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Weak limits for quantum random walks
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We formulate and prove a general weak limit theorem for quantum random walks in one and more dimen-
sions. With X,, denoting position at timen, we show thatX,/n converges weakly as— to a certain
distribution which is absolutely continuous and of bounded support. The proof is rigorous and makes use of
Fourier transform methods. This approach simplifies and extends certain preceding derivations valid in one
dimension that make use of combinatorial and path integral methods.
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[. INTRODUCTION to some nontrivial distributional limit. Results in this direc-
tion have been obtained for one-dimensional quantum walks
Let R{,R,, ... be independent identically distributed by Konno[2,3]. We show in this note how to simplify and

random variables taking values in the reRBlsand suppose extend such results. We introduce a method of studying such
that they have common mean=E(R;) and finite nonzero weak Iimits, and we apply this method to quantum walks in
variances?=E(R?) — u2. The central limit theorem asserts one and higher dimensions.

that the sunX,=3"",R; satisfies We consider first a quantum random walk on the integers
7. At each timen (eN) the state of the particle is trans-
Xp—Np formed by a unitary operator described by a rotation of the
—\/ﬁ=>N as n—o, (1) internal degree of freedom followed by a conditional shift of
g

the position, Ref[4]; the internal degree of freedom repre-

sents a coin that determines the shift of the position. The

overall state of the system belongs to the Hilbert spdege

®Hp, whereHc is associated with the internal degree of
T,=T if EF(T,)—Ef(T)) (2)  freedom(coin spacgandHp with position. In the simplest

case, we havél.=(? andHp=¢?(7). A suitable basis for

for all bounded continuous functioisR— R. An early ver-  Hp is given by the eigenstates of the position operator

sion of this now classical theorem for random walks was

proved as long ago as 1733 by de Moivre, Héf. In the Xv=Xvy, XeZ, (3)

modern theory, the conditions on tRe are relaxed to allow

nor)independgnt nonidentically dis;ributed random variable§ubject t0(v,,0,/)= 80, the Kronecker delta. A general

taking values in general spaces. Since the weak imKaf  gia40 of the system may be written with respect to this basis

suitably normalized, depends only on the probability mea;

sures associated with th€,, we may think of the central

limit theorem as a result about weak limits of measures,

rather than about the stochastic proceXs:0=1) itself. = . .

This is an impoverishment of the theory, since it overlooks ¥ Ex: EJ: v, @

the random variables themselves.

There has been recent interest, Réf, in a new type of where the vectorw;, j=1,2, define a standard basistiz .
process termed a quantum random walk. Quantum randomhe probabilityw,(x) of finding the particle at the position

walks give rise to certain sequencgs,(n=1) of probabil-  at timen is given by the standard rule
ity measures, each of which is given in terms of the preced-

ing measures in the sequence. While it is possible as always
to construct random variables having these measures, this Mn(X)=Z [{v,W; L )|, (5)
may not be done in a natural manner as in the theory of ]
stochastic processes. One may nevertheless ask whether, sub-
ject to an appropriate normalization, thg converge weakly — where i,=U"#, with U the time-evolution operator of the
walk and iy, the initial state of the system.
The asymptotic properties of the sequengg (h=1) are

where N denotes the normalGaussiai distribution with
mean 0 and variance 1, ard denotes weak convergence:

*Electronic address: g.r.grimmett@statslab.cam.ac.uk studied in the following section. Such results are extended in
Electronic address: svante.janson@math.uu.se Sec. Il to quantum walks in two and more dimensions. We
*Electronic address: p.scudo@statslab.cam.ac.uk highlight two special features of such asymptotics, namely,
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instead of normalizing by/n as in Eq.(1), we shall normal- (k) ey (k)
ize by n, and the weak limit is absolutely continuous with Ua(K) = e*”‘z,// k) (10
bounded support. 2 2
Thus the total evolutiotJ on H is given by
Il. WEAK LIMIT FOR ONE-DIMENSIONAL QUANTUM
WALKS (eik 0 ) ¢1(k))
Ug= A =U(k) (k). 11
In order to define the position of a quantum particle as a v 0 ek Po(K) (k) gk (1Y)
random variable, we consider the evolution of the position _ _ o
operator in the Heisenberg picture starting from time0. If we begin the quantum random walk with an initial state

At each time n, the eigenvalues of the operatot, WoeH, its state aften steps is

=UT"XU" define the possible values of the particle’s posi-
tion with corresponding probability given by E€), where
the dependence on the initial stagg is explicit. :

Although the position may be treated as an ordinary ran- . For eachk, U(k) has two elgenvalue)sl_(k) an_d)\z(k)
dom variable, the sequenc&,{:n=1) does not define a with |)‘J(k)|:‘,21’ and .has co_rrespondmg eigenvectors
stochastic process, since the simultaneous measurement?df(tﬁ)iﬁzgk) < C” that define a basis fdi. We assume hence-
X, for differentn would change the quantum random walk at or a
each step. Therefore we let the system evolve repeatedly
underU up to time n, without measuring it, and then we

study the properties of the distributiqn, of X, since otherwisdJ (k) is diagonal; by Eq(11) thenA is di-

Let ¢, be any initial state irH-®Hp with all moments o ; ;
0 S . . agonal and the state evolves trivially, either to the right or to
E(X") finite. In order to simplify the calculations which fol- thge left y 9

low, we consider transformations in terms of wave function
components, and we take the Fourier transform spacg,,

W, =U"F o= U(K)"Po(K). (12)

N1(K)#No(K), (13

The mapping— U (k) is C* and the eigenvalues are dis-
Dl ct for eachk, and therefore the eigenvalukg(k) are C*
€%(7)=L3(K), whereK=[0,2m) is thought of as the unit functions ofk, and the eigenvectous;(k) may be chosen to

circle in R2. We define an inner product dr?(K) by be C* with normalization|lv;(k)||=1. By expanding the
, e wave function in terms of this basis, timth time evolution
T b
= [ H k05 6 Dbecomes
0 a

T (K)=U(K)"Wo(K)
=\ 1(K)(v1(K), ¥o(K))v1(K)
(P> ™, @) + X 2(K) (v a(K), ¥ oK) )va(k), (14)

and we note the isometry betweéf(7) andL?(K) given by

o where each component on the right-hand side &"aunc-
with inverse tion of k. The moments of the position distribution are given
in terms of the operatoX according to the standard formula

0 s [P ik dk
y— where (,!/(x)—fo e k)5 (®) E(XL)=(¥, X"W¥,). (15

The right shiftS on €¢2(7) given by S(1,)” .= (y_1)" . Using the isometry betweef?(7) andL?(K), the above

corresponds to the multiplication operat&@y=e'kyy on  €xpectation may be written as
L2(K).
. . 2
Our fundagnental H|Ibert. space is thitb=Hc® L2(K), E(XL):J (Wn(k),Dr‘Ifn(k»%, (16)
the space of'“-valued functions 0 2m

(k)= (k) 9 where D=X= —id/dk is the position operator in the mo-
Uo(k) )’ mentum spac&?(K). For fixedr we can comput®" W (k)
by Eg.(14) and Leibniz’ rule. It is easily seen that
on K satisfying
=1l Eo+ [l r<ee. qufn(k):; (A (k)" IDA (k)
As usual, we consider state vectors normalized |py? X(vj(k),¥o(k))v;(k)+O(n""1), (17

=1. The evolution of the walk comprises repeated applica-
tions of an internal transformatideoin tos$ A acting onC?, where f),=n(n—1)---(n—r+1). Equations(16) and
followed by the shiftS given by (17) yield, asn— oo,
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27 _ 1 1
E[(Xn/n)’]=f > MDA (k) (v(K), Po(k)) [minh,maxh]=| — —,—|. (24)
0 2"\
X(W o (K),v; k)) dk +O(n‘1) For a general unbiased walk, we take as coin flip the
unitary matrix
21 [DAj(K) i(etd)  gmile=¥)
= E( )|<v (k), W <k>>|2 _ 1€ €
o T INK Vo= Flae-n _gitern] (29
+0(n7 Y. (18 _ _ _
where g, e R, with corresponding evolution
Let 0=KXx{1,2, let u be the probability measure da i .
given by [(Wo(k),v;(k))|?dki2m on Kx{j}. Let h;(k) B ety elkemilemd |
=;(K) 1D, (k) and definér:Q— R by h(k,j)=h;(K)- (h V0= 5l eikeiton  —gikgritern |~ YeulK):
is real becausb}\ (k)|=1) By Eq.(18), (26)
E[(Xn/”)r]ﬂf h'dy asn—o. (19 With ¢+ ¢=a, ¢— =D, the eigenvalues may be written in
Q the form
Sinceh is bounded and the above relation holds for all inte- i 1
gersr=0, we deduce by the method of moments the follow- Nj(K)=—=sink+a)* \/1— > sif(k+a), (27
ing. (See Ref.[6] for the general theory of weak conver- 2
gence) d theref
Theorem 1. With notation as above, and therefore
1 h(k .)_—i)\j’(k)_+ cogk+a) 29
whereZ is a random element d with distribution .. Thus the general unbiased walk has exactly the same behav-

In particular, the support of is [minh, maxh], the range jor as the Hadamard case, subject to a shift in the momentum
of h, at least provided the density pf given above does not parameter of the wave amplitudes. We have as before that the
vanish on some interval. domain of the limit distribution is as in Eq24).

A similar weak limit theorem foiX,,/n has been proved Finally we introduce a “biased” random walk by defining
by Konno[2,3], by different methods and with a quite dif- a bias factorp in the coin flip matrix
ferent description of the limit.

We note that no assumption has been made above on the \/; Vi—p
matrix A and the initial statey,, and thus the above result U(p)= A= -Vp (29)
holds for any unitary quantum walk on the integers, subject p p
only to Eq.(13). Note also thap depends only on the over- o+ gives rise to the evolution
lap between the initial state of the system and the eigenvec-
tors of U(k), whereas depends only on the coin flip matrix e”‘\/; eky1—p
A . . . P(k) |k\/_ 7ik\/_ (30
As an example, we consider some specific cases of uni- 1-p -—e P
tary quantum walks. We consider first the Hadamard matrix]_ .
he evolution undelU of a general two-component wave
1 (1 1 ) function corresponds to
=— . (21) ,
V2l -1 (wl) (e'k 0 )X<\/;¢//1(k)+\/1_P¢//2(k))
—> .
By simple calculus, Uz 0 V1= p(K)+Vpia(K)
i [ 1
Nj(k)= . sink=+ \/1— = sirtk (220 where the two internal states transform differently. In fact,
V2 2 the first component receives a kick of momentunk with
dth probability p and —k with probability 1-p; the opposite
and thus holds for the second component.
-k cosk In terms ofp, the eigenvalues are
h(k,j)= == —. (23) o~ .
\j(k) 2—sirk \;(k)=ip sink= \1—p sirck, (32

Hence the limit distribution is concentrated on the interval and thus
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It follows that[minh, maxh]=[—p,\p], whence the bias
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that represents the Heisenberg equation of motion for the
position, in the limitn— oo, if we interpretV as the “veloc-

ity” operator. Thus, asymptotically, the center of the wave
packet moves with constant speed, given\byit is worth
pointing out that, although the equation of motion resembles

factor of the walk sets a limit on the asymptotic momentumthe one of a classical system with constant velocity, the state
distribution by changing the support of the limit distribution. of the quantum particle spreads in time, with a quadratic

The representatiof20) of the limit variable allows a di-

rect computation of the asymptotic probability density func-
fuo_r? in mos’g cases qf. interest. For e_xa.m.plle, assume t_hat the || WEAK LIMIT FOR
initial state is at position 0. If the coin initially is in a given

statei=1 or 2, then\I’O(k)=(é) or ((1)), respectively, and

thus u=|v;i(K)|*dk/2m on Kx{j}. If we consider instead a

growth in the variance of the position distribution.

d-DIMENSIONAL QUANTUM
WALKS

Letd=1. The classical random walk on the integer lattice

random initial state of the coin, we have a mixture of theseZ? models the motion of a particle that moves in an unbiased

two pure states and thus

z dk  dk

1
= — . 2—:—
nog 2 il =g

(34

on Kx{j}; that is,u is the uniform distribution oif). In the
Hadamard case, for example, withgiven by Eq.(23), if
Xo=0 and the coin is initially random, then, for1/\2<y

<1/,/2,

P(ng):fhl([ yl) du

L f dk
a cosk/V1+ coszksy477'

1 y
=1- — arcco ,

m { vl—y2>
which gives as densitf(y) of Y,

f(y)= i
Y A—y)Vi—2y2'

(39

in agreement with the result of R¢2]. The same holds for

every unbiased walk defined by E@5).

manner in a-dimensional space. Lef, i €{1,2,...n}, be
the unit vector in the direction of increasimth coordinate.
Let R;,R,, ... be independent identically distributed ran-
dom variables, each being uniform on the dete :i
=1,2,...d}. The position of the particle at timeis given
as the sum

n
xn=j21 R;. (39)
By the central limit theorem fod-dimensional random walk,
the random vectoX,/\/n converges weakly as— to a
random vector iiR? having the multivariate normal distribu-
tion N(0,I/d), wherel is thed X d identity matrix. We shall
see in the following that a corresponding weak convergence
holds for ad-dimensional quantum random walk.

The 1-dimensional quantum random walk of the
last section may be extended tal dimensions
as follows. Let €, ...,6,4 denote the @ possible

shift vectors+¢g, i=1,2,...d. The state of the system
is a vector ¥=(¥(k);)3%, e H=L?(K) @ (2! where k
=(kq,ks, ... kg) and theJth component corresponds to a
shift by the vectore;. At each time, the state is transformed
by applying a rotationA acting on €29, followed by a
d-dimensional shift orL?(KY), cf Eq. (10),

SO (k) =€k (k),. (39

The above result can be interpreted as the weak conver-

gence of the sequendé,/n of operators orH, asn—, to
an operatoW, defined on a dense subspacéiofiith spectral
resolution

_ D)\j(k)
v-| 3 ( N )dEj(k)’ (39

The general unitary operator that evolves the walk from time
n=0 is thus

U(k)=D{e'rk, ... e'cdkla (40)
whereD denotes the @ diagonal matrix. The operatdi(k)
can be diagonalized ik, and has @ eigenvalues and @
eigenvectors. Assume that one may choose the latt€”as

where dE;(k) is the projector over the eigenspace corre-functions ofk. (See the remark at the end of the sectidet

sponding to the eigenvalue;(k) of U(k). [The weak con-

v3(k), A y(K) be, respectively, the eigenvectors and eigenval-

vergence of unbounded operators here is formally defined ases ofU(k), with J=1,2,...,2. The initial state of the
the weak convergence of the corresponding unitary operatoss/stem can be written in this basis as

eprsS(n/n)HeprsV) for every reals.] The limit operator is

diagonal in the eigenbasis of the unitary evolution of the

walk and gives

(Xpy~(V)n (37

2d

wo<k>=§l (03(K), P o(K))v k), (41)

and the state at time as
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2d d d
‘I’n(k)Zgl A5(K) (v 3(k), o (K)o y(k). (42) 121 Cij,n=>JZl c;Yj asn—o, (44)
The  d-dimensional  positon  operator X@  forall c=(cq,Cy, ... ,Cq) € RY, thenX,=Y.
=(X1, X5, .., Xq4) acts onL?(KY) as the differential vector Suppose for simplicity thad=2. For fixedr, we compute
operator D(@=(—id/dk,,—id/dk,, ...,—id/dky). By the expectation
considering each component BXY separately, it is easily

seen that the operator}%i,n converge weakly onH, as E
n—oo, to the corresponding components, where

v- [ 32

wheredE;(k) denotes again the projector onto the eigenswhere we have used the fact that operators along different
pace ofU (k) with eigenvalue\ ;(k). This does not imply, directions commute. We have
however, that the sequence of random vectors associated
) _d _
with the process converges weakly or)l=K qu,n(k)zz (n)p)\g P(K)

x{1,...,d}. In general, the evolution operatbi(k) gen-

erates entanglement between the different spatial directions o -1
and it is necessary therefore to consider also the correlation X[D2A (k) 1P(v3(K), Wo(k))v (k) +O(nP~ )
terms between different componentsXf). (46)

The so-called CraméNold device enables a simplifica-
tion: in order that a sequence of random variables converge D, P[DBW,(K) )T (k
weakly, it suffices that all linear combinations converge. [ n(k)]= E (MeA5 (k)
More properly, we have the following, see RE§], Theorem

29.4. X[D 1A 3(K) 1" PLDoA(K) 1P(w 5(k),
Theorem 2. Consider a sequenc€,=(Xyn,Xzp, VoK), (k) +0(n" 1), (47)
.. Xgn), N=1, of random d vectors, and letY

=(Y1,Y2, ...,Yq) be arandomd vector. If Thus, asn—x,

E (M) } fE [E ( ) i PeBhy(k, )" Phy(k,J)P (v k), Wo(k))|? K
= (2m)?

=[S ek eaa(k )Y (w00, %o(k) -2

(2m)?’
|
where h;(k,J)=x;(k) IDiry(k), i=1,2. With Q=K? 1 1 1 1
x{1,2,3,4, andZ,=c;X 5+ C2X,,, We have 11 -1 1 -1
A==
E[(Z,/n)'] f (c1hy+c5hy)'d 48) o 7
n) |— C Cc )
n o 1T Callz) Uu 1 -1 -1 1
whereu is the probability measure ofl given by In the above notation, the unitary operator that evolves the
walk is represented by
dk L
om:|<UJ(|<),«IIO(|<)>|2W on K2x{J}. (49 U(k)=D{e'*1,e'2,e 2, k1A, (51)
a

The operatotd (k) may be expressed thus as a tensor prod-
By the method of moments as in the one-dimensional casact of two one-dimensional operators that describe Had-
and the CrameWold device(Theorem 2, we obtain a gen- amard walks along the directions defined By =(k;

eralization of Theorem 1 to the two-dimensional case. +k;)/2 andk™ = (k; —kjy)/2:
As a simple example, consider the two-dimensional gen-
eralization of the Hadamard matrix given by Uk)=U(k")eU(k). (52
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Its eigenvalues and eigenvectors are products of those dfecause we then can chooékas the subset of (078)¢

U(k"), U(k™), respectively, and therefore where the discriminant is nonzero; we omit the proof that
this set has the required properties.
Ny(k)=Nj, (KN _(kD), (53 Under this assumption, the argument above holds for ev-

ery initial value that is an infinitely differentiable function

where the\j, j=1,2, are given by Eq22) andJ=1,2,3,4  with support inO. (The functionh will be defined on©O
labels the pairsj(. ,j_) in some order. Thus x{1,2,...,2}, but that is enough.Such functions are
1 dense inH, by a standard.? result. Hence, given any initial

hi(k,J)=Ay(k) " Diky(k) stateW,, and ane>0, we can find an initial staté§ with

_ ., cosk’) |Wo—W§|<e for which
T 22—sif(k* 1.
. SXn=(hy(Z9), -+ hg(Z9)). (57)
+(_1)i*1Lk_) (54) S h | ) . h ﬂe
- 2 2—sin2(k‘) ince the evolution operators are unltary, we ﬁ N

—Vil|l=|Vo—VTg|<e for everyn, and it follows that for
for i=1,2. The limit velocity operatoV is given byVv  any observable evend, the probabilitiesP’(X,eA) and
=(V1,V,), with P(X; e A) differ by at most 2. Similarly, it is easy to see
from Eq. (49 that |P(ZeB)—P(Z¢eB)|<2e for every
BC (). Itis now easy to interchange the two limis-0 and
n—co and obtain Eq(56); see Ref[6], Theorem 4.2. Theo-
rem 3 thus holds for every initial state, also under the weaker

The result may be extended to arbitrary dimengien2 assumption.

using the same argument, yielding the following result.

vi=J g hi(k, J)dE;(k), J=1,2,3,4. (55

Theorem 3. For the-dimensional quantum random walk, IV. FURTHER EXTENSIONS
1 We have, for simplicity, only considered simple random
=X =Y=(h1(2), ... h4(2)), (56)  walks, where the shifts are by unit vectors. More generally,
n we can allow shifts by any given finite sg¢;, e, . . . ,&\}
where Z is a random element of2=KIx{1, ..., of vectors inZ9. The coin flip is now represented by a uni-
with distribution x given by Eq. (49) and h-(l’< 5 tary matrixA in CN. Theorem 3 extends to this case, witth 2
=,y(k) 1D\, (K) e replaced byN, by the same proof.
i . _ . . .
The limit observable is again diagonal in the eigenbasis of , An interesting eﬁample is when the shift vectors are the
U(k) and represents the velocity far—o. 2% vectors in{ — 1,1}%; thus each coordinate is shifted byl

Technical remarkWe assumed above that the eigenvec-" €ach step.
tors of U(k) can be chosen &~ functions ofk. We do not
know if this is always possible whed=2, but it can be
replaced by the following, weaker hypothesis, which we be- P.F.S. would like to thank the Statistical Laboratory, Uni-
lieve always holds: There exists an open sulidef K¢ with  versity of Cambridge, for its warm hospitality. Work by
full Lebesgue measurghat is, the complement is a null et P.F.S. was supported by the British Technion Society. This
such that the eigenvectofand thus the eigenvaluesan be  paper was completed during a program at the Isaac Newton
chosen infinitely differentiable i®. [For example, this holds Institute, Cambridge. We acknowledge interesting correspon-
if there is any poink whereU (k) has distinct eigenvalues, dence with Alex Gottlieb, which led to his nof&].
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