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Deterministic stochastic resonance in a Rssler oscillator
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We discuss the characteristics of stochastic resonancelike behavior observed in a deterministic system. If a
periodically forced Resler oscillator strays from the phase locking state, it exhibits the intermittent behavior
known as phase slips. When the periodic force is modulated by a weak signal, the phase slips synchronize with
the weak signal statistically. We numerically demonstrate, in terms of interslip intervals and signal to noise
ratio, that the maximum synchronization can be achieved with the optimum intensity of chaotic fluctuations. It
is shown that the stochastic resonancelike behavior can be observed regardless of the choice of parameters. The
frequency dependence of the signal indicates that there is an optimum frequency for the maximum resonance.
The phase slip rate is derived based on the fact that the phase slips are caused by a boundary crisis caused by
an unstable-unstable pair bifurcation. The interslip distributions obtained from the derived slip rate and the
approximation theory of the time-dependent Poisson process agree with those obtained by numerical simula-
tions. In addition, the maximum enhancement of a weak signal is shown to be achieved by adjusting the
chaotic fluctuations even if a signal becomes mixed with noise.
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I. INTRODUCTION lar to noise on a coarse-grained time scale. In fact, a number
of SR-like phenomena in chaotic systems have been re-
Stochastic resonand&R) has been a subject of great in- ported. One approach consists of adding the chaotic forcing
terest in nonlinear physics since the concept of SR was firgjenerated by a logistic map to a double-well system along
proposed in answer to questions about the periodically recuwith a harmonic signal and observing the SR fingerprint
rent ice age$1-3]. SR has been considered a counterintui-[13]: the dependence of SNR versus the amplitude of the
tive phenomenon: the maximum enhancement of a weak peshaotic forcing has a bell-shaped maximum. Another sort of
riodic signal buried in noise can be achieved with a nonzer®&R-like phenomenon has been reported in terms of the inter-
optimum amount of noise although it is usually thought to bemittent hopping between two chaotic states such as two wells
easier to detect a weak signal when the noise is smaller. Thef a periodically forced double-well Duffing oscillatpt4],
mechanisms of the SR effects have been elucidated by mariywo phases of a period-doubled single-well Duffing oscillator
theoretical approachegsee Refs.[4-7] and references [15,16, two single scrolls of Chua'’s circuit with a harmonic
therein. On the other hand, SR has been studied experimersignal[17,18], two chaotic repellers in a periodically modu-
tally in various kinds of systems including electrical, optical, lated cubic mag19], two formerly disjoint attractors in a
and neuronal systentsee Ref[4] and references thergirin one-dimensional piecewise-linear mfp0], and two sym-
particular, SR has come to be significant for sensory neumetric attractors in a Lorenz mod¢ll9]. These reports
ronal systems since it is believed to be used by sensory neghowed that the intermittent events resonate with the signal
rons to detect a weak signal in a real noisy environnight  and the resonance can be maximized by the chaotic fluctua-
Most SR studies have been carried out on bistable or mulion. Some authors discussed more effective methods for sig-
tistable systems, typically realized by an overdamped pamal enhancement by SR-like phenomena in chaotic systems
ticle driven by periodic and random forces in a double-well[18,21,23. In addition, SR-like phenomena have been ex-
potential. Some dynamical systems possessing a single stalgerimentally observed in noiseless systems such as chaotic
point and a reinjection dynamical process, where after escagpin-wave dynamicg23] and a CQ laser[24].
ing from the stable point, a trajectory returns to the stable Few SR-like phenomena have been found for monostable
point deterministically, have the potential to yield SR andchaotic systems with a reinjection mechanism. We demon-
they form another important class of SR. The typical realizastrated SR-like behavior in chaotic systems with a reinjection
tion of this kind of dynamics is given by the equation mechanism, employing a forced &der oscillator, and the
do/dt=A+sind and FitzHugh-Nagumo(FHN) models SR-like behavior in a deterministic chaotic system is referred
[9,10], which can describe the dynamics in Josephson deto asdeterministicstochastic resonand®SR) [25]. In this
vices or sensory neurons, respectively. In fact, some SR stughaper, we focus on phase slips, which are intermitteit 2
ies have been based on the FHN model in order to undephase jumps in quasiphase synchronization, and report the
stand the mechanisms of biological sensory systems becauserrespondence betweatierslip interval distribution(ISID)
it is believed that sensory neurons utilize the SR effect in aand the residence-time distribution in SR. In addition, we
noisy environmenf11,12. show that thesignal to noise ratigdSNR) behavior coincides
Meanwhile a number of studies on SR have been carriediith that of SR. We also describe some properties of these
out for systems with deterministic noise, that is, chaotic flucphenomena.
tuation. It is natural to look for SR-like phenomena in a  Certain authors have pointed out a relationship between a
deterministic chaotic system since chaotic fluctuation is simicrisis and DSR15,16,19,26 Lately, we have described the
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dynamical mechanism of DSR, that is, a theoretical explana-
tion of DSR in terms of its dynamid®5]. In this paper, we
refine the previous explanation in that we show the part o.054
played by a boundary crisis in the occurrence of DSR and
that the bifurcation parameters of the crisis play central roles<]
as regards inputing a signal and controlling fluctuation in
DSR. We specifically emphasize that the DSR mechanisir -0.05 §
can be explained using the scaling law of bifurcation param-
eters and a Poisson process approximation.
We show that DSR-like behavior can be observed even if
a signal is mixed with noise: the maximum enhancement of a
weak signal can be achieved by adjusting the internal fluc-
tuation depending on the noise intensity. This phenomenon is o
called noisy DSR. ) FIG. 1. _Mean angular ve!outy dlffere_ncA_Q between the
This paper is organized as follows. In Sec. I, we intro- Rossler oscnlator. and the forcing frequenc!es is p!otted as a func-
duce some of the basic characteristics of phase synchroniz%\c-’n of the coupling stre_ngtIK and the forcing period) W'_th v
tion and phase slips, which appear just after the phase syn:—l'o' In the plateau region, the frequency of thes&er oscillator
ot . . s locked to that of the external force.
chronization is broken. We numerically demonstrate DSR
and show some of its characteristics in Sec. Ill. Then, we
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explain the dynamical origin of DSR in Sec. 1V, applying the
scaling law of the crisis and the Poisson process approxim

tion. In Sec. V, we report the DSR-like behavior that occurs
when a signal is contaminated with noise. Finally, we pro-

vide the conclusion in Sec. VI.

Il. PHASE SLIP
A. Phase synchronization of Resler oscillator

Let us consider a Rsler oscillator driven by a sinusoidal
force:

X=—vy—1z,

yzvx+ay+Ksin(Qt), (1)

z=b+z(x—c),
wherea=0.2, b=0.2, andc=4.8 andK, (), andv can be

varied depending on the situation. With a snigJIthis dy-
namical system yields a chaotic attractor similar to the origi

nal nonforcing one and its trajectories rotate around zhe !

axis.

a_

The phase of an oscillator has to be defined in order to
describe a phase synchronizat[@T]. However, in general it

Is difficult to define the phases of chaotic rotations. Never-
theless, since we employ only proper fRter oscillators,
namely, their trajectories rotate around thaxis, we can use
the angle variable,

()

y
6= arctan-,
X

as the phase, satisfying the following conditions for the
phase: the phase is set at2 (n=0,1,2 .. .) on therefer-
ence plane and the phase of a rotation monotonically in-
creases with time. Let the value be continuous with respect
to time: i.e., integer multiples of 2 differences iné are
distinguished. It should be noted that the mean angle velocity
obtained by the angle variable is asymptotically coincident
with that obtained by Eq.2). Since a cylindrical coordinate

is useful for the following discussion, we introduce the am-

plitude of rotationsr = \xZ+y?.
When the Resler oscillator is not synchronized with the

forcing, the largest Lyapunov exponent has a positive value
and the second exponent is practically zero. Roughly speak-
ing, the second exponent corresponds to the angle variable.

Frequency locking in a chaotic system can be described ipue to chaotic fluctuation, the angle v_ariable diffuses as a

terms of the observed mean angle velocity

— N¢
Q=Ilim2m7—,

t @

t—oo

whereN; is the number of intersections between a trajector
and a reference surface such as a half-plane @ and x
>0), during an observation interval Figure 1 shows the

angle velocity differenceAQ=0Q—Q between the Resler
oscillator and the external force as a function(wfand K.
We can see the plateau region where the differehfe is

fractional Brownian motion with the drif2t [28]. The Hurst
exponent of our chaotic diffusion is almost exactly 0.5 as
shown in Fig. 2 and so the diffusion can be regarded as an
ordinary Brownian motion.

When the forcing strengtki becomes large or the external

frequency() approacheg), the second exponent becomes

ynegative and then the phase diffusion is suppressed. Hereaf-

ter, let us focus on the phase differena® between the
Rossler oscillator and the external force

A= 6—QOt. (4)

zero, where the oscillator frequency is locked by the externaln Fig. 3, we can see that § with K=0.15 is almost con-
force. It is noted that this figure is similar to the one obtainedstant while the force is insufficiently strong to restrain the

for the synchronization of periodic oscillators.

chaotic fluctuation of the amplitudes, whelle=1.0077 and
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(a)

(b)

slope=-1.5
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FIG. 2. (a) Probability distribution of the first-return time df

—Qt. The slope of the distribution for largeis —1.5 and so the
Hurst exponent is almost exactly 0.8) The phase differencé

— Ot of the 50 example trajectories is plotted wher 1.0, O
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FIG. 4. Phase slips fore=0.0, 0.0020, and 0.0040 witly

=1.077, K=0.001, and Q=1.07746. The solid line shows =21.0038 and)=1.0077. More phase slips occur asncreases.

+0.020x \t, and we can see that the diffusion of the difference is
proportional toyt. These figures confirm that the phases diffuse in

a way that is similar to a Brownian motion.

5(=s(— vy —2),

y:s(vx+ay)+Ksin(Qt), 5)

v=1.0038. This is called chaotic phase synchronization.

Chaotic phase synchronization can be observédis larger
than a critical valueK., which is 0.1403 wherf)=1.0077
andr=1.0038. Hereafte)=1.0077 andv=1.0038 unless
otherwise mentioned.

B. Demonstration of phase slip

When K is smaller than the critical valu&., A6 in-
creases with intermittent2 jumps althoughA 6 is almost
constant except for these jumps, as shown in Fig. 3Kfor
=0.035 and 0.036. This is called a phase $29—-32. It

z=9[b+z(x—c)],

wheres=1+ «(r?-r?) andr is the average value for an
ordinary Rasler oscillator, i.e.¢=K=0. The positive sca-

lar factors on the right-hand side of E¢5) affects the mo-
tion of a state point so that the state point is accelerated far
from the origin and decelerated near the origin. Thus, the
factor s enlarges the fluctuation of the angular velocity,
driven by the fluctuation of the amplitude. Therefore,aas
increases, the fluctuation of the angular velocity increases.
Figure 4 shows the time courses®# for certain values of

should be noted that thi¢ values employed in the experi- « and confirms that phase slips occur more frequently as
ments are much smaller than the critical value since muclincreases. In the followingy=0.002.

longer intervals are needed to observe phase slips Mith
close to the critical value. In addition, we modified the
Rossler oscillator in order to see a sufficiently large number

of phase slips as follows:

(a) (b)

K=0.036

140
120
100

K=0.036

K=0.150

5 5
104t 104t

FIG. 3. Plot of phase differences between thesster oscillator
and the external forcé) and amplitudegb) when »=1.0038, )

IIIl. DEMONSTRATION OF DETERMINISTIC
STOCHASTIC RESONANCE

In this section, we demonstrate DSR, using a modified
Rossler oscillator driven by a periodical force whose cou-
pling is modulated by a weak signal

X:S(— vy —2),

y=s(vx+ay)+K[1+esinwt)]sin(Qt), (6)

z=s[b+z(x—¢)],

where, with a modulation signale=0.05 and w=6.0

X 10~ 4 unless otherwise mentioned. It should be noted that
the modulation signal is much slower than the chaotic oscil-

lation and the external forcing. While noise, together with a

periodic signal, is added to a system to observe ordinary SR,

=1.0077, anda=0.0. With K=0.15, the phase difference is al- Only a periodic signal is inputed into a system to observe
most constant, which indicates the phase synchronization, while th@SR since the chaotic fluctuation itself acts like noise. Here,
behavior of the amplitude remains chaotic. WKh=0.0035 and  the signal is inputed using a method whereby the amplitude
0.0036, phase slipgntermittent phase jumpsre observed. We can 0f external forcing is modulated. The frequency modulation
see the more phase slips with=0.0035 than withK =0.0036. can also be employed and both are compared in [Réf.
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(a) (b) slip intervals, which are the durations between two consecu-
2 " 25 ;: tive slips fore=0 (a) ande=0.05(b). Without a modulation
Lo N oo 2l N oo signal (i.e., €=0), the ISID is unimodal and decays expo-
[ - = v=1.0040 c |5 - = v=1.0040 nentially for a larger. The figure shows that the ISID devi-

ates from the exponential form in the smallrange: phase
slips cannot occur in a short-period succession and it is con-
sidered that there is some refractory time. The exponential
form, i.e., p(7)=\ exp(—=A7), in the larger range implies

that the occurrence of phase slips is well approximated by a
Poisson process: successive phase slips are statistically inde-
pendent and the probability of a phase slip occurring during
a short periodt is given byhAt, with no memoryX indi-

cates the index of the exponential distribution, which can be
estimated by the mean phase slip rate, and this grows as

FIG. 5. Probability distribution of interslip intervals witK
=0.070. (a) Without a signal, the distributions form exponential

tails except whenr is small. Asv increases, the distribution be-

comes steep, in other words, the mean interslip interval becomed€CTeases or increases in the parameter range we used.
small. (b) When the coupling strength is modulated by a signal, A Small modulation signal causes a slight change in the
there are multipeaks centered at integer multiples of the perioghape of the attractor, compared with a nonsignal attractor.
27w (=1.047x 10%) of the modulation signal. However, the ISIDp(7) changes greatly, in other words, it
develops multipeaks as shown in Figbbfor severalv val-
Several measures of SR have been developed over tH€S: The peaks are centered at integer multiples of the period
past decade. It has become common to quantify SR by usi 7/ w of the modulation signal. In addition, we can see that
SNR, which describes the quality of a signal in the presenc&€ heights of these peaks decrease exponentially with their
of background noise. An analytical expression of SNR isorder. These results are very similar to the residence-time
found in Ref.[11]. While an SNR curve has a resonance-like distribution of SR in excitable systems and imply that phase
shape as a function of noise level, it does not have a max@liPs occur in statistical synchronization with the modulation
mum when the frequency of driving force is varied. OtherSignal. The phase slips are most likely to occur for a certain
measures of SR, based on the residence-time distribution of@f1ase of the modulation signal: the maximum probability for
bistable, periodically driven system, have been introduced t& Phase slip visits every period of the modulation signal. If
characterize SR33,34. Longtin et al. compared the inter- the system misses the first good chance to slip, it has another

spike interval histograms of sinusoidally stimulated auditory9©0d opportunity after one cycle and so on. _
nerve from cat with return-time distribution of the periodi- Although the system has no stochastic features, it behaves

cally driven bistable systerfi35]. Zhou et al. studied the S if it were a stochastic system due to the chaotic fluctua-
heights of peaks in the residence-time distribution at oddion. We have to vary the intensity of the chaotic fluctuation
multiples of the half-period of the driving forck86]. The rather than that of the noise in order to confirm the existence

peak heights pass through a maximum as a function of noisgf SR-like phenomena in the Bsler oscillator, namely, the
intensity. Gammaitonet al. [37] introduced the area under Pell-shaped peak height of the ISID as a function of the
the peak of the residence-time distribution at the half-perio¢haotic fluctuation. We saw that the parameter valuesr

of the driving force as a measure for SR. In addition, theyX; change the phase slip rates and we consider that the phase
have shown that the area passes through a maximum asShp rates a_re_dete_rmlned by thg intensity of the internal fluc-
function of the driving frequency as well as the noise level. [ttuation. This implies that by adjusting theor K value, we
should be noted that the noise strength that maximizes thgan control the system fluctuation. It should be noted that
area under the peak does not match the noise level that max@lthoughv was often employed for controlling the phase slip
mizes the SNR. The analytical expressions of the residencéates rather thak in these experiments; can play the same
time distribution have been provided by Cheial. [38].  role askK. _ _ _

Other sorts of quantities for characterizing SR have been Figure 6 shows\p, obtained numerically as a function of
discussed. A correlation function was introduced for SR-typev to verify the SR-like behaviod p, indicates the difference
behavior with aperiodic input signal89]. Goychuk[40] between thenth peak heights in the ISID with and without a
found an analytic expression for the rate of information gainmodulation signal: Apn(v)=p(7,;v,€=0.05)=p(7;v,€

and showed that it is proportional to SNR when the signal is=0) where, for a givenr value, p(7,;v,€=0.05) and
weak. Since we focus on intermittent events, namely, phase(7n;v,€=0) represent the peak height in the ISID fer
slips, in time series, we mainly employ the interslip interval =0.05 ande=0, respectively, at,=2m7n/w. Here, we con-
distribution ISID to quantify DSR. In addition, we may Sider that the phase slips without a modulation signal are
safely say that ISID has advantages as regards discussiggused by background noise and then the nonsignal ISID

SR-type behavior when the frequency of external force isshould be subtracted from the ISID with the modulation sig-
varied. nal. The difference\p, for the first peak increases until it

reaches a maximum value at=1.0038 and then decreases
monotonically. For the second peakp, also has a unimo-
dal shape and it has a maximum poinwvat1.0036, which is
Figure 5 shows the probability distributigr(7) of inter-  smaller thanv for Ap,. Since the peak heightsp, can be

A. Interslip interval distribution (ISID)
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o . @ 8 )
_Z_ 2‘512 DEEAL —o— Ap;
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= : 2
¢ ’
0 “ - 0 -0
0.065 0.07 0.075 0.065 0.07 0.075 0.08
1.0032 1.0034 1.0036 1.0038 1.004 1.0042 1.0044 FIG. 8. The peak-height difference with and without a modula-
AY tion signal for the first peakd p; and the second pealtsp,. (a)

The peak-height differences are plottedk/svhen v is modulated
FIG. 6. The peak height differenap,(v) is plotted vsv for  andK is used as a controlling parametés) The peak-height dif-
n=1,2 withK=0.070. Each curve has a bell-shaped maximum anderences are plotted \§ whenkK is modulated as well as used as a
this coincides with the SR characteristics. controlling parameter. Both curves show the DSR characteristics.

regarded as the magnitude of the resonance, Fig. 6 meaﬁg'is shows that DSR can be observed no matter which bifurcation

that the system resonates most with the modulation signal é)tarameters are employed as modulated and controlling parameters.

the optimumw values. In other words, the optimum coherent

behavior with the signal is achieved for an appropriate inten- The SNR is the power ratio of the signal to the back-
sity of internal randomness. It should be emphasized that thiground noise. The power of the enhanced signal is the height
resonant behavior il p,, coincides with the SR characteris- of the §-function-like spike at the external force frequency
tics, simply exchanging noise for chaotic fluctuation. Actu-and the power of the background noise is calculated as the
ally, we can say that the weak modulation signal make thenean power around thé spike except for its immediate
system yield SR-like phenomena, exploiting the determinisneighborhood. Figure(B) shows the SNR as a function of

tic fluctuation as noise. Therefore, we call this DSR. parameterr. We can see that the SNR increasesvas-
creases, reaches a maximum valuevat1.0042, and then
B. Signal to noise ratio (SNR) decreases in other words, the system exhibits optimal reso-

. . - . nance for an appropriate chaotic fluctuation. This coincides
_Another piece of evidence confirming the SR-like behav- i, e sr behavior; the existence of DSR is confirmed
ior in a deterministic system is given by the SNR as a func

tion of the internal fluctuation. Here, we obtain the SNRagaIn in terms of SNR. It should be noted that the optimum

from time series data where pulses are placed at the timg o 2nce 's realized fqr a Ie_lrger valueothan that ob-
; P! P M&ined from the peak height differences of the ISID.

when phase slips occurred. Figuréa)7 shows the power

spectrum of the pulse-train data fer=1.0038. We can see a

high and sharp peak at the external force frequency. This

means that the system behaves periodically with fluctuation, Thus far, we have chosenas a parameter for controlling

in other words, the system synchronizes with the externathe internal fluctuation an# as a parameter modulated by

force statistically. We can also see the higher harmonics othe external signal. It is natural to ask which parameters in

the enhanced signal in the figure at the integer multiples othe systems can be used as controlling and modulated param-

C. Controlling and modulated parameters

the modulation signal. eters to yield DSR. As described in detail in Sec.NandK
b are bifurcation parameters for an unstable-unstable pair bi-
0 (a) 35 (b) furcation, which relates to phase slips, and they are equiva-

lent in terms of bifurcation. Here, we demonstrate DSR, us-
ing the bifurcation parameters in different role combinations.
First, we exchange the roles of parameterandK: v is
modulated by a signal aridl becomes the control parameter
of the chaotic fluctuation. Figure(® shows the height dif-
ference at the first and second peaks in the ISID as a function
of K. The DSR in the system is confirmed by the bell-shaped
10 - g 10— dependence of the height difference KNDSR can be ob-
Frza%]u ency 10 ' v : served as we expected, even if the roles of the parameters are
exchanged. We also examine another choice of parameter
FIG. 7. (a) Power spectrum of pulse-train data fex1.0038. A roles:K is used as a controlling parameter as well as a modu-
sharp peak is seen &t=9.55x 10 °, which is the frequency of the lated parameter. Figurel® plots the peak differences versus
external signal(b) The SNR has a unimodal shape as a function ofK and it can be seen that the system synchronizes best with
v and it is also confirmed that the Bsler system exhibits SR-like the external signal for an appropriatevalue. We can see
behavior in terms of SNR. DSR even when just one parameter plays both roles. It is
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(b)

FIG. 9. The peak-height difference with and without a modula-  F!G- 10. (Colon (&) Attractor and basins projected on thi
tion signal as a function of the control parameteand the signal ") Plane wherkK=0.15. The black points represent an attractor and

frequencyw. The system resonates most with a signal whose frelhe red points indicate its basin. The blue points show the basin of
quency is 6. 1074, the next attractor.(b) Attractor remnant and basins wheké

=0.085. The blue points, namely, the basin of the next attractor,

revealed that DSR can be observed in a system where son"Fé"Ch the black points. In other words, channels connecting the
bifurcation parameters are modulated and the same or dif_fep_ttractor remnants are formed. Trajectories in the black area can
ent bifurcation parameters are used to control internal flucSScape to next attractor remnant via the channel.

tuation. synchronization state. Therefore, in Fig(d0we can clearly

see an attractor and basins projected onto the, () plane.
D. Frequency dependence Orbits initially distributed in an appropriate region in a
We investigated the frequency dependence of DSR. FigtA 6,r,2) space with the three-dimensional volume approach
ure 9 shows the peak-height difference as a function of théhe two-dimensional manifold within a few cyclgS1].
controlling parameter and the frequencw of the modula-  Then, in Fig. 10, we plotted the resulting orbits with the
tion SignaL For each signa| frequency, the peak-height diﬁerﬁ).(cepuon of the first few CyCIeS- as f_:lttrf’:lctors or as basins. In
ence has a bell-shaped maximum, that is to say, the systefg: 1(X_a), the bla_ck and red p0|nts_|nd|cate an attractor and
exhibits DSR. In addition, the optimum value increases It basin, respectively. The blue points show the basin of the
slightly as the frequency increases. We can see that the syd€xt attractor on the n_ght: the blue points on the manifold
tem has the optimum signal frequency for detection. WherVill move towards the right attractor displaced from the pre-
the modulation signal period is so small, the system hardlypented one by 2. There is no path that connects different
resonates with the signal due to the refractory time and, thugittractors. In the stroboscopic map, the phase differént;e
it is thought that the peak heights become low. When thds confi_ned within one of these chaotic attractors when the
period is too long, the interslip intervals are distributedPhase is locked to the external force.

W|de|y and peaks are thought to be gent'y S|Oping_ When the SyStem |S in the deS.ynChrolnization State, the
regions that were previously occupied by isolated attractors,

IV. ANALYSIS OF DETERMINISTIC
STOCHASTIC RESONANCE

A. Boundary crisis and unstable-unstable pair bifurcation

In this section, we describe the phase slip in terms of a
dynamical system. When the phase of &&er oscillator is
locked to an external force, trajectories are confined within
chaotic attractors in theX#,r,z) space. In this space, there
are an infinite array of chaotic attractors, which are arranged
in the A ¢ direction spaced by 2 because of the invariance
of the system(5) to the transformationd— 6+ 2. This
means that the phase different® fluctuates only within a
certain range whose width is less tham.2

A stroboscopic map is useful for visualizing the dynami-
cal processes in a Reler system. The stroboscopic mdp
is defined by sampling the flow of systg®) at every period
of the external force, i.e.AG,=A0(t=2mi/Q), ri=r(t
=2milQ), andz;=z(t=27i/Q), wherei is an integer:

5 o 25 3

A0

M:R®—R%(A6;,1,2)—>(Ab 41, 1.2i+1).  (7)
FIG. 11. (Color The trajectory passing through the channel to
It is shown in Ref.[31] that attractors lie on a near two- the next attractor remnant is plotted with the yellow diamorids
dimensional manifold in the X#,r,z) space in the phase This is an example of phase slip trajectories.
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F 3
D E—
Y
———p—
r [d - ’ .‘
€ VNS
(a) (b) (c) S 10* W
A A
FIG. 12. Process of unstable-unstable pair bifurcation. There are i i H
two unstable fixed point$a) and they approach each other. The 10° —k-01380 ! '.“.‘ !
fixed points coalescéb). The points have disappearéa). . ﬁjg-ugg u
which are called the attractor remnants, are connected by 2 22 AO 24 26

certain trajectories. However, when the system is near the
bifurcation point, the attractor remnants have shapes that are FIG. 13.  Displacement map dpi,=min|M(Ad,r,z)
similar to those of the original attractors and still lies on a—(A#,r,z)| is plotted for severaK values. The sharp decreases
near two-dimensional manifold. Near the transition point, weindicate fixed points. There are two fixed poink&=0.1420). The
observe the chaotic transient, that is, trajectories stay in atwo fixed points coalesce K(=0.1403) and disappear K(
attractor remnants for a long time and then intermittently=0.1380). This supports the fact that an unstable-unstable pair bi-
move to the next attractor remnant via a created path. In Figurcation has occurred.
10(b), we can actually see that the blue region, which was
the basin of the next attractor, touches the black region, i.eqf the two fixed points is observed &=0.1403, which
the attractor remnant. In other words, paths are created byorresponds to the bifurcation point. With a smalierwe
boundary crisis: the collision of an attractor with a periodiccannot see any sharp decreasedj,, which means the
orbit at its basin boundary41—43. Trajectories that experi- fixed points have disappeared. This behavior coincides with
enced the chaotic transient can accidentally land on the bludie unstable-unstable pair bifurcation process and confirms
region and move to the next attractor remnant. This is théhat such bifurcation takes place in the crisis. In addition, we
phase slips process. can determine the bifurcation value Ks=0.1403 since the

In Fig. 11, the yellow diamond> moving from left to  displacement map has one sharp decrease at the bifurcation
right represent the trajectory of a phase slip. The trajectoryoint.
passes through a narrow channel and the channel appears to
be the only dominant channel in the parameter range used.
The motion of the trajectory indicates that the transition be-
tween the phase synchronization state and the phase slip statePhase slips can occur after the crisis. However, when a
is caused by an unstable-unstable pair bifurcatz$h31,43. system is near a bifurcation point, trajectories experience
This bifurcation process is illustrated in Fig. 12. Suppose thatong term chaotic transients and, therefore, we seldom ob-
there are a saddle and a repeller and the stable manifold 6erve phase slips. Thus, in practice we employ parameter
the saddle is identified with the unstable manifold of thevalues that are considerably smaller or larger than a critical
repeller, as shown in Fig. 18). As the parameter approaches value to allow us to observe a sufficient number of phase
a bifurcation value, these fixed points approach each otheglips in numerical simulations. The long term chaotic tran-
When the parameter coincides with the bifurcation value, th&ient is called the super persistent chaotic transient and we
fixed points coalesce, as seen in Fig(h2and then, if the Show why the chaotic transients are so long by deriving the
parameter increases through the critical value, the fixed@hase slip raté as a function of bifurcation parameters.
points disappear and a trajectory can move through a channel As mentioned above, the crisis is caused by the unstable-
from right to left, as seen in Fig. 19. unstable pair bifurcation. After the bifurcation, unstable fixed

In order to reveal the process of an unstable-unstable paRoints disappear and channels for the phase slips are devel-
bifurcation in the Resler oscillator, we used the displace- oped. However, there are multiplicators near the channels.

B. Super persistent chaotic transient

mentdmin of mapM as a function ofA 6: One multiplicator(approximately in the\ ¢ direction, which
we call the weakly unstable directiphas a value close to

dmin(A@)=min|M(A6,r,z)—(A6,r,2), (8)  one and anothefapproximately in the direction, which we
rz call the strongly unstable directipinas an absolute value

_ . larger than one, which we denote iy The other multipli-
whereM (A 6,r,2) stands for the image of a poinA@.r.z)  cator is disregarded since the motion is restricted to the two-
given by the stroboscopic mald. The behavior of fixed  gimensjonal manifold. The dynamics in the weakly unstable
points can be observed via this map since the definitionyirection is the same as that for a usual saddle-node bifurca-
states thatl;, is zero at a fixed point. Figure 13 shodigi,  tjon. Therefore, for anK, a timet, needed for a trajectory

plotted as a function oA ¢ for »=1.0038 and som&s. In {5 pass through the channel in the weakly unstable direction,
Fig. 13, there are sharp decreaseslp, at two points fora  the so-called laminar length, can be scaled4§]
large K, which correspond to fixed points. As§ increases,

these two fixed points approach each other. The coalescence ty~[K(v)—K] Y2 9
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(a) N (b) (13), is also shown by a solid line. Here, we determine that
10— vo=1.0034,K(vo)=0.1362, andK./dv=10.25 from the
dmin calculations and that;=3.37x 10** andC,=23.1 by

0.13 applying a curve-fitting method to the numerical results. of
S 5 The results are in good agreement. This means that the prob-
$o12 ability of the phase slip decreases exponentially as the pa-
041 10° N\ © rameters approach a bifurcation point. This causes a super
' 8 persistent chaotic transient.

O
& o

"1 1.001 1.002 1.003 1.004 3.6 38 4 ) . .
v (Ke(v)-K)172) C. Poisson process with periodic rate

) In the previous section, we described the phase slip rate as
FIG. 14.(a) Plot of theK . dependence on. The dots lie almost 5 fynction of two bifurcation parameters. Based on this rate,
all on a straight line(b) The slip rate against the distance from the ,; o clarify the DSR mechanism: we derive the behavior of
bifur_cation point is plotted. The dots are almost on the line and thisthe peak-height difference, which has a bell-shaped maxi-
confirms Eq.(13). mum as a function of the bifurcation parameters, based on
the approximation theory of the time-dependent Poisson pro-
cess[11,38§.
From the numerical simulation, the distributigir) for
e=0 can be well fitted to an exponential distribution except
—112 when 7 is small, i.e.,p(7)=\q exp(—\y7) [see Fig. 8)].
(100  The exponential form op(7) implies that phase slips occur
as a Poisson process.
With €#0, p(7) has multipeaks as stated above. We dis-
This expresses the dependence of the laminar length on thgss only the case of a slowly varying periodic signal, i.e.,
bifurcation parameter andv. The first-order expansion is <1, This condition allows us to use an adiabatic approxi-
indeed a good approximation sing relatesy with an al-  mation: only the rata is modulated by the periodic signal. It
most first-order relationship, as shown in Fig(d4 follows that the occurrence of phase slips obeys a Poisson
A phase slip can occur if a trajectory is rather close to theprocess with théime-dependentate \(t), which has a pe-

center of a channel. The trajectory is rapidly repelled in théiod T=27/w. For the sake of simplifying the notations, we
strongly unstable direction while it passes through the changefine the following symbols:

nel in the weakly unstable direction. Thus, if the trajectory is t .
so close to the center of the channel that it remains in the
. A7) dr=A(t), NU)dt=A(T)=A,
channel aftetg,, then the phase slip occurs successfully. The fo (ndr=A(t) fo ® (M
distanceA (t) of the trajectory from the channel center in the
strongly unstable direction grows exponentially with time fT)\Z(t)dtzAz. (14)
0

It should be noted that the notatidd.(») represents the
dependence df; on ther value. When we expanid. with
respect tov— vy, we have the first-order approximation

(v=rg9)—K

tsi~

K,
Ke(vo) + —

V7V0

A(D)=A(0)|ul" (1D
) _ ) ) Suppose that a phase slip occurs=aty and without loss
Since the phase slip can occurAf(ty) is smaller than the f generality we can taki e [0,T) by shifting the time ori-
half-width C; of the channel, we have the condition for a gin. We introduce the new time variable ast—t, and the
phase slip time-dependent rate is given as a functionraéndt,, i.e.,
A(0)<Cilu| 7t (12 N(7+1p). The probability distribution that the next phase
slip occurs at timer can be given by
The trajectory initially has to visit a very small region that it
satisfies Eq(12) to pass through the channel. If we assume a P(T|t0):)\(7+t0)exF{ — f 0)\(t)dtj|
uniform invariant probability density in the neighborhood of to
the channel in the attractor remnant, the probability of the
trajectory visiting the above small region during a unit time

is also proportional taC;|u| . This probability gives us Suppose that; is in[0,T) and that the timé; relates tor as

=N(7+tg)exd —{A(7+tg) —A(tp)}]. (15

the slip rat_ef. Therefore, using the scaling law EQ.0) for T+to=t;+mT, where m=1,2,..., if t;<t; and m
tsi, we arve at =0,1, ..., ift;=t,. If we change the variabletot; in Eq.
IK —1p2 (15), we can obtain the probability distributioR,(t1|to)
f(K,v)=C, exp{—cz[ Ko+ a_c(,,_ vo) — K } that the next phase slip occurstat 7+to—mT:
14
(13 P(7to) =N(tp)exd — A(ty) + A(tg) —mA]=Pp(tyfto).

In Fig. 14b), we plot numerical results fof (K,») deter- (16
mined by the index of the exponential ISID agaifkt.(v) The probability distributiorP(t,|ty) that a phase slip occurs
—K] Y2 for several values of. The theoretical result, Eq. att, if the previous phase slip occurredtgtis given by
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b i 5 Mtyexd —A(t) +A(t)](1—e™H ™Y 1=t 1
t1ltg) = t1ltg) =
(alto)= 20 Pu(talto) =], (¢ hext— Aty + Acto)le N1-e ) t<to, 0
|
wheremy=1 if to>t; andmgy=0 if ty=<t;. Since thenth peak ofp(7) is located atr,=nT, we can
Let W(ty) be the probability distribution of phase slips for calculate thenth peak height as
the timety+mT, wheretye[0,T). In the equilibrium state,
W(ty) has to satisfy the integral equation 1T
(to) fy gral eq p(Tn)=Xf0)\(to))\(nT+t0)
T
W= | [Prtlto Wt xext{—{A(NT+19)~Alto)}]dty  (22)
t1
—(1_a-A—1 —A(ty) A(to) 1/(7 Ay
(1=e %) "A(ty)e T ( fo e™IW(to)dto :KJO N2(to)exp(—nA)dto=—"e ",
T (23
+e A f eA(to)W(to)dto}. (18) . ,
ty We consider the system E@). When the modulation
. L . signal is imposed, the time dependencex¢f) arises from
By differentiating both sides, we have the modulation of variablk in f(K,»). If we substitute
W!(tl)z(1_efA)fl[{)\l(tl)_)\Z(tl)} K[1+Es|n(w7'+¢0)], we have
x e~ M(1—e M\t et tw(t,) Nt =f(K[1+esin(wt)],v)
=N (t)N " H(t)W(ty). (19 p{ —A
=C, exp ————
Finally, with the normalization condition, this can be solved V1-usin(wt)
as
. ~c, expl'—A(le%sinwt)}, (24)
W(t)= —\(1). (20
A
where
Figure 1%a) shows the probability distributioW(t) ob-
tained from the numerical simulations and by E@) and C,
(24). The two curves are coincident. A= K ,
The probability distribution of the interslip interval can be \/K n Q(V_ Vo) —K
found by averaging the conditional probability distribution C op 0
P(7lto) over a periodT:
( )—fTP( It )1)\(t )dt (21) = K = '
A PR Kot =S (v—1g)—K
2%
12 (2) (b) We can obtain the ISI(nT) by substituting Eq(24) into
1 2 =4.23
— 1.5
Tog
= S 4 o To(Ap) -
<+ 0.6 “?40.5 p(Tn)_)\O AM € nT)\OIO(AMIZ)! (25)
o4 e, lo 2
042\\ -0.5
NS p where |, indicates a modified Bessel function. Without a
0 T4 T2 ST 10082 10036 1.004  1.0044 modulation signal) 4 is identified as the phase slip probabil-

t v ity distribution f(K,v), i.e., A\g=Cye A It should be
FIG. 15. (a) Plot of the probability distributioW(t) againstt ~ noted that, for e=0, the distribution p(nT;e=0)
c[0,T) with @w=2.0x10 % and e=0.05. (b) Theoretical curve of =X\o€XP(=NTAg) coincides withp(7,) with ©=0 in Eq.
first peak of ISID obtained by Eq$13) and (26) is plotted along  (25). If we subtracip(r,;e=0) fromp(7,;e#0), we obtain
with results obtained by the simulation. The good agreement bethe differenceA p,, in the nth peak height betwees=0 and
tween the two curves confirms the DSR analysis. e+ 0 as follows:
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lo(A 8
Ap“v)=A0—2%igle‘””d0M“mk—xoexq——nTAd
'0(7
(26)
3—nTA
- TOAZMZ)\Oe_”T)‘O. 27

The differenceA p,, can be regarded as a functionaf Fig-
ure 18b) shows the theoretical curve dfp,; obtained from
Egs. (26) and (13), along with the simulation curve of the s . : ,
first peak difference. Both curves actually show the DSR 10025 1.003 1'0335 1004 1.0045
behavior and there is good agreement between them.

In Eq. (26), the slip rate\y andAu are quantities that can FIG. 16. The first peak difference is plotted vsfor D= 0.0,
be determined in a signal free case=(0). This indicates 1.0, and 2.0. For each noise intensity, the difference has a unimodal
that whether or not\p, exhibits DSR behavior depends on shape. DSR-like phenomena are observed even if a signal is mixed
the signal free properties of the system. Thus, we can say¥ith noise.
that if a system yields intermittent events, caused by an ) ] ]
unstable-unstable pair crisis, we can observe DSR by choof&ppens to be inputed into the system that can yield DSR

ing appropriate bifurcation parameters for modulations andVithout noise and call it noisy DSR. _
controls. We also observed that if the noise intendiyincreases,

the maximum points oA p,; are shifted to the left, namely, as

the noise increases, the optimumbecomes smaller, i.e.,

closer to a bifurcation point, and the chaotic fluctuation is
In a noisy environment, it is natural that a signal mixedsuppressed even further. In other words, the most coherent

with noise is fed into a system that has the potential to yieldehavior can be achieved by cooperation between the inter-

DSR effect. Thus, here, let us assume that the system izal fluctuations and the external noise.

driven by a periodic force modulated by both a signal and

noise, as described by the following equations: VI. CONCLUSION

V. NOISY DETERMINISTIC STOCHASTIC RESONANCE

In a certain parameter region, a $ter oscillator is phase
locked to an external force. If the system deviates from a
synchronization regime, phase slips, namely, intermittent in-
creases in the phase difference, are observed. Numerical ex-
periments show that ISID decays exponentially and indicate

x=s(y—2),

y=s(x+ay)+K[1+esin(wt)+£(t)]sin(Qt), (28

z=s[b+z(x—c)], that phase slips are well-approximated by a Poisson process.
Since the phase slip rate is a monotonical function of the
where¢ is white Gaussian noisé(t)é(t+7))=2D (7). parameter values, the parameters are considered to be able to

In order to simulate Eq(28), we can use several well- control the chaotic fluctuation. If the amplitude of the driving
known methods for solving stochastic differential equationsforce is weakly modulated by a periodic signal, the ISID
[44,45. However, higher order methods become compli-develops multipeaks centered at an integer multiple of the
cated, compared with the typical methods used for ordinarynodulation frequency. This means that phase slips statisti-
differential equations such as the Runge-Kutta meff&].  cally synchronize with the modulation signal and we can say
Moreover, in the noiseless limit, a simulated trajectory has tahat the peak heights represent the degree of synchronization.
coincide with a trajectory obtained for ordinary differential In addition, the peak-height difference versus the parameter
equations. Thus, we modify the Runge-Kutta method by invalue, which controls the fluctuation intensity, has a bell-
troducing a noise term multiplied by the square root of theshaped maximum. This dependence coincides with the SR
time step. characteristics and we can say that our systems exhibit DSR.

Figure 16 shows curves of the first peak differendgg  In addition, the system is shown to exhibit SR characteristics
versusy for several noise intensitid3. Each curve obtained in terms of SNR. We can say that DSR utilizes the instability
numerically has a bell-shaped maximum. In other words, foiof a chaotic system to detect a weak signal, instead of noise.
a given external noise intensity, the system can effectivelyVe then considered the roles of the parameters in modulation
detect a weak signal using an appropriatevalue. This and control, and the frequency dependence of the external
means that optimum resonance can be realized by adjustingsignal.
parameter even if the system receives a signal with noise of Next, we explained the bell-shaped dependence of the
an unknown level. This reveals that even a stochastic systemeak height versus the bifurcation parameter values in terms
such as Eq(28) can exhibit DSR-like behavior. Although it of a boundary crisis and a time dependent Poisson process.
is no longer a deterministic system, we regard such a pheFhe phase synchronization was shown to be broken by a
nomenon as a kind of DSR since we consider that nois&oundary crisis induced by an unstable-unstable pair bifur-
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cation. Based on this fact, we derived the slip rate as a funan the type of crisis, we can predict the DSR behavior of

tion of the bifurcation parameters. With a modulation signal,such kinds of systems by employing the same approaches.

the multipeaks in ISID can be explained by the approxima- We also demonstrated DSR in a noisy environment since
tion of the phase slips as a Poisson process with a periodi€ is important to consider real-world situations. In this case,

rate. In addition, we showed that the analytically derivedg signal becomes mixed with noise as it passes through a
peak-height difference agrees well with that obtained by nunejsy environment, in other words, the parameter of a system
merical simplations. We be_Iieve that the de_viatipns betweels modulated by noise as well as the signal. Numerical simu-
the theoretical and experimental curves in Fig. 15 Wergation shows that the ISID also has multipeaks in the same
caused by some of the approximations and the precision Qf5y a5 noiseless systems. In addition, for given noise inten-
the numerical simulations. One piece of evidence supportingyies the peak-height difference exhibits a unimodal depen-
our hypothesis is the tendency for slower and smaller rnOduélence as a function of the controlling parameter. This shows

lation signals to form the curves closer to each other. Thesg . systems exhibit DSR-like behavior in a noisy envi-

analytical results show that DSR can be yielded by the SYStonment, namely, noisy DSR. Even if the external noise level
tem after a boundary crisis if bifurcation parameters are pe- ' Y y '

riodically modulated and the same or different bifurcation'S unknown, we can achieve the maximum enhancement of a

parameters are employed to control the chaotic fluctuations.Ignal buried in noise by adjusting the parameters. We can

Furthermore, since some scaling laws for intermittent event® that the collaboration between instability and noise al-
rates versus the bifurcation parameters are known dependifgWs Us to detect weak signals.
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