free case (e50). This indicates
that whether or notDrn exhibits DSR behavior depends o
the signal free properties of the system. Thus, we can
that if a system yields intermittent events, caused by
unstable-unstable pair crisis, we can observe DSR by ch
ing appropriate bifurcation parameters for modulations a
controls.

V. NOISY DETERMINISTIC STOCHASTIC RESONANCE

In a noisy environment, it is natural that a signal mix
with noise is fed into a system that has the potential to yi
DSR effect. Thus, here, let us assume that the system
driven by a periodic force modulated by both a signal a
noise, as described by the following equations:

ẋ5s~y2z!,

ẏ5s~x1ay!1K@11e sin~vt !1j~ t !#sin~Vt !, ~28!

ż5s@b1z~x2c!#,

wherej is white Gaussian noise:^j(t)j(t1t)&52Dd(t).
In order to simulate Eq.~28!, we can use several well

known methods for solving stochastic differential equatio
@44,45#. However, higher order methods become comp
cated, compared with the typical methods used for ordin
differential equations such as the Runge-Kutta method@46#.
Moreover, in the noiseless limit, a simulated trajectory has
coincide with a trajectory obtained for ordinary differenti
equations. Thus, we modify the Runge-Kutta method by
troducing a noise term multiplied by the square root of
time step.

Figure 16 shows curves of the first peak differencesDr1
versusn for several noise intensitiesD. Each curve obtained
numerically has a bell-shaped maximum. In other words,
a given external noise intensity, the system can effectiv
detect a weak signal using an appropriaten value. This
means that optimum resonance can be realized by adjust
parameter even if the system receives a signal with nois
an unknown level. This reveals that even a stochastic sys
such as Eq.~28! can exhibit DSR-like behavior. Although i
is no longer a deterministic system, we regard such a p
nomenon as a kind of DSR since we consider that no
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happens to be inputed into the system that can yield D
without noise and call it noisy DSR.

We also observed that if the noise intensityD increases,
the maximum points ofDr1 are shifted to the left, namely, a
the noise increases, the optimumn becomes smaller, i.e.
closer to a bifurcation point, and the chaotic fluctuation
suppressed even further. In other words, the most cohe
behavior can be achieved by cooperation between the in
nal fluctuations and the external noise.

VI. CONCLUSION

In a certain parameter region, a Ro¨ssler oscillator is phase
locked to an external force. If the system deviates from
synchronization regime, phase slips, namely, intermittent
creases in the phase difference, are observed. Numerica
periments show that ISID decays exponentially and indic
that phase slips are well-approximated by a Poisson proc
Since the phase slip rate is a monotonical function of
parameter values, the parameters are considered to be a
control the chaotic fluctuation. If the amplitude of the drivin
force is weakly modulated by a periodic signal, the IS
develops multipeaks centered at an integer multiple of
modulation frequency. This means that phase slips stat
cally synchronize with the modulation signal and we can s
that the peak heights represent the degree of synchroniza
In addition, the peak-height difference versus the param
value, which controls the fluctuation intensity, has a be
shaped maximum. This dependence coincides with the
characteristics and we can say that our systems exhibit D
In addition, the system is shown to exhibit SR characteris
in terms of SNR. We can say that DSR utilizes the instabi
of a chaotic system to detect a weak signal, instead of no
We then considered the roles of the parameters in modula
and control, and the frequency dependence of the exte
signal.

Next, we explained the bell-shaped dependence of
peak height versus the bifurcation parameter values in te
of a boundary crisis and a time dependent Poisson proc
The phase synchronization was shown to be broken b
boundary crisis induced by an unstable-unstable pair bi

FIG. 16. The first peak difference is plotted vsn for D50.0,
1.0, and 2.0. For each noise intensity, the difference has a unim
shape. DSR-like phenomena are observed even if a signal is m
with noise.
3-10
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cation. Based on this fact, we derived the slip rate as a fu
tion of the bifurcation parameters. With a modulation sign
the multipeaks in ISID can be explained by the approxim
tion of the phase slips as a Poisson process with a peri
rate. In addition, we showed that the analytically deriv
peak-height difference agrees well with that obtained by
merical simulations. We believe that the deviations betw
the theoretical and experimental curves in Fig. 15 w
caused by some of the approximations and the precisio
the numerical simulations. One piece of evidence suppor
our hypothesis is the tendency for slower and smaller mo
lation signals to form the curves closer to each other. Th
analytical results show that DSR can be yielded by the s
tem after a boundary crisis if bifurcation parameters are
riodically modulated and the same or different bifurcati
parameters are employed to control the chaotic fluctuat
Furthermore, since some scaling laws for intermittent ev
rates versus the bifurcation parameters are known depen
v.

on

d

n

i-

tat
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on the type of crisis, we can predict the DSR behavior
such kinds of systems by employing the same approach

We also demonstrated DSR in a noisy environment si
it is important to consider real-world situations. In this ca
a signal becomes mixed with noise as it passes throug
noisy environment, in other words, the parameter of a sys
is modulated by noise as well as the signal. Numerical sim
lation shows that the ISID also has multipeaks in the sa
way as noiseless systems. In addition, for given noise in
sities, the peak-height difference exhibits a unimodal dep
dence as a function of the controlling parameter. This sho
that our systems exhibit DSR-like behavior in a noisy en
ronment, namely, noisy DSR. Even if the external noise le
is unknown, we can achieve the maximum enhancement
signal buried in noise by adjusting the parameters. We
say that the collaboration between instability and noise
lows us to detect weak signals.
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