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We investigate corrections to scaling induced by irrelevant operators in randomly diluted systems near the
percolation threshold. The specific systems that we consider are the random resistor network and a class of

continuous spin systems, such as thg model. We

focus on a family of least irrelevant operators and

determine the corrections to scaling that originate from this family. Our field theoretic analysis carefully takes
into account that irrelevant operators mix under renormalization. It turns out that long standing results on
corrections to scaling are respectively incorr@eindom resistor networkr incomplete(continuous spin

systems.
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I. INTRODUCTION

In the mid 1980s Harris, Lubensky and co-workék.)

[1-3] developed a seminal field theoretic model for the uni-

PACS nunier64.60.Ak, 64.60.Fr, 05.70.Jk

MUY~ |x—x"| ™", (1.3

i.e., they display the so-called gap scaling. Furthermore,
Rammal, Lemieux, and Tremblay argued that thg. , are

fied description of percolating random resistor networksimportant for corrections to scaling and specifically that

(RRNs and a class of diluted continuous spin systésush

these are governed by exponeats= (m¢— ¢,,)/v. For ex-

as thex-y mode). Their approach, based on ideas byample, the average resistance was thought to behave as

Stephen4], turned out to be very fruitful. In the course of

the years, it provided a foundation for the exploration of

various critical properties, not only of they model and the

RRN [2,3,6,7, but also of random resistor diode networks

[8,9], the swiss cheese moddl0,11], and random networks
of Josephson junctiong12,13. Moreover, it fostered the
computation of several fractal dimensions of isotrodid —

16] and directed8,17] percolation clusters and aided study-

ing multifractality in isotropic[18—-20 and directed 21,22

percolation. Also, the HL model helped to improve the un-

derstanding of the vulcanization transitif2g3].
An important role in the HL model is played by the ex-

M@ ~|x—x"[#"[ 14> Aglx—x'|"“m|, (1.4
m
and the conductivity, as
S~(p=po)|1+2 Br(p—po)en|. (1.9

Here,t is the conductivity exponent= (d—2)v+ ¢, andA,
andB,, are nonuniversal amplitudes.
In this paper we take up the issue of corrections to scaling

ponente. It describes the power law behavior of the averaggn RRN anew. Our careful analysis reveals that previous

resistancéV & between two connected pointsandx’ at the
percolation threshold,

MB~|x—x"| ", (1.2

Here, v is the critical exponent of the correlation lengih
~|p—p¢ ~*, wherep is the probability that controls the di-
lution of the network ang=p, marks the critical point.

Originally [2] ¢ was thought to be the first membes,
= ¢4, of an entire family{¢,,,m=1,2, ...} of exponents
with the mth member describing theth cumulant of the
resistance,

MG~ |x—x'|¢m’?, (1.2

The ¢, were calculated to one-loop ordgt]. Shortly later
Rammal, Lemieux, and Trembl&§] showed that the higher
crossover exponenig,-, are irrelevant and that higher cu-
mulants scale as

work on this subject is erroneous and that thg-; are
meaningless, at least as far as corrections to scaling in RRN
are concerned. It turns out that the previous studies over-
looked a crucial feature of irrelevant field theoretic operators,
viz., that they tend to mix under renormalization. Taking this
subtlety into account, we calculate corrections to scaling for
the average resistance and the conductivity. Moreover, we
reexamine corrections to scaling in continuous spin models.
Due to a difference in the symmetry properties that plays no
role for the leading scaling behavior, the corrections to scal-
ing in continuous spin models and RRN are somewhat dif-
ferent. We determine the correction to scaling exponents for
the first cumulant of the spin orientations.

The outline of our paper is as follows. In Sec. Il we
present a few basics about the RRN andxhemodel. Then
we state the field theoretic Hamiltonian defining the HL
model and sketch its physical contents. Next we collect the
irrelevant field theoretic operators that lead to the corrections
to scaling we are interested in. These operators can be clas-
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sified into two groups, viz., specific operators and generafne order parameter fielet(x,é) lives on a continuous

percolation operators. Section Il briefly reviews known field § qimensional space with the coordinateslt is subject to
theoretic results for the HL model including the leading scal<ne constraint

ing behavior and the leading correction to it. In Sec. IV we
analyze the equation of motion implicit in the HL Hamil- _
tonian. This analysis provides us with several results that are 2 s(x,0)=0. (2.5
valid to arbitrary order in perturbation theory. Section V 0
comprises our renormalization group analysis of the specific R
operators. The general percolation operators are scrutinizethe variableg is a replicated analog of the original dynami-
in Sec. VI. In Sec. VIl we derive our final results for the cal variable 9 and takes on discrete values on a
critical behavior of the average resistance, etc. The main pad-dimensional torugthe replica spaoeFormaIIy,é is given
of our paper concludes with several remarks given in Seooy 6=KA 0, wherek is a D-dimensional vector with integer
VIIl. There are three appendixes. In Appendix A we deriVecomponent%“) and —M <k(®*<M. To recover the physi-
two useful identities that help us exploiting the equation of.4 situation, one has to take the replica lirBit=0, M
motion. App_endix_ B features some general_ considera_tions ON, s with MP—1 andA 6= 6,/\M. In this limit, 6, plays
composite fields in the HL model. Appendix C contains de-hg rgle of a redundant scaling parameter, i.e., the theory is
tails on the computation of Feynman diagrams. independent of its value. The parameteis proportional to
p.— P, i.e., it specifies the distance from the critical point.
IIl. THE HARRIS-LUBENSKY MODEL is proportional too~* or K1, respectively. Thed; , finally,

A. Random resistor networks and the dilutedx-y model are irrelevant field theoretic operatdiretationally invariant

. ) monomials constructed from the fundamental figldnd its
Both the RRN and the dilutedy model can be described yerjvatives in real and replica spacspecifics of the irrel-

by a Hamiltonian of the type evant operators will be given below.
Forw=f;=0, the HL Hamiltonian describes thé-state
H=—>, U; (89— 9, (2.1)  Potts model withN==;1=(2M)P. In this case we have
() Sy, the group of all permutations & objects, as the inter-

hered: is a continuous dvnamical variable pertaining to anaI symmetry group. liv+#0, this symmetry is reduced to
wherewv; 1s a Inuous dy ical vari pertaning O(D), the group of orthogonal rotations in the replica space.
sitei of a d-dimensional hypercubic lattice and the sum runs

) . . : A particular scaling symmetry of the Hamiltonian will be
over all nearest neighbor pairs on t.h's.’ Iattlcg. For_ the RRNImportant as we go along; namely, is invariant under the
¥; corresponds to the voltagé at sitei and is defined on

the interval[—os ], Here rescalingw—b w because the scaling factbrcan be ab-

T sorbed into the redundant paramefigr

Ui (V)=— g, J-V2 2.2 In the following we use thatS; - -~(A@)PZ; --
’ ’ ~[dPg. .. and abbreviate the latter integral fy---. The

is the electrical power dissipated on the bond betwieznd approximations involved here become exact in the replica
j, with o ; denoting the conductance of this bong,; is a  limit.
random variable that takes on the valweand O with prob-
ability p and 1-p, respectively. In the case of they C. Physical contents
model,9; is the anglep; that specifies the orientation of the

spin at sitei and is defined on the intervah, ). Here, To fully appreciate the physical contents of the HL model

it is helpful to consider the replica space Fourier transform
Ui,j(‘P):Ki,jCOS(P (23) . R

v(X)= | _exp(—i\-6)s(x, 6 2.6

with K;; being the exchange integral. In the diluteey v fé N )s(x.6) 26

model the exchange integral is assumed to take on the values
K and 0, respectively, with probabilify and 1—p. of the order parameter. For completeness we mention here

that the constrain{2.5) translates upon replica space Fourier

B. The Harris-Lubensky Hamiltonian transform into

Based on the Hamiltonia(R.1) HL derived a field theo- P(x)=0. (2.7
retic model that can be written as

This constraint is intuitively clear becaugg(x) is a con-

H:f d 2 (Isz_,_ E(Vs)2+ W(Vgs)2+ 933 stant and hence does not qualify as an ordgr parameter. It
7 \2 2 2 6 will play an important role in our renormalization group
(RG) analysis.
” The value of the quantity/y(x) is that its correlation
+Ei f'A']' 24 functions
For details on the derivation we refer the reader to R&f. G(x,x’;i)z(z,/xg(x) Yox(X)) (2.8
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provide convenient access to physical observables. In thEach replica space derivative is accompanied by a fagtor
case of the RRN one has to ensure invariance under the rescahmg:b w.
When considering thg-y model, we have to admit all of

> 2.9 the hypercubic invariants d¥, rather than oN%. Thus, we

C’ ' are confronted with a further operator with the naive dimen-

sion 8, namely,
whereR(x,x") =([Vy—V,,]?) is the macroscopic resistance , D
i ! e i W

between the pointx andx’ and(- - - ). denotes averaging AC:7J(;;1 (VZ(Q)S)Z.

. N2
G(X,X";\) = < exr{ -5 R(x,x")

over all configurations of the diluted lattice. Hence, (214
G(x,x";\) is a generating function for the moments of the ) )
resistance distribution Note that this operator breaks t&€D) symmetry in rep-
lica space.
MD(x,x")=(R(x,x )¢, (2.10 As we go along we will see that the famify,, . . . .43}

is associated with corrections to scaling of the average resis-
where the prime indicates averaging subject to the constrainance and conductivity in RRNs. Hence, we refer to this fam-

thatx andx’ are connected. ily as resistor specific. The larger fami{y4.,Aq, . . . A3}
For the dilutedx-y model the Hamiltonian(2.1) is not  is associated with corrections of the spin orientation cumu-
Gaussian and one is led to lants in diluted continuous spin systems. Thus, we say this
. family is spin specific.
= Z (-1 - 21\ (0) The next group of operators leads to corrections for both
G(XX";N) =\ ex Z’l WN(M([#’X—%/] ) , pure percolation and the respective specific behavior. We re-
(201]) fer to these operators as general percolation operators. The

pure percolation behavior results from the HL model in the
where(- - -)© stands for the cumulants with respect to thelimit w=0. Thus, the second group involves only operators
sverage .+ andk (1) =2 Y. ThusGlxx;X)  aiou Serales wilh respect to te repia space. They
is a generating function for the cumulants 9 y N P

, 1
CPxX)=({Lex e 1) e, (2.12 Ai=3 f (V29)?, (2.153
4
which measure the fluctuation of the angular varialﬂép’s)., 1
in particular, is related to the spin-wave stiffness. Ag=— _f s2V2g (2.15H
6J; ’ '

D. The irrelevant operators A;

1 2
The main goal of this paper is to analyze corrections to -/46:47( jﬁz) , (2.150
scaling. The leading correction to scaling for the average e
resistance, etc., is well known since it is described by the 1
so-called Wegner exponent, see Sec. Il B below. The next to Ay=—
leading corrections stem from irrelevant operators which al)g
scale asA;~u® at the upper critical dimensiod,=6,
whereu is some inverse length scale. These operators can be. . ; :

A . . Wwith naive dimension 8 seem to matter, namely
classified into two groups. The first group consists of opera-
tors having at least two derivatives with respect to the replica 1
space. The operators belonging to this group will be referred A8=EJQS(V2)ZS, (2.16a
to as specific operators. In the case of the RRN, the specific 0
operators are given by the(D) invariant composite fields

st (2.150

bAt first sight, three additional general percolation operators

1
W Agzzvzfasvzs, (2.16b
AO:§V2< fésvgs), (2.133 !
1 2\2 2
2 Ag=5(V9)7 | 85 (2.160
w 24\2 2 0
«41=7fé(VeS) : (2.13b
1
Ay ==V? f S5 (2.160
w 6 Ji
Ap=7 f sV2V3s, (2.139
0 However, these operators can be neglected in calculating cor-
rections to scaling. Upon Fourier transformation.4f and
A= — ﬂf S22 (2.139 Ag one sees that these two operators coincide for vanishing
s 6); ' external momentum. Thus, it is sufficient for our purposes to
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keep.A,s. Ag to A;, are merely total derivatives of lower- =u(d/du)inZ|; [25]. Solving Eq.(3.2) at the infrared stable
dimensional operators. Their Fourier transformed counterfixed pointu* leads to the scaling behavior of the vertex
parts are proportional to sonfpositive and everpower of a  functions[26],

external momentum and hence these operators cannot con-
tribute to a translational invariant Hamiltonian. This situation

is similar for 4y. We choose, though, to ke in our -
analysis for twooreasonsi:) To exempglgify explicﬁﬁ/othat this = ¢~ @2 O ox N} eV, uk 67w, ).
kind of operator does in the end not contribute to the correc- (3.3
tions to scaling(ii) Based on the scaling symmetries &f

we can draw exact conclusions ofy which then can be The exponentsp=+*, v=(2—-«*), and ¢p=v(2—*) [y*
compared to the results of our explicit one-loop calculation,= y(u*), «*=«(u*), and so ohare the usual critical ex-

TO{x N} 7,u,W, 1)

i.e., retainingA, allows for a later consistency check.

Ill. A BRIEF REVIEW OF KNOWN RENORMALIZATION
GROUP RESULTS

Many of the critical properties of the HL model are well

known. Substantial contributions stemter alia, from HL.

ponents for percolation and the RRN. In the present paper we
work to one-loop order. To this order* =2¢/7+ O(e2) and
the critical exponents are given by=—&/21+0(&?), v
=1/2+5¢/84+ 0O(&?), and p=1+&/42+ O(&?).

From Eq.(3.3) one can extract the leading scaling behav-
ior of various observables. Exploiting E@.9), for example,
it is straightforward to derive Eq1.3) for M{™

In earlier work we have investigated the HL by using the
powerful methods of renormalized field theory. Here we
briefly review parts of this work to provide background and
to establish notation.

B. The leading correction to scaling

The leading correction to scaling is, as usual, governed by
the so-called Wegner exponent. This leading correction
A. Renormalization and scaling emerges \_Nhen the renorm.aliz.ed couplings not e;xactly .

equalu* since the renormalization flow has not arrived at its

In Ref.[6] we have studied the HL model with all tie  fixed point yet. Such a case occurs typically when there is a
equal to zero. In particular we have determined the renormakinite momentum cutoff reminiscent of a nonvanishing lattice

izations spacing.
Taking the leading correction into account, the scaling
s—s=271%, (3.13  behavior, e.g., of the average resistafitd) becomes
: M~ |x=x"[#"T1+Alx=x'| ], (34
T—71=2"1Z 7, (3.1b
whereA is a nonuniversal amplitude and= 8'(u*) is the
o _ 4 Wegner exponentv can be calculated without much effort to
W W=2Z 7 ZyW, (3.19 third order ine upon using the three-loop result f@(u)
obtained by de Alcantara Bonfigt al. [27]. To the order we
gHE;:Z‘mZgg, (3.1d  are working here, the Wegner exponent is given by
— 2
=G g (3.10 w=e+0(e%). (3.5

Expressions similar to E¢3.4) hold for the conductivity and
in dimensional regularization and minimal subtraction ofsg on.

e-poles[24]. Here, the ° denotes bare, unrenormalized quan-
tities. The coupling constani is introduced because it is
convenient and dimensionless=6—d measures the devia-
tion from the wupper critical dimension.G,=1"(1 Several of the correction to scaling exponents originating
+¢/2)/(4m)%? is a dimension-dependent numerical factor.from the specific and the general percolation operators can
We have determined the renormalization constZntéu) to  be derived without resorting to an explicit perturbation cal-
second order im in a two-loop calculation. From the scheme culation. We will do so by analyzing the classical equation of
(3.1 we derived a Gell-Mann-Low RG equation for the ver- motion. The so obtained results have the virtue of being rig-
tex functionsI"™ with n amputated external legs, orous in the sense that they hold to arbitrary in perturbation
theory. In the remainder we will frequently encounter the
so-called scaling dimensiaox, of an eigenoperatad. For-
mally, x 4 is defined via the rescaling(x) = ¢*4A(£x) when
A is inserted into vertex or correlation functions at the criti-
cal point.

Before we turn to the consequences of the equation of
motion we take a little detour and extract a consequence of
the invariance ofH under the rescalingg— bw. It follows

IV. CONSEQUENCES OF THE EQUATION OF MOTION

Jd
S
=0, (3.2

a a AL Y
+B—+TKk—+Wl—— = ;
Bogt o twlo = Sy TV 7,u,w )

with the Wilson
= /.L(9 In T/a/.L|0,

functions B(U)=pudu/duly, «(U)
{(uy=pndnwWioulp,  and  y(u)
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from this rescalinzg_invaria_nce thatz in the_ cas_eﬁo, t_he _ <S(X1’§1)‘ ) 'S(xn,én)}"-H’(x»
operatow [ ;(V 4s)“ is marginal and its scaling dimension is
equal tod. Note thatA, results from the application of the n R R R
LaplacianV? to the this marginal operator. Consequently the :Z S(X=Xi){(S(Xy,01) - - S(Xi—1,0 - 1) F(X; , 0;)
scaling dimension of4, is given by =t

XA0=d+2. (41) ><S(Xi+l!0i+l)' "S(angn)>! (48)

where F is some composite field and where we defined
Now we turn to the equation of motion. It is well known

that for every independent equation, which follows from the
equation of motion, there is an eigenoperator of the RG with
a scaling dimension that can be expressed in terms of the o ] ) )
scaling dimensions of lower-dimensional operators. FotJpon renormalization, one finds that the identi4/8) im-
some background on four- and six-dimensional operators iRlies the scaling relation
the HL model we refer to Appendix B.

FH'(X)= fé]-‘(x,é) H'(X,6). (4.9

The classical equation of motion derived from the Hamil- Xz 001 =0d—Xg+ Xf:d+2_ 7 + X5, (4.10
tonian(2.4) and the constrainf2.5) reads 2
oM 9 1 where we used that;=(d—2+ »)/2. SpecifyingF as B,
H' ==s| = —V2s—wV2s+ 75+ > s?— NJ*SZ) =0 k=1,2,3, we obtain théas yet unrenormalizedperators
f=0 0
4.2 Bi-H'=—2(A;+Ay)— 3943, (4.113
In the following we work in the limitD—0, i.e.,, N By-H'=—2(A,+Ay) —39As, (4.11b

=(2M)P—1. We consider the lower-dimensional operators
By-H'=2(A1+2A,+ Ay +69(As+ As) —69%(Ag— A7).

By=wV?2s, B,=V3?s, By=H'. 4.3 (4.119
The scaling dimensions of the first two follow from their These combinations are eigenoperators of the RG, at least at
renormalizations as zero-loop order. At higher loop orders, the renormalization
might modify the combinations appearing on the right-hand
d—2+7n ¢ d+2+7 sides of Egs(4.11). Our explicit calculations presented in
Xp, = T+7’ Xp,= —5 (4.4  Secs. V and VI reveal, however, that this effect is absent at

one-loop order. More importantly, general RG argumécits

Ref. [24]) guarantee that this effect has no impact on the

scaling dimensions at any loop order. From E4.10 we
(4.5 readily deduce that

The scaling dimension d8;,

XBSZd_2+ 7753,

: . : ¢

is not the same as the scaling dimension of the opeijor X314H'=d+ —, (4.123
=[,8%. B, belongs to the trivial representation of the per- v

rnutauon symmetry .grouBNJ vvhereas the operatof% with X, 1= d+2, 4.12
i=1,2,3 transform likes(x, 6), i.e., they belong to the fun-

damental representation 8f; (permutations ofN objectsq; X, 10/ —d+2— 1. (4.129

with constraint={L,¢;=0). Hence,7;, remains to be de-

termined. In Appendix A we derive a Ward identity, Ed. Two points are worth being emphasizét:the scaling rela-
(A17), that implies tions (4.12 are correct to arbitrary order in perturbation
theory. (i) Equations(4.11) and(4.12 allow us consistency
_&™n 4.6 checks of our explicit diagrammatic calculations. This is par-
ticularly valuable because these calculations involve fairly
many diagrams and one is confronted with a certain risk of
to arbitrary order ine expansion. Consequently, we obtain algebraic errors or erroneous symmetry factors.
the exact result To prepare the ground for the announced consistency
checks we now evaluate Egel.12) to one-loop order. Ex-
_ d+2-79 ploiting the knowne expansion results fog and » we find
3 2 4.7) that the scaling dimensions of the eigenoperafrs+{’ and
Bz-H' are given to the order we are working here by
Now we can extract the actual consequences of the equa- 4
tion of motion for our prime targets of interest, viz., the _ & 2
eight-dimensional operaFt)ors. In A%pendix A we show that Xp,.nr=d+2= 57 +0(e), (4.133

XB

026118-5
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XB3_H,—d+2+—+O(.92) (4.13b

It is a nice little exercise to derive the rest13h explic-
itly in a one-loop calculation. An insertion df into the

two-point vertex functio®) leads to one-loop order to the

singular part

PO ((p=0})= -1+ 2 (4.14

By €
0,12)
of the bare function. Thus, one finds an extra factor 2 in the
singular part in comparison to a corresponding insertion of

Bo. Renormalizin983225383 we find, usingZ= 1+ u/6e,
thatZBs=1—11u/6s. From this result we eventually get

1le

78,= 57 TO(e %), (4.19

which then leads to Eq4.13h.

V. RENORMALIZATION OF SPECIFIC OPERATORS
A. RRN specific operators

PHYSICAL REVIEW B59, 026118 (2004

% 0,1,2) 0,1,2)
A \‘\__/I B
A

/ N\ / N\

FIG. 1. Diagrams contributing at one-loop order to the renor-
malization of the RRN specific operators. These diagrams are ob-
tained by first decomposing the bold one-loop diagrams into their
conducting diagrams and by then inserting the irrelevant operators
in the appropriate places. The bold lines symbolize bold propaga-
tors, the light lines stand for conducting, and the dashed lines for

To determine the renormalizations of the Operatorﬁnsulatlng propagators. The labeisandB refer to conducting dia-
Ag, ... Az we study their insertions into the vertex func- grams before insertions are made and will be used in the appen-
tions F(”) We proceed in the spirit of our previous work on dixes. The dots with wiggly lines stand for an insertion(@f A,

the RRN. We use
G(p,X)={(¥x(p) Y5 (—p))rre) (5.)

as the Gaussian propagator, whesgp) stands for the Fou-
rier transform defined via

Yr(x)= f pe”"*?bx(lo)- (5.2

Here, [, is an abbreviation for (2)~ %2fd%p. (... )(tmune)
denotes averaging with respect to the Gaussian p&it afd
all f,=0. Explicitly, our propagator reads

- 1_5);0 1 6}:,0
GlpN)=F—=—=F5—=5————. (63
pc+wWA“+71 P tWA+T ptT

Note that on the right-hand side of E&.3) the propagator is

(1) A1, (2) A}, and(3) Aj, respectively.

quired diagrams, see Fig. 1, in dimensional regularization, at
least to one-loop order. For convenience, we work with the
rescaled operators

ki/2
Ai/:(_) .Ai (54)

instead of the original4;. The k; are ky=k;=k,=0 and
ks=1. The benefit of this rescaling is that the primed opera-
tors all have the same naive dimension, vi4/,~ u%"2. Our
one-loop calculation sketched in Appendix C gives for the
singular parts of the primitively divergent vertex functions

with operator |nsert|on§A, , =2 and 3, the results

- - S5u
T3 (P1.P2 N) =WAp?| 1- —), (5.53

decomposed into two parts: the other with unrestricted val-

ues of\ (conducting and one withx =0 (insulating. The

ol - u(p® pitp
decomposition of the propagator leads to a decomposition of~ Fj (P1.p2.N) = WKZ{W?\Z( 1- g) - —(%+ %
each of the originalbold) Feynman diagrams into an assem-
bly of diagrams made of conducting and insulating propaga-

&€

6¢e
|

(5.5b

tors. These conducting diagrams resemble essential features

2 2
of real resistor networks. One can say that they have a real- —F(z)(pl P, X):sz[pﬁpg( _ 3u )
AP, 2

world interpretatior]6-9,11,13,15-17,19—-23Upon recast-

10e

ing the conducting and insulating propagators in the
Schwinger representation and using the continuum limit in
the replica space witlb—0, it is easy to calculate all re-
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) _ul2[5ayn2 pf+p§ Bare, unrenormalized quantities are independent of the
—F(jz(pl,pz,)\)= —Ww\? - |\ "5 + s | gxternal length scale parameter Thus, we have the iden-
(5.50 tity
Jd e - o o o
wherep=p; +p,, and i (0N 700 ) =0, (512
) 1y
FA()({p}’{)‘}) 0, (5.69 which translates via the renormalizatiof®1) and(5.9) into
5 the RG equation
wX N2 ., o, 9 9
- =1 u — W—+B8——=
rOUp )= ——— 2 (56h Bop TR W T B T oY
Aq 3 2¢e
, XT R ({x,X}; 70w, 1) =0. (5.13
“ Wzl N 2132 The matrixy is given by
-®{pt N} = : : -
P =—3—"7 (5.69 . .
y=—sk+u— MDD+ (kMO -MDk). (5.14
s L 2= Tu= 2= = =
WZ«l )\iz 31y Here,k is the diagonal matrix with the diagonal elemekgs
_F(j)é({p},{;(}): 3 1- §> (5.60 ki, kp, andks. To obtain a fixed point solution to the RG

equation(5.13 we recasty* = y(u*) in terms of its eigen-

In writing Egs. (5.5 and (5.6) we have dropped inconse- values and eigenvectors,

quential factors /12 "% and (/ u?) ~*2(u?1G,)Y? re- 3
spectively, for notational simplicity. = > [m) 7(m|, (5.15
For the purpose of renormalization it is handy to collect = m=0

the operators in a vector .
P where 7,,, are the eigenvalues afd| and|m) are the cor-

A'=(Ab, .. AT (5.7 rgsponding left and right eigenvectors. A RG equation for an
- eigenoperator

Due to the mixing, a proper renormalization requires an en-

tire renormalization matriZ. We set Om:<m|£ (5.18
.o ) o is then readily derived from the so-obtained fixed point ver-
A=A AT=ZA". (58 sjon of Eq.(5.13 by multiplication with(m|,
This means in turn that the vertex functions with an insertion d L 0 AL
of A’ are renormalized by '“ﬁ'“( T T W T S 1t m
FS?—J‘?, r§)=z“/zf§,’. (5.9 XT@ ({x,X};7,u* W, ) =O. (5.17

The ¢ poles are eliminated by minimal subtraction. To this Using the method of characteristics, it is straightforward to
end, we introduce the Laurent expansion of thenatrix, solve this RG equation. Augmenting its solution with a di-
a mensional analysis to account for naive dimensions we find
1 the scaling form
Z=1+> —M®, (5.10
ST k= .
Fg‘;({x,)\};r,u,w,p)

Our one-loop calculation leads to =€‘(d‘2+’I>“’2+erg‘)({€x,ﬁ}; e 69, )
m

0 0 0 0
(5.18

u u u u®?
90 ) 15 5 with the scaling dimensior,, of the eigenoperatap,, given

b
MM = u 1w 17u 2w Y

90 10 15 4 Xm=d+2+ 70, (5.19
502 4ut? i At this stage our scaling solutiof.18 is rather formal,
45 15 4 and we still have to determine the eigenvaluegbf From

(5.11 Egs.(5.11) and(5.14) we obtain
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0 0 0 0
u u u us?
9 2 15 2
y= u 19u 17u 212 (5.20
| "o "0 13 4
5202 4u?  17u e
45 15 4 2

At the infrared stable fixed poini* this matrix has the ei-
genvalues

70=0, (5.213

mm=—ls =%—2, (5.21b

7= (23-8\30 755+ 0%, (5.210
3= (23+8130) —— + O(£?). (5.219

105

The left eigenvector belonging tg, reads(0|=(1,0,0,0),

i.e., Ay is an eigenoperator of the RG and its scaling behavdefined _1by 5
ior is governed byy,. From Sec. IV we know rigorously that —5€/21)" [2(2—4&/21)— (2—&/7)]=1+0(&?).

the scaling dimension ofly is x,=d+2. Hence, Eq(5.213
holds to arbitrary order is expansionz, is associated with
the left eigenvector(1|=(0,2,2,3(*)'?). Thus, we can
identify its eigenoperator witl8;- + ', cf. Sec. IV, and con-
clude that Eq(5.21b is valid to arbitrary order ire expan-
sion. To one-loop orderp,; is given by n,=—4¢/21
+0(&?).

We observe that our one-loop results gy and 4 are in

full agreement with our nonperturbative results deduce
from the equation of motion. In other words, our one-loop.
calculation fulfills important stringent consistency checks. Of
course, these checks do not guarantee the correctness of S
results fory, and ;. However, they reassure us that impor-
tant features of our calculations, e.g., symmetry factors, are
correct. In this indirect sense, the consistency checks are

favor of our results forp, and 7;.

To extract the sought-after corrections to scaling we nee(Bh
to know the scaling behavior of the coupling constants asso-
ciated with the RG eigenoperators. The renormalized contri

bution of the eigenoperators to the Hamiltoni&h reads
Jd = v mOm . The flow of the coupling constants, under
renormalization is therefore describeddy(l) =1“m ,, with

the correction to scaling exponents

(5.22

Om=Xm—d=2+ 7.

PHYSICAL REVIEW E69, 026118 (2004

w,=2-0.198¢+ O(&?), (5.230

w3=2+0.636c +O(&?). (5.230
Before we turn to the general percolation operators, we
find it instructive to briefly reanalyze the work on corrections
to scaling in RRN by HL. If one erroneously neglects the
coupling of the operatord; to the other operators under
renormalization one is led to a “scalar” renormalization fac-
tor Z,, that corresponds to the matrix elemeht; of Z.
Thus, one would find to one-loop order B

Ay— Ay =Z5 LAy, (5.24)

1 (1) 2 u 2
Zy =1+ -MP+0(U?)=1- —+0(u?), (529

u

YHL= — 2+O(U2)- (5.26

The anomalous dimension was thepy = vy .= —¢l7
+0(&?), which results in an exponenby =2+ 7, =2
—&l7+0(&?). The corresponding crossover exponeft

HL follows as ¢,=2¢—vwy =(2

Our
analysis above shows clearly that this exponent has no mean-
ing as far as corrections to scaling in RRN are concerned.

B. Spin specific operators

To analyze corrections to scaling in continuous spin sys-
tems, we have to take into account the operatpdefined in
Eq. (2.14). This operator breaks th@(D) symmetry in rep-
ica space. In this sense, its symmetry is lower than that of
he resistor specific operators. This lower symmetry has an
important consequence. Though the renormalizationdgf
erates the operatoy$, ... .43, these do not in turn
generated. under renormalization.
This structure is very similar to the one we encountered in
sfudying multifractality in RRN 19,20 and random resistor
diode networkq21,22. In the field theoretic description of
ese networks, there are dangerous irrelevant operators cor-
esponding to the multifractal moments of the current distri-
bution on the networks. These operatarasters generate a
whole bunch of other operatofservants The servants, on
the other hand, do not generate their masters. All servants
must be taken into account in the renormalization process, at
least in principle. However, the renormalization matrices
have a particular, simple structure. Due to this simple struc-
ture, the scaling index of a master operator is completely
determined by a single element of the renormalization

After all, we find these exponents stemming from the RRNmatrix. Hence, for the practical purpose of calculating a

specific irrelevant operators to be given by
wo=2, (5.233

w1=dlv, (5.23b

master’s scaling index, the servants can be neglected.
To facilitate the renormalization of the spin specific op-
erators, we introduce the vector
As= (A, Ag, - -

AT (5.27)
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A proper renormalization requires ax5 renormalization
matrix Zss which we introduce by setting

o
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AssH Ass’ Ass: Essﬂss- (5.28
The arguments given above imply thag is of the form O]
N ®
ZC ic _@f/
éss: o' z
17u

% )
(6
(6)

whereZ is the renormalization matrix defined in E¢.8), @
and 0=(0,0,0,0). The elements of, must be chosen, in
principle, to cancet poles associated with the servants gen-

AK&@ /A(jb

Z.=1+ —+0(u?). (5.30 @

erated byA. . In practice, however, we do not need to deter-
30e \ \

: (5.29

mine these elements for computing the correction to scaling
exponents. In a one-loop calculation we find

The matrixyss, Which is given up to an obvious modification

by Eq. (5.14), inherits the simple structure @ss. As a con- )
sequence, the eigenvalues g at the fixed pointu* are / 7/

70— 13 and .. From Eq.(5.30 we obtain

®

FIG. 2. Diagrams contributing at one-loop order to the renor-
176 malization of the general percolation operators. The bold lines sym-

Ne=———=+ 0(82)‘ (5.30) bolize bold propagators. Single dots accompanied by a wiggly line
105 respectively stand for an insertion@) A ,, (5) As, and(7) A7 .

An insertion of A{ is depicted with help of two dots and two

wiggly lines. Note that we have, in contrast to Fig. 1, displayed bold

instead of conducting diagrams to save space.

This eigenvalue leads finally to a correction exponent

17e
wc=2—1—05+0(82), (5.32
operators coincide in the end with the results of R28§].
in addition towg, . . . ,w3. The crossover exponeit, of HL The general percolation operators affect the renormali-
is related tow, via ¢.=2¢—vw.. We obtain to one-loop zation of the two-, three-, and four-point vertex functions.
order To asses this effect, we have to calculate these vertex
functions with insertions of A, to A;. The Feynman
be=1+ i+0(32) (5.33  diagrams that contribute to these vertex functions are sum-
105 marized in Fig. 2. To calculate these diagrams, we decom-

pose them into their conducting diagrams and then take the
limit w—0. Then, the conducting and the insulating propa-
VI. RENORMALIZATION OF GENERAL gators can be .replaced by simpleqlinli(pz) propagator;. For
PERCOLATION OPERATORS most of the c!lagrams, dec_omposmc_m culminates mto_ to a
simple numerical factor. A little caution must be exercised,
Now we turn to the renormalization of the operatorshowever, to distinguish between terms correspondinglgo
A4—Aj7. The corrections to scaling arising from these operaand 4,, respectively. To foster this distinction, we keep the
tors have been calculated a long time ago by Aenil [28].  gependence of these two operators on the replica currents

Nevertheless, we think that the general percolation operatoigypiicit. This dependence is different in the way that the sum
deserve some attention here for the following two reasons. | o ihe external replica currents, say, . . . u, vanishes,

(i) Amit et al used the usual Potts model formulation of . . . S A T
percolation that is different from the RRN formulation in the viz.,  As is  proportional to S=(5y,+5, 6 5}‘3”430
way constraints on the order parameter field are imple-m Ox;+x5.0 Ox,+x,,67 X +X,.0 05, +1x,,0)/3 Whereas.A; is
mented, viz.S ;s(x, 8) =0 versusyg(x) =0. It seems desir- Proportional toF =&y . ¢ X+,
able to have a treatment of both the specific and the general As for the specific operators, it is convenient to rescale
percolation operators that is self-contained within one formuthe general operators. To be specific, we rescale the general
lation. percolation operators according to E§.4) with k,=0, ks

(i) Because the calculation is somewhat involved, two=1, andkg=k,;=2.
independent approaches help to guarantee the correctness ofOur one-loop calculation gives for the two-point functions
results. In fact, our results concerning the general percolatiowith insertions

in conformity with the value given by HL.
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~rdeh=p", (6.1
) 1/2
—Thdph=-p'g . (6.1D
~Tdph=0, (6.19
-T2 dph=0, (6.1

where we have dropped inconsequential factarg.f) ~*/2

for notational simplicity. For the three-point functions with

insertions we find

¥ ph=————. (6.29
3
>0
r®{ph="— (1——) (6.2
Af 3 3e/’
2 P 112
(3) i=1 u
_F_A’({p})_ 3 57 (62C)
3
2
@ < P e
TP == —3— 5. (6.2

Here, we omitted factorse{u?) ~*?(u®/G,)*2. Our results
for the four-point functions with insertions read

@ _824u2 I:36u2 63
A‘;({p})— . o (6.3a
rpn--s T 2T e
Ag P e g '
9 en=g1- 24| ¢ Y 6.3
Aé({P})— . - (6.39
(4) 6u 12u
_FA;({p}):S?-FF 1_T ) (6.3d)

where we dropped factors{u?) ~*2u°/G, .

PHYSICAL REVIEW E69, 026118 (2004

with the latter matrix resulting from Eq$6.1)—(6.3) as

T T T
/
iz 5_“ _ % qeud? a2
9 12 2
ZQP: ul/2 17u . (66)
0 —— ——_ & —4u
3 3
1/2 35U
0 —_— -6u ——
2 3 ¢

At the infrared stable fixed pointyy, has the eigenvalues

74=0, (6.79

7s=—17, 6.7b

76— (26 \889) 5+ O(c?), 6.79
= (26+ J@)Zil+0(s2). 6.7

The eigenvaluesy, and 75 are associated with the
left  eigenvectors (4|=(2,3u*)¥20,00 and (5|
=(1,3@u*)*? —3u*,3u*), respectively. By comparison
with thew—0 limit of Egs. (4.11), we identify B,- H' and
Bz-H' as the corresponding eigenoperators. It follows that
Eqgs.(6.79 and(6.7b are correct to arbitrary order in pertur-
bation theory. The eigenvalues stated in Hfs?) entail the
correction to scaling exponents

w4=2, (6.89
ws=2—17, (6.8b
wg=2—0.18%+0(&?), (6.80
w;=2+2.65& +0(?) (6.80)

in full agreement with the results of Amdt al.

VIl. CRITICAL BEHAVIOR OF THE AVERAGE
RESISTANCE, ETC.

Now we can harvest the results of our RG analysis to
write down scaling expressions, including the most impor-
tant corrections, for key observables for the RRN and the
x-y model. We will elaborate on the RRN in some detail and

The remaining RG analysis proceeds completely analoagssemble step by step the generating funct@(x,x’,\)
gous to that for the RRN specific operators. The RG equatiofrom which we then extrad!) ands.. To cover spin mod-

governing the general percolation operators has the samgs the generating function requires some modifications that

structure as Eq(5.13. Of course, here we can set=0.
Basically, we just need to make the replacements
A= A= (A,

A%, (6.9

(6.9

X7 Yop:

will be explained.

A. Random resistor networks

The generating function has two kinds of ingredients, viz.,
the two-point correlation function without insertions and the

026118-10
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set of two-point correlation functions obtained by inserting
each of the RG eigenoperators. From E§s3) and(5.18 as o(L,7)=|?
well as its counterpart for the general percolation operators
we collect that

II(L/&)+E(LIE)| 7"

7
+ 2 BdL/g)|r] et

. , (7.9
G(x,x",\)
R whereé~| 7| ™" is the percolation correlation length aifj
_ pd=2 2 ’ — ¢l v, 2 . . . .
= €920 GA(Ex=x[ €7 "wWh?) =, and theE, are scaling functions with the properties
7 ) _ _ const for x<1
+k21 0l HGE(L]x=X'| £ WK+ HO~E~E¥)~) a2 o yoqp (D

(7.1 Above the percolation threshol@<0) the RRN behaves on
length scales large compared to the correlation length
Here, we used that the two-point correlation function is~|7/=* |ike a homogeneous system with conductivify
the inverse of the two-point vertex function and we appliedHence, we may write fot.> ¢ that
Fourier transformation to switch from momentum to posi-
tion space. The ellipsis stands for contribution from ir- S(7)~L2 (L, 7). (7.6
relevant operators with a naive dimension higher than 8.

Next we expand Eq(7.1) in a power series iwN? as well ~ Merging Eqs.(7.4—(7.6) we finally get

as in the deviatioru—u* from the fixed point. Choosing -
¢=|x—x'| ! and setting all nonuniversal constants equal to t Vo Vo
1 for notational simplicity we get the leading terms 2|7 1+B] g‘l By 7l ' 7.7

G(x,x’,X) with nonuniversal amplitudeB and B,,. Of course,B van-
ishes foru—u* and theBy vanish forv,—0.
—|yv_y'|—(d=2+17) N2y | DIV
=x=x [[1+W)\ x| B. Spin systems
X (1+[u—u*]|x=x'| @+ ) F_or spin systems suc_h as tkey model we had to include
the irrelevant operatad,. into our RG analysis because these
R ! systems are, unlike the RRN, nGt{(D) invariant in replica
+|<§—:1 W)\2|X—X'|7wk+¢/"+"'+k§_:4 |[x—x"| " space. Thus, the RG has nine irrelevant eigenoperators of
N N naive dimension 8 and the counterpart of Ef.1) has an
extra term that features the exponent. By applying basi-
><[1+W)C2|x—x’|‘f”V+ ce ] } ) (7.2 cally the same steps as for the average resistance we find that
the first cumulant of the angular fluctuations scales as

3

By virtue of Eq.(2.9) we know that we now can extract the
average resistance by taking the derivative with respect to Cfpl)~|x—x’|¢” v

—\2/2 and then setting = 0. After all, we arrive at

14+ C|x—x'| 7 “+ C¢x—x'| " “c

7

+ D) Cylx—x!| k4 .- |, (7.9
k=1

MG~ |x—x"|#"| 1+ A|x—x'| ¢

whereC, C., and theC, are nonuniversal amplitudes.
Equation (7.8) concludes our results on corrections to

scaling. However, our analysis also sheds light on the second

cumulant of the angular fluctuations. Equati@ill) implies

Here,A andA, are nonuniversal constants. We opted to writethat we can derive?) via taking the derivative with respect

them down explicitly here to make closer contact to Eq.to K,(X). This homogenous polynomial in exclusively

(1.4). A goes to zero fou—u*. The A, vanish forv,—0. appears ind.. We saw that4. has the property of being a
Next we turn to the average conductivity of the RRN. master operator whose scaling behavior is governee by

Commonly, the conductivity, of percolating systems is de- Consequentially, we obtain that

fined with respect to a bus bar geometry where the network

is placed between two parallel superconducting pléties Cfpz)~|x—x’|¢’c’”+ cee (7.9

electrodesof areal9 !, a distancd. apart. From the above

we expect that the average conductancef this finite-size  Here,.A; gives rise to the leading scaling behavior, i.4.,is

system scales as a dangerous irrelevant operator as falczi,%) is concerned.

7

+ ) AYX—X| Tk (7.3
k=1
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Of course it is interesting in this context to ask, what the|x—x’| s for increasing terminal separation with the cor-
leading scaling behavior of the higher cumulants might be. Itection to scaling exponemig=1—¢&/21+ O(&?). This cor-
can be shown to arbitrary order in perturbation thel@9],  rection falls off slower than the corrections induced by the
that specific and the general percolation operators, i.e., this cor-
0 s rection represents the next to leading correction if a surface
Ce ~[x=x (7.10 is present. At the ordinary transition we found a correction
|x—x’|*‘”§ with ws=3—23¢/105+ O(&?), i.e., this correc-
tion vanishes faster than any of the corrections induced by
the specific and the general percolation operators.

where they, are the critical exponents of the multifractal
moments

Ib 21\ 1
Mf')=<2b (T) > ~[x=x'|9 (7.0 ACKNOWLEDGMENTS
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expansion resultl8—2Q for i, (the entire family of they,

is known to two-loop ordef19,20) are in full agreement. APPENDIX A: USEFUL IDENTITIES
The upshot here is that Eq7.9) represents merely an in- . )
stance of the general rest.10. Equation(4.8) can be regarded as the centerpiece of Sec.

IV. In this appendix we first derive a Ward identity that re-
lates the vertex functions with a single insertion of the op-
eratorH ' to the vertex functions without insertion. Then we

We have studied corrections to scaling in RRN and conobtain Eq.(4.8) as a corollary by slightly modifying our
tinuous spin models. As far as the leading scaling behavioprevious arguments.
and its leading corrections are concerned, the HL model pro-
vides a unified description of both systems. Being interested 1. A Ward identity
in next to leading corrections, however, we had to consider
distinct sets of irrelevant operators for the two systems.

In both systems, we found the typical mixing of irrelevant
operators under renormalization. Thus, we had to compute an Hy=H—(h,s), (A1)
entire renormalization matrices. This is the reason why we
restricted ourself to considering irrelevant operators with awith 7+ given by Eq.(2.4) with f;=0 and where we have
naive dimension 8. At least in principle, one could analyzeused the abbreviated notation
higher corrections to scaling originating from irrelevant op-

VIll. CONCLUDING REMARKS

Now we augment the HL model with an external field,
i.e., we consider the Hamiltonian

erators of naive dimension 10, 12, and so on. However, in -~ d > -
these cases the renormalization matrices become prohibi- (h,s)—f d xféh(x,e)s(x,e). (A2)
tively big and their computation and diagonalization require
enormous effort. To facilitate our argument, we consider the shift
One of the spin specific operators, namelly,, is quali- . R .
tatively different from the remaining irrelevant operators un- S(X,0)—s(x,0)+c(x,0) (A3)

der consideration4, has the properties of a master operator. i . ) -
Hence, it is sufficient to calculate a single renormalization®f the order parameter field. This shift leads to the modifica-
constant to determine its scaling dimension. This can be donn
in an elegant way and with moderate effort up to two-loop
order[30]. One has to bear in mind, though, that the correc-
tions to scaling are not only resulting fram, but also from . o 1o ikonian. Here and in the following we omit in-
the other spin specific as well as from the general percolation . 2 )

. ) consequential terms of ordéq(c”). By virtue of Eq.(A4) an
operators. Overall, it would require a lot of work to extend L .

X . application of the shift to
our results on corrections to scaling to two-loop order or to
include irrelevant operators of higher naive dimension.
It is interesting to compare the corrections to scaling ((h,s)”):f Ds(h,s)"exp(—Hy,) (A5)

stemming from the specific and the general percolation
operators with the corrections arising from the Presencgie|ds
of a surface. In Ref[7] we studied a semi-infinite RRN at
the so-called special and ordinary transitig@9]. We cal- ((h,s)"(c,H}))=n(h,c){(h,s)"" ). (AB)
culated the corrections a1 induced by the surface when
the terminal pointx and x’ are located on the surface. At Dividing both sides of Eq(A6) by n! and summing from 1
the special transition we found a correction that vanishes a® « leads to

Hp— Hn+(c,H}) (A4)
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Zenplh]=(hc)2h], (A7)
where
e
zii=(exhs)=3 O (g

is the generating functional for the correlation functions of
the order parameter field and
= (e Hp)(hs)M
Zennlhl= > ——5——= (A9)
h n=1 n!

is the generating functional for the corresponding correlation

functions with an insertion ofd,#},). Defining
Z[h,e]=Zcnplhl+ Z[h] (A10)

and switching to the generating functional of connected cor
relation functions,

Wlh,c]=In(Z[h,c]), (Al11)
and so on, we find
W[h,c]=W[h]+(h,c). (A12)

Moving over to the generating functionfl h,c] of vertex
functions via the Legendre transformation

I'[s,c]+W[h,c]=(h,s), (A13)
with
E:h, 2V—s, ﬁz_ﬂ\’1 (A14)
os oh éc éc
we arrive at
I'[s,c]=(h,s)—W[h]—(h,c). (A15)

Now we take the functional derivative with respectddo
obtain the identity

ol
FH,:E:

ol

~5s (A16)

between the generating functiong},, of vertex functions
with an insertion ofH{' and the generating function&l of
the usual vertex functions with out any insertion. Finally, we

taken functional derivatives with respect to the order param-

eter field to obtain the Ward identity

I =—r0+D, (A17)

2. Derivation of Eq. (4.8
In order to derive Eq(4.8), we just need to modify our

PHYSICAL REVIEW &9, 026118 (2004

field and possibly its gradients in real and in replica space.
Consequentially, we have to replace E46) by

((h,9)"(c.Hp))y=n{(h,c)(h,s)"" ), (A18)

where we once more have omitted terms of or@c?).
Upon takingn functional derivatives with respect to the ex-
ternal field we obtain

(S(Xq,07) - - S(Xn, Bn) (C,H "))
221 (S(%q,6y)- - - S(X;_1,6;-1)¢(x;,6,)

XS(X; 41,61 41) - - S(Xn, 0n)). (A19)
Settingc(x, ) = a(x, 8) F(x, 6), wherea is independent of
the order parameter field, and taking the functional derivative
with respect toe we obtain

(S(Xq,01) - - S(Xn, 6n) F(X, 6)H ' (X, 6))
2241 S(x—x;) 8(6— 5i)<S(X1,51)' S(Xi—1,6;_1)

X F(X,6)S(X 11,6 +1) - - -S(Xn,6,)).  (A20)

Equation(4.8) is now readily obtained by integrating ovér

APPENDIX B: COMPOSITE FIELDS IN THE HL
AND THE POTTS MODELS

In Sec. IV we exploited information on lower-dimensional
operators to draw conclusions on the scaling dimensions of
several eight-dimensional operators that are associated with
corrections to scaling. This appendix is intended to provide
some background on the RG behavior of the lower-
dimensional operators and to establish some of the results
that serve as an input in Sec. IV.

The following arguments refer primarily to the HL model.
Since the HL model reduces to the usual Potts model with
N=(2M)P states upon setting=0, however, our reason-
ings also apply to the latter model. Being interested in the
Potts model, one basically just has to get 0 in any of the
formulas in this section. To make closer contact to the con-
ventional notation for the Potts model, one may replace
s(x,0) by s(x) with i=1,... N [along with h(x,6)
—h;(x) for the external field and so ¢and the integraf ;
by a summation over.

1. Four-dimensional operators

We start by considering composite operators with the na-
ive dimension 4. The simplest operators of this kind Bge
By, and B,. The scaling dimensions of these operators fol-
low directly from known RG results. We will revisit these
operators briefly towards the end of this section.

By belongs to the trivial representation of the permutation

arguments of preceding section slightly. Here, we assumsymmetry group. Its counterpart belonging to the fundamen-

that ¢ is a composite field comprising the order paramete

ttal representation is
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1
C =52——f s2.
1 N é

The scaling dimension of this operator does not follow im-
mediately from the known results. It will be derived in the
following. We consider the Hamiltonian

(B1)

1 2 1V 2 WV 2
EO’S +§( S) +§( ¢S)

H,= f ddxz
7

,
To

557+
+%S3—hs], (B2)

whereh=h(x, 6) is an external field and-= o(x, 6) has the
property[ ;0=0. Due to the extra terms, we need renormal-

PHYSICAL REVIEW E69, 026118 (2004

h'= h—(29A+Zg)a'c—(29A+Zg)ng— (Bg+2Z,)rc
—(Cg+2)V?c—(Dg-2Z,)wVac. (B9)

Demanding that the renormalizéd retains its original from,
cf. Eq. (B6b), we obtain

aclf gl (B10a
29 g’
z-1 Zu—
c==_- b= (B10b)
9 9

for the additive renormalization constants. Now we know all

scheme(3.1). viz. a;lte down the renormalized version of the Hamiltonidp,
°© __—=-1
o—o=2""Z,0, (B39 H,=H+ (o, A)+0(c?), (B11)
h—h=2Z"Y(h+Ac?+Bro+CV2c+DwV20). where
(B3b)
Zyl 5, 1 ( | Z,~1 Z-1_, Z,~1 _,
In order to determine the renormalization fac#y and the A= 5 Sl N S+ ST ST WVs
. L . 0 g
additive renormalization constamsto D, we perform a shift (B12)

s=s'+c, (B4)

where c is assumed to satisfy the conditigipc=0. This
shift transforms the Hamiltonian so that

Hys 7,0,W,g,h]=Hs", 7,0 ,w,g,h"]

+H,[c,7,0,w,9,h], (B5)

where
o' =o+gc, (B63a)
h'=h—rc—oc+VZc+wVic— gcz. (B6b)

In other words, the Hamiltonia#{,, is invariant in form un-
der the shift(B4) up to an inconsequential term that does not
depend on the order parameter field. Note that the shift ne
ther modifiesT nor w or g. Since theZ factors depend only
on the dimensionless variantof g, it follows that none of
the Z factors is affected by the shift.

Equation(B4) implies that the renormalized version of
is given by

c=2"Yx, (B7)

Exploiting this we find by renormalizing E¢B6a) that
Z,=2,. (B8)

Renormalization of Eq(B6b) yields

is the fully renormalized version of the operaf@y. Naively,
one might have expected that a mere multiplication &gttt
was sufficient to renormaliz®,. Equation(B12), however,
shows clearly that this is not the case.

Next we determine the scaling dimension 4fvia the
scaling behavior of its coupling. Upon taking the deriva-
tive of Eq. (B3a with respect to the external inverse length
scaleu we obtain

K=pd,olo=y— 7. (13
Recalling thaty* =5 and deducing from
B=(—e+3y—2y,u (B14)
that yy = —/2+37/2 we find
~, 77
i- K= 2 (B15

as the fixed point value ok. Taking into account that the
naive dimension ofr is 2, we get that the RG flow af in
the vicinity of the fixed point is given by

o()=cl Yo (B16)
with
d—2+7%
Vom—5 (B17)

Finally, this leads to
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d+2— IH
xA=d—yU=Tn (B18) EZJ ddxfézs, (B25)

for the scaling dimension afl. Note thatx 4 is identical to

the scaling dimension of the operat8s. where

We have to point out thatl is not an eigenoperator of the
RG. This fact follows from two observation§) B;="H' is 1 4 uz, uz’ 5 uz,, 5
an eigenoperator, as can be seen from the Ward identity 5= g (Zg+2uZy)s +FTS+ ?(VS) +T(Ves)
(A17), and(ii) A is just one ingredient 0B, (B26)

Bs=gA+ 15— V2s—wV?s, (B19)
is the fully renormalized versio@,. Here and in the follow-
where, of course, all quantities in this equation are renormaling the prime indicates derivatives with respectutoEqua-
ized quantities. For completeness we mention that the Wartlon (B25) implies the Ward identity
identity (A17) takes on the form

orm
=-T. (B27)

ol Qo ({ah) =~ T D({q},p) + (PP+ WA+ 7) 8,y
(B20) a9

when expressed in terms gf. L L .
As announced above, we now briefly return to the simplerTak'ng into account that the genuine independent variables

i i (n)
four-dimensional operators. The scaling dimensiofsgfol- of tSe Rgnﬁcx'?: dmzfii];i%r t?ﬁevggﬁ):nﬁgfg:mf are
lows immediately from the scaling behavior of its coupling Ko S T ' P 9
constantr(€)=7¢ Y with y,=1/v,

e d

= E @, (828)

J
12, —ef2
79 G, 2\/uau,,u,ﬁ'u

J
Xg,=d—y,=d—1/v. (B21) {—,Mﬁﬂ

The operatord3; and B, are obtained by applying, respec-
tively, wV2 and V2 to the fundamental field and hence we find that the RGE for the vertex functions with an inser-

tion of 1 is given by

d+2+
Xp, =X+ 2= —5 (8223
n &
(Maﬁ KT+ {Way+ Boy= 5 v+ B+ 5 r
d—2+
Xg,=Xst %z T”Jrf (B22b) ’
= a(ny'—2K'Taf—2g'waw)r(">. (B29)

By now, we have expressed the scaling dimensions of all the

four-dimensional operators which enter our analysis in Sec. ) ) .
IV in terms of the fundamental exponenis », and ¢. Note that this RGE is not homogeneous and hefiée not

an eigenoperator. Nevertheless, we can deduce the scaling
dimension of B from the homogeneous part of the RGE

) ) ] ] (B29). Taking into account the operator’s naive dimension
The most self-evident operators with naive dimension 63(qd—2)/2, we obtain

are, perhaps,

2. Six-dimensional operators

C,=wsV3s, C3=sV?s, C,=s°. (B23) Xg=d+ o, (B30)

One eigencombination of these operators follows immedi
ately from Eq.(4.8), viz.,s-H'. Due to Eq.(4.10 we know
that the scaling dimension of this eigenoperator is

wherew is the Wegner exponent featured in Sec. 11l B.

APPENDIX C: CALCULATION OF FEYNMAN DIAGRAMS
Xs.3¢r =d—Xgt+Xs=d, (B24)
In this appendix we give some details on the diagram-

i.e., it is marginal in any dimension. The physical reason formatic calculation that leads to E($§.5) and(5.6). Instead of
this marginality is thas- ' can be removed by a rescaling elaborating on all of the diagrams we restrict ourself to a
of the amplitude of the order parameter field. couple of representative examples. The steps explained at

Next, we take a closer look at the scaling dimension of thehese instances can then easily be adapted for the remaining
renormalized version of,. Setting all thef; in Eq. (2.4 to  diagrams.

zero, applying the renormalization scheK1), and taking We start by considering diagram with an insertion of
the derivative with respect to the renormalized coupling con-A4,, cf. Fig. 1. Upon writing the conducting propagators in
stantg we obtain Schwinger representation we have
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AAl=gzwzf0 ds,ds,dsz;exd — (s;+S,+5S3) 7]

PHYSICAL REVIEW E69, 026118 (2004

where we have sgi=p; +p, andg= —p,. The computation

of B4, is, in comparison, simple because it does not involve
a summation over a loop current. The total one-loop contri-
bution to —T'}) is given by

xsz (#?)%exp| —si[k?>+wWik?]—s,[ (k+ p) 2+ wk?]

=gl (k=) ®+w(R=N)?]}. (CD

Note that symmetry factor ok A, is 1 and not 1/2the sym-

metry factor ofA), because there are two possibilitighe
two conducting propagatorto insertA4;. Now we carry out
a completion of squares for the momenta as well as for the
currents. After the straightforward momentum integration we

: -,CGe _
—PQTOP=A, — 2B = —gPwAZ— 7
2 2
PPt
3+W)\ +9—0+ 30 |- (CH

arrive at

Here we have a clear example of the mixing of irrelevant
operators in our perturbation calculation. The insertiotdef
does not only generate primitive divergences proportional to

1 * ds;ds,d - - -
Ay =g°w? dlzf 1% Ssdlz exd —(s;+s; w?(X?)? but also those of the typew\? and p?w\?. Note
(4m)7=J0 (8145, S3) the we dropped the first term in the braces in Ex5) be-
e )T]ex% ,83(P+ Q)2+ 815,02+ ;8507 f(;irU§e it leads only to subdominant correction due to the fac-
3 - .
S1¥ Sy Ss As a next example, we consider the diagrdm, that
-y . S stands for
XGXF[—R(SJ_,SZ,S;:,)W)\ ]z K+ m)\
X exg — (S;+S,+S3) k2], (C2)

AA2=gsz0 ds;ds,dszex —(S;+S,+S3) 7]

where R(s;,5,,53) = (518, +5,83)/(S1+S,+S3) is, accord- ) )
ing to our real-world interpretation, the total resistance of the 2 oKt (k+p)*” (k+ p)
diagramAAl. At this stage it is useful to switch to continu-

ous loop currents and to replace the summatignby the

exp{ — 5[ k?+wk?]

integration [ .. By standard Gaussian integration we then —S;[ (k+p)2+Wik?]—sg[ (k=) 2 +W(K—X)?T}.
find for D—0 (C6)
, o 1 © ds,ds,ds; i .
AL =g°w " dlzexp[— (51+sy Completion of squares in the momenta and the currents leads
* (4m)92Jo (s+S,+53) to
4 2 2
S N S A
*Sg”][%““ Crmrss W 7 (-
(Sy+S2+8) (S84 5) Au= 7wj ds;ds,dszexd —(s;+S,+53) 7]
s N2 ’
———————— —[S,83(p+ )+ 515,p°+ 515 2 2 2
(51+52+53)4 W[ 2S3(P+ 02+ 5;5,p% + 515307 " X4_5253(p+q) +5,5,p°+ $;53
S;+S,+S3
= 2
+(S183+ SzSg)W)\z]] , (C3 _ =5 f . S3 -
XeXF[ R(Sl,SZ,Sg)W)\ ] . K —Sl+SZ+SS)\
where we have carried out a Taylor expansion of the second 2 SpP—S3q
and third exponential functions appearing in E§2) and Xexf — (st S+ 83) K ] _51+ S,+S3

where we have discarded all convergent terms. The remain-

ing integrations over the Schwinger parameters can be sim- S,p—S3q
plified by settings;=tx, s,=ty, ands;=t(1—x—y) and +k+ 5, +S,+S;3
then integratingt from 0 to », y from 0 to 1—x, and x

from 0 to 1. Expanding the so obtained intermediate result (C7)
for small e, we obtain

2
exfd — (sy+S,+S3)k?],

where we switched to continuous loop currents. Carrying out
both Gaussian integrations and performing a Taylor expan-
sion we obtain in the replica limit

PP pitps
390 30

e
A= —gPwRe— 7—8’2( ] (ca)
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@ .. 1 = ds,ds,ds, Once more we undertake a completion of squares in the mo-
Ay,= w2 dlzf L T menta and currents. After integrating out the loop momentum
2 (4m)"J0 (s1+S,+83) we have
ds3 1 [» dsd
XeXF[_(51+52+53)7']|— A =—9W f 10 ex s;+5s,)
(s;+8,+53)3 As 37 (4am)¥2)o (s,+s,)92 H—(s1+5y)7]
2 2.2 3 4 -
SPT SIS 298p s X extl — R(sy,5) [WA2+ (p+0)2]]
(51+8,+53) (51+8,+53)* 2 s, _\2
N2+ | k- N| | RE N }
S,S5p°—S3p-q L SR $1+S;
(s;+5,+53)° X exf — (S;+Sp)Wk?], (C12
S,S3(p+ Q)2+ 5,8,55p% + 515507 with the total resistance of this diagram beiR{s;,s,)
—-d PSRV =5,S,/(s1+S,). Integration over the loop current and Tay-
(S1+S2+53) lor expansion gives, up to convergent terms,
(51S5+5,53) W\ 2 B
T s sy) e | 999% _ exif — (5,+5,)7]
(s1t+sy+53) - 3w (47T)d/2 0 (515,02
where we have discarded convergent terms. Using the same
change of variables as .foAAl We mtegr.ate out the x[1+2 —R(sl,sz)[w)\2+(p+q)2]
Schwinger parameters. This leadssirexpansion to the re-
sult
N - 2
A o 2WK2%778/2 Z+V£2_p_2+ pi"'pg 2(Sl+52)3[W)\ +(p+Q) ]] (ClS)
4= WA 27710 90" 60

(c9)  The integrations over the Schwinger parameters can here be
simplified by settings;=tx ands,=t(1—x). After symme-
The diagranB 4, can be calculated by similar means. For thetrizing the external momenta theexpanded result reads
entire one-loop contribution te-T'?) we find

Ge . [10r 8whZ 8(pP+pd)
—Fff)l"oop:AA 2B, Ax= gw)\z?f e/z[ 5 + 5 + 90
2 2 2 (C14)
&
=g w)\z?r”’z The calculation oBA3 is fairly easy. Merging the two results
we obtain
57 1ow\® p° 3(pi+p))
_ oy = e _ 1 (2)1-loop_ _
[ 5 + 10 +90+ 20 . 4 Aa,— 2By,
C10 -,Ge
( ) — —gW)\z—T_S/Z
DiagramAA3 serves as our final example. In Schwinger €
representation this diagram reads 147 52Wh2  2(pi+p3)
9 " | (19

Ay gwfo dsidszexil — (s, +5)7] The three-leg diagram with insertions can be computed by
22 2, 2 similar techniques as we have used for the two-leg diagrams.
2 + (K~ >\) A exp{— 5[ (k—0)2 The three-leg diagram benefits from the extra simplification
1 q that they can be evaluated at vanishing external momenta
because all their contributions with nonzero external mo-
+W(&—N)?]—s5[ (k+p)2+wWk?]}. (C11))  menta are convergent.
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