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Geometric properties of two-dimensional critical and tricritical Potts models
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We investigate geometric properties of the generalq-state Potts model in two dimensions, and define
geometric clusters as sets of lattice sites in the same Potts state, connected by nearest-neighbor bonds with
variable probabilityp. We find that, besides the random-cluster fixed point, both the critical and the tricritical
Potts models have another fixed point in thep direction. For the critical model, the random-cluster fixed point
pr is unstable and the other pointpg>pr is stable; whilepr is stable andpg<pr is unstable at tricriticality.
Moreover, we show that the fixed pointpg of a critical and tricriticalq-state Potts models can be regarded to
correspond topr of a tricritical and criticalq8-state Potts models, respectively. In terms of the coupling
constant of the Coulomb gasg, these two models are related asgg8516. By means of Monte Carlo simula-
tions, we obtainpg50.6227(2) and 0.6395(2) for the tricritical Blume-Capel and theq53 Potts model,
respectively, and confirm the predicted values of the magnetic and bond-dilution exponents nearpg .
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I. INTRODUCTION

The geometric description of fluctuations near a criti
point has been the subject of a long history, which goes b
to the formulation of phase transitions in terms of the drop
model@1#. For the generalq-state Potts model@2,3#, the criti-
cal singularities can be represented in terms of Kastele
Fortuin ~KF! clusters@4,5#. For clarity, we start from the
Hamiltonian of theq-state Potts model on the square lattic

H/kBT52K(
^ i , j &

ds i ,s j
~s51,2, . . . ,q!, ~1!

where the sum is over all nearest-neighbor~NN! sites andK
is the coupling strength. This model can be exactly map
onto a random-cluster model@4#. Between each pair o
NN sites, a bond is placed with the probabilityp51
2exp(2K), so that the whole lattice is decomposed into co
nected clusters, i.e., the aforementioned KF clusters. The
tistical weight of each bond-variable configuration is e
pressed by the partition sum of the random-cluster mode

Z~q;K !5(
b

vnbqnc ~v5eK21!. ~2!

The sum is over all bond-variable configurations, andnb and
nc are the total numbers of bonds and KF clusters, resp
tively.

The partition sum~2! defines the general Potts model wi
nonintegerq>0, which has a continuous and a first-ord
phase transition for 0<q<4 and for 4,q, respectively.
Near the critical pointKc(q), the distribution of KF clusters
reflects critical singularities of the Potts model~1!. For in-
stance, the scaling properties of the average size of cri
KF clusters are determined by the magnetic exponentXh(q).
Exact values ofXh(q) have already been obtained by th
theory of the Coulomb gas@6,7#, and are also included
1063-651X/2004/69~2!/026123~7!/$22.50 69 0261
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within the predictions of the conformal field theory@8,9#. In
terms of the coupling constant of the Coulomb gasg, Xh(g)
is expressed as

Xh~g!5
~g22!~62g!

8g
, ~3!

whereg is related toq asq5212 cos(gp/2) with 2<g<4
for the critical branch of the Potts model@6,7#.

Apart from KF clusters, so-called Potts clusters@10–13#
have received considerable attentions, which are define
sets of NN sites in the same Potts state. Thus, bonds
alwayspresent between any pair of NN sites as long as t
are occupied by the same Potts variable. For critical P
model ~1!, the exponents for the Potts clusters are gener
different from those for the KF clusters. A well-known ex
ample is the Ising model (q52). The exponent for the Ising
clusters, i.e., theq52 Potts clusters, isXh

(p)55/96,
@10,11,13# equal to the magnetic exponent of the tricritic
q51 Potts model. Here, the superscript~p! refers to the Potts
clusters. For the bond percolation model (q51), all lattice
sites belong to the same Potts cluster, and thusXh

(p)(q51)
50. Apparently,Xh

(p)(q)ÞXh(q) in these cases. Within the
predictions of the conformal field theory, Vanderzande@12#
interpretedXh

(p)57/80 and 1/8 for the criticalq53- and
4-state Potts models, respectively. However, for the gen
noninteger 0<q<4 Potts model, exact value ofXh

(p) has not
been reported yet, as far as we know. This is one purpos
the present paper.

The tricritical Potts model@3# can be obtained by includ
ing vacancies in the ‘‘pure’’ Potts model~1!. The question
then arises, what critical exponents describe Potts cluste
the general tricriticalq-state Potts model. From Refs.@10–
13#, it is known that, for the critical Potts model, the exp
nent Xh

(p) approaches the magnetic exponentXh as q in-
creases. Particularly,Xh

(p)5Xh for q54. Since the tricritical
branch of the Potts model is an extension of the critical P
©2004 The American Physical Society23-1
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model @3#, we simply assume that, for the tricritical Pot
model, the Potts clusters and the KF clusters are describe
the same critical exponents. This will be confirmed nume
cally later.

Moreover, for both the critical and the tricritical Pot
models, we investigate a general type of ‘‘geometric’’ clu
ters, which are defined analogously as the aforementio
KF clusters, but the bond probability can have a varia
value 0<p<1. Thus, KF and Potts clusters are just the s
cial cases of geometric clusters withp512exp(2K) and 1,
respectively. For the critical Potts model, it is generally b
lieved that, in terms of geometric clusters, the percolat
thresholdpg coincides with the critical point of the corre
sponding Potts model or random-cluster modelpr , i.e., pg
5pr512exp(2Kc). In the contrast, at tricritical pointsKtc ,
we show that the percolation thresholdpg does not coincide
with pr512exp(2Ktc), but 0,pg,pr . Furthermore, criti-
cal exponents nearpg are different from those nearpr . On
the basis of the theory of the Coulomb gas, we predict val
of critical exponents nearpg for the tricritical q-state Potts
model.

To confirm these predictions, we perform Monte Ca
simulations for the tricritical Blume-Capel@14,15# and the
q53 Potts model@3#. Numerical data clearly demonstra
the existence ofpg for the tricritical Potts model, and con
firm the predicted critical exponents.

The organization of the present paper is as follows.
Sec. II, we outline a general theory and do several pre
tions for the critical and the tricritical branches of the Po
model. Section III presents our Monte Carlo investigatio
which confirms the predictions in Sec. II. Then, a short d
cussion is given in Sec. IV.

II. GENERAL ANALYSIS

We start from the critical Potts model, described by E
~1!. For this model, the statistical properties of geome
clusters can be obtained from a ‘‘mixed’’ Potts model@5,16#
with the Hamiltonian

H/kBT52J(
^ i , j &

~dt i ,t j
21!ds i ,s j

2K(
^ i , j &

ds i ,s j
. ~4!

The second term is just the aforementioned pureq-state Potts
Hamiltonian~1!; the first term contains auxiliary Potts var
ables t51,2, . . . ,s, and controls the distribution of bon
variables. One can express the partition sum of Eq.~4! in
bond variables, and differentiate the resulting free ene
with respect to the parameters. Taking the limits→1, one
obtains the distribution of geometric clusters with bond pro
ability p512exp(2J). Particularly, if one choosesJ5K,
Hamiltonian ~4! assumes a simple form and describes
random-cluster model~2!.

For this mixed Potts model~4!, the renormalization-group
~RG! flow is sketched in Fig. 1~a! in the parameter spac
(p,K) with p512exp(2J). The dashed line represents th
random-cluster model withJ5K. At the critical point K
5Kc , in terms of geometric clusters, the percolation thre
old is justpr512exp(2Kc). Thus,pr can be considered as
02612
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fixed point in the space (p,K), which is unstable both in the
bond-probability directionp and along the dashed lineJ
5K. The scaling properties in these two directions are
scribed by the bond-dilution and the thermal scaling fie
respectively. We shall denote their associated exponent
yp and yt , respectively, whereyp is also referred to be the
red-bond exponent@17#.

Near the random-cluster fixed pointpr , exact values of
the bond-dilution and the thermal exponentsyp andyt have
already been obtained by various methods. For instance
the basis of the theory of the Coulomb gas, it has been
rived @11,13,17# that the scaling dimensionsXp522yp and
Xt522yt satisfy

Xp~g!5
1

8g
~3g24!~g14! ~5!

and

Xt~g!5
62g

g
, ~6!

respectively, whereg is the coupling constant of the Cou
lomb gas, as mentioned before. Furthermore, for integer
<q<4, Xp(q) andXt(q) are also included in the prediction
of the conformal field theory. For clarity, we start from th
Kac formula describing scalar observables@8,9#

Xi , j~q!5
@ im2 j ~m11!#221

2m~m11!
~m>1!, ~7!

where the positive integerm is related to the conformal ana
ogy c as c5126/m(m11). For the critical branch of the
Potts model, one hasAq52 cos@p/(m11)#. It is known that
Xp(q) and Xt(q) can be identified asXi , j with coordinates
( i 50,j 52) and (i 52,j 51), respectively. We also mentio
that the aforementioned magnetic exponentXh(q) can be
interpreted asXi , j with i 5 j 5(m11)/2.

For the critical Potts model (2<g<4), Eq. ~5! yields
Xp(q)<2, which indicates that the bond-dilution field is re
evant at the random-cluster fixed pointpr , as shown in Fig.
1~a!. Thus, geometric clusters atpr , i.e., KF clusters, and

FIG. 1. RG flows of Potts models in the parameter space (K,p).
~a! and ~b! apply to the critical and the tricritical Potts model
respectively. The dashed lines represent the random-cluster m
p512exp(2K). The points ‘‘r.c.’’ and ‘‘g.c.’’ represent the
random- and the geometric-cluster fixed pointspr andpg , respec-
tively. Arrows show the direction of the RG flows.
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TABLE I. The bond-dilution and the magnetic exponentsXp andXh for the two-dimensional Potts model. The superscripts~r! and ~g!
represent the random- and the geometric-cluster fixed points,pr andpg , respectively. The coupling constant of the Coulomb gas is den
asg, and the positive integerm is related to the conformal anomalyc asc5126/m(m11).

Random-cluster fixed point Geometric-cluster fixed point
q(r ) g(r ) m(r ) Xp

(r ) Xh
(r ) Xp

(g) Xh
(g) m(g) g(g) q(g)

Crit 0 2 1 3/4 0 15/4 23/16 1 8 Tri
ical 1 8/3 2 5/4 5/48 35/12 0 2 6 0 crit

2 3 3 35/24 1/8 21/8 5/96 3 16/3 1 ical
3 10/3 5 33/20 2/15 143/60 7/80 5 24/5 212 cos(2p/5)
4 4 ` 2 1/8 2 1/8 ` 4 4

Tri 3 14/3 6 65/28 2/21 143/84 15/112 6 24/7 212 cos(2p/7) Crit
crit 2 5 4 99/40 3/40 63/40 21/160 4 16/5 212 cos(2p/5) ical
ical 1 16/3 3 21/8 5/96 35/24 1/8 3 3 2

0 6 2 35/12 0 5/4 5/48 2 8/3 1
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those with the bond-probabilitypÞpr are described by dif-
ferent exponents. Forp,pr , we expect that the behavior o
geometric clusters is dominated by the trivialp50 fixed
point; while geometric clusters withp.pr , including Potts
clusters, are described by a stable fixed pointpg.pr , shown
in Fig. 1~a!. For later convenience, we shall refer to the po
pg as the geometric-cluster fixed point. For the case of
Ising model on the square lattice, it has been found@13# that
pg'1.08, in an unphysical region.

The above discussions apply to the critical branch of
Potts model. For the tricritical Potts model, it is alrea
known @6,7# that the magnetic and thermal exponentsXh(q)
andXt(q) are still given by Eqs.~3! and~6!, respectively, but
with the coupling constant in the range 4<g<6. Accord-
ingly, for integers 0<q<4, Xt(g) and Xh(g) can be inter-
preted asX1,2 and Xm/2,m/2 in the Kac formula~7!, respec-
tively. On this basis, for the tricritical Potts model, we simp
assumethat the bond-dilution exponentXp(q) is still given
by Eq.~5! with 4<g<6, and thus corresponds toX2,0 in the
Kac formula~7!.

To distinguish the critical and the tricritical branches
the Potts model, later we shall express critical exponents
function of g only. Table I lists values ofg, Xp(g), and
Xh(g) for the Potts model with integer 0<q<4.

As mentioned earlier, for the critical Potts model, t
point pr is a fixed point in the parameter space (p,K). Here,
we assumethat this statement still holds for the tricritica
Potts model (4,g<6). Equation~5! yields Xp(g).2, so
that the bond-dilution scaling field is irrelevant near t
random-cluster fixed pointpr . On the other hand, it is obvi
ous that the trivialp50 fixed point is stable. On this basi
we expect that, in thep direction, an unstable fixed pointpg
occurs in the range 0<p<pr for the tricritical Potts model.
We shall also refer to this unstable pointpg as the geometric-
cluster fixed point. As far as we know, the existence ofpg
has not yet been reported. The expected RG flow is show
Fig. 1~b!, which will be confirmed numerically later.

In conclusion, according to the predicted values of
bond-dilution exponentXp @11,13,17#, we predict that both
the critical and the tricritical Potts models have a pair
fixed pointspr andpg on the critical line parametrized by th
02612
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bond probabilityp. For the critical branch of the Potts mode
the random-cluster fixed pointpr is unstable and the
geometric-cluster fixed pointpg.pr is stable. In the con-
trast, for the tricritical Potts model,pr is stable andpg,pr is
unstable. Theq54 Potts model is a marginal case, and the
two fixed pointspr andpg merge together. In the paramet
space (p,q), we illustrate the RG flows in Fig. 2.

The question arises what values the critical expone
take near the geometric-cluster fixed pointpg for the general
critical and tricritical Potts model. For the Ising model (q
52), it is already known@10–13# that the fixed pointpg
corresponds topr of the tricriticalq51 Potts model. In other

FIG. 2. RG flows in the plane (q,p) for the generalq-state Potts
model in two dimensions. The thick and thin solid lines repres
the random- and the geometric-cluster fixed pointspr and pg , re-
spectively. Those pairs of points in the same symbol have the s
conformal anomaly. Arrows show the direction of the RG flow
The q54 Potts model is a marginal case.
3-3
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words,pg of the tricritical q51 Potts model corresponds t
pr of the Ising model. On this basis, we assume the follo
ings for the general Potts model with 0<q<4.

Assumption 1.the geometric-cluster fixed pointpg of a
critical ~tricritical! q-state Potts model corresponds to t
random-cluster fixed pointpr of a tricritical ~critical! q8-state
Potts model.

Assumption 2.the criticalq- and tricriticalq8-state Potts
models have the same conformal anomaly and thus the n
ber m.

For the critical and the tricritical branches of the Po
model, as is well known, the coupling constant of the Co
lomb gas g is related to m as g54m/(m11) and g8
54(m811)/m8, respectively. Therefore, the aforeme
tioned two models are related bygg8516.

With these assumptions, critical exponents can be ea
obtained for the fixed pointpg . As an example, we conside
the magnetic exponentXh

(g) for a model with the coupling
constantg. As mentioned earlier,Xh is given by Eq.~3!, so
that, after the substitutiong516/g8, Xh

(g)(g) follows as

Xh
(g)~g!5

~82g!~3g28!

32g
. ~8!

The same procedure applies to other critical exponents,
the resulting values are consistent with the existing pre
tions for the critical Potts model withq51, 2, 3, and 4. For
clarity, we list values ofXh

(g) andXp
(g) in Table I for integer

0<q<4.

III. MONTE CARLO INVESTIGATION

To confirm the predictions in Sec. II, we perform Mon
Carlo simulations for the tricritical Blume-Capel andq53
Potts models.

Tricritical Blume-Capel model. The Ising model with va-
cancies, also called the Blume-Capel model@14,15#, is de-
fined on the square lattice, with the Hamiltonian

H/kBT52K(
^ i , j &

s is j1D(
k

sk
2 ~s50,61!. ~9!

The vacancies are denoted ass50, andD is the chemical
potential of the Ising spinss561. We mention that, in
this case, the bond probability for KF clusters isp51
2exp(22K).

For D→2`, the vacancies are excluded, and the mo
reduces to Onsager’s spin-1

2 model @18#. The critical cou-
pling constantKc is an increasing function of the chemic
potentialD, and the critical lineKc(D) terminates at a tric-
ritical point. By means of a sparse transfer matrix techniq
we have determined the tricritical point@19# as Ktc
51.6 431 759(1), Dtc53.2 301 797(2), and r tc
50.4 549 506(2) for the vacancy density. The precision
proves significantly over that of the existing results@20#,
Ktc51.64(1),Dtc53.22(2), and isconsidered to be suffi
cient for our present investigation.

For this model ~9!, however, no cluster Monte Carl
method to flip between vacancies and Ising spins is gene
02612
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available. Thus, during the simulations, we fixed the to
number of vacancies in order to avoid the critical slowi
down due to fluctuations in the number of vacancies. T
was realized by a recently developed geometric cluster a
rithm @21,22#, which moves groups of vacancies and Isi
spins on the lattice in accordance with the Boltzmann dis
bution. A detailed account of the geometric cluster meth
can be found in Refs.@21,22#.

The Monte Carlo simulations were performed at the tr
ritical point. For finite systems, however, the total number
vacanciesV at tricriticality is generally not an integer, so tha
the actual simulations took place atV25@Vtc#5@r tcL

2# and
V15@Vtc#11, where square brackets@ # denote the integer
part of the number in it. For a sampled quantityA, its value
Atc at the tricritical point is approximated as

Atc5
A1~Vtc2V2!1A2~V12Vtc!

V12V2
, ~10!

and the statistical error margin ofAtc is taken as

dAtc5
1

V12V2

A@dA1~Vtc2V2!#21@dA2~V12Vtc!#
2.

~11!

Since we are interested in geometric properties of
Blume-Capel model, the aforementioned geometric clus
have to be constructed with bond probability 0<p<1 during
the sampling procedure. This was realized by a Swends
Wang-like algorithm@23#. For a bond- and vacancy-variab
configurations, we denote the total number of geome
clusters for asNc , and the size of thei th cluster assi . The
following quantities were sampled:

S25
1

L2 K (
i

Nc

si
2L , S45

1

L4 K (
i

Nc

si
4L ,

and

r 5^S2&
2/^S4&. ~12!

It can be easily shown that, at the random-cluster fixed po
pr , the quantityS2 is just the magnetic susceptibility, and th
dimensionless ratio asr plays a role as the universal Binde
cumulant@24# in the Potts model.

Periodic boundary conditions were applied, and n
the random-cluster fixed point pr512exp(22Ktc)
'0.96 260 999, the system sizes were taken in the rang
<L<120. Figure 3 shows parts of the Monte Carlo data
the dimensionless ratior, in which the slope ofr decreases as
the system sizeL increases. This indicates that the bon
dilution exponentyp is a negative number, and thus th
random-cluster fixed pointpr is stable, as expected. More
over, according to the least-square criterion, we fitted
following equation to the data ofr:

r 5r 01r 1~p2pc!L
yp1r 2~p2pc!

2L2yp1•••1r 6~p

2pc!
6L6yp1b1Ly11b2Ly21b2Ly31c1~p2pc!L

y11yp

1n1~p2pc!
2Lyp. ~13!
3-4
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Here, the amplitudesr i , bi , ci , andni are unknown param
eters, and the term withn1 accounts for the fact that th
bond-dilution scaling field is a nonlinear function of (p
2pc). The terms withbi describe finite-size corrections, an
the associated exponents were simply taken as integer n
bers asy1521, y2522, and y3523. Furthermore, we
fixed pc at the random-cluster fixed pointpr
'0.96 260 999. After a cutoff for small system sizesL
<10, we obtainyp520.48(2), in agreement with the pre
diction yp5219/40 ~Table I!.

According to Fig. 1~b!, for tricritical systems, Potts an
KF clusters are described by the same critical exponent,
Xh

(p)5Xh . Thus, we fitted the following equation to the da
of S2 for Potts clusters:

S25L22Xh~a01a1Ly11a2Ly21a3Ly3!. ~14!

Here, the leading finite-size effect arises from the bo
dilution field, so that we sety15yp522Xp5219/40, y2
52y15219/20, andy3522. After a cutoff for small sys-
tem sizesL<10, the fit yields Xh50.0747(5), in good
agreement withXh

(r )(g55)53/40 in Table I.
As discussed in Sec. II, we expect that an unsta

geometric-cluster fixed point occurs in the range 0,pg,pr
for the tricritical Blume-Capel model. This is clearly show
by Fig. 4, indicatingpg'0.62. Thus, we performed exten
sive simulations in the range 0.61<p<0.65, and the system
sizes were taken as 8<L<160. We fitted Eq.~13! to the
Monte Carlo data ofr. After a cutoff for small system size
L<12, we obtainpc50.6227(1) andyp50.4254(6), where
the statistical error bars are two standard deviations in the
The value ofyp is in good agreement with the expected val
yp522Xp517/40 ~Table I!.

At the geometric-cluster fixed pointpg , Table I predicts
Xh

(g)(g55)521/160. Thus, we fitted the following equatio
to the data ofS2 nearpg :

FIG. 3. The dimensionless ratior near the random-cluster fixe
point pr for the tricritical Blume-Capel model. The data points1,
3, h, s, and n representL58, 12, 16, 24, and 32, respec
tively.
02612
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S25L22X(g)
@s01s1~p2pc!L

yp1s2~p2pc!
2L2yp1•••

1s6~p2pc!
6L6yp1b1Ly11b2Ly21b2Ly31c1~p

2pc!L
y11yp1n1~p2pc!

2Lyp#. ~15!

Again, the exponents for finite-size corrections were sim
taken asy1521, y2522, andy3523. After a cutoff for
small systemsL<12, we obtainpc50.62 265(10) andXh

(g)

50.1311(5)'21/16050.13125.
For the general Blume-Capel model described by Eq.~9!,

the RG flows should, in principle, be shown in the thre
parameter space (p,K,D). For simplicity, we only consider
its projection onto the plane (p,K), which is schematically
shown in Fig. 5. AreasK,Ktc andK.Ktc represent a criti-
cal sheet and a region for first-order phase transitions,
spectively. For K→`, the percolation problem of this
Blume-Capel model reduces to the bond-percolation mo
@3,25#, which has a percolation threshold ispc51/2 on the
square lattice. ForK,Ktc , the whole area above the soli
line, p512exp(22K), at within the percolation thresholds
and critical properties are governed by the fixed point ‘‘P1
in the universality class of the tricriticalq51 Potts model.
Besides this, there are four other fixed points ‘‘I,’’ ‘‘TI,’
‘‘GT,’’ and ‘‘BP,’’ which represent the Ising, the tricritical
Blume-Capel,pg of the tricritical Blume-Capel, and the
bond-percolation model, respectively. Arrows show the
rection of the RG flows.

The tricritical q53 Potts model.It has been known@3#
that, by including vacancies in the pure Potts model~1!, the
tricritical Potts model can be obtained. The Hamiltonian
the tricritical q53 Potts model on the square lattice read

H/kBT52K(
^ i , j &

ds i ,s j
~12ds i ,0

!2D(
k

dsk,0

~s50,1,2,3!. ~16!

FIG. 4. The dimensionless ratior near the geometric-cluste
fixed pointpg for the tricritical Blume-Capel model. The data poin
1, 3, h, s, n, andL representL58, 12, 16, 20, 24, and 28
respectively.
3-5
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By means of a sparse transfer matrix technique, we h
determined the tricritical points@19# as Ktc51.649 923(5),
Dtc53.152 173(10), andr tc50.34 572(5) for the vacancy
density.

Analogously, during the Monte Carlo simulations, w
fixed the total number of vacancies, and thus used a com
nation of the Wolff @26# and the geometric cluster@21,22#
steps. The system sizes were taken as 8<L<160, and peri-
odic boundary conditions were applied. The sampled qua
ties include S2 , S4, and a dimensionless ratioQ
5^S2&

2/^3S2
222S4&. Compared to the aforementioned rat

r, the quantityQ is more in line with the well-known Bin-
der ratio @24#. Near the random-cluster fixed pointpr51
2exp(2Ktc)'0.808, the Monte Carlo data ofQ also reveal
that the bond-dilution scaling field is irrelevant.

Figure 6 shows parts of the Monte Carlo data ofQ in the
rangep,pr , and indicates the geometric-cluster fixed po
pg'0.64. According to the least-square criterion, we fitt
Eq. ~13! to the data ofQ in the range 0.62<p<0.66. The
value of yp is fixed at 222Xr525/84 ~Table I!, we obtain
pg50.6395(2), with two standard deviations for the erro
bar.

We illustrate the data forS2 at pg50.6395(2) in Fig. 7
versusL5L215/66. The approximate linearity indicates th
Xh

(g)515/112, as predicted in Table I. Moreover, we fitt
Eq. ~15! to the data ofS2. After a cutoff for small system
sizesL<12, we obtainXh

(g)50.1337(6), in good agreemen
with Xh

(g)515/112.
The dilute q54 Potts model. The q54 Potts model is a

marginal case, not only because the second-leading the

FIG. 5. RG flows diagram of the Blume-Capel model in t
plane (K,P). The areasK,Ktc and K.Ktc represent a critical
sheet and the region for first-order phase transitions, respecti
The model reduces to the bond-percolation model forK→`, which
has a percolation threshold ‘‘BP’’ atp51/2. There are in total five
fixed points ‘‘I,’’ ‘‘P1,’’ ‘‘TI,’’ ‘‘GT,’’ and ‘‘BP,’’ representing the
Ising, the tricritical q51 Potts, the tricritical Blume-Capel, th
geometric-cluster fixed point of the tricritical Blume-Capel, and t
bond-percolation models, respectively. Arrows show the direc
of the RG flows.
02612
ve

i-

ti-

t

al

scaling field is marginalyt250 @6,7#, but also the bond-
dilution exponentyp50. We investigate a diluteq54 Potts
model Eq.~16! at a point where the second-leading therm
field vanishes. By means of the transfer matrix technique,
have determined this point@19# as Kc51.45 790(1), Dc
52.478 438(2), andrc50.21 207(2) for the vacancy den
sity. Analogously, the Monte Carlo simulations use a fixe
vacancy-density ensemble. Periodic boundary conditi
were applied, and the system sizes were taken in the ra
8<L<280. At the random-cluster fixed pointpr , we find
that Eq. ~14! is sufficient to describe the data ofS2, and
finite-size corrections decay very rapidly with the leadi
exponenty1522.3(2). Furthermore, the fit yields that th
magnetic exponentXh50.1248(3), in good agreement with
Xh51/8. This indicates that, as expected, logarithmic corr
tions due to the marginal second-leading thermal field
absent for the diluteq54 Potts model at this point. For Pott
clusters (p51), we find that the data ofS2 cannot be de-
scribed by Eq.~14! anymore. Instead, we used the followin
equation during the numerical fit:

ly.

n

FIG. 6. The dimensionless ratioQ near the geometric-cluste
fixed pointpg for the tricritical q53 Potts model. The data point
1, 3, h, s, n, and L representL512, 16, 24, 32, 40, and
48, respectively.

FIG. 7. The quantityS2 at the geometric-cluster fixed pointpg

for the tricriticalq53 Potts model vsL22Xh
(g)

5L215/66. The system
sizes are in the range 12<L<160.
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TABLE II. The hull-cluster scaling dimensionsXH for the critical and the tricritical Potts model in two dimensions. The superscript~r!
and ~g! represent the random- and the geometric-cluster fixed point,pr andpg , respectively.

Critical Potts model Tricritical Potts model

q 0 1 2 3 4 3 2 1 0
XH

(r ) 0 1/4 1/3 2/5 1/2 4/7 3/5 5/8 2/3
XH

(g) 3/4 2/3 5/8 7/12 1/2 5/12 3/8 1/3 1/4
er
r

ry

nd
e
r

en
ch
r
ul
d

his
el,

d

.F.
rted

p-
S25L22Xh~a01a1 /ln L1a2 /ln2 L1a3L22!. ~17!

This reflects that, for theq54 Potts model, the bond-dilution
scaling field is indeed marginal.

IV. DISCUSSION

We have determined geometric properties of the gen
critical and tricritical Potts models in two dimensions. Apa
from the random-cluster fixed pointpr , we find a geometric-
cluster fixed pointpg . Moreover, on the basis of the theo
of the Coulomb gas, we predict critical exponents nearpg ,
which include the magnetic, the thermal, and the bo
dilution exponents, shown in Table I. We have perform
extensive Monte Carlo simulations, and confirmed some p
dictions. As another example, we consider the fractal dim
sion of the hull or external perimeter of a cluster, whi
consists of all the absent bonds surrounding the cluste
interest. For the critical Potts model, exact values of the h
cluster scaling dimensionXH

(r ) near the random-cluster fixe
point pr have already been given@17# as

XH
(r )5~g22!/g, ~18!
a

,

.

,

02612
al
t

-
d
e-
-

of
l-

with g being the coupling constant. By assuming that t
formula applies to the tricritical branch of the Potts mod
and according to the relationgg8516 between the fixed
pointspr andpg , we obtain near the geometric-cluster fixe
point pg

XH
(g)5~82g!/8. ~19!

The values ofXH
(r ) andXH

(g) for integers 0<q<4 are listed in
Table II.

From Table I, the geometric-fixed pointpg of the bond-
percolation model corresponds topr of the tricritical q50
Potts model.
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