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Geometric properties of two-dimensional critical and tricritical Potts models
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We investigate geometric properties of the generatate Potts model in two dimensions, and define
geometric clusters as sets of lattice sites in the same Potts state, connected by nearest-neighbor bonds with
variable probabilityp. We find that, besides the random-cluster fixed point, both the critical and the tricritical
Potts models have another fixed point in fhdirection. For the critical model, the random-cluster fixed point
p, is unstable and the other poipf=p, is stable; whilep, is stable ancpy=<p, is unstable at tricriticality.
Moreover, we show that the fixed poip} of a critical and tricriticalg-state Potts models can be regarded to
correspond top, of a tricritical and criticalq’-state Potts models, respectively. In terms of the coupling
constant of the Coulomb gap these two models are related @g' = 16. By means of Monte Carlo simula-
tions, we obtainpy=0.6227(2) and 0.6395(2) for the tricritical Blume-Capel and ¢j+e3 Potts model,
respectively, and confirm the predicted values of the magnetic and bond-dilution exponentg near
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[. INTRODUCTION within the predictions of the conformal field thedi§,9]. In
terms of the coupling constant of the Coulomb gaX,(g)
The geometric description of fluctuations near a criticalis expressed as
point has been the subject of a long history, which goes back
to the formulation of phase transitions in terms of the droplet (9—2)(6—09)
model[1]. For the generai-state Potts modéR,3], the criti- Xn(9)= 8y (3
cal singularities can be represented in terms of Kasteleyn-
Fortuin (KF) clusters[4,5]. For clarity, we start from the

Hamiltonian of theg-state Potts model on the square Iattice:Whereg s related tog asq=2+ 2 cosgm/2) with 2<g=4

for the critical branch of the Potts modd, 7].
Apart from KF clusters, so-called Potts clustgi®—13
HIkeT=—-K>, 8, , (0=1,2,...0), (1)  have received considerable attentions, which are defined as
(T sets of NN sites in the same Potts state. Thus, bonds are
alwayspresent between any pair of NN sites as long as they
where the sum is over all nearest-neightlN) sites andK  are occupied by the same Potts variable. For critical Potts
is the coupling strength. This model can be exactly mappediodel (1), the exponents for the Potts clusters are generally
onto a random-cluster modg#]. Between each pair of different from those for the KF clusters. A well-known ex-
NN sites, a bond is placed with the probabilify=1 ample is the Ising modelg=2). The exponent for the Ising
—exp(—K), so that the whole lattice is decomposed into con-clusters, i.e., theq=2 Potts clusters, isX{”=5/96,
nected clusters, i.e., the aforementioned KF clusters. The stf10,11,13 equal to the magnetic exponent of the tricritical
tistical weight of each bond-variable configuration is ex-q=1 Potts model. Here, the supersciipt refers to the Potts
pressed by the partition sum of the random-cluster model aslusters. For the bond percolation modgi=(1), all lattice
sites belong to the same Potts cluster, and %{#&q=1)
=0. Apparently,X{P)(q) # Xx(q) in these cases. Within the
predictions of the conformal field theory, Vanderzandg]
interpretedX{P=7/80 and 1/8 for the criticab=3- and

The sum is over all bond-variable configurations, agcand ~ 4-state Potts models, respectively. However, for the general
n. are the total numbers of bonds and KF clusters, respedioninteger 8sq=<4 Potts model, exact value P has not
tively. been reported yet, as far as we know. This is one purpose of
The partition sun{2) defines the general Potts model with the present paper.
nonintegerq=0, which has a continuous and a first-order ~ The tricritical Potts mode]3] can be obtained by includ-
phase transition for €q=<4 and for 4<q, respectively. ing vacancies in the “pure” Potts mod¢l). The question
Near the critical poinK(q), the distribution of KF clusters then arises, what critical exponents describe Potts clusters of
reflects critical singularities of the Potts mod@). For in-  the general tricriticab-state Potts model. From Refsl0-
stance, the scaling properties of the average size of critical3], it is known that, for the critical Potts model, the expo-
KF clusters are determined by the magnetic expoXg(d). nent Xﬁp) approaches the magnetic exponefi as q in-
Exact values ofX;(q) have already been obtained by the creases. Particularl){” =X, for g=4. Since the tricritical
theory of the Coulomb ga$6,7], and are also included branch of the Potts model is an extension of the critical Potts

Z(q;K)=% o (p=ef-1). 2
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model [3], we simply assume that, for the tricritical Potts K ; K ge- Dore.
model, the Potts clusters and the KF clusters are described b re & Yo 1
the same critical exponents. This will be confirmed numeri- \‘ s \ Ke 0
cally later. Ke s /yg

Moreover, for both the critical and the tricritical Potts
models, we investigate a general type of “geometric” clus-
ters, which are defined analogously as the aforementionel P :
KF clusters, but the bond probability can have a variable — ‘ ‘ i
value Osp=1. Thus, KF and Potts clusters are just the spe- 0 1P 0
cial cases of geometric clusters wiph= 1—exp(—K) and 1, (a) (b)
respectively. For the critical Potts model, it is generally be-
lieved that, in terms of geometric clusters, the percolation FIG. 1. RG flows of Potts models in the parameter sp#ce).
thresholdp, coincides with the critical point of the corre- (@ and (b) apply to the critical and the tricritical Potts models,
sponding Potts model or random-cluster modg} i.e., pq respectively. The dashed_llnes represent the random-cluster model
=p,=1—exp(—Ky). In the contrast, at tricritical point§,., ~ P=1—€xp(-K). The points *rc.” and “g.c.” represent the
we show that the percolation threshaigl does not coincide random- and the geometric-cluster fixed poipsand py, respec-
with p,=1—exp(—Ky), but 0<py<p,. Furthermore, criti- tively. Arrows show the direction of the RG flows.
cal exponents negy, are different from those nea; . On
the basis of the theory of the Coulomb gas, we predict value
of critical exponents neap, for the tricritical g-state Potts
model.

To confirm these predictions, we perform Monte Carlo
simulations for the tricritical Blume-Capé¢ll4,15 and the
g=3 Potts mode[3]. Numerical data clearly demonstrate

the existence opy for the tricritical Potts model, and con- Near the random-cluster fixed poipt, exact values of

firm the predicted critical exponents. S
The organization of the present paper is as follows. Ing:feggndt;gggtggtgggéh; tcg:g:é ﬁg&%%%sig?m;:ﬁe on
Sec. Il, we outline a general theory and do several predic; Y y X ’

tions for the critical and the tricritical branches of the Pottst.he g?lsllslcg ;%eﬂ:hf?k:y of tr|1_e C(;)_ulomb_ gas,_ltzflas be%n de-
model. Section Il presents our Monte Carlo investigation rive R at the scaling dimensiong,=2-yp an

which confirms the predictions in Sec. Il. Then, a short dis—xt:z_yt satisty

—_
=

fixed point in the spacep(K), which is unstable both in the
Bond—probability directionp and along the dashed ling

=K. The scaling properties in these two directions are de-
scribed by the bond-dilution and the thermal scaling field,
respectively. We shall denote their associated exponents as
Yp andy,, respectively, wherg, is also referred to be the
red-bond exponertl7].

cussion is given in Sec. IV. 1
Xp(g)=@(39—4)(g+4) )
Il. GENERAL ANALYSIS
We start from the critical Potts model, described by Eq.and
(1). For this model, the statistical properties of geometric 6—g
clusters can be obtained from a “mixed” Potts mo{&/16] Xi(g)= T (6)

with the Hamiltonian

respectively, wherg is the coupling constant of the Cou-
HikgT = -3 (8. .—1)8, (r-_KZ 8y o (4 lomb gas, as mentioned before. Furthermore, for integers 0
an v an <gs4, X,(q) andX;(q) are also included in the predictions
of the conformal field theory. For clarity, we start from the
The second term is just the aforementioned ustate Potts  Kac formula describing scalar observabj8s9]
Hamiltonian(1); the first term contains auxiliary Potts vari- _ _
ablesr=1,2,...s, and controls the distribution of bond X _[im=j(m+1)]°-1
variables. One can express the partition sum of @g.in ()= 2m(m+1)
bond variables, and differentiate the resulting free energy
with respect to the parameter Taking the limits—1, one  Where the positive integen s related to the conformal anal-
obtains the distribution of geometric clusters with bond prob-0gy ¢ asc=1—-6/m(m+1). For the critical branch of the
ability p=1—exp(=J). Particularly, if one choosed=K, Potts model, one hagq=2 co§w/(m+1)]. It is known that
Hamiltonian (4) assumes a simple form and describes theXy(q) and X;(q) can be identified a¥; ; with coordinates

m=1), (7)

random-cluster mod€R). (i=0,j=2) and (=2,j=1), respectively. We also mention
For this mixed Potts mode#), the renormalization-group that the aforementioned magnetic expon&p{q) can be
(RG) flow is sketched in Fig. () in the parameter space interpreted as; ; with i =j=(m+1)/2.

(p,K) with p=1—exp(J). The dashed line represents the For the critical Potts model g=<4), Eq. (5 yields
random-cluster model witll=K. At the critical pointK Xp(Q) =<2, which indicates that the bond-dilution field is rel-
=K., in terms of geometric clusters, the percolation threshevant at the random-cluster fixed popt, as shown in Fig.
old is justp, = 1—exp(—K_). Thus,p, can be considered as a 1(a). Thus, geometric clusters @i, i.e., KF clusters, and
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TABLE I. The bond-dilution and the magnetic exponeKisand X, for the two-dimensional Potts model. The superscriptsand (g)
represent the random- and the geometric-cluster fixed pgip@ndp,, respectively. The coupling constant of the Coulomb gas is denoted
asg, and the positive integen is related to the conformal anomatyasc=1-6/m(m+1).

Random-cluster fixed point Geometric-cluster fixed point
q® g® m® N X" NS (9 m©@ 9@ q©@

Crit 0 2 1 3/4 0 15/4 —3/16 1 8 Tri
ical 1 8/3 2 5/4 5/48 35/12 0 2 6 0 crit

2 3 3 35/24 1/8 21/8 5/96 3 16/3 1 ical

3 10/3 5 33/20 2/15 143/60 7180 5 24/5 +2 cos(27/5)

4 4 e 2 1/8 2 1/8 ® 4 4
Tri 3 14/3 6 65/28 2/21 143/84 15/112 6 24/7 42 cos(2#7) Crit
crit 2 5 4 99/40 3/40 63/40 21/160 4 16/5 +2 cos(27/5) ical
ical 1 16/3 3 21/8 5/96 35/24 1/8 3 3 2

0 6 2 35/12 0 5/4 5/48 2 8/3 1

those with the bond-probabilitp+# p, are described by dif- bond probabilityp. For the critical branch of the Potts model,
ferent exponents. F<p,, we expect that the behavior of the random-cluster fixed poinp, is unstable and the
geometric clusters is dominated by the triviad=0 fixed geometric-cluster fixed poinp,>p, is stable. In the con-
point; while geometric clusters with>p,, including Potts trast, for the tricritical Potts modep, is stable angy<p;, is
clusters, are described by a stable fixed ppy® p,, shown unstable. Thej=4 Potts model is a marginal case, and these
in Fig. 1(a). For later convenience, we shall refer to the pointtwo fixed pointsp, andp, merge together. In the parameter
pg as the geometric-cluster fixed point. For the case of thepace p,q), we illustrate the RG flows in Fig. 2.

Ising model on the square lattice, it has been folig] that The question arises what values the critical exponents
pg~1.08, in an unphysical region. take near the geometric-cluster fixed pgpgtfor the general

The above discussions apply to the critical branch of thecritical and tricritical Potts model. For the Ising modej (
Potts model. For the tricritical Potts model, it is already=2), it is already knowr[10-13 that the fixed pointp,
known[6,7] that the magnetic and thermal exponeXtgq) corresponds t@, of the tricriticalg=1 Potts model. In other
andX;(q) are still given by Egs(3) and(6), respectively, but
with the coupling constant in the ranges4<6. Accord-
ingly, for integers Gsq=4, X,(g) and X,(g) can be inter- P Q
preted asX;, and Xy m2 in the Kac formula(7), respec- :
tively. On this basis, for the tricritical Potts model, we simply
assumethat the bond-dilution exponeit,(q) is still given 1
by Eq.(5) with 4<g=<®6, and thus corresponds Xg o in the
Kac formula(7).

To distinguish the critical and the tricritical branches of
the Potts model, later we shall express critical exponents as a
function of g only. Table | lists values of, X,(g), and
Xn(g) for the Potts model with integer6g=4. [

As mentioned earlier, for the critical Potts model, the Y
point p, is a fixed point in the parameter spagek). Here, Y '
we assumethat this statement still holds for the tricritical
Potts model (4g=<6). Equation(5) yields X,(g)>2, so
that the bond-dilution scaling field is irrelevant near the
random-cluster fixed point, . On the other hand, it is obvi- 0 1 2 3 4 3 2 1 0
ous that the triviap=0 fixed point is stable. On this basis, L Critical Tricritical —
we expect that, in the direction, an unstable fixed poipt, ‘ ‘ o
occurs in the rangeQp=p, for the tricritical Potts model.

We shall also refer to this unstable popy as the geometric- 2 % 3 150 4 Lo 5 16 6
cluster fixed point. As far as we know, the existencepgf 3
has not yet been reported. The expected RG flow is shown in g, 2. RG flows in the planeyp) for the generaty-state Potts

Fig. 1(b), which will be confirmed numerically later. model in two dimensions. The thick and thin solid lines represent

In conclusion, according to the predicted values of thethe random- and the geometric-cluster fixed pojmtsand Py, re-
bond-dilution exponenk, [11,13,17, we predict that both  spectively. Those pairs of points in the same symbol have the same
the critical and the tricritical Potts models have a pair ofconformal anomaly. Arrows show the direction of the RG flows.
fixed pointsp, andpg on the critical line parametrized by the Theg=4 Potts model is a marginal case.

~e
e el
o
&

N -
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words, p, of the tricritical g=1 Potts model corresponds to available. Thus, during the simulations, we fixed the total
p, of the Ising model. On this basis, we assume the follow-number of vacancies in order to avoid the critical slowing
ings for the general Potts model with<j<4. down due to fluctuations in the number of vacancies. This
Assumption 1the geometric-cluster fixed poimty of a ~ was realized by a recently developed geometric cluster algo-
critical (tricritical) g-state Potts model corresponds to therithm [21,22, which moves groups of vacancies and Ising
random-cluster fixed poirg, of a tricritical (critical) q’-state  spins on the lattice in accordance with the Boltzmann distri-
Potts model. bution. A detailed account of the geometric cluster method
Assumption 2the critical g- and tricritical g’ -state Potts can be found in Ref§21,22.
models have the same conformal anomaly and thus the num- The Monte Carlo simulations were performed at the tric-
berm. ritical point. For finite systems, however, the total number of
For the critical and the tricritical branches of the Pottsvacancied/ at tricriticality is generally not an integer, so that
model, as is well known, the coupling constant of the Cou-the actual simulations took place\at =[V,.]=[pL?] and
lomb gasg is related tom as g=4m/(m+1) and g’ V., =[V,.]+1, where square brackdtgy denote the integer
=4(m’+1)/m’, respectively. Therefore, the aforemen- part of the number in it. For a sampled quanttyits value
tioned two models are related lgyg' = 16. A;; at the tricritical point is approximated as
With these assumptions, critical exponents can be easily
obtained for the fixed poirnp,. As an example, we consider :A+(Vtc_vf)+A*(V+_Vtc)
the magnetic exponent(? for a model with the coupling tc V=V ’
constanty. As mentioned earlietX,, is given by Eq.(3), so
that, after the substitutiog=16/g’, X{%(g) follows as

_(879)(39-8) @® 5Am=v+_;v_¢[aA+<vm—V>]2+[aA<v+—vm>]2.
4 (1)

The same procedure applies to other critical exponents, and gjnce we are interested in geometric properties of the
the resulting values are consistent with the existing predicg|yme-Capel model, the aforementioned geometric clusters
tions for the critical Potts model with=1, 2, 3, and 4. FOr  paye to be constructed with bond probabilite<1 during
clarity, we list values ofX{® andX{? in Table I for integer  the sampling procedure. This was realized by a Swendsen-
O0=g=4. Wang-like algorithn[23]. For a bond- and vacancy-variable
configurations, we denote the total number of geometric

[ll. MONTE CARLO INVESTIGATION clusters for adN., and the size of théth cluster ass;. The

following quantities were sampled:

(10

and the statistical error margin &, is taken as

X{9(g)

To confirm the predictions in Sec. I, we perform Monte

Carlo simulations for the tricritical Blume-Capel ang=3 1/ Ne 1 [ Ne
Potts models. 52:_< D s-2>, S4z—< D s-4>,
L . . 2 - ! 4 - 1
Tricritical Blume-Capel modelThe Ising model with va- L ! L :

cancies, also called the Blume-Capel mofikt,15, is de-

fined on the square lattice, with the Hamiltonian and

r=(S2)%/(Ss). (12

It can be easily shown that, at the random-cluster fixed point
p,, the quantityS; is just the magnetic susceptibility, and the
The vacancies are denoted @s-0, andD is the chemical dimensionless ratio asplays a role as the universal Binder
potential of the Ising spingr=*1. We mention that, in cumulant[24] in the Potts model.

this case, the bond probability for KF clusters jis=1 Periodic boundary conditions were applied, and near
—exp(—2K). the random-cluster fixed point p,=1—exp(—2K)

For D— —, the vacancies are excluded, and the modek-0.96 260 999, the system sizes were taken in the range 8
reduces to Onsager’s spinmodel [18]. The critical cou- <L <120. Figure 3 shows parts of the Monte Carlo data of
pling constant, is an increasing function of the chemical the dimensionless ratig in which the slope of decreases as
potentialD, and the critical lineK (D) terminates at a tric- the system sizé. increases. This indicates that the bond-
ritical point. By means of a sparse transfer matrix techniquedilution exponenty, is a negative number, and thus the
we have determined the tricritical pointl9] as K,  random-cluster fixed poinp, is stable, as expected. More-
=1.6431759(1), D;=3.2301797(2), and p,.  over, according to the least-square criterion, we fitted the
=0.4549506(2) for the vacancy density. The precision im<following equation to the data of
proves significantly over that of the existing resul], -
K=1.641),D\c=3.222), and isconsidered to be suffi- =ToTri(P—P)LIP+ro(p—pe) LVp+-- - +rg(p

H/kBT=—K<E oioj+DX of (0=0,x1). (9)
i,j) k

cient for our present investigation. —D)BLp+ b LY+ boL Y24 b, LY3+Cr(D—D.)LY1HYp
For this model(9), however, no cluster Monte Carlo Pe) ! 2 2 1(P=Po)
method to flip between vacancies and Ising spins is generally ~ +n;(p—p.)2LY>. (13
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FIG. 3. The dimensionless rationear the random-cluster fixed FIG. 4. The dimensionless ratio near the geometric-cluster
point p, for the tricritical Blume-Capel model. The data points fixed pointp, for the tricritical Blume-Capel model. The data points
X, O, O, and A representL=8, 12, 16, 24, and 32, respec- +, X, d, O, A, and<¢ represent. =8, 12, 16, 20, 24, and 28,

tively. respectively.

Here, the amplitudes , b;, ¢;, andn; are unknown param- 52:szx(g)[sﬁsl(p_pC)Lyp+52(p_pc)2L2yp+ .
eters, and the term with; accounts for the fact that the

bond-dilution scaling field is a nonlinear function op ( +85(p—Pe) L®p+ b, LY14+b,LY2+ b,LY3+ ¢y (p

—pc). The terms withb; describe finite-size corrections, and
the associated exponents were simply taken as integer num-
bers asy,=—1, y,=—2, andys=—3. Furthermore, we

fixed p. at the random-cluster fixed pointp,  again, the exponents for finite-size corrections were simply
~0.96260999. After a cutoff for small system sizes i5ren asy;=—1, y,=—2, andys=—3. After a cutoff for

=10, we obtainy,=—0.482), in agreement with the pre- g5 systemd <12, we obtainp,=0.62 265(10) anc(®

dictiony,=—19/40(Table ). =0.1311(5)~21/160=0.13125.

According to Fig. 1b), for tricritical systems, Potts and For the general Blume-Capel model described by (B.
KF clusters are described by the same critical exponent, i'ethe RG flows should, in principle, be shown in the three-

X{P'=X, . Thus, we fitted the following equation to the data parameter spacep(K,D). For simplicity, we only consider
of S, for Potts clusters: its projection onto the planep(K), which is schematically
shown in Fig. 5. AreaK <K, andK>K,. represent a criti-
cal sheet and a region for first-order phase transitions, re-
spectively. For K—o, the percolation problem of this
Blume-Capel model reduces to the bond-percolation model
d_[3,25], which has a percolation threshold ps=1/2 on the
square lattice. FOK<K,., the whole area above the solid
line, p=1—exp(—2K), at within the percolation thresholds,
and critical properties are governed by the fixed point “P1,”
in the universality class of the tricriticaj]=1 Potts model.
Besides this, there are four other fixed points “I,” “Tl,”
®GT,” and “BP,” which represent the Ising, the tricritical
Blume-Capel,pq of the tricritical Blume-Capel, and the
bond-percolation model, respectively. Arrows show the di-
rection of the RG flows.

—pe) Y1 +ny(p—pe)ZLYP]. (15)

S,=L " %n(ay+a L1+ a,LY2+aglYs). (14

Here, the leading finite-size effect arises from the bon
dilution field, so that we sey,;=y,=2—X,=—19/40, y,
=2y,=—19/20, andy;= —2. After a cutoff for small sys-
tem sizesL<10, the fit yields X;,=0.07415), in good
agreement With(ﬂ)(g=5)=3/40 in Table 1.

As discussed in Sec. Il, we expect that an unstabl
geometric-cluster fixed point occurs in the range @, <p,
for the tricritical Blume-Capel model. This is clearly shown
by Fig. 4, indicatingp,~0.62. Thus, we performed exten-
s!ve simulations in the range 0.€b$9.65, and the system The tricritical g=3 Potts modellt has been knowi3]
sizes were taken as<8L<160. We fitted Eq(13) to the ¢ py including vacancies in the pure Potts mad| the
Monte Carlo data of. After a cutoff for small system sizes yiciical Potts model can be obtained. The Hamiltonian of

L<12, we obtairp.=0.6227(1) and/,=0.42546), where  he yricritical g=3 Potts model on the square lattice reads
the statistical error bars are two standard deviations in the fit.

The value ofy, is in good agreement with the expected value
Yp=2—X,=17/40(Table ).

At the geometric-cluster fixed pointy, Table | predicts HIkgT= —KOE_> O o (1— 50'i,0)_D2k 6,0
X(9(g=5)=21/160. Thus, we fitted the following equation !
to the data ofS, nearpg: (0=0,1,2,3. (16)
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0.44 K1 AN o K FIG. 6. The dimensionless ratiQ near the geometric-cluster
| Tricritical fixed pointpy for the tricritical g=3 Potts model. The data points

+, X, O, O, A, and & represent.=12, 16, 24, 32, 40, and
48, respectively.

‘ ~— Critical sheet

FIG. 5. RG flows diagram of the Blume-Capel model in the
plane K,P). The areaK <K, and K>K,. represent a critical . . . .
sheet and the region for first-order phase transitions, respectivelpc@ling field is marginaly,=0 [6,7], but also the bond-
The model reduces to the bond-percolation modekfess, which ~ dilution exponent/,=0. We investigate a dilutg=4 Potts
has a percolation threshold “BP” gi=1/2. There are in total five Model Eq.(16) at a point where the second-leading thermal
fixed points “I,” “P1,” “TI,” “GT,” and “BP,” representing the field vanishes. By means of the transfer matrix technique, we
Ising, the tricritical q=1 Potts, the tricritical Blume-Capel, the have determined this poirtl9] as K.=1.4579@1), D,
geometric-cluster fixed point of the tricritical Blume-Capel, and the =2.478 4382), andp.=0.21207(2) for the vacancy den-
bond-percolation models, respectively. Arrows show the directiorsity. Analogously, the Monte Carlo simulations use a fixed-
of the RG flows. vacancy-density ensemble. Periodic boundary conditions

were applied, and the system sizes were taken in the range
By means of a sparse transfer matrix technique, we havg<| <280. At the random-cluster fixed poipt, we find
determined the tricritical pointgl9] asK.=1.6499285),  that Eq.(14) is sufficient to describe the data &, and
D=3.152173(10), angh,.=0.34572(5) for the vacancy finite-size corrections decay very rapidly with the leading
density. exponenty; = —2.3(2). Furthermore, the fit yields that the

Analogously, during the Monte Carlo simulations, we magnetic exponenX;,=0.12483), in good agreement with
fixed the total number of vacancies, and thus used a combix, = 1/8. This indicates that, as expected, logarithmic correc-
nation of the Wolff[26] and the geometric clust¢1,22  tions due to the marginal second-leading thermal field are
steps. The system sizes were taken &4.8<160, and peri-  absent for the dilutg=4 Potts model at this point. For Potts
odic boundary conditions were applied. The sampled quanticjusters p=1), we find that the data db, cannot be de-
ties include S,, S;, and a dimensionless rati@Q  scribed by Eq(14) anymore. Instead, we used the following
=(S,)?/(3S5—2S,). Compared to the aforementioned ratio equation during the numerical fit:

r, the quantityQ is more in line with the well-known Bin-

der ratio[24]. Near the random-cluster fixed poipt=1 0.22 . . . - .
—exp(—K;)=~0.808, the Monte Carlo data &) also reveal

that the bond-dilution scaling field is irrelevant. 0.2

Figure 6 shows parts of the Monte Carlo dataQin the 0.18
rangep<p,, and indicates the geometric-cluster fixed point
pg~0.64. According to the least-square criterion, we fitted ~_~ 0.16
Eqg. (13) to the data ofQ in the range 0.6&2 p<0.66. The v

value ofy, is fixed at 2- 2X,=25/84 (Table ), we obtain 0.14
pg=0.639%2), with two standard deviations for the error 0.12
bar.
We illustrate the data fo8, at p,=0.6395(2) in Fig. 7 0.1
versusL=L 1566 The approximate linearity indicates that 0.08 , , , , ,
Xﬁg)=l5/112, as predicted in Table I. Moreover, we fitted ) 0.3 0.35 04 0.45 05 0.55
Eq. (15) to the data ofS,. After a cutoff for small system -15/66
sizesL <12, we obtainX{9=0.13376), in good agreement L
with Xﬁg)z 15/112. FIG. 7. The quantitys, at the geometric-cluster fixed poipt,

The dilute g=4 Potts modelThe q=4 Potts model is a for the tricriticalq=3 Potts model vé ~2XY = | 15166 The system
marginal case, not only because the second-leading thermgikes are in the range $1. <160.
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TABLE II. The hull-cluster scaling dimension§, for the critical and the tricritical Potts model in two dimensions. The supersdripts
and(g) represent the random- and the geometric-cluster fixed poirand py, respectively.

Critical Potts model Tricritical Potts model
q 0 1 2 3 4 3 2 1 0
XM 0 1/4 1/3 2/5 1/2 a7 3/5 5/8 2/3
X9 3/4 2/3 5/8 7112 1/2 5/12 3/8 1/3 1/4

S,=L Zn(ap+a,/InL+a,/In? L+azL"2). (17 with g being the coupling constant. By assuming that this
formula applies to the tricritical branch of the Potts model,
This reflects that, for thg=4 Potts model, the bond-dilution and according to the relatiogg’ =16 between the fixed
scaling field is indeed marginal. pointsp, andpg, we obtain near the geometric-cluster fixed
point pg
IV. DISCUSSION

(9 —(g_—
We have determined geometric properties of the general Xiy’=(8—9)/8. (19

critical and tricritical Potts models in two dimensions. Apart

from the random-cluster fixed poipt , we find a geometric-  The values oK}’ andX{? for integers G=q=<4 are listed in
cluster fixed pointp,. Moreover, on the basis of the theory Table L.

of the Coulomb gas, we predict critical exponents nggr From Table I, the geometric-fixed poipt, of the bond-
which include the magnetic, the thermal, and the bondpercolation model corresponds pp of the tricritical =0

dilution exponents, shown in Table I. We have performedPotts model.
extensive Monte Carlo simulations, and confirmed some pre-

dictions. As another example, we consider the fractal dimen-

sion of the hull or external perimeter of a cluster, which ACKNOWLEDGMENTS
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