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Quantum version of free-energy-irreversible-work relations
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We give a quantum version of the Jarzynski relation between the distribution of work done over a certain
time-interval on a system and the difference of equilibrium free energies. The main ingredient is the identifi-
cation of work depending on the quantum history of the system and the proper definition of various quantum
ensembles over which the averages should be made. We also discuss a number of different regimes that have
been considered by other authors and which are unified in the present set-up. In all cases, quantum or classical,
it is a general relation between heat and time-reversal that makes the Jarzynski relation so universally valid.
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[. INTRODUCTION depends on the path if the process is not adialjaéic with-
out heat transferor if it is not quasistatic. The protocol, i.e.,
Thermodynamic potentials such as the Helmholtz free enthe sequence of forcing in the time-dependent Hamiltonian,
ergy are crucial in applications of thermodynamics. Theyis always kept fixed.
give insight in what processes asepriori workable, with Derivations of the Jarzynski relatiofil.1]) have been
what effects and under what circumstances. Basically one imade in various ways and in various approximations, see
interested in two types of information. One is the expressiorRefs.[1-8|. From such a relation free energy differences can
of these potentials as a function of system parameters. Thae measured even in situations where the process of chang-
determines the thermodynamic landscape and it yields thiag the parameters is not so well controlled. That has already
thermodynamic forces. A second type of information con-been experimentally realized in, e.g., molecular systems
cerns the mutual relation between these potentials and tH&—-11].
link with available work and entropy-energy transformations. A natural extension of Eq(1.1) concerns the quantum
For example, for a system that can extract heat from an erregime. That appears possibly important and relevant when
vironment at constant temperaturethe energy that is avail- the system in question should be treated with the methods of
able to do work is exactly the free enerfyV—TS, thatis  quantum mechanics. In nanodevices the interplay between
its energyV minus the heat terif S whereSis the entropy nanomechanics and thermodynamics becomes all important.
of the system. Furthermore, to study its equilibrium proper-Yet, a more fundamental reason to be interested in a quantum
ties we should maximize the total entroggf system and version of Eq(1.1) is the question that it poses on the quan-
reservoiy for given energy contents but that again is equiva-tum nature of path dependence. We enter here the domain of
lent with minimizing the free energy at fixed temperature. quantum mechanics on histories. ltagriori not clear how
If, as often happens, no very reliable computation of theto define quantum mechanical work that depends on a path
free energy landscape can be made, the above provides ithat the system has followed. In the present paper we derive
mediate rescue. It suffices to measure the work done undér quantum extension of Eq1.1) where we explicitly deal
isothermal conditions in changing the parameters of the syswith that path dependence and where we start from a time-
tem and it will be equal to the free energy difference. Thatdependent unitary evolution on the level of the system plus
however, is only valid if the thermodynamic process in-environment.
volved is quasistatic. In other words, the changes must be
done very slowly, a situation that cannot be hoped for in
many cases. It was therefore very useful that an extended
relation between free energy and work was proposed and Various proposals for quantum extensions of the Jarzynski
exploited in a series of papers since the pioneering work ofelation have appeared in the literature. We briefly bring up

Il. PREVIOUS RESULTS

Jarzynski in 19971]. That relation looks as follows: some aspects of such studies.
In Ref.[12] and following Ref.[13] one introduces the
e PAF=(e W), (1.))  probabilities
In the left-hand side\F is what we want to know, the dif- e AVa
ference in free energies between two equilibria with param- Poa’= TB)K@;,IUMQ)F (2.

eter values¢; andk; . The right-hand side is an average over
all possible paths that take the system in equilibrium for a _ _ _
certain parameter value in its initial Hamiltonian to a state that the system is found in theth eigenstatep, of the

where that parameter is changed irta The work donay ~ HamiltonianH at an initial time(when the system is in ther-
mal equilibrium at inverse temperatug and then is found

in the a’th eigenstatep;, of the HamiltonianH' at a later
*Email address: christian.maes@fys.kuleuven.ac.be time. The operatot in Eq. (2.1) is the unitary operator for
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the time inhomogeneous evolution during the whole periodg(w,p;) denote the probability of a historyx)g (on a cer-

It is then an easy computation, done in Réf2]: tain level of descriptionof the system started in the staie
, at time zero. We choose =exd —BV,1/Z;. We now reverse

> P wexd BV, — BV 1= M (2.2) the protocol(the sequence of forcingand letq(w,ps)) de-

o “ «Z(B) note the probability of the history when started irp; at

time zero. We choosg=exd —BV;]/Z; for the same tem-
This resembles Eq1.1) except for the important fact that perature but with a different energy function. For the prob-
t_he left-hand sjde averages over an expor}ential of atwtal ability of the time-reversed trajector® o= (w, )5, we
time) energy difference. In partlcglar there is no concept herg,o, writeq(® w, py).
of a path-dependent work. One interpretation is that the sys-
tem in question is here really the total syst&ubsystemt

Introducing the actior, we have

< (00,
heat bath and one should follow the change in energy over q(w,p)=p(wg)e “), q(—wM):e*R(“’)

the whole system. We think, however, that it is more useful q(w.pi)
to have a representation of work in terms of the coordinateg;i,
(and history of the subsystem only. After all, that is what
free energies are all about thermodynamically. A second in- R(w)=In p;(wg)—In ps(wy) + Z(Ow)— L(w).
terpretation is that one thinks of the unitary evolution as
working entirely on the subsystem itself and the heat bath ighen,
completely absent except for the inverse tempergBuréhat
can be called the adiabatic regime and we return to it in Sec. N pi(@) —In pi(wn) = B[Vi(w,) = Vi(wo) ]~ BAF,
IvVC1.
The presentation in Reff14] contains analogies both with AE=— Elné
what was described in Ref6] and with the adiabatic treat- B Z
ment of Ref.[12]. In Ref.[6] a derivation of Eq(1.1) was _
given based on a time-inhomogeneous Markov proces$he change in energy((w,)—Vi(wo) equals the workV
which satisfies, at each time, the detailed balance relation fgpinus the hea® that flows into the bath. On the other hand,
some energy function. That can be lifted to the quantunit can be argued that the source term of time-symmetry
regime when the Markov process is seen as an effective déreakingL(0® o) — L(w) equals the entropy productigdQ,
scription of a quantum system in contact with a heat bathsee Ref[7]. Hence, we get from Ed2.3) that
For example, the quantum weak coupling limit exactly repro- _
duces theclassicalMarkov process as dynamics for the sys- (O w,py) — BW(w)+ BAF
tem when in the energy basis for the system Hamiltonian. In q(w,pi) -€ .
that precise sense R¢€] was the first quantum extension of
the Jarzynski relation. Here one deals with an effective dyBut, by normalization, multiplying the above relation with
namics of the subsystem and we turn to it in Sec. IV A. d(w,p;) and summing over alb gives 1; hence Eq1.1) is
Finally, in Ref.[15] the question of path dependence of obtained.
the work is analyzed in an operator setting and it is pointed What remains to be done is to give a quantum expression
out that various ambiguities remain in the ordering of thefor the above quantities and that is the subject of the present
operators. These ambiguities only seem to disappear in paper. In other words, we want to obtain an algorithm, valid
quasistatic limit which, unfortunately, is exactly the regimefor a system subject to the laws of quantum mechanics,
we are less interested in. While it is in principle possible tothrough which we can measure the difference in equilibrium
define a work operator for the total system, the question irfree energies. Moreover, we want this algorithm to be formu-
that setting remains whether its projection on the subsystertated on the level of the subsystem. That means that we must
remains useful and its spectrum measurable. trace out the heat bath from the equality E2,2).
In the present paper we deal with a unitary evolution over
the total system, subsystem plus reservoir, and we deal ex- IIl. FORMULATION OF THE PROBLEM
plicitly with a path-dependent work. That is new, but the
remains the same as for classical systems. The basic obsgjith a much larger heat reservoir kept at fixed inverse tem-
vation is that the entropy production can be identified withperatured. The Hilbert space of the subsystem is denoted by
the source of time-reversal breaking in the action governingy. and that of the environment bt ; both are assumed
the distribution of system histories, see Rif,16,17. We finite dimensional. As usual the total real and self-adjoint
briefly state that point here in a formal way to refer to it later yamijltonian is a sum of three contributions,
when things become more explicit.
We take the dynamics time dependent through which Hi=H>+HR+ yH', (3.9
work W is done on the system over a time period while in
contact with a heat bath at constant inverse tempergdure where the system parthS is parameterized byt
The time-dependent dynamics starts with an energy functior=0,1, . . . n and acts or{g. The Hamiltonian of the reser-
V; and at timen the energy function is given by;. Let  voir HR (acting on*g) and the couplindd' between system

2.3
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and reservoir are assumed fixed. We will not need any ex- az D(w)= Tr[P? A (P? )]Tr[pg—l A, 1(p2‘1 )]
plicit description of these terms. Setting=0 decouples sys- " -t -t B

tem and reservoir. The canonical density matrices describing Bvo
equilibrium for the decoupled system are Tr[P A (P )] (4.2
1 1. BH1® 1 - ~BHR. 3.2 !n this setup, the heat bath entgrs via the nmgpand the
p= Z, 7R ' inverse temperaatur@. Expectations will be denoted by

(+)p - The total change in energy jstvgn—vgo and the
We are interested in the difference of Helmholtz free eneriotal heat that flows in the heat bath in the thermal transitions
X 4.1) is
gies

n

AF=_ Ll 33 Qw)==3 (Vi =V,_)). 4.3
B Zy

_ o _ The total work is therefore defined as
The dynamics for the total system is unitary and time depen-

dent with unitary operator n-1
W(0)=Q(w)+AV=2 (Vif1=V) (4.4
U,=eMH: t=0 ™ '
and is done over the transmorqléY *)QDH—:L We then have

acting onHs® Hg. The parametei is real and sets the
energy-time scale. (e Py =g PAF, (4.5

While the left-hand side of Eq1.1) is clear and given by
Eq. (3.3 the question is about the quantum version of the The simplest way to prove E@4.5) is to use the relation
right-hand side: What is averaging and what is the work@etween entropy production and time reversal as in Refs.

Different reduced dynamics for the subsystem can be imad®6,7,16,17. Let ®w=(ay, ... ,ao) be the time-reversed
ined that are relevant in different types of regimes. trajectory. Similar to Eq(4.2) we define a path-space mea-
sure starting fronp,:
IV. RESULTS e75V2
A. Effective regime qz(“’)ETr [PiOAl(Pil)] .- T I:)ZrHA”(PZn)] Z
n
Here we suppose that the dynamics for the subsystem is (4.6

described via some effective dynamics. There are variou

n m he rati
candidates but one class of examples is obtained as the quan 8 d compute the ratio

tum analog of a Markov process Gifig. These can be rig- b Tr[P” (P )]
orously obtained under various conditions and in various 9p(@) =BV -0 )Z_ “n-1
limiting regimes. Following Ref[18], one can start with a afﬁ)(w) o *Zo Tr[p” An(P" )] o
time-dependent HamiltoniaH,; and take the weak coupling -t "

limit. Obviously the driving protocol has to vary on the same Tr[PL A4 (P )]

time scale as the dissipation processes through contact with - -

the reservoir. What results is a time-inhomogeneous Markov Tr [PiOAl(Pil)]

process such that the instantaneous generator att thas-
fies detailed balance with respectH@t). One way to imple- By using detailed balance E@l.1) at every time step and the
ment that is to think of a sequengg,_— ¢{, — ¢, —¢,,  definitions(4.3) and(4.4), one arrives at

=y 11H o Hgogn where, alternating in time, the

D

transition is either thermal as f«m‘at—> (ptaHl and is modeled 9p(@) — @BAV-BAF+BQ_ ofW—BAF
by a completely positive map; which satisfies the condi- 95(Ow)
. . . S
tion of detailed balance with respect gg=e~#"/Z, We apply to that relation the normalization condition

Tr[P,, At(P )] 92O w)

-1 t t D B
=exd —B(V, -V 4.1 w) —— =
Tr[P,  A(PL)] AoAVe Ve )1 40 2 aste) ap(w)

) ) 1 to conclude Eq(4.5. The proof above mimics exactly the
or is mechanical as fol,, — ¢, *. The last transition is scenario of Eq(2.3. The result is the very analog of the
imagined instantaneously performed so that we define theain identity by Crooks in Ref.6] but where the transition
probability of a trajectoryw as the product rates in Eq.(4.2) have a quantum mechanical expression.
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B. Repeated measurements That gives the hed flowing into the reservoir. At the same

We come back to the set up of Eq8.1) and (3.2. As- time the energy in the subsystem changes, the first term in
sume that eachits is nondegenerate and has projecticﬁﬁs Eq. (4.11). Combined, Eq(4.1) gives the work performed

on its eigenstates:ta with eigenstatesvta. A trajectory or on éhe éubsistemz.l 1

path for the subsystem is a sequeneg,(. .. ,x,) where or Bqs.(4.9-(4.19),

each a, runs over the possible eigenstates Bf,t e PAF=(eAW) (4.13

=0, ...,n. We now give a probability measure on such tra-

jectories which is obtained by tracing out the quantum me-That means that the Jarzynski relatidnl) is unaffected in

chanical probabilities for the whole system. the quantum regime when, in the averaging, the quantum

Let P denote the projection on the energy spacéfis = mechanical probabilities are used. We will now verify Eq.

for the reservoir Hamiltoniam R with energyE. The prob-  (4.13.

ability to find the total system initially in equilibrium for Eq. We apply again the ideas around Ef.3). We define the

(3.2) and at later times in eigenstat()e§t for the system and time-reversed path-space measure from ®dgl) by revers-

with energiesE, for the reservoir is given by ing the order in which the time-dependent dynamics is ap-
plied and by now starting from the density matpi% of Eq.

palag, ... ,aniEq, ... E)=Tr[Gp°G*] (4.7 (3.2

with  G=P" ®Pg U,...PL ®Pg U,;P% ®Pg . Pplag, ... .an:Eo, ... En)=Tr[Gp"G*] (4.19
ap n ag 1 o 0
. - ~with
When viewed from the subsystem, the probability for trajec-
tory w=(ayq, ...,a,) is thus[let e=(Ey, ... E;)] GEP2n® PEnul* L P}'t1® PE1U;P20® PEO'
%<w)E§; Pa(ao, - . an;e) (4.9 Itfollows immediately that

Z

~ } _ ey BV —V0 B —Eg) Z0
and when conditioned ow, Eq. (4.7) gives expectations Pp(@w;0e)=pg(w;e)e n Vap T EnTEO -
denoted as (4.15

1 and hence
(@)= 50 2 depswie) (4.9

’ (e =3, ay(w)efte Vi e HEnE0) )
whenqg(w) is nonzero. Finally, the expectations in the path- ¢

space measur@.8) are written as
P .9 => pﬁ(w,e)eﬁ(Vgo—Vzn)e—ﬁ(En—Eo)
,e

(H=2 flw)gg(w). (4.10 70— -
© =—02e Ps(Ow,0¢)
The ch i for th i
e change in energy for the subsystem corresponding to _ o BAF 416

the pathw is V;, —V;_whereV, is the energy ofp;,. We
define a path-dependent work by the formula as required.

The repeated measurements introduce another aspect of
randomness in the distribution of work which is absent clas-
sically. Unless one is taking an effective dynamics like in
Sec. IV A, one will always need to take care of that aspect to

The interpretation follows the first law of thermodynam- define in any useful way what is meant by work that depends
ics. To change the parameters in the Hamiltortighisother- 0N the history of the subsystem.
mally some heat must flow from the bath into the system.

That is the second term in EGt.11). We can expect that the C. Special cases
heat bath is dispersionfree with respect to the subsystem in
the sense that through each s§é£9—> <p”11 of the trajectory

A+
w, the corresponding change in energkes ;—E; of the
reservoir is determined: 1. Adiabatic regime

W(w)zvgn—vgo—%m(e—ﬂ(En—Eo)xw). (4.19)

There are a number of special cases that we treat sepa-
rately.

1 We consider only the subsystem that was initially brought
_ - - B(En—Ep) /e _ in thermal equilibrium at inverse temperatufe and that
B In¢e )(@)=(En=Eo)(@). (4.12 from time zero on is isolated from the environment. We take
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thus the same setup as in Sec. Ill except that we cut thpist as in Eqs(4.17—(4.18 but now with probabilities
coupling with the reservoir. The initial density matrix is

1 Aa(@)=Tr [Py Aq-a( ... Pg (A1(PG poPo PG - . )]

— ~ o BH;
=—=¢ 0
Po ZO

o ) s Of course, ify in Eq. (3.1) is zero, thenU,=U> @ UR
and the dynamics is unitary dits and here denoted By faciorizes and the treatment of Secs. IV A and IV B reduces
with t=0,1, e I; changing as time proceeddy need not  tg the adiabatic case. The work is a difference of energies
commute withHy. Instead of Eq.(4.8) we now take the (instead of a path-dependent quantind there is no heat
probability of trajectoryw=(«ayg, .. .,a,) to be (Q=0).
S — n S 1 Sp0
Gp(@)=Tr[P, Us. .. Py UtPapo 2. Quasistatic regime

X (P" Uﬁ. . pi Ufpg )*] (4.17 We imagine then that the evolutiot are slow enough

" ! 0 so that the system plus reservoirs relax into an equilibrium

with expectations - )s. For » the change in energy of the state with respect tél, .
subsystem i¥/,,— V, as was the first term in E@4.11). Then We think about the case of Sec. IV B. Always,

<eB(Vgo_Vg‘n)>s:e_BAF- (4.18 Pa(w,8)=0g(w)0s(elw) (4.2

That identity is the generalization of E2.7) in Ref. ) o )
[12]. Note that Eq.(4.18 is true for an arbitrary family of ~but in the quasistatic regime we have
unitary operators defining the time evolution. It can be ob-

tained from the following exact identity. L& be an opera- paley,E)=0dp(a)ag(Ed ay), (4.22
tor onHg and write Tr[G P]=G(«). Then, as one easily
checks,

which suffices to see thae #(En~Eo))(w) depends only on
o (wg,wy). Again, there is no path dependence in the watk
> G(an)e?VuTiP) Ay s
¢ 3. No time-dependence

x(...Pt (Al(PO POPO NP )= Tr[G] Suppose that Eq3.1) QOes not cpnta_in a parameter de-
a g P @t ™ Z pendence and that the time evolution is homogenetls (
419 —Y-

Then of courseAF=0. For the effective Markovian dy-
for all super-operatord\, (acting linearly on density matri- namics of Sec. IV A, one sees immediately tWtw) =0 for

ces that leave the identity invarianty(1)=1. eachw in Eq. (4.4). In the adiabatic case of Sec. IVC as
One can generalize Eqé4.17) and (4.18 by choosing  well, Vgo—V2n=O with qz—probability 1 when we ask that
here in Eq. (4.17 the projectionsPtat and the unitary evolutions
mutually commute. In the case of Sec. IVB, we can use
At(A)ZEr mUPAUS* conservation of energyiaiJr E;= constant, as in the first law

(4.11), when we ignore théboundary interaction terrH' in
with u'=0 and=,u!=1, meaning that the unitary> is  the energy balance. In that case we againwéb)=0.
employed with probabilityuﬁ at timet. TheseA’s leave the
identity invariant, so Eq(4.19 applies and ACKNOWLEDGMENTS
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