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Variational procedure for time-dependent processes
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A simple variational Lagrangian is proposed for the time development of an arbitrary density matrix,
employing the “factorization” of the density. Only the “kinetic energy” appears in the Lagrangian. The
formalism applies to pure and mixed state cases, the Navier-Stokes equations of hydrodynamics, transport
theory, etc. It recaptures the least dissipation function condition of Rayleigh-Onsager and in practical applica-
tions is flexible. The variational proposal is tested on a two-level system interacting that is subject, in one
instance, to an interaction with a single oscillator and, in another, that evolves in a dissipative mode.
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I. INTRODUCTION zation procedure, with origins going back to Gitjl23. The
method covers a broad range of behavi¢deterministic”
Several basic aspects of stochastic dynamics remain coand stochastic, quantal and classical, electronic transport,
troversial.(A critical “state of art” update in Ref[1] shows discrete and continuous, Markovian and otheryised
this) This situation contrasts with most physical theories,places in a new perspective certain aspects in currently em-
where the problems that arise are in the application of conPloyed theories of stochastic dynamics. Apart from these fa-
sensually accepted principles. It can perhaps be argued th¥@rable (and a priori unexpectepl features, a number of
the lack of an agreed-upon variational formulation of sto-Problems remain, which will have to be resolved by future
chastic processes is at the root of the problem. As a remed§/To'ts- , .
of this situation, this paper suggests a variational functional A pure _state 5“9035(35 o_pposed to a density ma”'x that
which is to be minimized and whose minimum is the true 3" de_scrlbe a statistical mixture .Of statissthe SUbJ.eCt of a
density matrix. numerically worked out example in Sec. IV A and is equiva-

To be sure, in the past several principles of extrema havlent to the(lineay time-dependent Schenger equation. For

) . ) . 'this several variational formulations are known in the litera-
been proposed; these include Gauss's least constraint prif; o [26—31. The inter-relation between these was investi-

Sr?tlr?)[z,3]’rctgictl%is?eissffra:tzgéunsctgc[)gs[gj—(iem;s:gmlj?rgf gate_d in Ref[30], where they were shown to_be freq_uently
Py product - y ) *equivalent. For the pure state case our density matrix varia-
[9] for its violatior), minimal energy generation rafdOl,  {jonal method reduces to the McLachlan formalig2a], in

minimal scattering integrgll1-13, least velocity error dur-  hich the variation of the function is carried out with respect
ing pathway[3], the Yasue action for stochastic mechanicsy, the time derivative onlywhile the function is kept fixed

[14], a formulation involving a potential15], and again, \joreover, we give a justification of this procedure for sto-
recently, maximum entropy producti¢phé]. To these may be  .astic processes.

qdded several variational methods appllcable_to classical ppgther application of the variational formalism, in Sec.
(i.e., not quantalsystems, such as those appropriate for 9eMy B, includes a nonlinear, dissipativénon-Hermitian

eral nonlinear problem§gl7], the “governing principle for mechanism and exemplifies quantum jumps.
dissipative processe$18,19 and a generalized Hamiltonian

principle[20]. Reviews of these and of other methods can be
found in Refs[21-24]. Il. THE VARIATION
The present proposal for a variational procedure is based The
on the following new elementga) the factorization(to be
discussed later in this papesf the density matrix as intro-
duced by Rezni25] and utilized recently by Gheorghiu-
Svirschevski[16], (b) a conventional Lagrangian similar to .
that used in mechanics to obtain the motion of a point par- P=7Y («h
ticle subject to an external force, but in which the scalar
potential is either absent or ignorable) a vector potential The above condensed notation is not trivially simple, so we
that can be singular, without this having disastrous observagive in Appendix A a “tutorial” on the notation. We now
tional consequences, arid) an appropriate use of minimi- propose an actior8(T) (expressed in arbitrary unjtghis
being the integral over timewith an arbitrary time end point
T of a LagrangianZ. It is the form of the Lagrangian that
*Email address: englman@vms.huiji.ac.il we seek: we propose that it has the “quadratic” form, as
TEmail address: asya@yosh.ac.il follows:

factorized” form of the time-dependent density ma-
trix p [16,25 reads in terms of the column and row vecters
and (its Hermitian conjugatey’,
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T T and these make the action extrenf@ahd an absolute mini-
S(T):f dtﬁ(t)ZJ dtTr(iy"=A")-(=iy=A). (2  mum) also when the “vector potential’A is a function ofy
0 0 [32]. [To see this, note the remark after E@). .] This has the
immediate consequence that in the expansion of the La-
The variational equations based on the above adtisese ~ grangian, shown in Eq2), the following expressiortdissi-
are the equations of motions farand y) are given below Pation function needs to be minimized:
in Eq. (7) . Tr is the trace over all “components” of ex- T .
plained in Appendix A. Dots above symbols represent differ- Fo=y"y—i[y'A=3AT]. 6)
entiation with time.
The variational equations are obtained in the usual way b
varying the actiors(T) with respect to all components of the
two vectorsy and y'. Thus

This follows, since theA-AT term is independent of time
¥Yerivatives and is not varied. We further note tiiay the
form of the vector potentiali times the square bracket is a
real quantity. The quantity in the above equation is essen-
tially of the form of Onsager and Machlup’s dissipation func-

tion (the negative of Eqs(4)—(25) in Ref.[5]. One recalls
= ! oL 7 OLM) | OL(T) that their dissipation function is also minimized only with
5,3(T) dtoy(t) — |+ — o) o S ' - v
0 oy  dt sy Sy respect to the time derivatives of the variables just as in the

(3)  procedure proposed in R¢R27] and in the present woykTo
bring our “DF” precisely to the form of the dissipation func-
tion, we need to go from our variablgsand y' by a con-

and a similar expression faf,+S(T). The last term, outside a1 jinear transformatiomot necessarily a unitary oneo

the integral, is the boundary term. It is assumed that the,e \ ariaplesy of Ref. [5]. One will then get, instead of the

vectorsy are fixed initially att=0, but not at any time later. dia te - ; -
S ; gonal formy'y, a nondiagonal form which defines the
(This will be discussed shortlylf the boundary term can be “generalized resistance matriR;; of Refs.[3,6]. [Since the

made to vanish, so will be t.he whole \{ar!atlon, since in theuse of extensive variables is to be preferred to intensive ones
absence of a scalar potential, the variatieght)/ sy and

i f the latt the transf i
8L(t)/5y" vanish. This follows, since for the postulated (and y and ' are of the latter typethe transformation

form of the Lagrangian these variations contain as a facto?hou'd include the system size. Alternatively, the action in-
egral may be premultiplied by a size-dependent scale fac-
one or the other of the expressiofs(t)/ 8y and SL(t)/ 5y g y e p P y P

h ish h o, f tor.]
and these vanis dueT to the boundary variation. fact, Thus, the result of the variation are a set of equations
SL(t)/ 6y and SL(t)/ 5y also vanish due to the presence of

the same factors, but these variations do not form a suffi- y=iA,
ciently general basis for the variation procedure, since the
vector potentialA may not be a function ofll components y=—iAl, (7

of the y vector)

At this point the role of the boundary term is well worth WhenA and A" are functions ofy and y', their (nonzero
reflecting upon. It is not present in, e.g., deterministic me-derivatives come in with eitheg—iA or 3'+iA" as factors
chanics, where the values of the variables are fixed at bothnd these factors vanish due to the above equations.
end points. However, it is well known that the boundary term  [We can illustrate this in the case of two components, for
arises when the value of the variant quantity, ise.is unde-  which we write the Lagrangian in Eql) as
termined at a boundary. This {physically) the case when a

random force operates on the system. Thus, we are not al- L()=11f,+13f, (8
lowed to neglect the boundary term. It is now a further “bo- N . _
nus” in the formalism that the vanishing of the boundary-andf;=—iy;—A;(yk, ), etc., with they dependence ex-

term variation does not interfere with the vanishing of theplicitly put in A’s. Recall that Eq.(7) means that for the
body-term variatior(i.e., it is neither contradictory to it nor variational solutionf;=f1=f,=f}=0 at all times and that
incomplete with respect to)itbut is by virtue of our choice with this solution the minimal action is zero.

of the Lagrangian precisely identical with it. Upon varying with respect to, e.gy,, the resulting
In summary, we have the variational equations Lagrange-Euler equations are now in full detail
— (9, AN +ifI =10, A)— (9, ADf,—f(a, A,)=0
SL(1) 1 1 M1\Oy, M v 22 12l 0y M2 .
=0 (4) 9
oy
and their complex conjugates We have named our frequently used quanfitghe “vector po-

tential,” in analogy with the quantity that enters as a cross term with
the time derivative(“the particle velocity”) in the Lagrangian of

classical mechanicg32], or inside the square with the canonical
SL(1) e .
— =0 (5) momentum and in distinction from the scalar potential which
5')/T appears innonrelativisti¢ Lagrangians as a separate term.
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Since all the terms contain one of théactors or their time
derivatives(which are necessarily also zeithe above equa-
tion is satisfied for the proposed variational solution. There

baa: ( :Y'}’T+ ')’:YT)aa

may be other solutions, though. If for these not fadl are =i([p,HDaa— 2Paa§b: Mpat 2% MabPbbt 2Paafa-
zero (and therefore differ from the proposed soludiothan
the action(which consists of positive termss positive and (12

larger than that for the solution given in E@).] ) ) o
These are the equations of motion of thiedependent ~ When one writes out the equation, similar to Eg2) , for
vector variables and can be regarded as having the status ¢ time derivatives of the off-diagonal matrix elements
the Langevin equations or Hamilton’s equations for the set oPan(@# b), one finds singularities in them, due to the above
conjugate variables, and 7;- The processes considered in ment|0_ned singularities in the vector potentials. For a mac-
this section comprise a purely Hamiltonian process roscopic system these singularities cancel, whgn one takes
(namely, energy preserving, “elasticas well as some other, into account the phgse decohe_rence bgtween d_|fferent states
dissipative mechanisms. Thus, a Markovian scattering pro@f macroscopic bodiegThe subject of microscopic to mac-
cess represented by the symbal,, (designating half the OSCOPIC transitions does not belor_lg here. It was studied by
probability per unit time of a scattering event taking the sys-various methods and has summaries in, e.g., R8&34.)
tem from statea to b) can be written asA,:,Ai,) to sepa-
rate scattering out of and into a given state. We also add a [ll. POTENTIAL FLUID DYNAMICS
stochastic, random process arising from, e.g., an external
source, a®\, . Some other type of processes will be consid-
ered below in Sec. V.
For the first two processes we have

An interesting application of the preceding complex
factor-density formalism is for the well known potential flow
(namely, fluid dynamics without vorticifyas presented in
many hydrodynamic text books, e.g., REB5]. If a flow
satisfies the condition of zero vorticity, i.e., the velocity field

v is such thatV X 5=0, then there exists a functiop satis-
t_ gt ot fying v=V¢.
A v H v H, In this section we answer the question, what form of the
vector potentialA appearing in Eq(2) will ensure that upon
(Aout)a:iE MopaYa, variation qf the a_ction containing these vector potentials we
b shall obtain precisely the well known equations of potential
flow hydrodynamics. These equations are

AH:_H’)/,

(Afuda=—175> Mpa, p - -
out/a a 5 a &—lt)-FV'(pV(f)):O, (13)
(Ain) :—ii(E M byby*)(y*rl ip 1.
B N e o A A E=—§(V¢)2—h—¢—vvz¢- (14)
1 . . . o
AT -1 M T)_ 10 In these equations the physical meaning of the quantities is
(AinJa=1(72) 7§ % abYb¥b (19 that p is the mass density is the specific enthalpy; is the

viscosity coefficient, and is some function representing the
When we add to these the random force, we obtain in addipotential of an external force acting on the fluid. The first of
tion these equations is the continuity equation, while the second
is a modified Bernoulli’s equation which takes into account
(A)a=—ifava, (ADa=ivafa. (11)  some viscous effect$A full viscous flow is of course not a
potential flow and contains vorticifyp and ¢ play the roles
ﬂ{ the squared amplitude and of the phase angle, respec-
tively. Both are real quantities.
The final results for the desired vector potentials and their
complex conjugates are shown, below, in EGS8) and(24).
To obtain them, we first express the variational variables
and y' that we have used so far in terms of the physical
variables(p,¢). The variation will now be carried out with
respect to the latter variables. The transformation is

f, represent the components of the random time-depende
force with zero mean and a finite self-correlatioNl is the
number of states in the ensemble, see Appendix A.

The vector potential\;, is singular. However, singulari-
ties in vector potentials are well knowas, e.g., in those for
solenoidal or monopole fielglsTo cancel these singularities
we shall follow the procedure of RezniR5] and Gheorghiu-
Svirschevski16], who multiply 4" into ¥, ¥ into %', add,
and obtain thémastey equations for the density matrix.

After substituting the quantities from Eq&’), (10), and r= \/F—’ei¢’ (15
(11) we obtain by this procedure for a diagonal elem(sat) _
aa of the density matrix yi=pe . (16)
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Though all variables are now functions of the positions, and IV. APPLICATIONS
are thus continuous variables, we shall label them, as before,
by the subscripts, etc. The following relationgwith no
summations over repeated symbotsise simply from the We shall now apply the proposed variational procedure to
inverse transformation: yield, in one case exactly and in another case approximately,
the solution for gHermitian Hamiltonian that has a periodic
17) variation. The cases chosen are such that analytical solutions
are known exactly [37-39), so that we can compare to
them the variational solutions to be obtained here. Specifi-

A. A periodically varying Hamiltonian

(.Z’a: ( :Ya'yTa_ 'ya;)’;)/Zi Paa:

Va=(Vyay'a= vV ¥'a)/2i paa. (18)  cally, we consider the time development of a doublet subject
to a Schrdinger equation whose Hamiltonian in a doublet
V2= (V2yay a= ¥aV2Y )21 paa, representation is
—[(Vyay 2= (vaV ¥y ) 212ip2,, (19 —cogwt) sin(wt)
[(Vyay'a) = (vaVy'2)1/2ipg, (19 H(t)=(G/2) (25)

sifwt) cogwt)/’

S (Gt v
VPaa=(V7ay'at vaV7v'a): (20 Here w is the angular frequency of an external disturbance.
The eigenvalues of Eq25) are G/2 and —G/2. If G>0,
then in the ground state the amplitude in the upper compo-

nent ¢) in Eq. (25) is

Using these, we first rewrite E@13) as
baa: (;}’a')’Ta+ 'ya:)’;)

R R Cu=cog Kt)cog wt/2) + (w/2K)sin(Kt)sin( wt/2)

= _PaaV2¢a_VPaa'V¢aE Ra( ?’ay?’Ta)- (21) ’ ) )

+i(G/2K)sin(Kt)coq wt/2), (26)

R, being a well-defined, real function of the variational vari-
ables and of their first and second spatial derivatigmss ~ With

independent of the time derivatived.ikewise, one obtains K = 0.5/G2+ wZ. 27)

the rate equation for the phase, Et{4) , as
) The ampIitudeC'gJ of lower component‘fo in the ground
ba=—(¥a¥'a= ¥a¥D)/2i paa state has a similar form, which we shall not bother to write
1 out. For the variational procedure we postulate a superposi-
__ E(V*¢)z_ h—®—vV2¢=Na(ya,7'a) (22 tion of complex circular functions

u_ U ayp (M= 172)0t
in which N, has properties similar t&, [36]. Cq m= ,%MH AneXp ' (28
We can solve for the two quantities,y', and 'ya'y; from | |
the preceding two equations, and then divideyby andy,,  and similarly forC;. The complex coefficientéy, and Ay,

respectively, to obtain the time derivatives. However, by Eqare determined by minimization of the variational action, Eq.

(2) the time derivatives are just the vector potentials. Thug2), subject to the normalization condition that the sum of the

we finally obtain absolute squares of the coefficients is unitptakes integral
values between the limits and we have taken for our trial
functionsM =2, that is, six terms in each component. The

Ya=(Rat2i PaaNa)LT =iA, (23)  halfinteger in the exponent is suggested by the acquisition of
2y'a a Berry phase after a full periodn2w. For the same reason
we have taken the range of the integration in E).to be
and the complex conjugates twice the period. So as to create realistic conditions for the

implementation of the variational procedure, we have chosen
4+ 1 ] - a finite range for the time variable, although, as can be seen
'yazz_ya(Ra_mPaaNa): —iA,. (24 from the formulas in Eqs(26) and (27), for a general value

of G the solution is not time periodic. We illustrate the pro-

We have thus found the vector potentials which have to b(gedure for two cases.
inserted in the action, so as to yield variationally the hydro-
dynamic equations, Eq§13) and(14). It is evident that the
complex representation is a natural way to obtain variation- This comes about whe@ is such that the Rabi frequency
ally equations of motion for two such dissimilar quantities asK in Eq. (27) and w are commensurate. We have cho§&n
amplitude and velocity. The physical extrema are certainly= V150, so thatk =2w.

global minima(although the functional may have additional ~ Minimizing the action with respect to the coefficients sub-
minima). Detailed applications will be undertaken in the fu- ject to the normalizing conditions turns out to be equivalent
ture including the problem of a general viscous flow. to diagonalizing a 1212 matrix, whose elements are the

1. A periodic case
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t ” - the first half (which comprises the period of the Hamil-
tonian), but is worse in the second half and further deterio-
rates later, say in the time ran¢én/w,67/w). On the other
hand, had we taken the time range of the variational proce-
dure[the upper limit of integratio in Eq.(2) ] up to 67w,
we would have obviously got a somewhat different solution,

N which would have improved the approximation in the latter
range and spoiled somewhat the agreement in the earlier
range. In general, the approximate solution depends on the
time range of the action. In our view, this endows a flexibil-
ity to the practical application of the method, in the sense
that, depending on which time range is of interest, better

FIG. 1. Time dependence of the real part of the amplitude in theapproximation can be achieved for that range. Of course,
upper electronic component state. Parameter vaiie8, w=1.  when the “approximate” solution is identical with the true

Full line—variationally obtained state. Broken line—the exact, al-solution in some range, it will remain so, by analytical con-

gebraic solution. tinuation, for all ranges.

In conclusion, one notes a successful application of the
action integral computed with the circular function shown invariational principle for a purely Hermitian case, whose so-
Eq.(28) . There are 1212 matrix elements, rather than just |ution, though available by algebra, is not trivial.
6X6, since the upper and lower states are coupled by the
off-diagonal terms in Eq(25) .

We find a pair of zero eigenvaludactually eigenvalues

of about 10'°), whose meaning is the value of the action The continuous passage of an initially prepared pure state

integral in the transformed representation; in other wordsto transitions resembling quantum jumps was recently stud-

our variational solution is exact. Also, the numerical valuesied in Ref. [40], based on a form of the Liouville—von

of the variationally obtained coefficiem% agree with those Neumann-LindbladLvNL) equation. The actual form used

in the analytic solution in Eq(26) . For comparison, the originated in a representation of fast level crossing in mo-

other eigensolutions have “eigenvalues” of orders 1-20. lecular systems involving two stat¢d1l]. It was noted in

Ref.[40] that the factorization formalism, called the “square
2. A nonperiodic case root operator” method of Ref25], represents an alternative

. . _ _ . way of showing how a dissipative term in the Hamiltonian
W!th the chou;e of, e.g(_;— 3 andK— ?/E/Z’ the analytic can cause decoherence. To apply our variational formalism to
solution shown in Eq(26) is not periodic and an exact so-

lution cannot be achieved variationally while having a ﬁnitethIS case, we first formulate the evolutlon equations in the
; S factorization scheme and solve the resulting equatjtims

t range in the action integral. Moreover, a larger spread of thc;;\S done in Appendix A belovand, second, we obtain an

basic set in Eq(28) is needed. Still, so as to estimate the S h lution b m,inimizin ,the action with

efficacy of the variational procedure under nonoptimal Con_approx;n:atlon to the so utlon y nizing th d

ditions, we used the sant@ange and the same set size as inr;ahs.pe.C 0 _s%me tp_argm: ers (zjappearmg In the assuyrse

(@). The lowest eigenvalugs=the values of the action inte- [this is carried out in in Appendix B

gral) are about 0.35, compared with others eigenvalues,

which are again in the range of 1-20. ] o o
The results are also shown graphically, by comparing the The vector potentials consisting of a Hamiltonian and a

variational solutionfull lines) with the exact, analytic solu- dissipative(non-Hermitian part are now written for the two

tion (broken linesin Eq. (26) for real and imaginary parts in factors (y;,7,) of the density matrix as

Figs. 1 and 2, respectively. The similarities are quite good for

Re[C7(%)]

B. A nonlinear evolution

1. Decoherence by the square root operator method

1
A1=—5G cogwt)y;—Jy;

—iT[y1— [yl 2(1+ uly1 D/,

In [C7(%)]

1 .
. Ar=5G cog wt) y,— Iy —iT[yo— |y 21— uly2| D)/ ¥}
(29

-0_25

=05

One notices the similarity of these expressions with the cor-
responding formulas in Ref$40,41] (where the interpreta-
tion of the terms is spelt outand also the divisor on the

FIG. 2. Same as in the previous figure but for the imaginary parextreme right, characteristic of the factorization formalism
of the amplitudes. for dissipative processes, EQ.0) . The trace of the density

-0.75
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The majority of calculations whose results are shown in
this section are carried out for a density matrix referring
to an “assembly” consisting of one system. This means
that in Appendix A, one hal=1 and the summation over
in Eqg. (A2) is trivial. We have also worked out the density
matrices when there is a nontrivial summation, namely,
when initial conditions on the two factors arg;(0)
:ei'n'IZ’eZifrr/Z,eSi 77/2,e4i11-/2 and 72(0)20 (SO thatN=4), in-
stead of having onlyy;(0)=1 (andN=1), as before. The
resultant density tends now to an almost perfectly straight
574 6 8101014 ¢ line. This is similar to the graphs shown in both RéfL] and

in Ref.[40] for strong dissipation and elucidates the meaning

of system averaging in the density matrila more complex

systems, one would require an averaging in the density ma-
[N - trix over a much larger number of states, such thatx.)

We have also worked out tHé=4 case for the upper three
246 8101214 © graphs in Fig. 3. For these graphs, there was hardly any
perceptible change from those shown.

For the detailed interpretation of these results, which is
not the primary subject of this work, we again refer to Refs.
[40,41], and references therein. Also, we do not delve here
into the details or extensions of the results, but turn to the
variational treatment of time development to be got from
minimizing the action.

[eNoNe N
N > Oy 00

246 8101214 ¢

[ Na NN o]
SR o) Neol o)

[eNoNe N
N> oY OO

[eNoNe N
N > O 00 =

246 8101214 ©
FIG. 3. Unitary evolution. The diagonal element of the density
matrix p,, under a successively increasing dissipative paranieter
The parameters in Eq29) are G=45 (25 in the bottom drawing,
chosen to facilitate the computatiod=3, w=1, u (superlinear- We note that the strongly oscillatory factor in the solution
ity coefficieny=0. Then, in top drawingF=0, N (ensemble grises from the driving term@/2)cost) and that this term
siz§=1; in second drawing+=0.05,N=1; in third drawing—+  \ya5 already present in the Hamiltonian case considered in
=20, N=1; in bottom drawing-F=20 (as in previous, bUtN  {he nreceding section, in E(R6). (We have, however, elimi-
=4. The initial slope in the last two drawings is 100 steep 10 bep a4 there the fast oscillating factor by subtracting from the
‘l;';'tt:)'% 3?:\/\;? a;\e tiny fluctuations in the horizontal part of the,, niitonian the so-called dynamic phas8o in this section
g. A nonzero value of the superlinear parametef we shall putG=0, which also makes the numerical aspect
the order of 1, hardly changes the curves. . - . .
of the variation considerably simpler. We then set up pair of
suitable trialy(t)’s, containing parameters to be varied.
(p=17") stays constant during the motion and this property In contrast to the preceding sectiowhich was a linear
is maintained unchanged also by the superlinear terms whicproblem and in which a large number of Fourier coefficients
enter with the coefficien. were varied, in the present problem only one variational
It may be noted that the equations of motions 4q(t) parametemw is introduced. However, to make progress, we
and y,(t) and of their conjugates, given in E() , lead to  must consider critical regions of the time domain, namely,
the master equations for the matrix elements of the density=0 andt=c. At the former, it is easy to see that in order
operator. For the diagonal elements these are of the LvNthat the singularity due to the zero divisef,(0) in the
form (when x=0), but not for the nondiagonal ones. This vector potential be matched by the time derivativeyp(t)

2. Solving variationally

property has already been noticed in H&5]. att=0, this function must take there the form of

We next solve two equations for's, subject to the pure
state initial conditionsy; =1, y,=0 att=0, then form from lim y,(t) — \4ePTt+O(t), (30)
the solutions the diagonal matrix elements of the density t—0

matrix and finally show the results in Fig. 3. The quantity

changed between the upper three drawings is the strdhgth,yith the constant phase angearbitrary. Similarly, it can be
of the dissipative term. As this increases, a transition take§nhown that, asymptotically for large the same solution
place from the slow to the fast decoherence regime. We notgust have the form

the remarkable similarity of the results obtained here by the
factorization method to those in Fig. 1 of the above papers,
except that for strong dissipation their drawings show little
oscillations, unlike our third drawing from above. In this,
drawn forI'/w=20, after a very steep initial slog@ot vis-

ible in the figure, both diagonal density matrix elements or some other form equivalent to this. A constant phase fac-
oscillate about the asymptotic value Hf tor was ignored here. The parametecannot be found from

lim y,(t)—e W [1+ve 20Dt o(e 2 ]2 (31)

— 0
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the equations of motion. We seek to obtain the variationally destich that the condition &t=0 is also satisfied. After some
elementary algebra one finds that in terms of the variational parameter, the densityyfactor have the form

Yz(t):efm\/

_ . 2t
1+ve*2<F*'J>t—(1+u)exm{(u+2)r—|vJ}m /2. (32

The previously introduced phagewas varied independently inset that in the extremely short time region, the optimized
and found to be small. So we p@=0. The other density solution isqualitativelybetter than the other choice. Because
factor y4(t) was so constructed that the exponentials insideof the singular behavior of the short time region in the vector
the square root had the opposite signs to those.irand  potential, this region dominates the value of the action. At
normalizing factors were added so that|?+|y,/>=1 atall the same time, yet another choice of the parameter

times. —0.05(shown in the figure by dotted linggives a definitely
Minimizing the action integral for a set of parameter val- poorer resemblance to the correct curve.
ues forJ andI yields optimizedv’s. KeepingJ=3 fixed (as In conclusion, when it comes to describe subtle quantum
in Refs.[40,41] and selecting a set of dissipation parametermechanical ensemble properties, the factorizat@mmsquare
we obtain as follows: root operator method can be used either in its equation of
motion form or variationally. In the present case, at least, the
J=3, I'=0.1, v=-0.985, equation of motion approach was from a numerical view-
point undoubtedly superior. So one may question the use of
J=3, I'=0.5, v=-0.78, the variational method. However, on the one hand not all
problems may be easily solvable. On the other hand, one
J=38, I'=2, v=-0.755. should remember that the derivation of the equation of mo-

tion in Eq. (7) is itself based on a variational ansatz intro-
For the middle casd’'=0.5 we compare in Fig. 4 the duced in this paper.

variational solutionthin continuous curve, witlh = —0.78)
and the solution from the equation of moti¢hick continu-
ous curve. In the asymptotic regime of largethe behavior V. FURTHER EXTENSIONS
of the two curves is quite similar, though the amplitude of
oscillation is clearly smaller in the variational solution than ~ To treat non-Markovian processes, the vector potentials
in the exact solution. The discrepancy appears more seriod¥ve to be functions of the vectors at earlier times, but
in that a different choice of the variational parameter,otherwise, no change in the formalism is needed.
namely, v=—0.98 (also shown in the figure by broken  Non-negativity of the entropy change follows from the
lines), which has an action larger than the optimized oneMmaster equations and properties of the scattering probabili-
comes nearer to the exact solution. However, we show in thB€S Mp, in Eg. (12) , as is shown in Ref42].

Transport processes can be treated simply. Thus, let us
Probability consider electronic conduction in a solid due to a spatial

ir 0.3 gradient in the potentidi.e., an electric fielgor in the am-
0.4 bient temperature. The vectors are, normally, labeled by
0.8 22 the reciprocalk-vector index and are essentially small devia-
o1 tions fro_m t.he'sqqare root of the quilibrium, Fermi-Dirac
o - electronlc dlgtrlbutlon function. Fo]lowmg 'Fhe §tandard treat-
‘ ’ o ' ment given in, e.g., Ref.13], the time derivatives of the
— vectors(which are now real and identical tg') are propor-
0.4r1

tional to the spatial gradients. The vector potentials represent
the scattering integral. Then either equation of motion in Eq.
0.2/ (7) is simply the Boltzmann equation in an inhomogeneous
form; namely, its left-hand side represents the source or the
. gradient and the right-hand side contains the desired distri-
L 2 3 4 5 6 bution function under the integral over all wave vectors. The
FIG. 4. Comparison of solutiong,,, a diagonal component of Lagrang'iar) can be usec_j to obtain the so_Iution variationally.
the density matrix, for the following values of the parameters in Eq.' NS variational formulation is, however, different from those
(29: G=0, J=3, w=1, ['=0.5, u=0. Solution of equation of diven in Refs[11,13. (Of course, different variational pro-
motion—thick line. Variational solution in Eq32) with optimized ~ cedures can lead to the same regult.
parameter = —0.78—thin line. Hypothesized solution as in Eq.  We have noted earlier that the postulated Lagrangian does
(32) with v=—0.98—small broken lines. Hypothesized solution NOt contain a potential. Adding a potential to the Lagrangian
with v=—0.05—large broken lines. The inset shows the curvesmight apparently change the equations of motion. It seems to
neart=0. us, however, that under conditions prevailing in stochastic
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processes, this will not happen. The reason for this can be

stated in various forms and is rooted in the circumstance ‘I’a=2 YaUn - (A1)
(already noted aboyéhat in the presence of a random force "
one has no control over the value of the variables, only on it
rate of change(“Free terminal end point” condition of Ref.
[3], p- 9) In Appendix B we give a formal proof for the
following proposition. “When the following conditions hold:
(a) the potential is a non-negative quadratic form in all of its
variables(y's), (b) the vector potential®\ are all real and Prm= E 2 Yyt (A2)
positive, (c) the initial values of they vectors are suitably nmeoN g

chosen, andd) the variation is performed under conditions

of fixed initial values ofy and y, then it follows that the y*s are best viewed as row vectors, distinct for eactor
action obtained from the variation of the velocities only, i.e.,system and they**’s as column vectors. The and '
with the potential regarded as ignorable, is less than the agterivatives in the textwhich implement the variation proce-
tion obtained from the variation of both the variables anddure are with respect toy? and y%ﬁ The ensemble aver-
their derivatives(namely, through the usual Lagrange equa-aging, namely, the summing overand the subsequent divi-
tions, which are obtained under fixed initial and final bound-sion by N, is not explicitly written out in the text, but is
ary condition$.” The result holds probably under a wider designated by inserting a dot betwegsymbols, so that the
range of conditions, since in the proof we have not utilizedprevious matrix element is written as

the requirement imposed on the self-correlation of the ran-

dom forcesf, by the “second” theorem of Morf43]. (This =~ .0

requirement ensures, among other things, the time-shift in- Pam™=7n" Y- A3)
variance of the random process which is at the root of th
Onsager-Machlup theorys,6]. Needless to say, that the re-
sult obtained in Appendix A is not in conflict with the valid-
ity of the Euler-Lagrange equations, since these are obtained

under conditions that the variables have fixed values at the APPENDIX B: PROOF OF THE MINIMAL ACTION
final ime. UNDER ONE-POINT BOUNDARY CONDITION

%\s derived in Ref[46] and other texts, the density matrix
arises from the ensemble average over all systems in the
sense that itm component is

§t is clear thaty's are not vector quantities, but the traces
over the dotted products are proper scalars.

Assumptionsin the action, Eq(2) , the vector potentiah
VI. CONCLUSION is now assumed to be positivaon-negativg and real. We
o ) ) ) shall further subtract from the actideee below a potential
The variational actioror Lagrangianproposed in EQ2)  term, in which the potentiaV depends on the variables only,
for dynamical processes has the advantag'es of being simplget on their derivatives. This potential is supposed to be
general, and flexible. It differs from previously employed monotonic, nondecreasing, and positive in the relevant range
variational procedures by the factorization ansatz in@Y.  of jts variables.
by the absence of a scalar potential term, and the presence of \ye start the proof for a single time-dependent variaple

a variable final time upper limit. The relation of the postu-ynich replaces the earlier complex variablehrough
lated Lagrangian to some basic invariance propé&stich as

“frame indifference”[44]) remains to be explored, account
being taken of the fact that, for vector potentials that are not
all equal, the formalism is non-Abeliamamely, the vector
potentials cannot be transformed away by a single gaug
facton [45].

9=6()=—i7. (B1)

The reality ofg for all times will be evident. The one-point
8nitial time) boundary conditions fixg(0) andg(0), while
g(t) at later times develops according to its equation of mo-
tion. We write the action, including the potential, in the
ACKNOWLEDGMENTS single variableg as

R.E. thanks S. Machlup for a discussion. T
sm= [ at{g-An)y-2venn.  ®2)
APPENDIX A: A TUTORIAL ON THE FACTORIZED

DENSITY MATRIX FORMALISM " .
The boundary conditions fix the value g{0)>0 and of

Though the factorized density matrix, written in an ab-g(0). We next minimize the above action in two ways and
stract form app=y- 9", has been employed before in Refs. subsequently compare the resulting actions. The first is the
[16,25, we shall explain its formalism here, following usual Lagrange equation way in the presence of a potantial
Band’s introductory texts to the von Neumann matrixand the quantities arising from this method will be denoted
method[46,47. Let ¥, be a possible wave function describ- by the superscript/. The second method pretends that there
ing the quantum state of the'th system in the ensemble is no potential and the corresponding quantities will take the
(@=1,2,...N). It can be expanded in terms of a set of superscript 0. It is the second method that was used in the
eigenstatesl,, as text.
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i
(T)= jo At {50~ AD}2— 2V(g(1)]

where the prime represents the derivative with respect to the

argumentg,
go(t) =A(t). (B4)

The latter equation imposes the following initial condition
for the velocities:
§°(0)=A(0)=§"(0). (B5)

Integrating Eq.(B3) once, we obtain
t
B (0=AD-PM, PO=[ Vign)dL (©6)

where P(t) is zero att=0 and is for positive times non-
negative, since it is, by EqB3) , the time integral of a
positive quantity. Subtracting® shown in Eq.(B4) from the
last equation and integrating, it is clear tigdtnever exceeds
(algebraically g°. Calculating the actions obtained in the
two methods and subtracting we find:

i
(1) = JO AV~ A(D)}2—2V(g¥(1)]

- JTdt[p(t)Z—ZV(gV(t))],
0

= det[ —2V(g°(t)]=S"(T)—S(T)
0

.
=f0 dtfP()%+2{V(g°(t)—V(g"())}]. (BT7)

In the integrand the squared term is necessarily positive
(non-negativeand so is the term containing the difference of
potentials since the 0 argument is larger than\tegument
and the potential is monotonic by supposition. Though ob-
tained under restricted conditions, the result shows clearly
that the two-point boundary conditions are necessary requi-
sites for the validity of the Lagrange-Euler equations of mo-
tion. Generalization to severakal variablesy;,g,, . . . .gn

is immediate, when the potential is a positive quadratic form
in these variables, since this can be diagonalizeith posi-

tive eigenvalues simultaneously with the kinetic energy
term. However, the initial point variables need to be chosen
carefully in this case.

Finally, we have not proven that the action using equa-
tions of motion of the text is minimal, but only that is lower
than that obtained with théor this case, inappropriateise
of the Lagrange equations. Furthermore, it is not evident that
the solutions obtained in this appendix satisfy conditions re-
quired from density matrices or probabiliti¢s.g., normal-
izations.
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