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Noisy FitzHugh-Nagumo model: From single elements to globally coupled networks
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We study the noisy FitzHugh-Nagumo model, representative of the dynamics of excitable neural elements,
and derive a Fokker-Planck equation for both a single element and for a network of globally coupled elements.
We introduce an efficient way to numerically solve this Fokker-Planck equation, especially for large noise
levels. We show that, contrary to the single element, the network can undergo a Hopf bifurcation as the
coupling strength is increased. Furthermore, we show that an external sinusoidal driving force leads to a
classical resonance when its frequency matches the underlying system frequency. This resonance is also
investigated analytically by exploiting the different time scales in the problem.
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[. INTRODUCTION cluding periodic oscillations, stable fixed points, and excit-
ability. Third, the FHN has been used as a simple model for

The response of dynamical systems to noise has long bedwth neuron$8] and cardiac tissuf9], making it relevant to
an active field of study, mostly driven by its enormous rel-biomedical systems.
evance in numerous applications in engineering, physics, bi- Our main approach consists of the recasting of the noisy
ology, and medicine. In this context, noisy dynamical sys-FHN equations into the Fokker-Planck equati®iPE). We
tems also present the researcher with interesting physical agll do this for both the single element and for a system of
mathematical problems which have led to the developmerfilobally coupled elements. In the latter case, the FPE ap-
of a number of analytical and numerical techniques. OftenProach allows us to investigate the coupled system in a com-
noise is an undesirable element of the dynamica| System armltationa”y efficient fashion. In addition, we will include a
considerable previous work has focused on techniques th&obe signal, taken to be a time-sinusoidal driving term. Par-
can suppress its effects in real applications. However, not affcular attention is paid to theéeterministicresonance effects
noise is bad; indeed, sometimes the system “tunes” itself tghat can arise when a system with an underlying frequency is
achieve optimal response as a function of a given noise floopubject to this probe signdll0]. In recent work[11], we
This has led to extensive investigations of noise-mediate@ave studied such resonance behavior for a noisy two-
cooperative behavior, e.g., stochastic resonafide and dimensional(2D) system(the two-junction superconducting
noise-enhanced propagati(ﬁa], as well as more rigorous quantum interference device or dc SQU,ID\/hK:h follows
investigations into the behavior of bifurcating dynamical sys-Somewhat different dynamicthe bifurcation phenomena are
tems in the presence of noif&]; in essence one develops a different than the FHN model considered in this work; our
strategy that, instead of minimizing the noise, searches fofesults have shown that frequency information about an ex-
the area in the system parameter space wherein the optimi@nal “target” signal may be extracted by sweeping the sys-
response in the presence of a given noise floor is obtainede€m control parameters until the characterigtiterna) fre-

This is particularly relevant in the context of neural dynam-guency matches the external signal frequency, a direct
iCS, it being genera”y accepted that neurons adjust their dﬁXplOltatlon of the deterministic resonance behavior that
namical parameteré.g., firing thresholdsto achieve opti- such systems demonstrate, even in the presence of a noise
mal information throughput, in the presence of ndiég as  floor.

suggested here, the response to more complex signals must The paper is organized as follows: in the following sec-
be characterized by measures that are somewhat more géin, we introduce our model and derive the FPE. We then
eral than simply an output signal-to-noise ratio. An addi-examine our results for a smgle element and discuss their
tional improvement in the response can often be obtaine@onnection with recently published work. In Sec. Ill we
when the number of elements is increased. This, then, lead$udy a network of globally coupled FHN elements with, and
to a study of noisy nonlinear dynamics in coupled systemgvithout, a probe signal. Finally, we conclude with a discus-
and a wide variety of coupling schemes have been studiegion of our results.

[5]. A systematic investigation of networks, however, can be
computationally costly since it requires solving numerous
coupled stochastic differential equations.

In this paper, we investigate the effect of noise in the The FHN is a simplified version of the well-known
FitzHugh-Nagumo modelFHN) [6,7] which has become a Hodgkin-Huxley model[12], which describes the firing
popular representation of dynamical systems for several reanechanism in an excitable nerve cell. In the FHN, the dy-
sons. First, its relative simple structure sometimes allows onaamics of the nerve cell are reduced to two variables: a fast
to make analytical progress. Second, by varying the paramactivation variable, corresponding to the voltage, and a slow
eters, the FHN admits a number of standard dynamics inrecovery variabl¢13]. This reduction allows one to visualize

II. SINGLE ELEMENT
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the dynamics by drawing the nuliclingshe lines corre- ap (92p 5 )
sponding to the steady states of the two variablesphase 5t =Dz (AT BX +Cx+Hy+1)p]

space. As mentioned before, the FHN displays a rich phase
diagram that includes excitable, oscillatory, and bistable re- d
gimes, rendering it suitable for use a model system in the - @[(EX‘*‘ Fy+G)pl, (€)
field of pattern formatiorisee, e.g., Ref14]). The inclusion
of noise has been investigated for both single FHN elementghere p(x,y) is the probability density function. As usual,
(see, e.g., Refd.15,16) and populations of coupled FHN the FPE has to be accompanied by initial and boundary data
elements(see, e.g., Refl18]). In addition, the periodically (decay to zero ax— *w,y— +o, with sufficiently high
driven FHN, where either the slow or the fast equation conrate, and the normalization condition
tains a time-periodic driving term, has received considerable
attention[19].

Let us start with the most general form of the FHN sys- f_x f_x dxdyp(x,y,t)=1. @
tem:
It turns out that our FPE has a unique stationary solution,
which can be seen by observing that there exists a Lyapunov
function (see Ref[20] and references thergirnrhe existence
of the Lyapunov function guarantees that the stationary so-

dy lution is unique and globally stable.
a:EXJF Fy+G. (1) To ensure numerical efficiency we have chosen not to
solve the FPE via a finite differend@1] or finite element

Here, x(t) is the voltage variabley(t) is the recovery vari- scheme[22]. Rather, we have used a spectral method in
able, and represents an external stimulus. Furtherméris, ~ which we expand the probability densipyusing a basis of
a Gaussian noise source having zero mean, and correlatidtermite polynomialg23]:
function (&(t)é(t'))=2DS(t—t') and A throughG are pa- .
rameters that govern the dynamics of the system. To make 2 2
the treatment in this paper as general as possible, all relevant P(X'y-t):nz 2: n(DH(OHR(y)e e . (5)
analytical expressions will be derived using the above set of
equations. However, when presenting results of numericaNote that this expansion satisfies the boundary conditions,
calculations, we have chosen to limit ourselves to the invesand the normalization condition witt)=1/7. After insert-
tigation of the FHN in one of its more conventional repre-ing Eq. (5) into the FPE(3) we obtain the following hierar-

X
azAx3+ Bx2+Cx+Hy+1+&,

sentations chy of coupled ordinary differential equations fdf(t):
dx _x(x—a)(1-x)—y ‘e M= (AR +CntFm)rM+[B(n—1)+ 1M,
dt @
B A
dy +[D+3FAMN—1)+3CIrM o+ Zri gt 5Tt
qi X" Py—b. 2

+Bn(n+L)rM ,+An(n+1)(n+2)r", ,+Grm !

where «, a parameter measuring the separation of time =
scales, is typically taken to be small. Conversion between + Erm 241 s(H+E)rp +E(n+ D n+1
Egs.(1) and(2) is straightforward.
+H(m+1)rmh
A. The single-element Fokker-Planck equation(FPE)

As promised above, we will study the noisy FHN model, where n=01...»~,m=01,..., ©®)

via the FPE approach. This approach is motivated by the fact
that for parameters values for which analytical progress is’
difficult to achieve one has to resort to numerics. In this case, Yoo (4o
direct simulation of the Langevin equatiofy, as has been 7=j J dxdyxo(x,y,t):wr?, @
commonly done in the FHN repertoire, can be computation- Tl

ally intensive: for reasonably accurate results one typically e

has to average over many runs, particularly for systems close Vi f f _ .1

to a bifurcation point where one must distinguish between y —o J—w dxdyyp(x.y,t) =T ®
different stable solutions, and for large-noise scenarios. Nu-

merical solutions of the FPE, on the other hand, can be obfhis infinite f'\llierlarchy is then truncated a&=N and m
S

Wwith X andy

tained much faster. =M, settingry,;=0.
The FPE for the single-element FHN is readily written  Our numerical scheme is particularly efficient for large
down using standard methof20] noise levels, where a small number of coefficients is already
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Lanaevi tions and the numerical solutions of the FPE using our algo-

----- gevin . < )

I N M= | rithm is excellent. For the smaller noise levgl(x) becomes

1 FPE (N=M=7) . ; e
more peaked around the fixed point and more coefficients

need to be taken into accouM:=M =30 vsN=M=7 for

the higher noise level.
05 ¢

1>
B. “Stochastic bifurcation:” A brief digression

0 1 Contrary to deterministic systems, the definition of a bi-
furcation in stochastic systems is not very precise. One pre-
L viously employed way of defining phenomenological sto-
-05 L . ‘ ‘ ‘ ‘ chastic bifurcations is to focus on a qualitative change in a
0 1 2 3 4 s 6 time-averaged quantityd]. Examples of this can be a prob-

t ability density function or powerspectrum, which undergoes

FIG. 1. Comparison between the numerical solution of the@ dualitative change from single peaked to double peaked

Langevin equation$?) (averaged over 500 realizationand the [24]. _
solution of the Fokker-Planck equation by the spectral method with Recently, several studies have attempted to address the
N=M=7 coefficients. Parameters a®=8, b=05, p=1, issue of stochastic bifurcations in the FHN6]. Tanabe and

«=0.05,a=0.5, for which the deterministic system is oscillatory. Pakdaman extended and refined the treatment by Rodriguez
and Tuckwell and found expressions for the mean, variance,

sufficient to give excellent numerical answers. This can bénd covariance of the dynamical state variables in the FHN
seen in Fig. 1, where we plot the first momeras a function [17]. These expressions were derl\{ed by assuming the distri-
of time, obtained numerically by solving the Langevin equa_butlon of the variables to be Gaussian. Tanabe and Pakdaman
tions (1) and averaging over a large number of realizationsfirst demonstrated that, using Langevin simulations of the
and by solving the FPE using the above-described spectr&t‘" dynamics, the steady state distributions of the variables
method. The spectral methédith N=M =7 coefficientsis could undergo a qualitative transition from unimodal, for

seen to provide excellent agreement with the more conversmall values _of the noise intensity, to pimodal for larger val-
tional and time-consuming technique based on numericall{*€S of the noise. They used the equations for the moments to

integrating the coupled stochastic differential equatifijs obtain a bifurcation diagram. in noise vs system parameter
Once a suitable algorithm is implemented to solve theSPace. They found that the first moment of the fast variable

FPE it is straightforward to find the probability density func- Undergoes a Hopf bifurcation at a critical value of the current
tion corresponding to its unique stationary solut[@2]. In intensity | which approached the critical value for the deter-
Fig. 2 we have plotted the marginal densiy,(x) ministic Hopf bifurcation as the noise level was decreased.

= [*=dyp(xy) for two different noise levels calculated using They then concluded that one could define a stochastic bifur-

the FPE(solid lines and via Langevin simulation&lashed cation in the FHN that was an extension of the deterministic

lines). Again, the agreement between the Langevin simula®"¢-
- Ag 9 g It is important to note that the occurrence of a second

‘ ‘ peak in the probability distribution corresponds to the occa-
—  FPE sional escape of an element from its fixed point. Upon in-
1.2 Langevin creasing the strength of the noise, the probability of escape
becomes larger and such a peak becomes more pronounced.
However, even for very small noise levels, the state point has
a nonzero probability to escape from the fixed point, leading
to a small but nonzero second peak in the probability distri-
bution. Thus, defining a stochastic bifurcation based on the
occurrence of a second peak is problematic.

In addition, caution needs to be exercised when linking
the “bifurcation” in the moment equations to a stochastic
bifurcation. As we have mentioned before, the FPE is linear
and has unique, stationary, and globally stable solutions.
Consequently, the moments of the FHN cannot exhibit a
Hopf bifurcation. The Hopf bifurcation found in RdfL7] is,

FIG. 2. Marginal densityf *Zdyp(x,y) obtained through the Most likely, an artifact of the limited number of moments
numerical solution of the Langevin equatiof® (averaged over considered; one would expect that increasing the number of
500 realizationsand the solution of the Fokker-Planck equation by moments, an admittedly very difficult and cumbersome task,
the spectral method withhi=M =7 coefficients wherD=8, and  Will lead to the disappearance of the Hopf bifurcation.

N=M=30 coefficients wherD=0.8. Parameters are=0.2, p From the above, we conclude that we cannot provide a
=1, a=0.05, anda=0.5, for which the deterministic system is meaningful definition of a stochastic bifurcation in a single
excitatory. FHN element. However, as we will see below, the globally
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FIG. 3. Power spectrum of the variabfefor three different values of the probe signal, and noise strerigtt) =1.2, and(b) D=2.
Simulations done by using the Langevin equations. Other parametebg-a5, p=1, g=0.01, «=0.05, anda=0.5

coupled caseloesexhibit a true stochastic Hopf bifurcation, ing 100 time series of 2 time steps each. The figure illus-
related to the synchronization of the network. Also, as wetrates clearly that, for a probe signal frequency that matches
will discuss in the following section, even without determin- the broad peak corresponding to tlie general, nonsinusoi-
ing the location of a stochastic bifurcation, we can still finddal) internal oscillations in the power spectrum of the un-
the underlying (or characteristic frequency of the noisy probed system, the signal is amplified. Thus, adding the

single FHN element. probe signal gives us a tool to investigate the dynamics of
the noisy system and, specifically, to determine the intrinsic
C. Inclusion of a probe signal frequency of the system.

Even though it is in general much faster than directly
: . . . . simulating the driven Langevin equations, solving the time-
ering a sinusoidal external component in Ed3.and (2) via dependent FPE can still be time consuming. Fortunately, we

G=Go+asin(wyt) and b=Do+gsin(wyt), respectively. The .o \0 g ca the time-dependent problem to a stationary one if
motivation stems from the desire, in many systems it is de-

. : . we consider a small amplitude signgl=¢Q, wherees<1.
S|ratblr?1 tc())o:)tram mewmrt[flrﬁe(: r naltrura(]j frgq?nennc%rof tdhfh In this case, Eq(3) contains terms with two different time
system. Lur rece 0 as afready demonstrated e ;. g thereby rendering the resulting FPE can be susceptible
utility of determining this frequencyin terms of laboratory-

controllable system parametgras a means towards optimal to analysis via the method of multiple scales, in turn we
Y P ! P expect to be able to capture the long-time behavior of the
performance(in the presence of a noise flgpas well as probability densityp
detectlor_1 of an unknowrl target s,!gnal contalnlng_ fre- The analysis begins by introducing fast and slow time
guency information. The “resonance” in the output signal- )
) . o . scales as follows:
to-noise ratio, exhibits some hallmarks of the well-studied
stochastic resonance effddi], however, since it occurs at a t
deterministicvalue of a system control parameter, precisely 7=, t=t. 9
at the matching of the probe frequency with tldeterminis-
tic) internal oscillation frequency past the onset of a saddle-
node bifurcation. We look for a distribution function satisfying the boundary
One way of determining this internal frequency is to com-condition according to the ansatz:
pute X(t) or y(t) from the Langevin equations as time-

We now turn to the inclusion of a probe signal by consid-

dependent quantities; unfortunately, this is computationally 2
very costly. On the other hand, aside from transiextsyy p(x.y,tie)= > pM(x,y,t,7)e"+0(e3). (10)
calculated from the FPEwvhich offers a computationally su- n=0

perior way to characterize the systemo not display a time-

dependent _behayior fo_r a single FI—_|N oscillator. Hence,_wq:rom Eq.(10), the average of is given by

turn to the time-sinusoidal “probe” signal and the determin-

istic resonance that it sets up, to determine the internal fre-

quency. (=00 +s(x)P+0(&?), (11)
To illustrate the effect of the probe signal, we first per-

formed Langevin simulations and calculatedin Fig. 3we  \where

plot the power spectrum of this quantity for three different

probe signals; two of them with frequenciesg, that differ e i

_S|gn|f|cantly from, and one that is very close to the underly- <X>(j):f f dxdyxW(x,y,t). (12)

ing frequency. The power spectrum was obtained by averag- —o J—w
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The average of is given by similar equations. Inserting Eq. ;2,1 4 P
(10) into Eq.(3), we obtain the following hierarchy of equa- D - &[(AX?’-I— Bx2+Cx+Hy+1)p®]— —

tions for p(): ax? ay
9p 9p©
ap WP 5 P
ZT -0, (13 X[(Ex+Fy+Gg)p'™] i Qsin(w,t) 3y 0.
(19
ap®  52p© _ _
=D — —[(AC+BX2+Cx+Hy+1)p®] In Fourier space we obtain,
T (7X2 IX
9 p® (€] *pt 3 2 1)
p iwp'™'=D — —[(AX*+Bx°+Cx+Hy+1)p
= 5y L(EXHFy+Gop®)- =2, ag PP e T y+he]
d Q g
_ A =
9p?) 2oL [(Ex+Fy+Gg)p'H]—i
—-p :2 — — [(AX+BR+ Cx+ Hy+1)pV)] % 2 dy
X X[i)(O)(w_,_wp)_i)(O)(w_wp)], (20
J w7
—E[(EXJFFWLGo)P 1= P where
ap’® < (i) " dte oty
—Qsin(wpt)W, (15) pr(xy,w)=| dte’pl(xy1), (21)
1 1 1#1 i + oo + o0 .
where the normalization condition <§<>(J):f f dxdyxb“)(x,y,t), (22
[ L
X,y,t)ydxdy= 6 16 .
| PPy Ddxdy= o, (16) =01 23

follows from Eq.(4). Equation(13) implies thatp(® is inde-  Equation (20) should be solved forp™) together with
pendent ofr. Then, the terms in the right side of EAL4) S o/ Zdxdyp™=0. Sincep'® evolves to a stationary so-
which do not have~-dependent coefficients give rise to secu-lution for long time[i.e., p¥= 8(w)f(5;,8,)], we find that
lar terms(unbounded on the-time scalé. The condition that =0 is the only solution of Eq(20), unlessw= *wp.

no secular terms should appear is Then Eqs(20) and(23) imply that
P2p©® g p Y= (x,y)S(w—wp)+ 77 (XY) 0+ wy). (24
D——F -~ a—[(Ax3+ Bx?+ Cx+Hy+1)p®]
X X Inserting Eq.(24) in Eqg. (20), we obtain two uncoupled
P PR equations forp™ and »~. These can be solved, by expand-
— W[(Ex+ Fy+Gg)p@]- ’;_tzo_ (17) ing #* in Hermite polynomials,
This equation should be solved fpf® together with the 7Y = > (THMH(OHM(y)e e, (25
normalization condition and the initial condition data. This is n=0 m=0
most easily done in Fourier space, in which the above equa- ) ) )
tion reads and solving the corresponding nonlinear systems of equa-
tions for the coefficientsT™);'. Once we obtainT"),, we
20 can calculatg%)*) from Eq. (23). Note thatp(+ w,)=p*
iwp@=D o 5[(Ax3+ Bx?+Cx+Hy+1)p®] (—wp), by taking the complex conjugate in E¢R0) and
IX

(23). Then it follows from Egs.(24) and (25 that (T")}
P =((T)_M*. Therefore we conclude thatk)(—w,)
— @[(Eer Fy+Gg)p@]. (189  =[(X)M]*(+w,), and the inverse Fourier transform yields

D)ty = <) (1)
Note that this problem is equivalent to solving the FEE (00 =2 Rel(3) ™  wp))eod wpt)
without the probe signal as the effects of the probe signal -2 Im((f()(l)(wp))sin(wpt). (26)
appear first when calculating the first-order correctjof}).
To calculate these first-order corrections, we again impos&nowing (x)*)(t), the amplitude can be readily computed
the condition that no secular terms appear, and that the right-
hand side of Eq(15) vanishes. The resulting equation is A<X>=2\/(>”<>(15(<>”<)(15)* +0(&?). (27
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FIG. 4. Comparison between the theoretical results and the nu-

merical simulations, marked by symbols. ParametersDxre20, _FIG. 6. Maximum ofA, vs the noise strengt® for three
bo=0.3, p=1, q=0.01, «=0.05, anda=0.5. different number of coefficients. The results are obtained using Eq.

(27) with parameters set as in Fig. 5, witli=0.5.

The advantage of the above procedure is that it only re-
quires solving stationary equations. Rather than having to In Figs. 5a) and 5b) we apply the theory to parameter
calculate a fully time-dependent solution and waiting untilsets for which the deterministic system is excitatdrg.,
transients have disappeared, the amplitude of the oscillatiorexhibits a stable fixed point respectively, oscillatory. In
can be found by solving the stationary problem Ekf) for  both cases, as the figures demonstrate, decreasing the noise
p©, followed by solving a stationary problem f@f!). To  level leads to the appearance of a clear maximum for a non-
verify that the expansion ia can be safely truncated at first zero value ofw,. For the parameters of Fig(f this is not
order, we have plotted in Fig. 4 the amplitudexofising the  surprising, since for zero noise levels the system is oscilla-
full FPE equation(3) (solid circles and using the theoretical tory (with Ax=1.03 andw=0.24. For the excitatory case
approximation(27) (solid line). The agreement is remark- [Fig. 5a)] and in the absence of a probe signal, nonzero
able, although it should be noted that the amplitude of thenoise levels can lead to occasional escapes from the fixed
probe signal considered here is smaH0.01). point, leading to an underlying frequency. The inclusion of

For increasing strength of the probing amplitude, higherthe probe signal will then result in a classical resonance
orders in the expansion may be required. However, @te  when the probe signal frequency matches this underlying
is known, it is also straightforward to find the successivefrequency{10,11].
terms in the expansion. Without entering into a detailed Using the expression fok, we can determine the loca-
study, some general features can easily be drawn from thtion of the maximum. In Fig. 6, we plot the maximum in
hierarchy of equations fos!. Similarly to the analysis for A, which corresponds to the underlying frequency, as a
p®), and by taking into account thaf® is a function exclu-  function of the noise strengtB, for different numbers of
sively of w* w,, it is straightforward to prove thgi®=0  coefficients. As expected, for small values of noise the num-
is the only solution, unles®=0,*2w,. In general, succes- ber of coefficients should be increased to achieve higher ac-
sive terms will depend on higher harmonics of the main fre-curacy. Note that there exists a critical value of the noise

quencyw, . below which the underlying frequency is different from zero.
0.022 ‘ ‘ : Doos 0.022 , , , D08
a — =u. — Ry
(a) —D=1.2 (b) —D=1.2
---D=2 ---D=2
0.02| ] 0.02|
I I
3 3
20018 | 20018
o o
& &
0.016 . 0.016
0.014 0.014

FIG. 5. Amplitude ofx as a function of the frequency of the probe signal for different values of the noise strength. The amplitude was
calculated using Eq(27). The parameters arp=1, q=0.01, «=0.05, anda=0.5. by was chosen such that the noiseless system is
excitatory in(a), whereby=0.2, and oscillatory ir(b), whereb,=0.5 and where the noiseless system has a frequenay-of.1.
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This is in full agreement with results plotted in Fig. 3 via 1
Langevin simulations. In addition, notice that the depen-

dence of the underlying frequency is well described by a
square-root dependence on the noise strength, a familiar re- 0.5
sult for supercritical bifurcations.

< O
IIl. GLOBALLY COUPLED SYSTEM o 'Ela;l‘zgeV'“
A. The FPE -0.5 |
We now extend the model equatiofi9 to include a glo-
bal coupling term; this coupling scheme is the most ame-
nable to theoretical treatment. The resulting Langevin equa- -1 0 2 4 6 8 10
tions are t
X, K N FIG. 7. Comparison between solution obtained by means of
Gt :Axi3+ Bxi2+ Cxi+Hy;+1+ N 2 (X=X + &, FPE, and direct numerical simulation of the Langevin equations for
t =1 5000 oscillators. Parameters ave=0.5, p=1, «=0.05,a=0.5,
(28)  p=4, andk=10.
m_[3, 5 m
dy; . fn=|5An°+Cn+Fm—Kn|r'+[B(n—1)+I
HIEXi—FFyﬁ-G, i=1,...N. (29 2

+ 7K™+

3 K
D+ZA(n—1)+%C— E}rnmz
Note that for a perfectly synchronized system this form of
coupling reduces to the previously discussed single-element
equation.

We are interested in an analytical investigation of the dy-
namics for very largeN. In the thermodynamic limitN
— oo, it is well known[25] that models with mean-field cou-
pling are described by an evolution equation for the one-
particle probability density. This can be seen by noting that
the hierarchy of equations for all the multiparticle probability
densities can be closed by assuming molecular chaos, which
states that there are no correlations among the oscillators. where n=0,....2o,m=0,...», (32
Hence, the one-system probability densitgx,y,t) is as-
ymptotically (i.e., in the limit, N—~) the solution of the Again, to compare our FPE to direct numerical simulations
following nonlinear Fokker-Planck equation: we will truncate the above infinite hierarchy. A comparison
between this truncation and the solution of the Langevin
equations for a large number of FHN oscillatqE00 is
dp #p 9 3 5 o shown in Fig. 7. The solution of the FPE, corresponding to
51 = Doxa™ gl (AX+BXT+Cx+Hy +K(X=x)+1)p] N—oo, provides excellent agreement with the finllecase
and shows that 5000 is already close to infinity for all prac-
d tical purposes. As an aside, we mention here that for the
_@[(EXJF Fy+G)pl, (30 coupled system the advantage of using the FPE becomes
very clear. The numerical computation of the FPE was ap-
proximately 80 times faster than the direct Langevin calcu-

B A
+ Zrnm,3+ grnm,4+ Bn(n+1)r,,

F
+An(N+1)(n+2)rM ,+GrM 1+ Ernm_z

1
+ S (H+E) L+ E(n+ Dri i+ Hm+ Dritd,

B. Bifurcation for the coupled system
o +o [+ : ;
X:J j dx dy xp(x,y,1). (31) ' The above example illustrates that, in contrast to the
—w J - single-element case, where the FPE has a unique stationary

solution, the FPE for the coupled system can exhibit time-
dependent solutions. In fact, by varying the parameters, the
Analogous to the case of the single element, we will solvesystem can undergo a stochastic Hopf bifurcation. This is
the FPE using an expansion in Hermite polynomials. Theshown in Fig. 8 for two different values of the coupling
hierarchy(6) now becomes a system of coupled first-orderstrength. In Fig. €a) we have plotted the amplitude ®rfas a
nonlinear differential equations function of the coupling strengtk for a fixed level of noise,
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FIG. 8. The amplitude ok as a function of time for two differ- . .
ent values of the coupling showing a clear bifurcation. Other pa; FIG. 10. Amplitude ok vs the frequency of the probe signal for

. three different values of the coupling strength. Parameters are as in
rameters are as in Fig. 7. Fig. 7

and for two different values db. For these values dj, the The inclusion of a probe signal will elicit a time-

deterministic system is synchronized and oscillatory. Be|0V\Hependent solution of the FPE, even when the systitm
some critical coupling strength, the noise destroys the syngyt the probe signal has a stationary solution. As in the
chronization and is no longer oscillatory. Consequently, the single-element case, the amplitidef the response depends
solution of the FPE is stationary. Upon increasing the cougritically on the frequency of the probe signal as is shown in
pling strength past this critical value, the system synchrogig. 10. Fork =0 the response curve does not exhibit a peak
niZeS and eXhibitS a time—dependent behaViOI’. As in F|g 6show|ng that there is no under'ying frequency in the prob_

the bifurcation is well described by a square-root dependencgm. Increasing< produces an underlying frequency which
on the order parameter. The Hopf bifurcation is furtherjlus—appears as a peak in the curve. Note thatKor2.9 the
trated in Fig. 90), where we have plotted the amplitudesof  system will synchronize in the absence of a probe signal
as a function of the noise strength for a fixed coupling(peak atw,=0). This, then, leads to a response that has two
strength. Again, the system displays a Hopf bifurcationprincipal frequencies: the frequency arising from the Hopf

which correspond to a transition from unsynchronized topifurcation and the probe frequency. Note also that in con-

synchronized dynamics: below the critical noise level, theyast to similar coupled systentsee, e.g., Ref11]), increas-

solution is time dependent and the elements are synchronizggly the coupling does not lead to the “death” of the oscilla-
while above the critical noise level, the solution is stationaryory region.

and the elements are unsynchronized.
The beh:?\wor of the noisy globally couple_d system is IV. CONCLUSIONS
more complicated for parameter values for which the deter-

ministic system is excitatory. Possible dynamics include In this paper, we have investigated the noisy single and
noise-induced synchronizatidi26] and system size coher- globally coupled FHN model subject to an external time-
ence resonancf27,1§. A systematic investigation of this sinusoidal injectionor “probe”) signal. We have derived a
regime will be the topic of a future publication. FPE for the system and shown that we can solve this FPE

0.79 - . . . 1
&--2b=0.5 }
0.59 ol o8
|
)
S 06 |
3 3
£0.39| =
[«} o
04|
E £
0.19 ¢
0.2
-0.01 3 ] K ) 0 5 a 5

D

FIG. 9. () Amplitude ofX as a function of the coupling strength for a fixed level of noise and two different valuedlof Amplitude
of X as a function of noise, kept fixdd=5. Other parameters are as in Fig. 7.
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efficiently by using a suitably chosen expansion. We find thatzation of the bifurcation behavior in the coupled system, in
there is a classicdlor deterministi¢ resonance effect when the presence of noise, without the necessity of truncating a
the frequency of the probe signal approaches the underlyinghoment system derived from the Langevin dynamics; we
system frequency. We were able to characterize this restrave shown that such a truncation can lead to misleading
nance by separating the fast and slow time scales in the probesylts.

lem and find that, for small driving amplitudes, the agree-  Fyture work will include the further investigation of the
ment between numerical and analytical results is excellentesponse of the globally coupled system to the probe signal.
Our work was motivated by our earlier investigatidid| |y particular, parameter values for which the deterministic
into the saddle-node bifurcation that underpins the dynamicgystem is excitatory will be explored. Also, attention will be
of a dc SQUID; in that work, we showed that the systempaid to the possibility that, upon inclusion of an input signal,
performed optimally(in the presence of a noise flgowhen 3 population can become synchronized and can produce a
it was tuned so that the frequency of an external “target’|arge output signal. By varying the intrinsic parameters, in-

signal (that was the subject of our detection procedwvas  cjuding the coupling constant, the response can thus be
coincident with the internal frequency; anpriori knowl-  “tyned” at different frequencies.

edge of the internal frequency, in terms of deterministic sys-

tem control parameters could then permit us to determine the

target frequency by adjusting the SQUID parameters until ACKNOWLEDGMENTS
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