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Time-varying synchronization of chaotic systems in the presence of system mismatch
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The problem of synchronization of two identical chaotic systems in the presence of system mismatch is
investigated in this article. The instantaneous mean square (€jrof the unidirectionally coupled synchro-
nization scheme is analyzed based on the Jacobian equation of the response system. It is shown that synchro-
nization based on a constant coupling parameter does not produce satisfactory performance. A synchronization
scheme is proposed here, and the time-varying coupling parameter sequence used in this new scheme is
obtained by minimizing the instantaneofs Numerical simulations show that the proposed time-varying
synchronization method has smaller mean square synchronization error than the conventional approach based
on using a constant coupling parameter.
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[. INTRODUCTION does not require a numerical procedure to determine the sys-
tem behavior in practical applications, but it is also shown to
Since the first observation of two systems to exhibit un-be a generalization of the Pecora and Carroll synchronization

this behavior has been the subject of a substantial number Hﬁ” mert1hod ,?hl"‘f[ay*:’_ uses a constant lcc()jupling patramﬁterl, ditbis
investigations because of the intrinsic interest in the idea opiown here that a ime-varying coupiéd parameter should be

o . . . .“used to achieve a good synchronization performance in the
sync_hronlzanon between chaotic motions, and its pOtentIa?ﬁresence of system mismatches. In particular, we propose
application. Most of the research in the field of chaos syn-

N . . using the instantaneousto measure th& performance of
chronization assumes that the drive system is connected Eﬂe Jacobian of the response system. It is found that the

the response by an ideal channel. However, there are alwayssiantaneous depends on the eigenvalues of the Jacobian
some mismatches between the drive and response systemsifirix, which is usually time varying for a chaotic system.
practical applications. The system mismatch, including com-he time-varying nature of these eigenvalues indicates that
ponent mismatch and channel noise, has been shown to Restantaneous varies with time and hence using a constant
able to induce momentary large bursts away from synchrocoupling parameter is insufficient to minimize tfen syn-
nization for some systems, and seriously limits the applicachronization. In other words, the performance of the conven-
tion of chaos synchronizatidit—8]. The robustness and sta- tional synchronization method can be improved by using a
bility of synchronization in the presence of these mismatchesime-varying coupling parameter sequence. Based on this ob-
are discussed im9—11]. It is shown that synchronization servation, a new design approach for a time-varying synchro-
stability is related to the conditional Lyapunov exponentsnization is proposed here. The coupling parameter at a cer-
and transversal Lyapunov exponents of the chaotic systeit@in time is obtained by minimizing the instantanedust
[12,13. that time instant. When there is no system mismatch, the
However, recent research shows that Stab”ity is inadconventional synchronization method is found to produce the
equate to guarantee a high-quality synchronization perforsame performance as the proposed time-varying approach.
mance. A quantitative measure is needed to characterize tfit When system mismatch exists, the time-varying synchro-
performance of a synchronization scheme. The mean squaf¥2ation is superior to the optimal constant coupling param-
error (£) between the states of the drive and response sys,e-ter approac_h. . S .
tems is introduced ifil4] to investigate the performance ofa __1he remainder of this article is organized as follows. In
unidirectionally coupled synchronization system in the presSEC: !l We introduce the problem of chaos synchronization
with system mismatches. We then analyze the instantaneous

ence.of channel noise. An O.DF'”?a.' constant coupling params ¢ unidirectionally coupled synchronization, and propose
eter is then obtained by minimizing the mean square syn

hronizati It is sh that th timal i the time-varying coupling synchronization scheme. Section
chronization error. it 1S shown that the optimal coupling y; gives the computer simulation to show the synchroniza-

parameter does not only depend on the global Lyapunov &%jqn performance of the proposed approach. Concluding re-
ponents, but also depends on the local Lyapunov exponents,5rks are given in Sec. IV.

The unidirectionally coupled synchronization scheme is
considered in this study. Not only is it easy to implement and||. DESIGN METHOD FOR CHAOS SYNCHRONIZATION
IN NOISE
Suppose that the dynamic of the drive system is given b
*Electronic address: leungh@enel.ucalgary.ca PP y 4 g y
"Electronic address: zhiwen.zhu@crc.ca Xn=F(Xp_1), 1

1063-651X/2004/6@)/0262015)/$22.50 69 026201-1 ©2004 The American Physical Society



H. LEUNG AND Z. ZHU PHYSICAL REVIEW E69, 026201 (2004

where x,=[x;(n),X,(n),... x4(N)]" is the d-dimensional that an appropriate coupling parameteiis chosen. How-
state vector at time, f(x,) =[f1(X,),f2(X,),....fa(x,)]" are  ever, when there exists some channel noise, synchronization
continuous nonlinear functions, and “T” denotes the trans-error is unavoidablg16]

pose of a vector or matrix. To describe the effect of coupling parameteron the
To utilize a channel efficiently, a scalar driving signal is synchronization performance at time the instantaneouS
usually transmitted for synchronization. That is, of the response system is introduced. The instantan&ous
depicts the performance of the response system atriitne
Yn=h"x,+v,, (2)  analyzing another linear system whose characteristics are the

same as those of the Jacobian equation at that time. That is,
whereh=[h;,h,,...,h4]", v, is a Gaussian channel noise

process with zero mean and ;) =R3;=0, E(-) is the en=(lg—Kh)Fy_ien 1 +kop, (7
mathematical expectation operator, afidis the Kronecker N _ )
delta function. whereF,_; has the same eigenvaluesis ;. The instan-

Chaos synchronization is to build a response system sudgneouse at timen, &,, is the mean square average of the
that it will follow the states of the drive system f) based Steady state ii7),
on the driving signal,,. In a unidirectionally coupled syn- M
chronization scheme, the dynamic of the response system

N T
can be described by En= '\!l'inw P T 8
R0=F(%n-1) +k(Yn—h™f(R4-1)), (€) Expressing the instantaneous eregrin (7) in terms of its

past histories froom—1 to my, we have
where X,=(X1(n),%,(n),... X4(n))" is the d-dimensional

state vector of the response systes: (kq,Ko,... kg " is a m o
d-dimensional vector which represents the coupling param- em=T(m,mo)emo+jimZ+l T(m,j)kvj, 9
eter. 0

In the presence of channel noise, the ideal synchroniza;, ereT"(m,j)=TI" . ,(I—khT)F"_, is the evolution op-
. . ] + —
tion, that is, the states of response system equal to those g, - \which satisfies the foIIovlving condition®"(m, m)
drive system, cannot be fulfilled. There is always some syn-_ ' '

hronizat %20 % in th =1 andT"(m,j)=0 for j>m.
chronization €rrore, =X, = X, asn—e In e response After some algebraic manipulatiohs, in (8) can be ex-

system. An approximated synchronization is used to describSressed as

this kind of synchronization behavior. Robustness and stabil-

ity of synchronization can be reached by using a suitable d d m

coupling parameter. The following mean square etépbe- &= lim R > 5p5p’qe2r<AB,p+A2,q>' (10)
tween the drive and response systems is used here to quan- moe P=109=1r1=0

titatively describe the synchronization performance ; .
where 8,=k'vg,, &pq=tr{kvgld}, Agp,=In(\gp)/2,

1 n Vg,p, and\g ,, p=1,2,...d, are the eigenvectors and eigen-
&= r!iﬁlmigo e'e, (4)  values of (4q—kh")(Iq—kh"T, respectively, Ag,q, q

=1,2,...d, is the eigenvalues an_lFI_l,tr(-) denotes

trace of a matrix,|y denotesdxd identity matrix, andlg

wheren, is the length of the transient state. .
denotesd X d matrix whose elements are all zero except a

Subtracting(3) by (1), the synchronization errag, can be

expressed as one in theqth position of the diagonal.
If Agp+tAgq=0, & will tend to infinity. An approxi-
e, =F(%,_1)— f(Xy_ 1)+ K(hTF(%,_1) — hTH(%_ 1)) + ko mated synchronization cannot be obtained. Thus it is neces-
- n— - - n-

(5)  sary to make sure thatg ,+ AZ 4 is negative, and hendg,
can be simplified as

Suppose that when the channel noise is small, the synchro-

d d

nization error is small over the steady-state synchronization £-S S R6p6p.q (11)
period. Linearizing(5) at the synchronized stafg gives " 1S 1—e2(MeptAcy

e =Fn_18,-1—kh'e,_1+kv,=(lg—kh")F,_ie,_1+ kv, Equation(11) indicates thaf,, depends om\ ¢ ,, which is

(6) related to the eigenvalues of the Jacobian matrix of the re-

wheran:(&f/&x)|x:in is the Jacobian of(x) evaluated at

X . The derivation is the same as that[ 4] except that thé;,_, is

In the absence of channel noise, the noise tefnvan-  replaced byF! ;. The derivation is independent of the type of
ishes and the synchronization of the two chaotic systems igynamical systems. For type | systefi§], A¢  is a constant with
realized once the norife,| approaches 0 as—o provided differentn, while type Il systems have time-varyingg , .
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sponse system at time, F,_;. As Fn—1=(f9f/r9x)|x:;<n71, conditions. The synchronization error for each trial is ob-

that is,F,,_, is determined by the system equation and statdained using 1®time points after a transient state period of
%,_1. As the system state of a chaotic system is an aperioditlo= 10°.
process, the Jacobian matrix afigusually vary with time.

The £ in (5) is basically the average of the instantaneous A. The tent map
£ over time. When time varying parameters that mininfize
at timen are used, we should have an improved synchroni-_
zation performance if the eigenvalues of the Jacobian matriéf
of the system are indeed time varying. Fréii), the opti-
mal coupling parametéet at timen is related to the eigen-

The tent map is given by,=f(X,_1,a)=a(1—|2x,_1
1]), whereae[0,1] andx,[0,1]. The response system
the unidirectionally coupling synchronization scheme for
the tent map is then given by

values ofF,_ ;. SinceF,_; depends on time in general, Kn="F(Xh_1,8) +Kn(Yn—Fe(Xn_1.8)), (13
using a single constant coupling parameter is therefore insuf-
ficient to minimize thef at all time. where k,, is the coupling parameter sequence obtained by

Based on the above analysis, a synchronization systeminimizing the&, in (11). Without loss of generality, we use
with time-varying coupling parameter is proposed. The time-h=1 in (2) andy,=X,tv.

varying coupling parameter is chosen to minimize &hdn The &, for the tent map can be expressed as
(12). For the special case, thAl’&q in (11) are independent
of F,_1, the &, is equivalent to MSE, and hence using a £ = Rkﬁ (14)
single coupling parameter is sufficient for an optimal syn- . 1—Fﬁn,l(1—kn)2’
chronization.
The proposed time-varying synchronization scheme isvhereF, ,_;=2asgn(1/2-%X,_1).
summarized as follows. Minimizing the &, in (14) with respect td,,, the optimal
Initial conditions, coupling parameter sequendg,, can be obtained
%o=E[X 4a*-1
Xo=FE[Xo]. (12 k= . (15

Forn=1 to N, we calculate the
For the tent map, th&, is independent of th&, ;, the

) . T coupling parameter designed by using the proposed method
(2) eigenvectors and eigenvalueskj_;F, ; , _ is therefore a constant, which is equal to the optimal cou-
(3) minimization of the&, with respect to thd to obtain an pling parametef14]. Thus, the proposed method is equiva-

optimal coupling parametek,, , and . A lent to the optimal constant coupling parameter method for
(4) state vector estimation according té&,=f(X,_1) the tent map.

+kn(Yn—h"f(%-1)).

(1) Jacobian matrixF,_4,

. . L B. The logistic map
It should be noted thaf, has a linear relationship with the

noise varianceR in (11). If there is no channel noise, i.e.,  'ne logistic map is defined as,=f((Xn-1)=4x,_1(1
R=0, then&, is equal to zero if the coupling parameter — Xn-1), Wherex,e[0,1]. The response system in the uni-
satisfies the condition\ g ,+ A2 ,<0. No matter what kind directionally coupling synchronization scheme for the logis-

of parameter, constant or time varying, is usdandg will  ti¢ map is then given by

be the same and equal to zero. It is why using a constant Co=f (% KV —f (% 16
coupling parameter is sufficient for the noise-free channel in n=FeGa-0) T ka(Yn =T e(Rn-1)) (16
conventional synchronization. wherek, is the coupling parameter sequence which is ob-

The method we proposed here can also be applied tgyined by minimizing thef, in (11). Without loss of gener-
continuous-time dynamical system. Using the similar derivayjity we seth=1 in (2) and hencey,=x,+v,,.

tion, a linear differential equation about the synchronization  The jnstantaneous for the logistic map can be expressed
error corresponding to EQq(6) can be obtained for a zg

continuous-time dynamical system. A state transition matrix

is used to express its solution, which can be transformed as a Rkﬁ
discrete-time map. The time-varying coupling parameter can En= 1-F2_(1-k)2’ 17)
then be obtained. tn-1 n
whereF, ,_1=4(1-2%,_1).
ll. NUMERICAL SIMULATIONS Minimizing the &, in (17) with respect tk, , the optimal

In this section, the proposed design method is applied tgpupllng parameter sequende,, for the logistic map is
three chaos synchronization systems: the tent map, Iogist%'ven by
map, and henon map. In the following simulations, &him F2 1
(4) is estimated by averaging the mean square synchroniza- kn:“;—ll (18)
tion error over 20 Monte Carlo trials with different initial Fin-1

026201-3



H. LEUNG AND Z. ZHU PHYSICAL REVIEW E69, 026201 (2004

s i I AN \ i
081
0.8 “ r\‘
0.7H
n 06H
0.6 -
N
.= 05l 2 o4
0.4H <
0.2 1
0.3
0.2H
(1], ST AN I AT oA TR S S ST P R A PR S A S PR IS
0.1
0 1 1 L L L 1 ! _0‘2 1 1 1 1 1 1 1 1 1
0 20 40 60 8 100 120 140 160 180 200 0 20 40 60 80 100 120 140 160 180 200

n

FIG. 1. An example of the time-varying coupling parameter FIG. 3. An example of the time-varying coupling parameter

sequence for the logistic map. sequence for the henon mémlid line with & for k; ; dotted line
for k»).

WhenF%vn,l is less than 1, the coupling parameter at time
is negative. It should be noted that it is necessary to have a smaller€ than the optimal constant coupling parameter
non-negative coupling parameter to eliminate the effect obystem for all levels of channel noise. While tB&R of the
the initial condition error between the response and driveoptimal coupling parameter is 0.88, thER of the proposed
systemq 14]. k,, is therefore set to zero whd?ﬁn,l< 1. method is about 0.76 as the variance of channel is smaller

Figure 1 gives an example of the time-varying couplingthan 103,
parameter sequence designed by using the proposed synchro-
nization method for the logistic map. The synchronization
performance versus channel noise variance is shown in Fig. o
2. For comparison, the synchronization performance of the The henon map is given by
response system with the optimal constant coupling param-
eter is also given. The ratio of the output noise variance to
the input noise variance is used in the figure to show the
improvement. For the constant coupling parameter system, Xon=0.K1p-1. (20)
the parameter value of 0.88 is shown to be optifid], and
is used in our simulations. Figure 2 shows that the synchroi this case, X,=[X1n,Xon]", Xn=[X1n,%2n]", and k,
nization system with the proposed design method always has[Kip,Kop].

C. The henon map

X1p=1— 145, 1+Xon 1, (19)
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FIG. 2. Performance comparison of the unidirectionally cou- FIG. 4. Performance comparison of the unidirectionally cou-
pling synchronization systems based on the logistic map using thpling synchronization systems based on the henon map using the
optimal constant parameter methédbtted line withO) and the  optimal constant parameter methédbtted line withO) and the
proposed time-varying synchronization methedlid line with < ). proposed time-varying synchronization methadlid line with <).
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Let f, denotes the henon map, i.e,=f,(X,-1). The system with the coupling parameter using the proposed time-
response system for the henon map can be expressed as varying design method has small€rthan the optimal cou-
R R S pling parameter system for all noise variance levels. dife
Xn=fn(Xn-1) +Kn(Yn=h'fr(Xn-1)), (21)  of the optimal coupling parameter is about 0.8, while §@

wherex,=[%4, ')A(zyn]T’ Kn=[Ky, vk2,n]T is the coupling pa- of the proposed method is about 0.71.

rameter sequence, ahe-[h;,h,]". Here,h=[1,0]" is used,
Le., Yn=XinTUp.

Figure 3 gives an example of the time-varying coupling The problem of synchronization of two identical chaotic
parameter sequence for the henon map. Both parameter sgstems in the presence of system mismatches is investigated
quences are obtained by minimizing tein (11). The syn-  here. Based on the analysis of the instantanedud the
chronization performance versus the noise variance is showdacobian, a novel synchronization approach with time-
in Fig. 4, and the performance of the optimal coupling pa-varying coupling parameter is developed here. Compared to
rameter synchronization is also plotted for comparison. Fothe constant parameter synchronization system,&hee-
the constant coupling parameter system, the paramkfgrs tween the response and drive systems is shown to be reduced
=0.88 andk,,=0 are used here which have been shown tdby using a time-varying coupling parameter sequence that
be optimal[14]. Figure 4 shows that the synchronization minimizes the instantaneouds

IV. CONCLUSION
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