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Functional renormalization group and the field theory of disordered elastic systems
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We study elastic systems, such as interfaces or lattices, pinned by quenched disorder. To escape triviality as
a result of “dimensional reduction,” we use the functional renormalization group. Difficulties arise in the
calculation of the renormalization group functions beyond one-loop order. Even worse, observables such as the
two-point correlation function exhibit the same problem already at one-loop order. These difficulties are due to
the nonanalyticity of the renormalized disorder correlator at zero temperature, which is inherent to the physics
beyond the Larkin length, characterized by many metastable states. As a result, two-loop diagrams, which
involve derivatives of the disorder correlator at the nonanalytic point, are naively “ambiguous.” We examine
several routes out of this dilemma, which lead to a unique renormalizable field theory at two-loop order. It is
also the only theory consistent with the potentiality of the problem. Afenction differs from previous work
and the one at depinning by novel “anomalous terms.” For interfaces and random-bond disorder we find a
roughness exponeijt=0.208 298 04+ 0.006 8582, e=4—d. For random-field disorder we fing= e/3 and
compute universal amplitudes to ord@¢e?). For periodic systems we evaluate the universal amplitude of the
two-point function. We also clarify the dependence of universal amplitudes on the boundary conditions at large
scale. All predictions are in good agreement with numerical and exact results and are an improvement over one
loop. Finally we calculate higher correlation functions, which turn out to be equivalent to those at depinning to
leading order ine.
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[. INTRODUCTION directed polymer d=1) has been much studi¢82] as it
maps onto the Kardar-Parisi-Zhang growth md@glfor any
Elastic objects pinned by quenched disorder are central tdl. The equilibrium problem is defined by the partition func-

the physics of disordered systems. In the last decades a cofien Z=[D[u]exp(—H[u]/T) associated with the Hamil-
siderable amount of research has been devoted to theri@nian
From the theory side they are among the simplest, but still
quite nontrivial, models of glasses with complex energy 1
landscape and many metastable states. They are related to a H[U]ZJ ddXE(VU)ZﬂLV(Ux X)), (1.9
remarkably broad set of problems, from subsequences of ran-
dom permutations in mathematigs—3] and random matri- o ) )
ces[4,5] to growth model§6—14] and Burgers turbulence in which is the sum of an elastic energy which tends to suppress
physics[15,16, as well as directed polymefs,17] and op- fluctuations away frqm the perfectly ordered stateO 'and a
timization problems such as sequence alignment in biologx}a”dom potential which enhances them. The resulting rough-
[18—20. Foremost, they are very useful models for numer-N€SS exponery,
ous experimental systems, each with its specific features in a
variety .of situations. Interfaces in magnétl,22 experi- ([u(x)—u(x’)]2>~|x—x’|2§, (1.2
ence either short-rangeandom-bond(RB)] or long-range
E?SS\?Q)] [ﬁzzl]d or(thhFe)]BrggI;Zogr;ljaegs inC:Li;g?cor?(jeSgg é_v;aaves is mgasured in experiments for systems at equilibridig) (
are periodic objects pinned by disorder. The contact line of" driven by a_forcg‘. Here and below -) denote thermal
liquid helium meniscus on a rough substrate is governed bg;\vergges ang --) disorder ones. In Some cases, Iong_—range
long-range(LR) elasticity[29—31. All these systems can be elasticity appears, e.g., for the contact line l_Jy |nte2g]rat|ng out
parametrized by arN-component height or displacement f[he bulk de_grees of freedo_lfﬂl], corresponding ta°—|q|
field u,, wherex denotes th&-dimensional internal coordi- in the ?laSt'C energy. As wil becomg clear later, the rando_m
nate of the elastic objectwe will useu, to denote Fourier potential can without loss of generality be a chosen Gaussian
components An interface in the three-dimension&BD)

with second cumulant,
random-field Ising model had=2, N=1, a vortex lattice
d=3, N=2, a contact lined=1, andN=1. The so-called V(u,x)V(u',x")=R(u—u")8%x—x"), 1.3

1063-651X/2004/6@)/02611242)/$22.50 69 026112-1 ©2004 The American Physical Society



Le DOUSSAL, WIESE, AND CHAUVE PHYSICAL REVIEW E59, 026112 (2004

with various forms: Periodic systems are described by dor ¢ (in two different limits, but consistent when they can be
periodic functionR(u), random-bond disorder by a short- compared26,27,47). The mean-field method accounts for
range function, and random-field disorder of varialmcby = metastable states by RSB. This however may go further than
R(u)~ —o|u| at largeu. Although this paper is devoted to needed since it implies a large number of pure stéites
equilibrium statics, some comparison with dynamics will below- (free-) energy states differing b®(T) in (free) energyl.
made and it is thus useful to indicate the equation of motiorThe other method, the FRG, captures metastability through a
nonanalytic action with a cusp singularity. Both the RSB and

r;&tuxtzcvf(uxpL F(X,uy) + T, (1.4 cusp arise dynamically—i.e. spontaneously—in the limits
studied.
with friction #. The pinning force i$=(u,x) = —4d,V(u,x) of The one-loop FRG has had some success in describing
correlatorA (u)=—R"(u) in the bare model. pinned systems. It was noted by Fisti46] within a Wilson

Despite some significant progress, the modell) has scheme analysis of the interface problentin4— e that the
mostly resisted analytical treatment, and one often has to relgoarse-grained disorder correlator becomesanalyticbe-
on numerics. Apart from the case of the directed polymer iryond the Larkin scalé ., yielding large-scale results distinct
1+1 dimensions §=1, N=1), where a set of exact and from naive perturbation theory. Within this approach an in-
rigorous results was obtaing@,5,33—35, analytical meth- finite set of operators becomes relevantdr4, param-
ods are scarce. Two main analytical methods exist at presergfrized by the second cumulaR(u) of the random poten-
both interesting, but also with severe limitations. The firsttial. Explicit solution of the one-loop FRG fdRr(u) gives
one is the replica Gaussian variational metliG¥/M) [36].  several nontrivial attractive fixed pointEP’s) to O(e€) pro-
It is a mean-field method, which can be justified fdr posed in[46] to describe RB, RF disorder and, [i86,27),
and relies on spontaneous replica symmetry breal®®p)  periodic systems such as CDW's or vortex lattices. All these
[37,39. Although useful as an approximation, its validity at fixed points exhibit a “cusp” singularity asR*”(u)
finite N remains unclear. Indeed, it seems now generally ac—R*”(0)~|u| at small ju]. The cusp was interpreted in
cepted that RSB does not occur for lovandN. The remain-  terms of shocks in the renormalized foif&l], familiar from
ing so-called weak RSB in excitatiof89—41] may not be the study of Burgers turbulendéor d=1, N=1). The dy-
different from a more conventional droplet picture. Anothernamical FRG was also developed to one Id&5-57 to
exactly solvable mean-field limit is the directed polymer ondescribe the depinning transition. The mere existence of a
the Cayley tree, which also mimi¢$é— =, and there too itis nonzero critical threshold forck.~|A’(07)|>0 is a direct
not fully clear how to meaningfully expand around that limit consequence of the cugfi vanishes for an analytic force
[42—-44. The second main analytical method is the func-correlator A(u)]. Extension to nonzero temperatuiie>0
tional renormalization grougFRG), which attempts a di- suggested that the cusp is rounded within a thermal boundary
mensional expansion aroumtd=4 [26,27,45—-47. The hope layeru~TL ™. This was interpreted to describe thermal ac-
there is to include fluctuations, neglected in the mean-fieldivation and leads to a reasonable derivation of the celebrated
approaches. However, until now this method has only beenreep law for activated motiof58,59.
developed to one loop, for good reasons, as we discuss be- In standard critical phenomena a successful one-loop cal-
low. Its consistency has never been checked or tested in argplation usually quickly opens the way for higher-loop com-
calculation beyond one loofi.e., lowest order ine=4—d). putations, allowing for accurate calculation of universal ob-
Thus contrarily to pure interacting elastic systefasch as, servables and comparison with simulations and experiments
e.g., polymersthere is at present no quantitative method, and, eventually, a proof of renormalizability. In the present
such as a renormalizable field theory, which would allow onecontext, however, no such work has appeared in the last 15
to compute accurately all universal observables in these sysyears since the initial proposal p46], a striking sign of the
tems high difficulties which remain. Only recently a two-loop cal-

The central reason for these difficulties is the existence otulation was performef60,61], but since this study is con-
many metastable statéise., local extrempin these systems. fined to an analytidR(u), it only applies below the Larkin
Although qualitative arguments show that they arise beyondength and does not consistently address the true large-scale
the Larkin length[48], these are hard to capture by conven-critical behavior. In fact, doubts were even rai$dd] about
tional field theory methods. The best illustration of that is thethe validity of thee expansion beyond ordet
so-called dimensional reductiofDR) phenomenon, which It is thus crucial to construct a renormalizable field theory
renders naive perturbation theory useld®4,49-53 in  which describes statics and depinning of disordered elastic
pinned elastic systems as well as in a wider class of disorsystems and which allows for a systematic expansioe in
dered modelge.g., random-field spin modelsindeed it is =4—d. As long as this is not achieved, the physical mean-
shown that toany order in the disorder at zero temperatureing and validity of the one-loop approximation does not
T=0, any physical observable is found to identicalto its  stand on solid ground and thus, legitimately, may itself be
(trivial) average in a Gaussian random foftarkin) model,  called into question. Indeed, despite its successes, the one-
e.g.,{=(4—d)/2 for RB disorder. Thus perturbation theory loop approach has obvious weaknesses. One example is that
appeargnaively) unable to help in situations where there arethe FRG flow equations for the equilibrium statics and for
many metastable states. The two above mentioned methodgpinning are identical, while it is clear that these are two
(GVM and FRQ are presently the only known ways é&s-  vastly different physical phenomena, depinning being irre-
cape dimensional reductioand to obtain nontrivial values versible. Also, the detailed mechanism by which the system
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escapes dimensional reduction in both cases is not really eltlhe two-loop result also improves the agreement as compared
cidated. Finally, there exists no convincing scheme to comto the exact result knowf71] for d=0. For the periodic
pute correlations, and in fact no calculation of higher thanCDW case we compare with the numerical simulations in
two-point correlations has been performed. d=3 and obtain reasonable agreement. Some of the results
Another motivation to investigate the FRG is that it Of this paper were briefly described in a short versi68]
should apply to other disordered systems, such as randordnd agree with a companion study using an exact RG
field spin models and quantum elastic systems, where dimeh?2.73. _ _
sional reduction also occurs and progress has been slow Since the physical results also seem to favor this theory,
[45,62—67. Insight into model1.1) will thus certainly lead We then look for better methods to justify the various as-
to progresses in a broader class of disordered systems. ~Sumptions. We found several methods which allow us to lift
In this paper we construct a renormalizable field theory@mbiguities and all yield consistent answers. A detailed dis-
for the statics of disordered elastic systems beyond one loogussion of these methods is given. In particular, we find that
The main difficulty is the nonanalytic nature of the theory correlation functions can be unambiguously defined in the
(i.e., of the fixed-point effective actiorat T=0. This makes limit of a small background field which splits apart quaside-
it a priori quite different from conventional field theories for generate states when they occur. This is very similar to what
pure systems. We find that the two-loop diagrams are naively/@s found in a related study where we obtained the exact
“ambiguous,” i.e., it is not obvious how to assign a value to Solution of the FRG in the largh-limit [74]. Finally, the
them. We want to emphasize that this difficulty already existdnethods introduced here will be used and developed further
at one loop; e.geven the simplest one-loop correction to the {0 0btain a renormalizable theory to three loops and compute
two-point function is naively “ambiguousThus it is not a  its B function in[75]. Let us mention that a first-principles
mere curiosity, but a fundamental problem with the theoryMethod which avoids ambiguities is to study the system at
“swept under the rug” in all previous studies, but which T>0. Howe_ver, this turns out to be hlg_hly involved. It is
becomes unavoidable to confront at two-loop order. It origi-attempted via an exact RG 2] and studied more recently
nates from the metastability inherent in the problem. For thdn [76,77 where a field theory of thermal droplet excitation
related theory of the depinning transition, we have shown ivas constructed. A short account of our work has appeared in
companion papel$8,69 how to surmount this problem and [68], and a short pedagogical introduction is given in
we constructed a two-loop renormalizable field thebom ~ [78.79. _ _
first principles There, all ambiguities are naturally lifted us- ~ The outline of this paper is as follows. In Sec. Il we
ing the known exact property that the manifold only movesexplain in a detailed and pedagogical way the perturbation
forward in the slowly moving steady state. Unfortunately intheory and the power counting. In Sec. Ill we compute the
the statics there is no such helpful property and the ambiguene-loop(Sec. Il A) and two-loop(Sec. Il B) corrections to
ity problem is even more arduous. Here we examine théhe disorder. The calculation of the repeated one-loop coun-
possible ways of curing these difficulties. We find that theterterm is given in Sec. llIC. In Sec. IlID we identify the
natural physical requirements—i.e., that the theory should b¥alues for ambiguous graphs. This yields a renormalizable
(i) renormalizable(i.e., that a universal continuum limit ex- theory with afiniteg function, which is potential and free of
ists independent of short-scale detgilé) that the renormal- @ supercusp. The more systematic discussion of these ambi-
ized force should remaipotential and(iii) that no stronger 9uities is postponed to Sec. V. We derive fiéunction and
singularity than the cusp iR”(u) should appear to two loop N Se_c. IV present physical results, expongnts, and universal
(i.e., no “supercusp)—are rather restrictive and constrain amplitudes taO(e?). Some of these quantities are new and
possible choices. We then propose a theory which satisfies diRve not yet been tested numerically. In Sec. V we enumer-
these physical requirements and is consistent to two loopéie all the methods which aim at lifting ambiguities and ex-
The resultingB function differs from the one derived in pre- Plain in detail several of them, which gave consistent results.
vious studies[60,61] by novel static “anomalous terms.” In Sec. VI we detail the proper definition and calculation of
These are different from the dynamical “anomalous termscorrelation functions. In Appendixes A and B we present two
obtained in68—70 showing that indeed depinning and stat- Methods which seem promising, ki notwork, in order to
ics differ at two loop, fulfilling another physical requirement. illustrate the difficulties of the problem. In Appendix F we
We then study the fixed points describing several univerPresent a summary of all one- and two-loop corrections in-
sality classes—i.e., the interface with RB and RF disordercluding finite temperature. In Appendix D we give details of
the random periodic problem, and the case of LR elasticitycalculations for what we call the sloop elimination method.
We obtain theD(€?) corrections to several universal quanti- e reader interested in the results can skip Secs. Il and
ties. The prediction for the roughness expongfar random- !l and go directly to Sec. IV. The reader interested in a
bond disorder has the correct sign and order of magnitude tgetailed discussion of the problems arising in this field
notably improve the precision as compared to numerics ifheory should read Sec. V.
d=3,2 and to match the exact resydlt=2/3 in d=1. For
random-field disorder we find= e/3, which, for equilib- Il. MODEL AND PERTURBATION THEORY
rium, is likely to hold to all orders. By contrast, nontrivial
corrections of orde®(e?) were found for depinnin§68,69.
The amplitude, which in that case is a universal function of We study the static equilibrium problem using replicas—
the random-field strength, is computed and it is found that.e., consider the partition sum in the presence of sources:

A. Replicated action and effective action
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Z[j]=f 1;[ D[ua]exr{—S[u]nLJ’Xg j";‘u";‘), (2.1 / O‘ \

from which all static observables can be obtained. The action ‘ | V |
S and replicated Hamiltonian corresponding to Ell) are ¢ ¢ ¢
FIG. 1. Each diagram with unsplit vertices contains several dia-
Sfuj= H[u] _ 1 S (V)24 m2ud] grams with split vertices: ~here the one-loop unsplit diagteop)
T 2T )5 generates three possible topologically distinct split diagrams, two
(shown here, bottojnare two-replica terms, the third one—i.€q)
1 in Fig. 2—is a three-replica term.
——zf > R(u-up). (2.2
2T x ab a b d
(ugug)=(2m?6%q+q")Capla), (2.5)
a runs from 1 ton and the limit of zero number of replicas
n=0 is implicit everywhere. We have added a small masgvhile the free correlation functiofrom the elastic term
which confines the interface inside a quadratic well and proused for perturbation theory in the disorder is denoted by
vides an infrared cutoff. We are interested in the large-scal&an(X—Y) = dapG(X—Y) and reads, in Fourier representa-

limit m—0. We will denote tion,
dq (Uau?,)o=(2m)96%(q+0") Gan(), 2.6
[f s, 2
q (2m) .
Gan(q)= az+—mz5ab, (2.7)
f :=f ddX. (24)
X which is represented graphically by a line
For periodic systems the integration is over the first Brillouin T4
zone. A short-scale UV cutoff is implied af~ A, but for aib:qu?nz' (2.8

actual calculations we find it more convenient to use dimen-
sional regularization. We also consider the effective actio
functionalI'[ u] associated witlS. It is, as we recal[80,81],

the Legendre transform of the generating function of con

"Each propagator thus carries one factor ®fq)=T/(g>

+m?). Each disorder interaction vertex comes with a factor
) o : . .. ‘of 1/T? and gives one momentum conservation rule. Since
nected correlationg} j]=In Z[} ], thus defined by eliminat- each disorder vertex is a function, an arbitrary number of

ing jin Cfu]=ju-M]jl, Wjl=u. i it i i
If we had chosen non-Gaussian disorder, additional termlsl;nes can come out of ik lines coming out of a vertex reslt

. . : in k derivativesR( after Wick contractions
with free sums ovep replicas(calledp-replica termg corre-
sponding to higher cu_mulants of disorder would be presentin ’\'é — R® 2.9
Eg. (2.2, together with a factor of IP. These terms are )
generated in the perturbation expansion; i.e., they are present
in T[u]. We do not include them in E@2.2) because, as we Since each disorder vertex contains two replicas, it is some-
will see below, these higher-disorder cumulants are not reltimes convenient to use “split vertices” rather than “unsplit
evant within(conventional power counting, so for now we ones.” Thus we call “vertex” an unsplit vertex and we call a
ignore them. The temperatufeappears explicitly in the rep- “point” the half of a vertex:
licated action(2.2), although we will focus on thef'=0
limit. a3 R(ug—up) 2.10
Because the disorder distribution is translation invariant, be 3 212
the disorder term in the above action is invariant under the o ) . o
so-called statistical tilt symmetrj17,82 (STS—i.e., the ~Each unsplit diagram thus gives rise to several split dia-
shift u2—u2+g,. One implication of STS is that the one- 9rams, as illustrated in Fig. 1 _
replica replica part of the actiofi.e., the first line of Eq. One can define the number of connected components in a
(2.2] is uncorrected by disorder; i.e., it is the samdfu] graph with split vertices. Since each propagator identifies

and S[u] [83]. Since the elastic coefficient is not renormal- WO replicas, g-replica term containg connected compo-
ized, we have set it to unity. nents. When the two points of a vertex are connected, this

vertex is said to be “saturated.” It gives a derivative evalu-
ated at zeraR®¥(0). Standard momentum loops are loops
with respect to unsplit vertices, while we call “sloops” the
We first study perturbation theory, its graphical represenioops with respect to pointsn split diagramg This is illus-
tation, and power counting. Everywhere in the paper we detrated in Fig. 2 The momentum one- and two-loop diagrams
note the exact two-point correlation y,,(Xx—Yy), i.e., in  which correct the disorder a@=0 are shown in Fig. 3un-
Fourier terms split vertices. There are three types of two-loop grapgh<B,

B. Diagrammatics, definitions
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- @ (b) (c)
(@) Q ¢ a —e —— —_——
® b '+ ) 4 '

(©) '

[ 2
[ 4

|

FIG. 2. Graphs(a) (a one-loop diagramand (b) (a two-loop
diagram each contains three connected components. Since each @

contain one “sloop,” they are both three-replica terms proportional FIG. 4. Calculation of the two-point function for analyR{u).

toT. The Ieft vertex on diagrarc) is “saturqted:" replica indices Due to DR, only the first diagraif@) survives. Diagramé) and(c)
are constrained to be equal and thus the diagram does not depend Ol .o pecause by shifting the line one gets a minus sign. Diagram
the left space point. (c) is proportional toR”(0)? and vanishes in an analytic theory.

. . 5 Similar cancellations occur to all orders.
andC. Since they have two verticéa factorR/T< each and

three propagator@ factor of T each, graphsE andF lead to
corrections taR proportional to temperature and will not be Typically, using functional diagrams, we want to compute
studied herdsee, however, Appendix)F the effective action functiondl[ u] or its local part—i.e., its

It is important to distinguish betwedunlly saturated (FS) value for a spatially uniform mode$=u?, which includes
diagrams and functional diagrams The FS diagrams are the corrections to disorder. Specifying the two replicas on
those needed for a full average—e.g., a correlation functioreach connected component, one example of a one-particle
There all fields are contracted and one is only left with theirreducible diagram producing corrections to disorder is

space dependence. These are the standard diagrams in mc=~ T2

conventional polynomial field theories such@$. Thenall ¢t ~ ——R"(u® — u*)R" (u® — u®) /G(q)2 )
vertices are evaluated at=0, yielding products of deriva- *—° ™ g

tives R©(0). These are also the graphs which come in the (2.13
standard expansion df[u] in powers ofu which generate The complete analysis of these corrections will be made in
the “proper” or “renormalized” vertices—i.e., the sum over Sec. lIl. Finally, note that functional diagrams may contain

all one-particle irreducible graphs with some external legs—saturated vertices, whose space and field dependence disap-
from which all correlations can be obtained. Note that in thepeargsuch agc) in Fig. 2] and that the limin—0 does not
fully saturated diagrams there can be no free point: all pointproduce constraints. An example is the calculatiorl pd]
in a vertex have to be connected to some propagdatwl to ~ Since one can always attach additional external legs to any
some external repligaOtherwise, there is a free replica sum point by taking a derivative with respect to the field
yielding a factor ofn and a vanishing contribution in the
limit of N=0.

However, since we have to deal with a functi®(u), we If we consider fully saturated diagrams and analytic
will more often consider functional diagrams. A functional R(u), we find trivial results. This is because &t=0 the
diagram still depends on the field It can depend om at ~ model exhibits the property of DIR1,49-53 both in the

several points in spadenultilocal term, as, for example, ~ Statics and dynamics. Its “naive” perturbation theory, ob-
tained by taking for the disorder correlatefu) ananalytic

R(us N function of u, has a triviality property. As is easy to show

— Z (ug —uj) By “y)Tg(x —y) using the above diagrammatic rulésee a typical cancella-
¢ v L 277 272 . tion due to the “mounting” construction in Fig. 4: see also
Appendix D in Ref[72]), the perturbative expansion of any

(21D correlation functiodHiui‘F)S (of any analytic observablgin

Such a graph witlp connected components corresponds to 1€ derivativesR™(0) yields to all orders the same result as
that obtained from the Gaussian theory settiRju)

p-replica functional term. Or it can represent the projection™ < > .
of such a term onto a local part, as arises in the standartﬁR (0')ut 42 (trt'.e sothcalled Iaark;n raltlndodm-force moleThe
operator product expansidoPE: wo-point function thus reads, to all orders,

_ R/I(O)

C. Dimensional reduction

T

Ca)m= (2.14

— R'(ug — ug) R'(ug — ug)
SIS e L) — o
ade (at T=0 correlations are independent of the replica indices
(2.12 a;). This dimensional reduction results in a roughness expo-
nent{=(4—d)/2, which is well known to be incorrect. One
physical reason is that this=0 perturbation theory amounts

) C
4 s OO £ to solving in perturbation the zero-force equation
égé A G
L O IS VAN @ (= V2+m2)u+F(x,u)=0. (2.15

FIG. 3. Unsplit diagrams to one lodp, one loop with inserted  This, whenever more than one solution exigétgich cer-
one-loop counterterr®, and two-loop diagramd, B, C, E, andF.  tainly happens for smath), is clearly not identical to finding
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the lowest-energy configuratidrCuring this problem within  and considefunctional diagramsThe (disorder part of the
the field theory, is highly nontrivial. Coarse graining within effective action is the sum dfreplica terms, denoteld,[ u]:
the FRG up to a scale at which the renormalized disorder

correlatorR(u) becomesmonanalytic(which includes some

— -k
of the physics of multiple extremas one possible route, F[“]—k; T T du]. (2.1
although understanding exactly how this cures the problem
within the field theory is a difficult open problem. EachT'Ju] is the sum over 1P| graphs witkh connected

It is important to note that dimensional reduction is notcomponentgusing split verticesand itself depends ofi as
the end of perturbation theory, since saturated diagrams re-

main nontrivial at finite temperature, so one way out is to |
study T>0. This is not the route chosen here: instead, we Fk[u]=§0 Ty [ul, (2.18
will attempt to work atT=0 with a nonanalytic action and

focus on functional diagrams which remain nontrivial. wherel is the number of sloops. Thus &&=0 there are no

sloops andl',Ju]=TIy|-o[u] is the sum over 1 Plree
D. Power counting graphs withk connected componentgees in replica space,

L id . L Il th not position spacge
et us now consider power counting. Let us recall the ) o g compute the superficial degree of UV divergeéice
conventional analysis within, e.g., the Wilson scheme

d . . of a functional graph entering the expansion of the local part
[4?)’?7-" Tge elbaestlc '_[ehrm_lj nvariant uner—](>bx, U of the effective action. We denote the number of unsplit
—b%u, andT—Db"T, with §=d—=2+2{. Here[is for now  yisorder vertices) the number of internal linegpropaga-

undetermined. Under g@'gatfaﬂif(?jg?a“on the disorder funcgo g | the number of loops, aridhe number of sloops. One
tion Ris multiplied byb =b . It becomes relevant o< the relations

for d<4, provided {<(4—d)/2, which is physically ex-

pected for instance, in the random periodic cage;0 is the 20+1=k+I, (2.19
only possible choice and for other cagesO(€)]. The re-
scaled dimensionless temperature term scales- a®),,T v+L=1+1. (2.20

=— 4T (see belowand is formally irrelevant near four di-
mension. In the end will be fixed by the disorder distribu- The total factors off areT'~2’=T'"* At T=0 (1=0) the

tion at the fixed point. superficial degree of UV divergence is thus
To be more precise, we want to determine in the field-
theoretic framework the necessary counterterms to render the o=dL-2I=d—-k(d—2)+(d—4)v. (2.21

theory UV finite asd—4. The study of superficial diver- _ ] N o
gences usually involves examining the irreducible vertexThus ind=4 the only graphs with positive superficial de-
functions(IVF): grees of divergence are fér=1 (quadratie- A?) andk=2

(logarithmic divergence Herek=1 corresponds to a con-
stant in the free energy. Because of STS, all single-replica
Tyu(a) =11 ﬁr[u”u:m (2.16  terms are uncorrected and there is no wave-function renor-
=1 % malization in this model.
Thus to renormalize th& =0 theory we neea@ priori to
with E, external fieldsu (at momentag;, i=1, ... E.). look only at graphs withp=2 connected components, which
The perturbation expansion of a given IVF to any given or-by definition are those correcting the second cumuyui),
der in the disorder is represented by a set of one-particleompute their divergent parts, and construct the proper coun-
irreducible (1P)) graphs(in unsplit diagrammatigs Being  terterm to the functiorR(u). As mentioned above, higher
the derivative of the effective action, they are the importantcumulants are irrelevant by power counting and are superfi-
physical objects since all averages of products of fieldan  cially UV finite. The graphs which contribute to the two-
be expressed as tree diagrams of the IVF. Finiteness of theplica partl's[u] havel loops withL=1+v +I. At zero
IVF thus implies finiteness of all such averages. temperaturel =0: thus,L=1+v. The loop expansion thus
However, sincel’[u] is nonanalytic in some directions corresponds to the expansion in powerR{u) and, as we
(e.g., for a uniform mode:i§=u?), derivatives such as Eq. will see below, to are expansion. More generally, using the
(2.16 may not exist atj=0, and we have to be more general above relation one, has, schematically,

Ey

_ (4L—4+2k—21) 5(L—1+k—1)

One can easily see that the DR reg@ltl4) arises if one averages Fraul= L>ma><§1;2+| —k) % R ’
over multiple solutionsu, with some random weightsW, (2.22
~|defV2+nP+F/(x,u,)]| (then using the representation of the delta
function exdif,0[(— V2+mP)u+F(xu)]} and averaging over disor- Where the number of internal lines gives the total number of
der using Eq(1.3). Summing over multiple solutions,, requires  derivatives acting on an argumentof the functionsR. For
instead to include the crucial weight ¢xp8H(u,)] in order to se-  instance, the two-replica part &=0 is a sum ovet.-loop
lect the true ground state. graphs of the type
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Fk=2,|:o[U]:L§1 Jy-R- (223 (a) - (b) [\ O

If one now considerd >0, one finds thats=d—k(d—2)
+(d—4)v+(d—2)Il. Each additional power of yields an
additional quadratic divergence, more generally a factor o
TAY72. Thus to obtain a theory where observables are finite

FIG. 5. The two one-loop diagrams with split vertices and the
Forresponding diagram with standdiick., unsplij vertices.

asA —o one must start from a model where the initial tem- S'R(u)= ERH(U)Z_ R’(0)R"(u) |14, (3.0
perature scales with the UV cutoff as 2

T=TAZ 9 (2.24 M= ==I;

1 1 q(q2+ mZ)Z

This is similar tog* theory where it is known that &° term d ,
can be present and yields a finite UV liniite., does not =F(2— E) m*ff e ¢
spoil renormalizability only if it has the formgg$®/ A9~2. a
Such a term, with precisely this cutoff dependence, is in fact 1
usually present in the starting bare model—e.g., in lattice = WF(Z— E)m‘f
spin models. It then produces only a finite shifigiowithout .
changing universal propertiéddere each factor of comes (1
with a factor of A2~ % which compensates the UV divergence =0 el 3.2

from the graph. Thus the finit€<theory may also be renor-
malizable. Computing the resulting shift R(u) to orderR?>  Note that(b) has a saturated vertex, hence the fag&(0).
by resumming the diagranisandF of Fig. 3 and all similar  This does not lead to ambiguities in the one-lgdfunction,
diagrams to any number of loops has not been attemptesince the FRG to one loop yields a discontinuity only in the
here(see, however, Appendix)FThe “finite shift” here is,  third derivative andR”(u) remains continuous.
however, much less innocuous than d¢f theory since it
smoothes the cusp. The effects of a nonzero temperature are B. Two-loop corrections to disorder
explored in[74,76,77,84

One can use the freedom to rescaley m™¢. The dimen-
sionless temperaturé=Tm’ is then defined. The disorder
term inI'[u] is then is as in Eq(2.2) with R(u) replaced by

me~*R(um?) in terms of a dimensionless rescaled function

R of a dimensionless rescaled argument. This will be further 1. Class A
discussed below.

There are only three graphs correcting disordell &t0
with L=2 loops andv =3 vertices. They are denot&y B,
andC (see Fig. 6 and we will examine each of them.

We begin our analysis with clags

The possible diagrams with split vertices of typeare
diagrams(a)—(f) given in Fig. 7. The resulting correction to

I1l. RENORMALIZATION PROGRAM R(u) is written as
In this section we compute the effective action to two- ) 1 2 .
loop order afT=0. We are only interested in the part which o°R(u)= 31 ?3(2 )2, (a+b+c+d+e+f)

contains UV divergences ak— 4. We know from the analy-
sis of the last section that we only need to consider the local

k=2 two-replica part—i.e., the corrections R(u). These =2 (atb+ctdtett), 33
L=1 andL=2 loop corrections contain=L+1 vertices.
Higherv yields a higher number of replicas. where the combinatorial factors are 1/3! from the Taylor ex-

pansion of the exponential function, 3/fom the explicit

factors of 1/2 in the interaction, a factor of 3 to chose the

vertex at the top of the hat, and a factor of 2 for the possible
To one loop aff =0 there is only one unsplit diagram  two choices in each of the vertices. Furthermore, below some

=2, corresponding to two split diagran® and(b) as indi-  additional combinatorial factors are given: a factor of 2 for

cated in Fig. 5. Both come with a combinatorial factor of

1/2! from Taylor-expanding the exponential function and 1/2

from the action(a) has a combinatoric factor of 2 arid) of A ? é B

4. Together, they add up to the one-loop correction to disor- <><>'

der:

A. One-loop corrections to disorder

FIG. 6. The three possible two-loop unsplit graphs correcting
2We thank E. Brezin for a discussion on this point. disorder afT=0.
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1 1 (4 1 1 1 ]

*

[}
1 1 |h 1 1 4

i

FIG. 8. Two-loop diagrams of clas

c=d=0, (3.11)

FIG. 7. Graphs at two-loop order in the form of a kelfssA in since these graphs cannot corrB¢t) as they aredd func-
Sec. III B 1) contributing to two-replica terms. tions of u, which yields no contribution when inserted into
the actionZ ,,R(U;— Up).
generic graphs and 1 if it has the mirror symmetry with re-
spect to the vertical axis. Each diagram symbol denotes the 2. Class B

diagram including the symmetry factor. The first two graphs  \yia now turn to graphs of typB (bubble diagrams g—|

are represented in Fig. 8. We use the same convention as in Eq.
— _pn N2 (3.3) and start with the combinatorics. There are three ways
a RIOR™ (W4, 34 to choose the vertex in the middle. Upon splitting the verti-
b=R"(U)R”(u)?l 5 (3.5 ces, fori andj there are only two choices at the middle

vertex, whereas fog there are four choices. There are also
To Obtain the Sign onhe can Choose an “Orientation“ in eachfour choices fom, k, andl. There one must also choose the
vertex (U,—Up); the final result does not depend on the fightmost vertex, leading to an extra factor of 2. The final
choice. The minus sign iacomes because the two legs enterresult is
on opposite points in the top vertex. Define the two-loop

momentum integraisee Appendix A in Ref{69]) g= %R"(U)ZR'”’(U)l 2 (3.12
| j f 1 1 1 )
A= 0 qgcﬁ"'mz q§+m2 [(qy+0p) 2+ M2 h=-R"(\)R"(u)R"(0)I7, (3.13
1 1 1
=+ 2 2 i=j=—R"(UR"(0)2%, 3.1
52+ 72 HO(E) |(ely)?. (3.6) 1= 7R™(WR(0) (3.19
Graphsa andb are nonambiguous. They are the only contri- k=—-NR"(U)R"(0)R™(0)I f (3.1
butions in an analytic theory. The other graphs are
I=\R"(U)R"(0)R™(0)13. 3.1
c=2\.R"(0)R"(0)R"(U)l 5, (3.7) RIWRIORT(O (316
Only k andl are ambiguous, but it is also natural to set
d=2\4R"(0)R"(W)R"(U)l 5, (3.8
k+1=0, (3.17
e=—\e(R"(0+))’R"(U)l 4, (3.9
which we do for now and discuss later.
f=2\R"(0)?R"(u)l 5, (3.10

3.Class C
and vanish ifR(u) is analytic[since therR"”(0)=0], buta Diagramsm, n, p, and q of classC are represented in
priori should be considered whedR(u) is nonanalytic. We Fig. 9:
have indicated their “natural” sign and amplitude.g., sym-

metry factor setting.;=1), but have introduced factoks to m=c;\,R"(0)R”(0)R"(u)l 1, (3.18
recall that they are ambiguous since R”(0%")

=—R"(07), one is confronted with a choice each time one n=—c/\;R"(0O)R"(0)R"(u)l I, (3.19
saturates a vertex and there is no obvious way to choose the

sign at this stage. We recall that we have defisatrated p=cz)\pR””(O)R”(u)zltlT, (3.20
vertices as vertices evaluateduat O, while unsaturatedrer-

tices still containu and do not lead to ambiguities. q= —cz)\qR””(O)R”(u)ZItIT, (3.21

At this stage we will not discuss in detail how to give a
definite values to these contributions to disorder. This will bewith
done in Sec. V. We will just use the most reasonable assump- 1
tions, which will be reevaluated and justified later. A natural S
. It 2 2 (322
step is to set qd"+m
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carried out—i.e., one considers the bare acti@®2) with R
—Ry. We denote here bR the renormalized dimensionless
disorder; i.e., the corresponding term in the effective action
I'[u] is m*R (i.e., the local two-replica part df[u]). Sym-
bolically, we can write

Su]«Ry, (3.28

T[u]<meR. (3.29

We define the dimensionless symmetric bilinear one-loop
and trilinear two-loop functionsee Eqs(3.26) and(3.27)]

p q

\ . ’ / such that
FIG. 9. Two-loop diagrams of clasa. SY(R,R)=meS'R, (3.30
1 5?(R,R,R)=m°5°R. (3.31)
They can be extended to a nonequal argument usirgy)
There it is natural to assume =3[ f(x+y,x+y)—f(x,x)—f(y,y)] and a similar expres-
sion for the trilinear function. Whenever possible, we will
m-+n=0, (3.24  use the shorthand notatiait"(R) = §)(R,R) and §*)(R)
=6@)(R,R,R). The expression oR obtained perturbatively
p+qg=0, (3.25 in powers ofR, at two-loop order reads
which we do for now and discuss it later. This leaves no R=m"‘Ry+ 5(1>(m‘fR0)+5(2)(m‘fR0)+O(Ré).
correction to disorder from grapl@, as is the case for de- (3.3
pinning [69]. This is fortunate, since the integrhl has a
quadratic UV divergence id=4, while |11 is UV finite. It contains terms of order &/and 1£2. This is sufficient to

Physically, it is unlikely that these could enter physical ob-calculate the RG functions at this order. In principle, one has

servables as the tadpole divergence can usually be eliminatéd keep the finite part of the one-loop terms, but we will

by proper field reorderingnormal orderingor vacuum sub- work in a scheme where these terms are exactly 0 by nor-

traction. malizing all diagrams by the one-loop diagram. Inverting Eq.
To summarize, for the equilibrium statics B0 in per-  (3.32 yields

turbation of R=R(u), the contributions to the disorder to

one and two loops—i.e., the corresponding terms in the ef- Ro=mIR—6Y(R)— 6P (R)+ 65TV(R) +-+],

fective actionI'[u,(]—are (3.33

N 1 ) where 5M(R) is the one-loop repeated counterterm:
6'R(u)= ER"(u) —R"(0)R"(u) (I, (3.2
sV(R)=28M(R,68M(R,R)). (3.39
S°R(u)={R"(u)’[R"(u)—R"(0)]}I
(W={RTWIR(W) (O The B function is by definition the derivative dR at fixed
1 Rg. It reads
+ S{IR(W)-R(OPR"(W}IF ’
_mamR|Ro
—AR”(0")?R"(u)l 4. (3.27
=¢[m “Ry+28V (M~ “Ry) + 382 (m Ry) +---].
We have allowed for a yet undetermined constamt\.
—2\;. We now show that requiring renormalizability allows (3.39

us 10 fixA. Using the inversion formuld3.33), the B function can be

o ) written in terms of the renormalized disorder
C. Renormalization method to two loops and calculation
of counterterms — mé’mR|RO: e[R+ 8V (R)+28P(R)— STV(R) +---].

Let us now recall the method, also used in our study of (3.39
depinning[69], to renormalize a theory where the interaction
is not a single coupling constant, but a whole function, theln order to proceed, let us calculate the repeated one-loop
disorder correlatorR(u). We denote byR, the bare counterterms{(R). We start from the one-loop counterterm
disorder—this is the object in which perturbation theory is(3.26), which has the bilinear form
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1 ~ sults independent of the short scale dejditses the value
sM(f,g)=— S [ (Wg"(w)=1(0)g"(u) = F"(u)g"(0)]11,  \=1. Note that the cancellation of the grapBslso works
(3.37) thanks to Eq(3.17).

It is interesting to compare with what happens at depin-
with the dimensionless integra) :=14|,,_;; we will use the Ning. There the cancellation of theet/terms in the anoma-
lous part is more complicated, but automatic. It requires a
consistent evaluation of all anomalous nonanalytic diagrams.
STY(R(U)=25V(R, sV (R)={[R"(u)—R"(0)]R"(u)? In the depinning theory the cancellation was unusual: a

nontrivial bubble diagranicalledi; in [69]) was crucial in

same convention fof:=1|m_1. Thus 8*}R) reads

+[R"(u)=R"(0)]*°R"(u) achieving the cancellation. In the statics the two-loop bubble
diagrams of typeB appear to be simply the square of the
" " 2
—R"(0")?R"(W}I7, (338 one-loop ones, which is the usual situation. This however is

clearly a consequence of E@.17), so the previous experi-
Yence with depinning indicates that care is required and we
will discuss some justification for E¢3.17) below.

In the search for a fixed point it is convenient to write the

B function for the rescaled functioR(u) defined through

In the course of the calculation the only possible ambiguity
could come from

14

/I(O) R//(U)Z R"(O)R”(U)

u—0
— R/// 2_R//// R// _er 0

{R"(u) (WIR"(U)=R"(0)]}y—0 R(u)=ém’4f§(um§), (3.42
=R"(0")?, (3.39 el

but there isno ambiguitysince tfezfunctiorR’;(u)z_ IS CON- \yhich amounts to rescaling the fielddby m¢. Note that this
tinuous atu=0 with valueR"(07)*=R"(07)". This is ex- 5 5 simple field rescaling and different from standard wave-
actly the same calculation as is done to one loop when cOMynction renormalization, since as mentioned above there is
puting the nontrivial fixed point for the pinning force none in this theory due to STS. We have also included the
correlator  A(u)=—R’(u) vielding 0=(e—2{)A(0)  one-loop integral factor to simplify notation and further cal-
—A’(0%)% Thus there is no doubt that the graPtwith the  culations(equivalently it can be absorbed in the normaliza-

one-loop counterterm inserted in a one-loop diagramois-  tion of momentum or space integralsVith this, theg func-

ambiguous tion takes the simple form
D. Final function, renormalizability, and potentiality — m&mﬁ(u)2(6—4§)ﬁ(u)+ g’uﬁ’(u)
The two-loop 8 function (3.36 then becomes, with the 1
help of Eq(338), + E"R//(U)Z_ﬁn(o)'ﬁ//(u)

1 -
—mdyR(U)=€eR(U)+|=R"(U)>—R"(0)R"(u) | (el 1) Lo imy = e

2 + S X{R(W)-R(0)R"(w)?
+{[R"(u)—R"(0)JR"(u)?}e(2T 5~ T2)

_E " a+t12D"r
_[R///(0+)]2R//(u)6(2)\TA_T§) (34@ 2X[R (O )] R (U), (343

The first result is that, apart from the last “anomalous” term, A=1, X=1. (3.44
the 1k? terms cancel in the corrections to disorder. In the

terms coming from grapha this works because, as we re- e have left a\ for future use, but its value in the theory we

call, To=[1/2€?+ 1/4€*+ O(€?)]( €l 1)? so that the combina-  study here is set to 1. Also for convenience we have intro-

tion e(21,—13) is finite. GraphsB cancel completely since duced

we have chosen as counterterm the full one-loop graph. So

for an analytic theory the abov@ function would be finite. 26(2IA—I§)

This however is incomplete, since the flow of such aunc- - T (el)? (349

tion leads to a nonanalytiR(u) above the Larkin scale.
Thus we must consider the last, “anomalous” term in Eq.

(3.40. It clearly appears that the only value ofcompatible

with the cancellation of the &f poles is

which is X=1+0O(e€) in the e expansion studied here, but
has a different value for LR elasticity; see below. In fact, it is
shown in Appendix E that lim, X is independent of the
A=1, (3.41) particular infrared cutoff procedurbere a~m§ssive scheine
Although the global rescaling factor d®,el;, hasO(e)
leading to a finiteB function. Thus the requirement that the corrections which depend on the infrared cutoff chosen, the
theory be renormalizable.e., yield universal large-scale re- FRG equation above does not depend on it. Note that the
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above equation remains true in fixed dimension, with thewhich satisfy all the above constraints of renormalizability,

appropriate value foK, up to terms of ordeR*. absence of a supercusp, and potentiality up to three-loop or-
We will see that the valua=1 in Eq. (3.43 has other der[75].

highly desirable properties. First, this valuetie only one

which guarantees that the nonanalyticity Rfu) does not IV. ANALYSIS OF FIXED POINTS AND
becomemore severat two loops than it is at one loop. Let PHYSICAL RESULTS
; ; +
Eﬁdtsake one derivative of Eq3.43 and takeu—0". One The FRG equation derived above describes several differ-

ent physical situations and admits a small number of fixed-
5 5 1 5 point functionsR* (u) describing a few universality classes.
—mdR' (07)=(e—3)R'(0")+ 5(1— MR”(07)3. The fixed point associated with a periodic disorder correlator
(3.46 describes single-component periodic systésush as charge
' density wavep The fixed point associated with a short-range

Thus, ifA # 1, the cusp irR” and the resulting finite value of (exponentially decayingcorrelatorR(u) describes a class of
R”(0") immediately creates a cusp R The singularity systems with so-called random-bond disorder. There is also a

. family of fixed points associated with long-range—i.e.,
has become worse. We call this a supercusp. It must b ; . o -

. ; ) . Do algebraic—correlations. This includes, as one particular ex-
avoided in the staticésee also discussion in Sec).\Inter- ' ) ) . )

. . : ) . L ample, random-field disorder, which will be discussed sepa-
estingly it does occur in the driven dynamjoshere it is a rately
phxllﬁécséjlg&?;uremofelrrrtev?;SIitr)]Itlilgétel related to another We now give the results for these fixed points, first for
highl deéirableprop ergl of the stati():/s otentiality This short-range elasticity, then for LR elasticity, and compare

gnly property P ¥ with available numerical and exact results. The most impor-

property is_more conveniently described by consideri_ng thefant quantity to compute is the roughness exporgeiince
flow equation for the(rescaled correlator of the pinning we have shown thaX in Eq. (3.43 is universal to dominant

(D

force A(u)=—R"(u), the second derivative of E¢3.43: order, this proves universality dfto the order ine studied
~ ~ ~ here[i.e., O(€?)]. For LR disorder and for periodic fixed
—MdmA(u)=(e—20)A(u)+{ud’(u) points we can also compute the universal amplitudes for the
1 B correlation function of displacements and discuss their de-
— 5{[A(u)Z—A(o)]Z}" pendence on large-scale boundary conditions. Anticipating a

bit, let us summarize the general result that we use in that
1 . 5 5 case, which is derived in Sec. VI. ThE=0 disorder-
+ E{[A(u)—A(O)]A’(u)Z}” averaged two-point function faq— 0, g/m fixed, reads for
any dimensiord, in Fourier representation,

N~ ~
— 5 [A"(0)]%A"(u). (3.47) —

2 UgUg =(2m)8%(a+q")C(q), 4.
Formally, this equation could have been obtained directly
from a study of the dynamical field theory. Such an equation C(g)=C(g=0)F4(g/m), 4.2
was indeed obtained at depinning, but with a different value
of \:

C(q=0)=T(d)m 92, 4.3
Ngep=— 1, (3.48

. _ . ) The amplitudet(d) is given by the relationexact to all
which shows that statics and dynamics differ not at one, bugrders in the present schejme

at two loops. Integrating the equation f&@fu) once yields a

nonzero fixed point value fof A(u) unless\ = 1. Potential-

ity, on the other hand, requires that the force remain the _ ~n

derivative of a potential and that, for short-range disorder ¢(d)=———R*"(0). (4.4

(e.g., RB for interface one must havefA(u)=0. While (el)

violating potentiality is desirable at depinning where irre- ) o

versibility is expected, this would be physically incorrect in It 1S found to be universal only for long-range and periodic

the statics and thus again points to the valuel as the disorder. Thg ;cal_lng functlon,. computed in Sec. VI for SR

physically correct one. and LR ela}sucny, is _alyvays univers@hdependent of short-
Thus we will for now assume that this is the correctScale detailsand satisfies4(0)=1 and

theory of the statics and explore its consequences in the next

section. In Sec. V we will provide better justifi cations and Fy(z)~Bz (@*20  for z—o, (4.5)

explain our understanding of the tantalizing problem of am-

biguous diagrammatics in the nonanalytic theory of pinned

disordered systems. Especially we will present methods B=1+be+O(€?), (4.6)

026112-11



Le DOUSSAL, WIESE, AND CHAUVE PHYSICAL REVIEW EB9, 026112 (2004

whereb is computed in Sec. VI. This gives us all we need for 1
a calculation toO(€?) of the universal amplitude, e.g., for

the propagator in the massless limitq: 0.8
0.6

C(q)=c(d)q~ 22, (4.7 0.4

0.2

c(d)=T(d)[1+be+O(e?)]. (4.9

. . 2 6 8 0
The result forC(q=0) in the presence of a mass is also ! \ !

interesting since it gives the fluctuations of the center-of- F|G. 10. The fixed-point functiom;(u) at one-loop order. We
mass coordinate for an interface physically confined in @ave plotted a numerical solutigred, converging to 0 at large as
quadratic well. Although that situation would be interestingwell as the Taylor expansiof#.16) about 0 up to order 2%blue,
to study numerically, most numerical results are for finite-converging up tai=5).

size systems of volume® (andm—0). We thus also define,

in that case, , T,
0=(1—4gyry(u)+yury(u)+ Erl(u) —ri(wr(0),

CL(q)=c'(d)q 4+20g,(gL), (4.9 1=r,(0) (4.14

with lim,_, ., g4(z) = 1. For periodic boundary conditionsg ~
=27-rn/|_z, nedZd and n#0. The prime indicates that the where we have used our freedom to normakzd):=e.

value of this amplitude depends on the large-scale bounda quqt!on(4.14) has a SOIU“Q” for a_ngl, but only for one
conditions: i.e., it depends on whether, e.g., a mass is used peC|f|c val.ue Ofy dogs this sol_ut|on de;ay exponentially
periodic boundary conditions as an infrared cutoff. The ratio,aSt to 0, without crossing the axis: see Fig. 10. The strategy

ted in Sec. VI for short- lasticity, is thus the following_: _Qne guessﬁ and then integrates
computed in >ec Or shori-range elasticity. Eq. (4.14) from O to infinity. In practice, however, there are

numerical problems for small One strategy, which we have
c'(d) adopted here and which works very well, is to use the value
c(d) =1-1.4693F+0(¢?), (410 of £, to generate a Taylor expansion about 0. This Taylor
expansion is then evaluated at 0.5, where the numerical in-
is unity only for periodic disorder, in which case the ampli- tegration of Eq.(4.14) is started, both forwards to infinity
tude is independent of both large- and small-scale details. (Which in practice is chosen to be 2&nd backwards to 0.
Before studying the different fixed points, let us mention This enables us to control the accuracy of both the Taylor
an important property, valid under all conditions: R(u) is expansion and the numerical integration. The result for the

a solution of Eq/(3.43, then best value

!

{1=0.208 298 063) (4.15

N
R(u)=x"R(u/ k) 41D s given in Fig. 10(Note that in[46] only the first four digits

. . . were given). On this scale, Taylor expansion and numerical
is also a solutiorfor KECOHStaDt independent of. We can integrgtion are indistinguishab)I/e. Thg error estimate on the
use this property to filR(0) or R”(0) in the case of nonpe- |ast digit comes from moving the starting point of the nu-
riodic disorder.(For periodic disorder the solution is unique, merical integration(which was 0.5 aboveup to 1, which
since the period is fixefl. allows for a crude estimate of the error. We also reproduce
the Taylor expansion up to order 25 below:
A. Nonperiodic systems: Random-bond disorder

0.01
Let us now look for a solution of our two-loop FRG equa-
tion which decays exponentially fast at infinity as expected 601 2 4 8 10

for SR random-bond disorder. To this aim, we have to solve ~0.02
order by order ine the fixed-point equatiori3.43 numeri- _0'03
cally. Making the ansatz _0'04
- -0.05
R(U)=ery(u)+ €rp(u)+--+, (4.12 -0.06
-0.07

(=€l 1+t -, (4.13 FIG. 11. Fixed-point functiom,(u) at two-loop order. We have

plotted a numerical solutiofred, converging to O for large) as
the partial differential equation to be solved at leading ordefwvell as the Taylor expansiof#.20 about O up to order 2%blue,
is converging up ta=5).
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TABLE 1. First column: exponents obtained by settikgg=4—d in the one-loop result. Second
column: exponents obtained by settiag-4—d in the two-loop result. Third column: errors bars are
estimated as half the two-loop contribution. Fourth column: improved estimates using the exadfggesult
=2/3ind=1 (see text

Leq One loop Two loop Estimate Improved estimate Simulation and exact
d=3 0.208 0.215 0.2150.004 0.214 0.220.01[85]
d=2 0.417 0.444 0.4440.015 0.438 0.410.01[85]
d=1 0.625 0.687 0.6870.03 2/3 2/3(86]

r,(u)=1-0.288 7917+ 0.096 748%°—0.010995%*+ 0.000 197 282°+ 0.000 016 207#®+ 1.370 54x 10 6u’
+1.06127% 10 "u+5.84538<10 °u®—1.50021x 10 10— 1.198 21x 10 11— 2,529 31x 10~ H1y1?
—3.93584x 10 1u13-4.907 17 10 *ul%—4.491 54x 10" *u1®—1.21758<10 u®+6.775 79< 10~ oy’
+2.11465<10 %u'8+4.193 48<10 "u'®+6.494 82< 10 18u2°+ 7.780 44< 10 1?1+ 5.526 91X 10~ 2°y??
—4.3755% 10 21u?3—2.722 31X 10" 2u?*— 6.743 31X 10~ 22u%5+ O(u?9). (4.16

At second order irg, we have to solve
1
0=r,(u) =401 (u) =441 p(u) Fudor (U) +udyr(u)+ri(ura(u) —ri(0)ra(u)—ri(u)ry(0)+ E[r’l’(U)—r’l’(O)]rZ’(U)z
1 " "m +\2
_Erl(u)rl(o )% (4.17)

0=r,(0), (4.18

where the last equation reflects our choicéR¢0)= €. Note that to solve the two-loop order equation, one has to feed in the
solution at one-loop order, both the Taylor expansion about 0 and the numerically obtained solution far. lAggen, ¢, is
determined from the condition that the solution decay at infinity. Following the same procedure as at one-loop order, we find

{,=0.006 8581). (4.19

The functionr, is plotted in Fig. 11. The Taylor expansion up to order 25 about O reads

r,(u)=—0.060 49422+ 0.034 5276°—0.006 280 98+ 0.000 239 628°+ 0.000 019 82@°+ 1.422 02< 10 ®u,+5.179 41
X 10 8u8—8.644 56< 10 °u®—2.727 55¢ 10 °ul®— 4,786 07 10 1%!!-6.23531x 10 1u?—5.495 41x 10 1213
—8.784 73 10 u*+1.302 32< 10" 13u’+3.605 68< 10~ 5+ 6.7239< 10 *ul’+9.512 99< 10~ 1618
+9.06111x 10 1u-9.062 01x 10~ 2%%°— 2,595 61x 10 8u?!—7.679 11x 10~ %??— 1.539 22< 10~ %23
—2.36569% 10 2%%*—4.429 73< 10" 2u?>+ O(u?). (4.20

One observes thdlgg is necessarily bounded from above by merical simulations ind=3,2 and the exact result for the
el4 as no SR solution can cross this valiie any ordey  directed polymer ird=1. A first observation is that the cor-
without exploding. This reflects the exact bound for SR dis-rections compared to the one-loop result have the correct
order, #<<d/2, which simply means that optimization of en- sign and, further, that they improve the precision of the one-
ergy must lower energy fluctuations compared to a simpléoop result. Given the difficulties associated with this theory,
sum of random numbers. Equality is obtained for the trivialthis is a significant achievement. Second, the error bars given
constant eigenmod®&(u)=R(0) corresponding ta/=e/4, in Table | are estimated as half the two-loop contribution,
associated with the fluctuation of the zero mode of the ranwhich should not be taken too literally, as it is difficult to
dom potential. obtain a good precision from only two terms of the series and
We can now discuss our results for the roughness expaio currently available information about the large order be-
nent. These are summarized in Table | and compared to niravior of this novele expansion. Third, one may try to im-
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prove the precision using the exact res{#t2/3 in d=1. 1. Fixed-point function

Estimating the third-order correction in the three possible |\ first study the fixed-point equation for
Padeapproximations in order to matci= 2/3 for e=3, we

obtain consistently the values quoted in the fourth column of _ _ €

Table I. We hope that these predictions can be tested in A(u)=—R”(u)=§y(u), (4.249
higher-precision numerics soon.

y(0)=1, (4.29
B. Nonperiodic systems: Random-field disorder

, and later use the rescaling freedom to tune the solution to the
Let us first recall that at the level of tHere model the correct value ofr at large scala.

static random-field disorder correlator obegéu) ~ — & /|u| The two-loop FRG equatiof8.47) becomes X =1)
at large|u| [46,72], whereT= (€l )0 is proportional to the
amplitude of the random field. ;1 .
If one studies the larga-behavior in the FRG equation 0=(uy)' = 5[(y=1)7]
(3.43, one clearly sees that the nonlinear terms do not con-
tribute: thus, one has el , 1 )
+§[§[y 2(y-1)] 5V (0%)%y } (4.26
—Ma, o= (e—30)F. (4.21)
One can then integrate once with respectito

Thus for a RF fixed point to exist, tH@(e?) correction tof .
has to vanish: =uv—V'(y— —
O=uy-y'(y-1)+3

1 12 1/ l/o+2/
LY (y=DI' =5y (07)%y" .

Crp=€l3. 4.22 (4.27)
There is no integration constant here because the second line
precisely vanishes at=0" (absence of a supercysp

This will presumably hold to all orders. Indeed, it is clear  The one-loop solution involves the first line only. Divid-
that if there is a similag function to any order, since eaéh  ing by y and integrating oveu yields

carries at least two derivatives and at least one must be
evaluated ati#0, the sum of all nonlinear terms to a given u?
finite order decreases at leastRu)~ 1/u. (This does not S =yi—1-Iny,, (4.28
strictly exclude that summing up all orders may vyield a
slower_ decay, although it_ appears fqr fetched and does nq)_]é_, an implicit equation fos,
occur in the nonperturbative largétimit.) The above value
of ¢ ensures tham“R(u)~ — ou| in the effective action—
i.e., nonrenormalization of. _ "0t —

Note that this argument based on long-range lardpe- yi(0=1 ¥ (07)=-1,
havior isa priori valid for any\. Since it is made on thR > 1
equation(no such, argument can be made on the equation for yi0H)==, yr0H)=-=. (4.29
A), it uses the property of potentiality. However, from Eq. 3 6
(3.46 with {=€/3 one sees that#1 is incompatible with ) o
the existence of a fixed point, even a fixed point with aVVWe can put the two-loop solution under a similar form. Mak-
supercusp. Thus the only way to satisfy potentiality for theind the ansatz
static random-field problem seems to haweunrenormal-
ized, {=€/3 and\ =1 (the previous discussion of potential-
ity in Sec. Il D assumed short-range disorder

This must be contrasted with the theory of depinning,
where we found that one obtains

which definesy=y;(u). It
satisfies

W ioiny—SF 43
S =y-1l-lny—-3 (y), (4.30

1 (udu_ ,
Fo@=, [ yry-n-yr @3

€
gdep=§(1+0.143 3%k) (4.23
At this order, one can replaceby y,—i.e., useuy=y’(y

following from Age=—1 in Eq. (3.47). Since in that case —1) to eliminatey’. This gives, changing variables from

the RG flow is nonpotential, it is clear that no similar argu-t© Y:

ment as above exists to protect the valizee/3. (The force _ 2 9
correlator is short rangeThe conjecture of57] thus appears F(y)= } fy l i ( M_y) . (4.32
rather unphysical in that respect. 2 ydyl y-1
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The last term in the brackets is easily integrated. For the

remaining terms, we integrate by part and use B30 to
replaceu®/2 byy—1—Iny:

(v, y=1l-Iny y(y-1-Iny) 1 _
F(V)—Ldy =1 T 3y-1 -5y,
(4.33
This yields the final result
ylny 1 ,
F(y)=2y—1+ ———-Iny+Liy(1-y), (4.39
1-y 2
, 0 In(l-t) <« Z
L|2(z)==f dt => . (4.3
z t k=1k

We find that

2 , 13 . .
F(y)=§(y—1) —3—6(y—1) +0((y—1)") (4.36

has a quadratic behavior aroupé 1, similar to the one-loop
result, and corrects the value of the cusp.

2. Universal amplitude

PHYSICAL REVIEW E 69, 026112 (2004

13
T(d)= 02/3( E) (y1+€y2) (el )18

3
e\ -1
ef‘(—)
2 2/3

€ 1/3
—| = —2/3]
(3) (71+672) (477)6)2 g,

(4.43

where one has restored the factets absorbed il and@-.
Expanding all factors in a series ef one finds

T(d)= €4 3.52459-0.725 072+ O(€?)]o?>.
(4.44

The lowest order was obtained in Ré¥.2], and we have
obtained here the next-order corrections. It is interesting to
compare our result with the exact resultds=0, which is
[71]

T(d=0)=1.0542385659...5%"° (4.45

While the simple extrapolation setting=4 of Eq.(4.44) to

Since we know the exact fixed-point function up to a scaleone 100pg(d=0)=5.5%"" is very far off, to two loop it

factor, we can now fix the scale by fitting the exact lajge-
behavior toR(u)~ — o|u| where o is the amplitude of the
random field. The general fixed-point solution reads

R(u)= 5 &y(uie), (4.37
whereé can be related tor as
~—fwd A(w)==& 4.3
o= uA(u)=z &1y (4.39

We need

] 1
ly= fo duy(U)=f0dVU(y)=71+672, (4.39

1
y, = f dy\2(y—1—Iny)=0.775304 245 188,
0

(4.40

1 F
Yzz_f dy¢=—o.13945524.

0 "~ 3y2(y—1-Iny)

(4.4

One can now express
~\ 2/3

Tx o C2 € 307 o
B (0)=7¢ 3<6) 1, (4.42

and thus compute, using E¢.4), the universal amplitude
(4.3 associated with the modg=0 in the presence of a

confining mass:

givesT(d=0)=0.99%3, surprisingly close to the exact re-
sult. It was noted in Ref.72] that extrapolation of the one-
loop result could be considerably improved by not expanding
Eq. (4.43 in ¢ but instead directly setting=4 [(with vy,
=0) in Eq.(4.43]. That givest;(d=0)=0.8210?" an un-
derestimate already reasonably close from the exact result.
We extend this procedure to two loop by truncating the
expansion of ; ?* to second order in Eq4.43 and then set
e=4. This yieldst,(d=0)=1.220?" and the exact result is
then halfway betweeii;(d=0) and€,(d=0). To summa-
rize, our two-loop correction$4.44) have the correct sign
and order of magnitude to improve the agreement with the
exact result id=0.

The universal amplitude for the massless c&&&) (or
g>m) is obtained from Eq(4.8) with b=—1/3 from Sec.
VI as

1
c(d)=T(d)|1- §6+ O(€?)
= €9 3.52459-1.899 94+ O(€?) |02,

(4.49

and writing ¢(d)=T(d)/(1+ 3€) should provide a reason-
able extrapolation to low dimensions. Finally, we recall that
for random-field disorder, this coefficient is different for dif-
ferent large-scale boundary conditions. The result for peri-
odic boundary conditions can be obtained from formula
(4.10.

In Ref. [72], the one-loop result was compared to the
result of the GVM. It is instructive to pursue this comparison
to two loops. We get, fromi72],
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1 D. Periodic systems
0.8 1. Fixed-point function
0.6 For periodicR(u) such as, e.g., CDW'’s, there is another
' fixed point of Eq.(3.43. It is sufficient to study the case
0.4 where the period is set to unity; all other cases are easily
obtained using the reparametrization invariance of Eg.
0.2 (4.11). No rescaling is possible in that direction, and thus the
roughness exponent is
1 2 3 4 {=0. (4.5)

FIG. 12. Fixed-point functiory,(u) at one-loop order for non-

periodic disorder The fixed-point function is then periodic and can in the in-

terval[0,1] be expanded in a Taylor seriesufl—u). Even
more, the ansatz

el 113 ~
1/3 EF(E) 1 R(U):(alé+a262+‘")+(b16+b262+'")Uz(l_u)z
EGVM(d) = ( 2 ;) (4’7T)d/2 P 0'2/3 (452
1 allows us to satisfy the fixed-point equati¢®.43 to order

€ and will presumably work to all orders. For a more gen-
= €%3.690 54-0.894 223+ O(€?)]o??, eral case of this, see Ré¢f0].

To gain insight into the more general case, let us write the
(447 fixed point for Eq.(3.43 with arbitrary \:

coym(d) e—2¢ e—2¢\ w(e—20)I2 - € €

EGVM(d):( 2 )(1_ 4 )Sin[W(e—ZZ)IZJ R (u)_2592+(3 2N) 7776+ (A1) 45U~ 0
-1 ? . 62) 2(1—u)? 45
_1_Z+O(E ), (4.48 - 7—2 HS (1—u)=. (4.53

where in the last line we have insertéé €/3 and performed On_e can see in this solution that=1 is the only value
the e expansion. Thus one finds, quite generally, that which avoids the appearance at two loops of the supercusp—

=3b/4. As noted in[72], to one loop the FRG and GVM I-e., a cusp in the potential correlat@tu) rather than in the
give rather close amplitudédiffering by about 5% We see  force correlatorA (u).

here that to two loop—i.e., next order k—the difference The same discussion can be made on the the flow equa-
increases. Finally, tion of A(u) by taking two derivatives of Eq(3.43. One
finds that there is priori an unstable direction correspond-
Covm(d) = €13.690 54-1.816 8G+ O(€?) o ing to a uniform shift inA(u)—A(u)+cst While this is

natural in, e.g., depinning, it is here forbidden by the poten-
and the coefficient remains rather close to the one(£¢6).  tial nature of the problem which requires

1
C. Generic long-range fixed points fo duA(u)=0, (4.59

There is a family of fixed points such that ) ) ) ) )
since in a potential environment, the integral of the force

R(u)~|u[**77, (4.49 over one period must vanish. This is indeed satisfied for the
. _ fixed point forA(u),

associated with e 2 N—1
A * — _P*n - 4 I
g:# 50 A*(u)=—R*"(u)= 36+54(1 7 )

2(1+y)° ' . 2

—| =+ —=|u(l—u), (4.595
These fixed points where found for infinité in any d in 6 9

Refs.[36,74 (we use the same notatiphey were studied

to first order ine for any N in [47] and argued to be stable

only for y<y*(d), the value of the crossover to short range %

identified in[47] as Zsx= £ r(y* (d)). f duk* ()= 360 (4.59
Here we have not studied these fixed points in detail, but

we note that the two-loop corrections do not chafigey the  The values for depinning are obtained by setting

same discussion as for the random-field casel/2. They A=-—1: in that case, the problem becomes nonpotential at

will, however, affect the amplitudesee Fig. 12 large scales.

only if \=1:
&2
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2. Universal amplitude

62

54

€

c(d)= 3—6+

mode in the presence of an harmonic well, defined in Eqdiscretizations gave @d=3)=1.01+0.04 and 2(d=3)
PRI
2

[their amplitudeA is twice ourc(d)], which lies in between
This fixed point implies for the amplitude of the zero the GVM and one-loop FRGMore precisely two different
(4.39), using Eq.(4.4):
(477)d/2(
€
EF(—)
=2.1932%—0.680 42>+ O(€%).

(4.57)

In the other limitm<q one obtains the amplitud@ising b
=—1 from Sec. V)

B (47T)d/2 € €2 .
c(d)= W 36 ES-F O(€°) (4.58
el'| =
2
=2.1932%—2.8736%%+O(€d). (4.59

Note that we prove in Sec. VI that this amplitudéridepen-
dentof large-scale boundary conditions and is thus identica

=1.08£0.05]
Another interesting observable is the slow growth of dis-
placements characteristic of the Bragg glass:

(4.69

at largex. Performing the momentum integral from E4.7),
one obtains

(Uy—Ug)?=AqIn|x|

B} 4
Ao~ am r(ar) ©9

for, e.g., periodic boundary conditions and in presence of a

mass. As can be seen from Ed.10), this is a consequence
of ¢ being zero.
This can be compared to the GVM meth&6,27:
d
cGVM(d)=(4—d)2d3wd’22r(§) (4.60
=2e—2.9538%+ O(€%),
(4.6

with coefficients surprisingly close to theexpansion.
It is interesting to compare predictionsdr 3. We recall

4 sinmel2)[ e € o3 46
——1 136 108D (4.69
TE - E
If one expands each factor i it yields
Rym St S o 4.6
| d—l—8+ﬁs+ (6 ) ( . 7)
For comparison, the GVM gives
~ €
Ad,GVM:W- (4.68

Here extrapolation directly setting=1 in Eq. (4.67) looks
possible and yield§\3=0.0556 to one loop, increasing to
A;=0.0648 to two loops. On the other hand, settigl in
Eq. (4.66) yields instead\;=0.0707 to one loop, decreasing

to K3=0.047 at two loops. The GVM gives the result
A3,GVM= 00507

that we are studying a problem where the period is unity, the Another interesting observable is

general case being obtained by a trivial rescaling.iSince
Eqg. (4.59 has a poor behaviofand so does Eq(4.61),
which resums into Eq4.60)], it is better to use instead Eq.
(4.58. It was indeed noted if26,27] that the improved one-
loop predictionc,(d=3) obtained by setting=1 and ig-
noring the €2/108 term in Eq.(4.58 yields a value rather
close to the prediction of the GVM:

€1(d=3)=2m/9=0.6981,
CGVM(d: 3) =1/2.

(4.62
(4.63

Including the two-loope?/108 term now givesc,(d=3)
=0.4654 andc,(d=3)=0.5235 for the two Padapproxi-

w?=Bg4InL, (4.69
2 1 2 1 ?
Wl fux— f“x , (4.70
L9 J, L9 J,

whereL is the linear system size. In R¢87] it was assumed
that By=Ay/2; thus, ind=3, By=c(3)/(272), yielding a
value ofc(d) consistent with the direct measurement of this
quantity? This was also done if88] where it was deduced

30ne can also comment on their result for the extremal excursions
AH=Upax—Unin- If Uwere aGaussiarvariable with the same two-

mations, respectively. This type of extrapolation makes thesint correlator, the exact result for extrema of logarithmically cor-

GVM and FRG predictions get closer when including the

two-loop corrections. On the other hand, comparison of Egs.

(4.59 and(4.61) suggests that(d)>cgym(d).

This is in reasonable agreement with the numerical result

of Middleton et al. [87]. They obtained good evidence for
the existence of the Bragg glag®., its stability with respect
to topological defects predicted i26,27]). They measure
directly the correlatior{4.7) and obtain strong evidence for
the behavior4.58 (as well as the correct correction to scal-
ing behavioy with

2c(d=3)~1.04 (4.64)

related Gaussian variables predicted[I02] yields AH=DbInL
ZIn(InL)+3 where b=43b/2, c=2yb/6, y=3/2, andd a
fluctuating constant of orde®(1) (in their notationb is our By).
nserting the value obtained numerically [87] for b yields b
=0.795 an@=0.20. This is in reasonable agreement with the mea-
sured value®~0.73 quoted ir{87]. Since deviations from Gauss-
ian are not expected to be large, this agreement could probably be
improved by using the above form of finite-size correcti¢es was
done in[102] for a one-dimensional version where much larger
sizes had to be considejethther than the simpler form used in
[87].
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from a measurement @&, that 0.98<2c(d=3)< 1.11% Al- e=2a—d. 4.72
though this is a reasonable approximation, it is not exact.

Indeed, the quantitBy, contrary toc_(d), depends on the The most interesting casa,priori relevant to model a con-
(large-scalg boundary conditions. It is of course universal, ., line, is @=1: thus, d.=2. For calculational conve-
since it does not depend on 'sm.all-scale details. Itslvalue Czﬂence, we choose the elastic energy to be

be computed, e.g., for periodic boundary conditions an

pinned zero mode, and depends on the whole finite-size scal-

al.
ing function (4.9) computed in Sec. VI: Eelasic (9> +m?)*2. (4.73

w2=c(d —(d+20) L), 47 This changes the free correlation to
( >q§0 q g¢(ql) 4.79)
T
As shown recentlyw? fluctuates from sample to sample and Gab(Q) = Oar—3——7—275- 4.74

2\«
the full distribution P(w?) averaged over disorder realiza- (q"+m®)

tions was computed for the depinning probl€89,90.
The energy exponent in that case is
E. Long-range elasticity

Let us now consider the case of long-range elasticity. f=a—d+2¢. (4.79

There are physical systems where the elastic energy does not
scale with the square of the wave veatlisE,qic~G°, but  The changes are very similar to the case of [Ré9], so we
as Eqpasiic—|g]%. In this situation, the upper critical dimen- summarize them here only briefly. The function is still

sion isd.=2« and we define given by Eq.(3.40, but with the integrals replaced by
|
1 I'(el2) 2
|<“):J =m € e 7, 4.7
1 q(q2+m2)a F(a) q ( @
14 = f ! 4.77
A Japap(ait m?) (a3 + mA) (g + gp) P+ m?] '
and thus thes function is given by Eq(3.43 with
2e[218—(11")2]  ridt 1+t92—(1+1)2 a
(a) = = —_— —_ —
X—X (el )2 ot 1+ +i(a)— ¢ 5 +0O(e). (4.78
|
(See Appendix F of Ref.69].) And of course the relation 1. Random-bond disorder
(3.42 betweenR andR is identical except tha¢l, must be The solution of Eq(3.43 with X— X(®) can be written, to
replaced byel(f‘). Since X(®) is finite, the B8 function is  second order ir, as
finite; this is of course necessary for the theory to be renor-
malizable. For the cases of interest- 1 anda=2, we find B
R(u)=erq(u)+ e2X@r,(u)+---, (4.8
X2 =1, 4.79
XP=41n2. (4.80 l=eli+ XD+, (4.82)

The exponent (as a function of) and the fixed-point func-
tion are thus changed only at two loops. since Eq.(4.17) for r,(u) is linear. Thus one has, for any
Let us now give the results in the cases of interest

£=0.208 298 063) e+ 0.006 8581)X ¥ e+ O( €%).
4'I"hey a_llsp measure_the decay_ of Fhe correlatiqn pf q’moz (4.83
which, within a Gaussian approximation for the distributionupf
yields the decaylL "d¢, with the Bragg glass exponenhq
=277Ay. For the case of most interest=1, X""=41n 2, one finds
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{=0.208 298 063) e+ 0.019 01143) €2, Using e=2a—d, this gives

e=2-d, (4.84 1 4X@+3[y+y(a)]+6b,
Aj=—e€ €, (4.92

and 6=2¢. 18 108

It would thus be interesting to perform numerical simula-
tions ind=1 for the directed pOIymer with LR elaStiCity. which in the case ofr=1 takes the Simp|e form
This would be another nontrivial test of the two-loop correc-
tions. The one-loop prediction ig=0.208, significantly
smaller than the roughness for SR elastidity 2/3. The na- A :£6+ 161n 2+6b, 2 (4.93
ive two-loop result is(settinge=1) {~0.227+0.01. Error 1718 108 ' '

bars are estimated by half the difference between the one-
and two-loop results. Note that the bougie d/2 implies ¢

<1/4 ind=1, already rather close to the two-loop result. V. LIFTING AMBIGUITIES IN NONANALYTIC THEORY

2. Random-field disorder A. Summary of possible methods

As we have seen above, ambiguities arise in computing
the effective action at the level of two-loop diagrams if one
uses a nonanalytic action. One can see that these arise even
at the one-loop level for correlatiorisee below Sec. VI To
resolve this issue, our strategy has been to use physics as a
rguide and require the theory to be renormalizable, potential,
and without a supercusp. This pointed to a specific assign-

The exponent is still

_ €
(=3 (4.89

and was indeed measured in experiments on an equilibriu
contact ling[30]. It would be of interest to measure the uni-

versal distributions there, such as the one defind@%90.

The fixed-point function is given by Eqg4.30 and
(4.34 upon replacingF (y)— X(®F(y). The amplitude of
the zero mode in a wett(d) is now given by

1/3
(y1+ eX(Vyp) 2 ly®) 18

(4.86

€

E(d)=02/3(3

and the amplitude of the massless propagator

c(d)=T(d)(1+b e). (4.87)

whereb,, is given in Eq.(6.14) settingl,=1/3.
3. Periodic disorder

The fixed point becomes

~ ~ € 62
A*(u)=—-R*"(u)= =+ 5 X\ —

€ 62
—+ —X(“))u(l—u).

36 54 6 9
(4.88
For the periodic case, the universal amplitude reads
e =T A £ 4 Exrow)| @s
c(d)= (Q)Te) 36 52X TO(€) (4.89
12
and
c(d)=T(d)(1+b,e). (4.90
SettingZ;=0 in Eq.(6.19) yields
A ——(172—4 d 4.9
= @m 2 (dr) ¢ @ (4.93

ment of values to the “anomalous” graphs. The physical
properties of the ensuing theory, studied in the previous sec-
tion, were found to be quite reasonable. Of course, one
would like to have a better, more detailed justification of the
used “prescription.” Although we do not know at present of
a derivation of this theory from first principles, we have de-
veloped a set of observations and a number of rather natural
and compelling “rules” which all lead to the same theory.
We describe below our successful efforts in that direction as
well as some unsuccessful ones, which illustrate the diffi-
culty of the problem.

A number of approaches can be explored to lift the ambi-
guities in the nonanalytic theory. We here give a list; some of
the methods will be detailed in the forthcoming sections.

(1) Nonzero temperaturéAt T>0 previous Wilson one-
loop FRG analysi$58,59,67,72found that the effective ac-

tion remains analyticin a boundary layeu~T. However,

since the rescaled temperatui224 flows to zero ast
~m? asm—0 (temperature being formally irrelevansall
(even derivatives of R(u) higher than second grow un-
boundedly asm—0—for instance,R”’(0)~R*"(0%)%/T
(in terms of the zero-temperature fixed-point funcjfic@n a
qualitativelevel one can thus see how finifediagrams such
asE in Fig. 3 yielding

NTR"”(O)R”(U)HR*W(O+)2R”(U) (51)

can build up “anomalous” terms in th@ function, hence
confirming what is found herg72]. However, correctly and
quantitatively accounting for higher loops is a nontrivial
problem as stronger blowups inTt/seem to arise. In fact,
each new loop brings two derivatives and a propagator,
hence an additional factorT/ Despite some recent progress,
a quantitative finite-temperature approach which would re-
produce and justify the preseatexpansion has proved dif-
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ficult [76,77. Not only for technical reasons, as methods
using exact RG were found to be appropriate, but also for > R'(U—Up)R"(Uy— U R"(Up—Uc), (5.6
physical reasons, as an extension to nonZEmmust also arbare

handle low-lying thermal excitations in the systef@g.,  which superficially looks like a three-replica term, but due to
droplets. A theory from first principles at >0 is thus pres- the exclusions, may in fact contain a two-replica part, which
ently not available and will not be further addressed here. Alcan in principle be recovered from the above by adding ap-
other methods use @onanalytic action propriate diagonal terms, using thateplica parts are prop-

(2) Exact RG Exact RG methods directly a&t=0 have erly defined adree replica sums, e.g., from a cumulant ex-
been studied to one lodf2,91] and two loopg73,92. Al- pansion. The two-replica part of E¢.6) thus naively is
though it does yield interesting insights into the way to
handle ambiguitiegsee below and confirm the present re- ~> RY(0)R"(0)R”(Uy— Ug)
sults, it suffers from basically the same problems as de- ac a e
scribed here.

(3) Direct evaluation of nonanalytic averagds this ap- " m m
proach one attempts a direct evaluation of nonanalytic aver- +§; R(Ua = Up)R™(Ua = Up)R(0),
ages(e.g., in fully saturated diagramd-or instance, expand- (5.7
ing at each vertex the disord®(u}—uy) in powers of|u}

— | using the proper nonanalytic Taylor expansion, and one is again faced with the problem of assigning a value

to R”(0). Thecalculation with excluded vertices thus yields
a sum ofp-replica terms withp=2, and to project them onto
the needed two-replica part, one may need to continue these
expressions to coinciding argument=u®.

The symmetrization method attempts to do that in the
most “natural” way. Using the permutation symmetry over

R"(u)=R"(0)+R"(0%)|u[+R"(0")u+---, (5.2

one can try to compute directly all averages in vertex func
tions and correlations. After performing a few Wick contrac-

tions one typically ends up with averages involving sign_ 7 . )
functions or delta functions. These can be compiregkin- replicas gnd the hypothe3|§ of MO Supercusp y|eI<_js a rather
ystematic method of continuation. Surprisingly, it fails to

ciple using the free Gaussian measure: for instance, using: ; . o
P 9 gleld a renormalizable theory at two loops. We identified

formulas such as some difference with methods which do work, but the pre-
5 (uv) cise reason for the failure in terms of continuity properties
- ; 0 remains unclear. It may thus be that there is a way to make
(SgW=ar(v)2o Warcsu‘( \/<uu)0<vv>o)' 63 this method work, but we have not found it. Being interest-
ing in spirit, this method is reported in some details in Ap-
Although promising at first sight, the results are disappointfpendix A.
ing. Averages over the thermal measure involve many If one renounces to the projection onto two-replica terms,
changes of signs which destroy all interesting divergencegine can, in a certain sense, obtain renormalizability proper-
indicating that some physics is missing. The method, brieflfties. This generates an infinite number of different replica
described in Appendix B, is thus not developed further. Asums and seems to be not promising, too. It is described in
dynamical version of this method, which is similar in spirit Appendix F.
[68,69, did work for depinning, although there it simply = We now come to methods which were found to work and
identified with another method used below, the backgroundvhich will be described in detail in the next section. In all of
field (which, for depinning, isu—uvt+uy,; see below them one performs the Wick contractions in some given or-
(4) Calculation ofl (u) with excluded vertices and symme- der (the order hopefully does not matteand uses at each
trization. A valid, general, and useful observatiémot lim-  stage some properties. The fact that one can order the Wick
ited to this methoyis that if one uses thexcluded vertex  contractions stems from the identity, which we recall, for any
set of mutually correlated Gaussian variables

1
27 2, R(Ua™ W) 4 W)= u)@,ww)., 68

then all Wick contractions can be performedthout ambi-  ynder very little analyticity assumption f&¥(u), which can
guities The excluded vertex is as good as the nonexclude@yen be a distribution. At each stage one can either use ex-
one since one can always add a constamtR(0) to the  cluded or nonexcluded vertices as is found more convenient.

action of the mode{2.2). Thus one can computeithout any (5) Elimination of sloops We found another method,
ambiguity the effective actionl’(u) for an “off-diagonal”  which seems rather compelling, to determine the two-replica
field configuration, part of terms such as E¢b.6). It starts, as the previous one,
by computing(unambiguously diagrams with the excluded
u? such thatug#u? for all a#b, (5.5  vertices. Then instead of symmetrization, one uses identities

derived from the fact that diagrams with free replica sums
since then no vertex is ever evaluatediatO. The drawback and which contain sloops cannot appear ih=a0 theory and
is that one ends up with expressions containing terms such &&n thus be set to zero. Further contracting such diagrams
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generates a set of identities, which, remarkably, is sufficient
to obtain unambiguously the two-replica projection without A , (5.9
any further assumption. It works very nicely and produces a
renormalizable theory, as we have checked up to three loops.
In some sense, it uses in a nontrivial way the constraint thavhich has no subdivergence: thus, there are no counterterms,

we are Working with a truer=0 theory_ This method is which could lift the ambiguities. Thus this diagram must be
detailed below. computed directly and we found that it can be obtained un-

(6) Background field methodrhis method is similar to @mbiguously by the sloop elimination methfb).

method number 3 except that the verfe) at pointx is (9) Reparametrization invarianceFrom standard field
evaluated at the field®=u?+ su?, then expanded iBu? theory, one knows that renormalization group functions are
X X X

which then are contracted in some order. This amounts tnot unique, but depend on the renormalization scheme. Only

: o . ritical exponents are unique. This is reflected in the freedom
compute the effective action in presence of a uniform back:

. . o . : to reparametrize the coupling constagt according g
ground field which satisfies E¢5.5). Thanks to this uniform _.%(q) where(g) is a smooth function, which has to be

bac"_g“?‘md and upon some rather weak a_ssumpti_ons, tr?ﬁvertible in the domain of validity of the R@ function.
ambiguities seem to disappear. The method is explained be- fara we have chosen a scheme—namely, defifi(g)

low. . ) . . from the exact zero-momentum effective action—using di-
(7) Recursive constructiorn efficient method is to con- - mensjonal regularization and a mass. One could explore the
struct diagrams recursively. The idea is to identify in a firstfreedom in performing reparametrization. In the functional

step parts of the diagram, which can be computed withouRG framework, reparametrizations are also functional, of the
ambiguity. This is in general the one-loop chain diagramform

(3.1). In a second step, one treats the already calculated sub-

diagrams as effective vertices. In general, these vertices have R(u)—R(u)=R[R](u). (5.10
the same analyticity properties—namely, are derivable

twice—and then have a cus(CompareR(u) with [R"(U)  Of course, the new functioR(u) does not have the same
—R’(0)JR"(u)>~R"(u)R"(0%)%) By construction, this meaning ak(u). Perturbatively, this reads

method ensures renormalizability, at least as long as there is

only one possible path. However, it is not more general than R(u)—R(u)=R(u)+B(R,R)(u)+O(R?), (5.1)
the demand of renormalizability diagram by diagram, dis-
cussed below. whereB(R,R) is a functional ofR. For consistency, one has

(8) Renormalizability diagram by diagranin Sec. Il we  to demand thaB(R,R) has the same analyticity properties as
have used global renormallzab!l|ty requwement: The one- R, at least at the fixed poiR=R*; i.e.,B(R,R) should aR
loop repeated counterterm being nonambiguous, one coulde twice differentiable and then have a cusp. A specifically
fix all ambiguities of the divergent two-loop corrections. yseful candidate is the one-loop countertef®{R,R)
However, as will be discussed Ji5], this global constraint = 5(11R. One can convince oneself that by choosing the
appears insufficient at three loops to fix all ambiguities. Forcorrect amplitude, one can eliminate all contributions of
tunately, one notes that renormalizability even gives a stronclassA, in favor of contributions of clasB. Details can be
ger constraint—namely, renormalizabiliiagram by dia-  found in[75].
gram The idea goes back to formal proofs of perturbative Apart from method<3) and (4), which did not work for
renormalizability in field theory; see, e.d93-100. These reasons which remain to be better understood, metk®@ds
methods define a subtraction opera®rGraphically, it can  and(5)—(9) were all found to give consistent results, making
be constructed by drawing a box around each subdivergences confident that the resulting theory is sufficiently con-
which leads to a “forest” or “hest” of subdiagraméthe  strained by general argumer(&®ich as renormalizabilifyto
counterterms in the usual languagehich have to be sub- be uniquely identified. Let us now turn to actual calculations
tracted, rendering the diagram “finite.” The advantage of thisusing these methods.
procedure is that it explicitly assigns all counterterms to a
given diagram, which finally yields a proof of perturbative B. Calculation using the sloop elimination method
renormalizability. If we demand that this proof go through
for the functional renormalization group, the counterterms
must necessarily have the same functional dependence on Let us redo the calculation of Sec. IllB usimxcluded
R(u) as the diagram itself. In general, the counterterms ard€rtices From now on we use sometimes the shorthand no-
less ambiguous, and this procedure can thus be used to IftON
ambiguities in the calculation of the diagram itself. By con-

1. Unambiguous diagrammatics

struction this procedure is very similar to the recursive con- uP=u?—u’, Uib: ui‘—ug,
struction discussed under poift).
It has some limitations though. Indeed, if one applies this Rap=R(u?—uP), RP=RP(ud-ub), (5.12
procedure to the three-loop calculation, one finds that it ren-
ders unique all but one ambiguous diagram—namely, whenever confusion is not possible.
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o p- [3/-- y/\ Similarly, the graphs of clasB give a total contribution
™ ’ P o Ne—e’ (2)p 1 2 m 1 2 men o
oy'R= 22 R R} R

R/I RN + _
b'*ab" *ab b d
ab’rabira 4a#b,a#c,a#d a a

1

4a¢b,a¢c,b#d abRac bd
+ 2 RORGRL[E (5.14
a#bh,a#c
coming, respectively, and in the same order from graphs
B', v', andé’ in Fig. 13. Again, the only graph common to
excluded and free-sum diagrammatics da$, which is a
graphg of Fig. 8, since all the other graphs in Fig. 8 have
saturated vertices.
The contributioné(cz)R of the diagrams of clasS is given
in Appendix C. Note that adding a tadpole does not alter the
., Q % v ) e structure of the summations in the excluded-replica formal-
n /\ A ism, since a tadpole can never identify indices on different
4 ) : ; N ) vertices. This indicates that cla€sdoes not contain a two-
replica contribution, but starts with a three-replica contribu-
FIG. 13. Two-loop diagrams corresponding to Larkin’s iap) ~ tion (timesT). This is explained in more detail in Appendix
and banang&ottom). The graphx is a one-replica terng, v, &, and D.
7 are improper three-replica terms, aidis an improper four- One can first check that whd®(u) is analyticone recov-
replica term. ers correctly the same result as E§.27 setting the last
(anomalous term to zero. Adding and subtracting the ex-
The resulting diagrammatics looks very different from thecluded terms in Eq(5.13 to build free replica sumpusing
usual unexcluded one. When making all four Wick contrac-R”(0)=0 in that casgor, equivalently, lifting all exclusions
tions of the two-loop diagrama, B, andC in Fig. 6 between but replacing everywhere
three unsplit vertices one now excludes all diagrams with
saturated vertices, but instead has to allow for more than two R — RE) (1— 5,p) (5.19
connected components and for sloops. The splitted excluded
diagrams corresponding to classkesB, andC are given in  and then expanding and selecting the two-replica part, one
Fig. 13. There is an additional multiplicative coefficient finds the contributions
1/(my!myImz!m,!) in the combinatorics for each pair of
unsplit vertices(say, ab and cd) linked by an internal line
wherem; propagators linkac, m, link ad, ms link bc, and
m, link bd. (This is equivalent to assigning a color to each y— ER,,(O)RW(U)z’
propagatoy. 2
Let us denote bysT'= (—1/2T?) 52)R the two-loop con-
tribution of all diagrams of clas# to the effective action.

a’—>R”(U)RW(U)2,

3
S+ n—— ER”(O)RW(U)Z,

One finds
n I 4 n " B_) 01
5<A2)R: E Rab( Rab)2+ 2 RabRabRac
a*b a#b,a#c
A—0. (5.16
1 " " " 3 " n 2
C 2asb i bie RabRacRbe ™ Ea#b%#c Rab(Rac Similarly in Eq.(5.14 one obtains
1

1
_ R// R/// " I 5'1 a/*)_RI///(u)R/I(u)Z'
Zas&b,a;&c,a;&d ab™acMad|'A ( 3) 2

coming, respectively, and in the same order from graghs / / E " " " E "0 2RM

B,y,6+ 5 (they are equa) andA in Fig. 13. The only graph B=y= 2 RT(OR(OR (W) + 4 RIO)R™(W),
common to excluded and free-sum diagrammaticsaijs

which is a graptb of Fig. 7, since all the other graphs in Fig. 6'——R"(0)R"(0)R"(u)—R"(0)R"(u)R"(u).

7 have saturated vertices. (5.17)
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We now want to perform the same projection for a nonanaThis nontrivial identity tells us that the sum of all terrte
lytic R(u). diagram$ generated upon contractions of diagréanof Fig.
2 [i.e., the one-loop sloop diagram equivalent to taffin

2. Sloop elimination method Eqg. (5.18] with other vertices must vanish. Stated differ-

The idea of the method is very simple. Let us consider th&nty: @ sloop, as well as the sum of all its descendents,
one-loop functional diagrarta) in Fig. 2 which contains a vanishes. Note that this isot true for each single term, but

sloop. It is a three-replica term proportional to the tempera-Only for the sum. . ,
ture. In aT=0 theory such a diagram should not appear, sg, * Property that we request from a progereplica term is
it can be identically set to zero: that upon one self-contraction it give p{ 1)-replica term.

It may also giveT times ap-replica term(a sloop, but this is
1 zero atT=0, so we can continue to contract. Thus we have
W==?E R”(u;”(‘b)R”(uﬁc)EO. (5.18  generated several nontrivial projection identities. The start-

abc ing one is that the two-replica part of E®.18) is zero, since

Eq. (5.18 is a proper three-replica term. Thus E&.19),
will also omit global multiplicative numerical factors. Pro- _prior o the_exclusic_)ns, 's a legitimate fivg—replica term, an.d
jecting such terms to zero at any stage of further cont.ractionIts four-replica part.|s zero. Upon contra@ctmg once we.obtam

that the three-replica part of E@5.20 is zero. The final

is very natural in our present calculatidand also, e.g., in . . .
contraction tells us that the two-replica part of E§.21) is
the exact RG approach, where terms are constructed recur- P P 521

sively and such forbidden terms must be projected. duis tzﬁ erolésTthiIdSelr?ti\t,;//hizt tlr?en;?wzn\}vg);g\]/\? Egnme above and
valid only when(i) the summations over replicas are free and . . .
(ii) the term inside the sum is nonambiguous. These condit—h Indeed, compare Ed5.21) with Eq. (5.13. One notices

tions are met for any diagram with sloops, provided the ver- at all terms apart from the first term in E§.13 appear in
. y diagram PS, P Eq. (5.21) and with the same relative coefficients, apart from
tices have at most two derivativé®©ne can in fact start from

vertices which either have no derivative or exactly two. the third one of Eq(5.13. Thus one can use E¢5.2)) to

Let us illustrate the procedure on an example. We want toSImp“fy Eq. (5.13:
contractW with a third vertexR at pointz; i.e., we first write

It is multiplied by G(x—y)?, which we have not written. We

the product SP(R)=| 2 Rup(Rip?+ > Ro(RE)?|Ia.
a#b a#b,a#c
1 1 " " — (5.22
WF% Rde_Fa;& b’azﬂyde abRacRae=0, (519 g functionR”(u)?, which appears in the last term, is con-

tinuous atu=0. It is thus obvious how to rewrite this expres-
where implicitly here and in the following the vertices are atsion using free summations and extract the two-replica part:
points x,y,zin that order. We will contract the third vertex —_,, . . P
twice, once with the first and once with the second—i.e., 9 R(W=[(R"()=R"(0)R"()*=R"(07)"R"(U)]l A,
look at the term proportional tdG(x—Yy)2G(x—2z)G(y (5.23

—2z). Note that since we will contract each vertex, we arewhich coincides with the contribution of diagramsin Eq.
always allowed to introduce excluded sukatearly the di- (3,27 with A=1.

agonal termaa=b, a=c, or d=e give zero, sinc&R,, and We can write diagrammatically the subtraction that has
its two lowest derivatives @ =b are field-independent con- peen performed
stant3. Performing the first correction, i.e., inserting,(

— 8ae— Opgt Spe) Multiplied by the exclusion factors (1 sOR = (5.24
— 8ap) (1= 38,0 (1— 640) Yields (up to a global factor of 4T - [y ’
1 o o where the loop with the dashed line represents the subdia-
3 RaRhe— 2 abRacRbe| =0. gram with the sloop—i.e., the ter5.18 (with in fact the
a#b,a#c,a*e a#b,a#c,b+e L . .
same global coefficientThe idea is of course that subtract-
(5.20 ing sloops is allowed since they formally vanish.
Similarly, the second contraction then yieldg to a global There are other possible identities, which are descendants
factor of 4 of other sloops. For instance, a triangular sloop gives, by a
similar calculation,
1 1 " " 4 E " g " '.\
? zastb,a;&c,am&e abRacRae+ a#b,a#c RabRacRac ./\. :R”(O) E(Rﬁ)2+ Z R”(O) ZéRZ;
T a#b a#b,a#e
+ E z " "n RH + Z R’b/c(Rgé)g + Z Rla”cRgéR’cld N (5'23
2 atbbze ab'‘ab'*ae a#bb#c aF#eb#e,c#td
L This however does not prove useful to simplif§f'R.
_Z " RIRE|=0. (5.21) Since the above method generates a large number of iden-
2a#bazchrc o0 00D tities, one can wonder whether they are all compatible. We
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have checked a large number of exampee the three-loop which is reasonably set to zero. Thus the first two contrac-
calculations in[75]) and found no contradictions, although tions have been performed with no ambiguity, leading to
we have not attempted a general proof.

The diagram® andC are computed in Appendix D. One m m " aby, aby, efy2
finds, by the same procedure, egef R (Uap) R (Uap) R (Ue)( (03 (03 ) (02)°)-
(5.33
1
ogR= ER’”’(u)[R”(u)— R”(0)]?, (5.26  This term is no more ambiguous. Expanding as in (B9,

the potentially ambiguous part is

5cR=0, (5.27)
R"(0+)* 2 R'(Uen((vi)(037)(v5)?), (534
confirming our earlier results in Secs. 111B2 and 111 B 3. abef

clearly free of any ambiguity. It yields the res(#.23. The
C. Background method question arises as to whether the result may depend on the
order. We found that when first contracting and xz, one
reproduces the resul6.23. However, when one first con-
tractsxy andyz (in any ordey one encounters a problem, if
one wants to contragtz again. The intermediate result after

In the background method, one compulgau] to two
loops for a uniform background such thatu,,#0 for any
a#b. We start from

<S[U+Ux]3>1PI’ (5.28 the first two contractions is
Taylor expand iy, an contrapt all the fields, keeping 2 Rm(uab)Rm(uad)Ru(uaf)<(vib)(03d)(vgf)>.
only 1PI diagrams. This is certainly a correct formula for the abef
uniform (i.e., zero-momentujreffective action. (5.39

Then one needs the small expansion of derivatives of

R—ie. Eq.(5.2—as well as The next contraction betweexy contains one term with a

singleR},. One would like to argue that this term can be set

R”(u)=R"(0%)sgr(u) +R"(0 )u+-+-, (5.29 to 0. Following this procedure, however, leads to pr_oblems.
We therefore adopt the rule that whenever one arrives at a

R”(u)=2R"(0")8(u)+R"(0")++--.  (5.30 single R}, one has to stop and search for a different path.

Note that this equivalently applies to the recursive construc-

Let us start from tions method. In two-loop order, one can always find a path,

which is unambiguous. It seems to fail at three-loop order; at
b o o least we have not yet been able to calculate
> R(Uap+ 03" R(Ueg+ 0§D R(Uertv3).

abcdef @ (5.3@

We expand inv, and of course in diagram& one must
handle terms involvindR” (0) and in diagram® terms pro-  using any other than the sloop elimination method. Whether
portional to R”(0). Let usstart with diagramsA, which ~ some refinement of the background method can be con-

come from the following term in the Taylor expansion: structed there is an open question.
For diagrams of clasB one expands as
2 Rm(u b)Rm(u d)RH(u f)<(vab)3(UCd)3(UEf)2>- , - ,
abodet e Ty 2, R'(Uap)R"(Ucg) R"(Uer)((03) (03 (05h?).

(5_31) abcde

Here and in the following, we will drop all combinatorial Agam, no need to attribute a value RB"(ucq) for c=d

factors. Note that the expectation values vanish at coincidin§Ince the summand vanishes there. Contegct
replicas, so there is no need to specify the valueR"tfu ) b ad .
ata=b. Let us perform the firsky contraction > fR"(Uab) R (Ua@)R"(Uen){(v5)) (05)3(v5)?).

abde
(5.37

" " " aby2, ad\2, ef\2
2 RI(Ua) R (Uag) R (Uen)( (03X vy (w5 )?). Contractingyz one gets

If we now perform a secondy contraction, there is @aa > R"(uyp)R"(U,g)
term which is a sloop and thus should be discarded. Thebf
a4t Opa terms build saturated vertices. However, the corre- aby . ad\2r af_ on df
sponding expectation values contain X{(0)) vy VTR (Uap)vy = R"(Ugr)vy 1)

" ad Contracting nexiy, the danger is the term,4, yielding a
R”(Uaa){(v99)*)g—a=0, (532 saturated vertex in the middle. But, again, if one takes
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R (Ua){(v3%): )] ga=0, (539 Ry =S[Ro+ (R))? &« e +--]
then one gets unambiguously =R, + R” (O —| e +) .

(5.39
R// Rm/ ab R" R bf
2 (Uap)((vy ) (Uap)vz (Upr)vz)- Here the boxed diagram is defined as
The rest is straightforward. The background method thus —_ (5.40
seems to work properly at two-loop order. O O Lu )

The idea behind this construction is that at any order in per-
turbation theory, any observable in the renormalized theory
In Sec. V A we have stated that renormalization diagrancan be written as perturbative expansion in there dia-
by diagram gives a method to lift the ambiguity of a given grams, to which one applie€S Here S reorganizes the per-
diagram, as long as it has sufficient subdivergences. Thitirbative expansion in terms of thhenormalizeddiagrams.
method is inspired by formal proofs of perturbative renor-The action ofSis to subtract divergencies, which graphically
malizability; the reader may consu®3-10Q for more de- is denoted by drawing a box around each divergent diagram
tails. The key ingredient is the subtraction oper&@pwhich  or subdiagram, and to repeat this procedure recursively in-
acts on the effective action—i.e., all terms generated in perside each box. The second line of E§.39 is manifestly
turbation theory which contribute to the renormaliZzaénd  finite, since it contains the diagram at scateminus the
which subtract the divergences at a scaleAt one-loop  diagram at scal@. This is easily interpreted as the one-loop

D. Renormalizability, diagram by diagram

order, the renormalized disord&;, at scalem is symboli-  contribution to theB function.
cally (with Ry the bare disorder The power of this method is not revealed before two-loop
order. Let us give the contribution from the hat diagram
Ry = [Ro+ (Rg? &> +...] (classA):
Zhere of course the 1.ntegra1 -O- depends on m. The 5 Rﬁf) — RY( R"') (5.41)
perator S rewrites this as a function of the renormalized é §u

disorder R , at scale u: Using S, this is rewritten as

JRY =8

RY(RY)? é

= R'(R")? [ é_ - é - [éq * |-€/§\|_ ] (5.42

Note that not only the global divergence is subtracted, buthat all diagrams have the same functional dependend® on
also the subdivergence in the bottom loop, and finally theHere the factoR”(R"”)? should more completely read
divergence which remains, after having subtracted the latter

(last term). Note the factor of &(—1)? in front of the last [R"(u)—R’(0)]JR"(u)>—R"(u)R”(0%)2. (5.43
diagram, which comes with the twmested boxes.

Let us halt the discussion of the formal subtraction operaFor the first term, there was no problem‘ However, we have
tor at this point and not prove that the procedure renders ageen that the last term was more difficult to obtain. If we
expectation values finite; this task is beyond the scope of thidemand renormalizability diagram by diagram, all diagrams
article, although it is not difficult to prove, e.g., along the have to give the same factor (5.43). Thus, if at least one of
lines of[99], once the question of the ambiguities of a dia- them can be calculated without ambiguity, we have an unam-
gram is settled. However, let us discuss what the subtractiobiguous procedure to calculate all of them. We now demon-
procedure can contribute to the clarification of the ambigu-strate that is unambiguous. To this aim, we detail on

ities. the subtraction operator S, whose action is represented by the
In standard field theory, the main problem to handle is thebox. This box tells us to calculate the divergent part of the

cancellation of divergences, whereas the combinatorics Csubdiagram in the box and to replace everything in the box

the vertices is usually straightforward. This means that théby the counterterm, which here is

sum of the integrals, represented by the diagrams in the

brackets on the right-hand side of E&.42), is finite. This " " " ]

ensures of course renormalizability, subject to the condition @I I (R"(w)” = 2R"(w)R"(0)) - (549
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E. Recursive construction

In a second step, one has to calculate the remaining diagram, This method is very similar in spirit to the one of Sec.
which is obtained by treating the box as a point—i.e., @ &/ p_ There we had first calculated a subdiagram and then
local vertex. The idea is, of course, that the subdivergencgested the result as a new effective vertex. This procedure
comes from parts of the integral, where the distances in thgan he made a prescription, which ensures renormalizability
box aremuchsmaller than all remaining distances, such thatyng potentiality, since the one-loop diagram ensures the lat-
this replacement is justified. Graphically this can be writtengg Only at three-loop order does a new diagrdn36 ap-
as pear which cannot be handled that way, but the procedure,
which is otherwise very economic, can handle again most
A diagrams at three-loop order, using the new three-loop dia-
=1 x O

(5.45  gram(5.36.

VI. CORRELATION FUNCTIONS
Remains to calculate the rightmost term—i.e., to calculate
the one-loop diagram—from one vert&(u) and a second
vertex V(u):=R"(u)?—2R"(u)R"(0). The result is a
straightforward generalization of E¢B.1):

Here we address the issue of the calculation of correlation
functions. We note that it has not been examined in detail in
previous works on thd=0 FRG. Usually correlations are
obtained from tree diagrams using the proper or renormal-
ized vertices from the polynomial expansion of the effective
, ’ , action. Thus in a standard theory one could check at this
0 =1 [R' (@)V"(u) = R(O)V” (“)_R”(O)V”(O)] (548 stage that correlation functions are rendered finite by the
above counterterms, compute them, and obtain a universal
answer. In a more conventional theory that would be more or
We need less automatic.
Here, as we point out, it is not so easy. Indeed, as we
show below, if one tries to compute even the simplest two-
point correlation at nonzero momentum, one finds ambigu-

. . S . ities already at one loop. This is because the effective action
The omitted terms are proportional R¥”R” and contribute (the countertermis nonanalytic.

to classB. We could have avoided their appearance alto- Again, the requirement of renormalizability and indepen-

gz:”erhggt th'?h\évotlél:jmhsv\;]eic[]eré%irtﬁg;g i r:gtaEt(lor:l@u nirs1ece%-ence of short-scale details guide us toward a proper defini-
y e 5. tion of the correlation functions that we can compute. Inter-

" _pm 2 ] :
V”(u)—R (u)~. I.t has the same analyticity prop_ertles asestingly, this definition is very similar as the one obtained
R’(u) and especially can unambiguously be continued to from an exact solution in the largé-limit in [74]. Let us

— ; " _pmia+\2 H

=0—i.e.,V(0)=R"(07)". Expression5.49 becomes illustrate this in the two-point function and, at the same time,
derive the(finite-size scaling function for any elasticitynot
done in[69]) for massive and finite-size schemes.

V"(u)=R"(u)?+---. (5.47

O — Il [RII(U)RIII(U)2 _ R//(O)Rm(u)‘z _ R”(’LL)RI”(O_")z]
(5.48 A. Two-point function

We want to compute the two-point correlation function at

without any ambiguity. _ . R .
To summarize, using ideas of perturbative renormalizabiI-T 0. In Fourier representation it is given by He.1) with

ity diagram by diagram, we ha_ve been able to compute un- C(q)=[1“<2)(q)];b1 (6.2)
ambiguously one of the terms in E(.42 and can use this

information to make the functional dependence of the whole ) ) ) )
expression unambiguous. If we were to chose any other prd? terms of the quadratic part of the effective action, which
scription, a proof of perturbative renormalizability is doomed€ads, at any,

to fail, a scenario which we vehemently reject.
2 2

q°+m
T 2(Q) ab=——— an+ TG, (6.2
5The same procedure can be applied to the dynamics at the depin-
ning transition. Care has to be taken there, since it exists an addi-
tional one-loop counterterm, which is an asymmetric function with R"(0)
e re =0):=m¢ . 6.3
a vanishing integral. The repeated counterterm at two-loop order onld : T2 ° :

(integrated over all positiongherefore also vanishes; however, it

gives a nonzero contribution both to clasgesndB (chains and hat

diagrams, of which the sum vanishes. In order to ensure finitenesd.€., by construction herB”(0) gives the exact off-diagonal
diagram by diagram, these contributions may not be neglected. Thielement of the quadratic part of the effective action. Invert-
is discussed ifi69]. ing the replica matrix gives the relation, exact to all orders,
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R//(O)

m4

1 _ ] "
- (R)H(Om 3 Ri(Ue— = RY(0)% e ug -+ O,
el 1

C(q=0)=—m"
(6.9

R(u) is exactly the function entering the function[in the  which, to this order, is analytic. In this case this is exactly the

rescaled fornR(u)]. In the second line we have inserted the Same calculation as for the repeated one-loop counterterm.
fixed-point form, which thus gives exactly tige=0 correla- However, the full expressiof6.6) integrated over,tis, it-
tions in the smalm limit (i.e., up to subdominant terms in Self, ambiguous. Interestingly, this simple ambiguity already
1/m) which are bounded because of the small confining© one loop has never been discussed previously.
mass. Let us first show thatenormalizabilityfixes the form to
be the one written in Eq6.5). Indeed, let us reexpress Eq.
1. Calculation of scaling function (6.5) in terms of the renormalized dimensionless disorder in
' Egs.(3.33 and(3.26):
We now computeC(q) for arbitrary but small wave vec-
tor g and to one loop—i.e., to next order & One expects
the scaling from(4.2) and that the scaling function is inde-
pendent of the short-scale UV detaile., universa), if the 5(0)=mR"(0)—R"(0%)2m?1(0). (6.7)
theory is renormalizable. It satisfi€g0)=1 and, from scal-
ing, should satisffF (z) ~B/z%"?¢ at largez. In d=4 one has
F4(2)=1/(1+2%?% and we want to obtain the scaling func- As discussed in Sec. Il C, no ambiguity arises when taking
tion to the next order—i.e., identifyp in B=1+be two derivatives of Eq(3.33 atu=0"; i.e., the one-loop

+0(€?). _ _ _ counterterm is unambiguous. This gives
Let us use straight perturbation theory wRp, defined as

in Sec. Il C, including the one-loop diagrams. This amounts
to attaching two external legs to the one-loop diagrams in
Fig. 5 and using a nonanalyti®,. Our result is (9%+m?)2C(q)=—m<{R"(0)+R"(0")2mTI(q)—1(0)]}.

241 m2)2 — _T212)(q= L .
(q°+m7)°C(a) TT(q=0) Thus the substitutiori6.7) acts as a counterterm which ex-

=—Rj(0)—Ry(07)?I(q), actly subtracts the divergence, as it should. The result is fi-
nite, as required by renormalizability, only with the above
choice (6.5). Stated differently, thej=0 calculation of Eq.
|(q)=f 1 6.5 (6.5 fixes the ambiguity. We show below that the methods
p(P?+mA)[(p+q)°+m?]’ ' described in the previous section also allow us to obtain this
result unambiguously. Before that, let us pursue the calcula-
There is, however, an ambiguity in this calculation: i.e.,tion of the scaling function.
again it is not obviousa priori, how to interpret th&Ry' (0)? Upon using Eq.3.42 and the fixed-point equation, we
which appear. If one computes the one-loop correction usingbtain
Eq. (5.2, one must evaluate

R0 7wt [ 3 -ttt Glavy R )
e —) —[1—<e—2§)fmfﬂ<q>—l<0>].

m/  (g*+m?)? ely

6.6  Fd

One notes that at the very special pomtt there is no (6.8
ambiguity, as the interaction term is analytic to this order.

Then performing the average amounts to take two deriva- i
tives d, d, of Apart from the dependence dhthe calculation of the scal-
a b

ing function is very similar to the one given i69]. We
perform here a more general calculation which also contains

SA subtle point in that construction is that if one defiegper-  the case of elasticity of arbitrary range
turbatively fromR to a given order, theR, is not the original bare
action (which is analytig; thus, there is no contradiction iR,
being non analytic. In a sense, introduciRg is just a trick com- 5 5 ) 2 af2
monly used in field theory to express a closed equation for the flow g +m—(g°+m)*s (6.9
of R to the same order. Thierturbative exact RG method intro-
duced in[103] does that automatically without the need to introduce
Ry. and expand ire=2a—d. Using that, in that case
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|(Q):—12J f (St)“/2‘1e‘5<P+q/2)2—t(p—q/2)2—(s+t)m2
r @ pJst>0
2
= %f eipZJ‘ (St)a/271(3+t)7d/2e*q23t/(3+t)*(s+t)m2
rl &) e st>0
5
1 2 € q2 —€l2
=— P'mT T = al2—1 —d/2 9
@ zfpe m F(Z) jt>0t (1+t) (1+t)+1+t m2 . (61@
Mz

Defining the one-loop value of/e={,+O(e), we obtain, to the same accuracy, the scaling function in the fam (

=|al/m)
Fy(2)= 1-(1-2g) % Fd @2+l L I 1
d(Z)—m ( Zl)W . Lt (1+t) +(1+—t)2
I‘ —
2
- 1450120 )—F(a) Jld 1-s)]*? LIn[1+s(1—s)Z? (6.11)
_(1+22)a 2( gl <a>2 0 S[S( S] [ S( S ] .
1" —
2
|
[We have used the variable transformation ud=ud+p2, (6.15
s=1/(1+t).] To obtainb, we need the large-behavior of

the scaling function

Z—®©

1
Fo(2) —— 2 { 1+ (e~ 20)| Inz+ w(g) ~p(a)

(6.12

We want to match, at large

1
Fa(2)= z[1+be+ O(e?)]z¢ %

=%[1+(e—2§)ln z+be+0O(€?)]. (6.13

The above result yields

b=ba=<1—2zl>{w(§)—¢<a>

|

—2(1-2¢1)In2
—(1-2¢y)

for a=1,

(6.19

for a=2.

2. Lifting the ambiguity

Let us now present two additional methods to lift the am-

biguity in the one-loop correction to the two-point function
and recover Eq(6.5).

with u,# u, for all a#b and contracting the. Then atT
=0 the sign of anyu,—u, is determined, and the above
ambiguity in Eq.(6.6) is lifted (contracting further theyd
yields extra factors of and thus is not needed hgrésing
the background method is physically natural as it amounts to
compute correlations by adding a small external field which
splits the degeneracies between ground states whenever they
occur, as was also found [i@4]. On the other hand, perform-
ing the calculation in the absence of a background field, in
perturbation theory, directly of the nonanalytic action yields
a different result, detailed in Appendix B, which appears to
be inconsistent. It presumably only captures correlations
within a single well.

The second method is sloop elimination. We want to com-
pute contractions of

(6.16

1
aT? Uiuf}%f R(US—u3)R(U,—uy,),

where the two disorder are at poirgsand w, respectively.
Let us restrict our attention to the part proportional to
zeGﬁwGWy, which gives theg-dependent part of the two-

In the background method of Sec. V C one performs thigpoint function. Sincea is fixed, we need to extract the “O-
calculation in presence of a background field—i.e., considerreplica part” of the expression after contractigmehich will

ing that the fieldu$ has a uniform background expectation
value:

necessarily involve excluded vertigeStarting by contract-
ing twice the twoR’s, we get
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1
72| 2, R - iR (UG~ )

+ >

R"(uS—ud)R"(uS,—u)|. (6.1
c#d,c#e

Subtracting the sloopV from Eg. (5.18 gives (up to terms
which do not depend on botlv and z, and which thus dis-
appear after the two remaining contractipns

1
12 2, R U R (U~ uy,). (6.18

Contracting the external’s with Eq. (6.18), we obtain(re-
storing the correlation functions

f GuxGuyGay >, (R (6.19
zZ,W a#b

The excluded sum can be rewritten as the sum minus the
term with coinciding indices. Only the latter is a O-replica

term, which gives the desired result

—R"'(o+)2f (6.20

z

zeGngwy-
W

This result can also be obtained writing directly the graph
with excluded vertices and eliminating the descendants

the sloop.

3. Massless finite-size system with periodic boundary conditions

The FRG method described here can also be applied to a
system of finite size, with, e.g., periodic boundary conditions
u(0)=u(L), and zero mass, which are of interest for nu-
merical simulations. The momentum integrals in all diagrams

are then replaced by discrete sums with 27n/L, ne 7.

One must, however, be careful in specifying the made
=0, i.e., (u)y=(1/L% [ u,. The simplest choice is to con-
strain(u)=0 in each disorder configuration, which we do
for now. Since the zero mode is forbidden to fluctuate, sums

over momentum in each internal line exclugle 0.

1 . ~
1=(e=2¢)—[1I"(@)=1"(0)]

el

)

——[1+b'e+(e—2¢)In(qL)],

PHYSICAL REVIEW E 69, 026112 (2004

One then finds that the two-loop FRG equation remains
identical to Eg.(3.43, the only changes being thdfl)
—méd,R has to be replaced by, R, (2) m—1/L in the
definition of the rescaled disorder, af®) the one-loop inte-
gral 1,= [, [ 1/(k?+m?)?] entering into the definition of the
rescaled disorder has to be replaced by its homologue for
periodic boundary conditions,

1

l,—l;=L"d > 270322

nezd,n%0

(6.21

used below.

Here and below we use a prime to distinguish the different
IR schemes. As we have seéfiis, to dominant order, inde-
pendent of the IR cutoff procedure.

Thus we can now compute the two-point function. Fol-
lowing the same procedure as above, we find

C(q):%L%*EM
q €l
1 - ~
X[ 1=(e=20)—[I"(q)=1"(0)]|, (6.22

el

with T/ (0)=T} and, forq=2=n/L,

T'(q)= >

meZP,m#0n+m#0

(6.23

(2m)*m?(n+m)?°

S[hus one finds the finite-size scaling functiaefined in Eq.

4.9]

¢’(d)gq(qL)=q***C(q)
=(q L)%*éM

€l]

1 -
X 1=(e=2¢)—[1"(q)=1"(0)]

€l

(6.29

as a function ofgL=2mn. The asymptotic behavior is

q~>co

(6.29

which defined’. The corresponding equati@6.13, when regularizing with a mass, holds. Taking the difference between the

two equations yields
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e—2¢ T’(q) T(q) Since the FRG equation and fixed-point vali'Y* (0) is
(b—b")e=lim = = , (6.26  universal to two loops, the final result for the amplitude ratio
q—» € ['(0) 1(0) between periodic and massive boundary conditions is
where T(g)::l(9)|m:1. To leading order in X T'(q) ¢'(d) T/(0)-T(0) ,
=1"(0)=1(q)=1(0), such that this difference takes the oL = +0(€9)
simpler form c(d) €l (0)
e—2¢ =1-1.4693%+0(€?). (6.36
(b—b")e=—
€l (0) B. Four-point functions and higher
x{lim [1'(q)=T(q)]+[1(0) _Tf(o)]}+o(€2)_ Let us now show how to compute higher correlation func-
q—o tions with no ambiguity using the sloop method. Let us il-
6.27 lustrate the method on, e.g., the four-point function
a a a a Cc
Now observe that for large the first integral can be bounded (U W) uA(x)ui(y)u*(2))". (6.3
by The following class of diagrams contributes:
() -T(q) < 6.2
M@ -T@l<{g (6.28

(6.39

which is obtained by estimating the maximal difference of
integral and discrete sum in each célefined by the dis-

creteness of the sumand then integrating. The difference An arrow indicates contraction towards an external field,
[(0)—1'(0) is finite and can be evaluated =4 dimen-  with position and replica index as indicated. The combinato-

w,a z,a

sions. We need the formulas rial factors are 1/4! from the fouR’s; 1/2*, the prefactor of
- ) 1 theR’s, 4! the possibilities to connect thés to theR’s; 3
f dssesntn= s (6.29 for the ways to make the loop &'s. When contracting first
0 T theu’s, there is another®for the possibilities, to attach the
o 2 T u’'s to the two replicas oR. Therefore only the factor of 3
J' ocdn e "= S (6.30 remains, which is the combinatorial factor for ordering four

points on an unoriented ring.

_ _ We start by contracting the fowr's with four R’'s, sche-
HE, e T =0de ), 63D matically,
where®; ((t) is the elliptic® function. This allows to write - e o e
sum and integral as
1 0 » [} 6.3
E 50 — J' ds i[@g, Q(eis)]4_ 1}, (632 w,a <—¢'/ \‘—> z,a ( 9)
neZ4,n#0 (n ) 0 Y

and then we perform the four other contractions. Since ex-

J d*n 1 _ fcds 3772 oS (6.33 clusions at each vertex can be introduced early on, the num-
(n“+1) 0 A ' ber of possibilities is not too high and one easily obtains
The difference in question is integrated numerically: F:=5RYy+ 4RIZRY + 2RIZRIZ+ ARL RARYE
~ ~ 0 2 + " RII/ "n R!// , 6.4
'(0)_"(0):—(277)4f dss{%e—S—[@)s,o(e—S)]“ﬂ apacad ae (640
0 where all terms have to be summed over with excluded rep-
14.5019 licas at each vertices. Due to the factorsRjf, with an odd
= W =—0.00930479. (6.34 power, it is not trivial how to project this expression onto the
space of O-replica terms to yield the desired expectation
We thus arrive af 67(0): 1/(872)+0(e)] valu_e (as in the previous _se_ctioanis_fixed and thus no free
replica sum should remain in the final regult
14.50191-2¢, To perform this projection we will first simplify the above
b'—b= =0.7346761—2¢,). expression using sloops. There are a number of possible
(2m)* €l (0) sloops which can be subtracted. The first one is obtained by

(6.35 starting from
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(6.41
It reads
ma "n " n [/
Sl:: Rab + abRac adRae: O (642
The next sloop is
- .
e .
. . (6.43
S .
generating
Sp=Ri + 2RIERI+ RUZRIE + SRURIGRYE
+RY R RYRY=0. (6.44
The last needed sloop is
» . (6.45
leading to
83::R///2R///2+ 2 " R///ZR/// + " R/// " R/// =0
ab "tac ab'tac " ‘ad ab'tac' ‘ad' ‘ae .
(6.46

The simplest combination out &f, S;, S,, andS; is

F—2S,+S;=3R+ RIZRIZ, (6.47

This expression is unambiguous because only squares 8

PHYSICAL REVIEW E 69, 026112 (2004

FIG. 14. Other possible contributions to the connected four-
point function. They all are higher replica terms and thus do not
contribute. Arrows indicate contraction towards external points.

Thus the leading contribution iR to the connected four-
point function, as determined by the sloop method, is the
one-loop diagram

(uA(w)ud(x)u(y)u?(z))°
== 2Rm(oﬂ—)4frstuGrsG‘sthuGur(Gwr(-?“styt(-?“zu

+GWSGXI’GthZU+ GWTGXIGVSGZU)' (650

If one expressed this result in terms of the force correlator
R”(0%)4=A"(0")%, we thus find that this expression is for-
mally identical to the one that we obtained for the same
four-point function at th& =0 quasistatic depinning thresh-
old [Eq. (5.4) in [90]]. This is quite remarkable given that the
method of calculation there—i.e., via the nonanalytic dy-
namical field theory—is very different. Of course, the two
physical situations are different and here one must insert the

xed-point value forR”(0") from the statics FRG fixed

R”(u) appear and it is easily projected onto the O-replicaPoint, while in the depinning calculation A7(0*) takes a

part
_2R717(0+)4, (648)

e.g., one can replac®,— (1— 8,p)R%y, in Eq. (6.47) and
use free summations.

different value at the fixed point. In both problems the con-
nected four-point function starts at ord@¢e*). However, in
some cases the difference appears only to the next order in
For instance, we can conclude that the result$96f still
hold here for thestatic random fieldo the lowest order ire

at which they were computed thefef course, one expects

Other possible contributions are given in Fig. 14. How-differences at next order im). On the other hand, for the
ever, none of these diagrams contributes. The reason is thatatic random-bond case, the result for the connected four-
they are all descendents of a sloop. We start by noting thatpoint function will be different from depinning even at lead-

(6.49

z,a
1
e~ ab
w,a b

is a true one-replica term—i.e., a sloop. When constructing a
diagram in Fig. 14eachof the terms in the excluded replica
formalism is proportional to Eq6.49), thus descendant of a

ing order ine. It can easily be obtained from the above
formula following the lines of90].

VII. CONCLUSION

In this article we constructed the field theory for the stat-

sloop. This means that to any order in perturbation theory, ats of disordered elastic systems. It is based on the functional
T=0, no diagram contributes to a connected expectatiomenormalization group, for which we checked explicitly

value (of a single replica which has two lines parting from

one R towards external points.

renormalizability up to two loops. This continuum field
theory is novel and highly unconventional: Not only is the
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coupling constant a function, but more importantly this func-closely related field theory of depinning, which we were able
tion and the resulting effective action of the theory areto build from first principles, we have not yet found a first-
nonanalytic at zero temperature, which requires a nontriviaprinciples derivation of the theory for the statics. However,
extension of the usual diagrammatic formulation. we have found that the theory is so highly constrained and
In a first stage, we showed that two-loop diagramsiand the results so encouraging that we strongly believe that our
some cases even one-loop diagraams at first sight ambigu- construction of the field is unique. It is, after all, often the
ous atT=0. Left unaddressed, this finding by itself puts into case in physics that the proper field theory is first identified
question all previous studies of the problem. Indeed, noby recurrence to higher physical principles such as renormal-
where in the literature was the problem adressed that evenability or symmetries, as is exemplified by the Ginsburg-
the one-loop corrections to the most basic object in the andau theory of superconductivity, for which only later was
theory, the two-point function, are naively ambiguous in thea microscopic derivation found, or gauge theories in particle
T=0 theory. Since the problem is controlled by a zero-physics.
temperature fixed point, there is no way to avoid this issue.
An often invoked criticism states that the problems are due
to the limit of n— 0 replicas. We would like to point out that ACKNOWLEDGMENTS
even though we use replicas, we use them only as a tool in
perturbative calculations, which could equally well be per- It is a pleasure to thank E. Bz, W. Krauth, and A.
formed using supersymmetry or, at a much heavier cost, uRosso for stimulating discussions. K.J.W. gratefully ac-
ing disorder-averaged graphs. So replicas are certainly not &howledges financial support by the Deutsche Forschungsge-
the root of any of the difficulties. Instead, the latter originatemeinschaft(Heisenberg Grant No. Wi-1932/1;1and addi-
from the physics of the system—i.e., the occasional octional support from the NSF under Grant No. PHY99-07949.

curence of quasidegenerate minima—resulting in ambigup| p. thanks the KITP and K.J.W. thanks ENS for hospital-
ities sensible to the preparation of the system. How to deq{y during part of this work.

with this problem within a continuum field theory is an out-
standing issue, and any progress in that direction is likely to
shed light on other sectors of the theory of disordered sys-
tems and glasses.

The method we have proposed to lift the apparent ambi- 1. Continuity of the renormalized disorder and summary
guities is based on two constraints(a) that the theory be of the method
renormalizable—i.e., yields universal predictions—a(l
that it respects the potentiality of the problem—i.e., the fact
that all forces are derivatives of a potential. Each of thes
physical requirements is sufficient to obtain féunction at
two-loop order and the two-point function and roughnes
exponent to second order & Next, we have proposed sev- 1 1
eral more general, more powerful, and mutually consistent_r[u]:z _prp[u]:E —— E FP(u,.,....Uus),
methods to deal with these ambiguous graphs, which work T p P!IT a "a ! P
even to higher number of loops and allow one to compute (A1)
correlation functions with more than two points. We were
then able to calculate from our theory the roughness expo-
nents, as well as some universal amplitudes, for several unwhere the functiond=(") have full permutation symmetry.
versality classes to ord@(e?). In all cases, the predictions The idea of the symmetrization method is that we also ex-
improve the agreement with existing numerical and exacpect, even alf =0, that these functions(® should becon-
results, as compared to previous one-loop treatments. Wénuousin their arguments when a number of them coincide.
also clarified the situation concerning the universaljiye- This seems to be a rather weak and natural assumption.
cise dependence on boundary conditions, independence &thysically, these functions can be interpreted agthecon-
small-scale detai)sof various quantities. Another remarkable nected cumulants of a renormalized disorder—i.e., a random
finding is that the one-loop contribution to the four-point potentialVg(u,x) in each environment. Discontinuity of the
function is formally identical to the one obtained via the F () would mean that th¥z(u,x) would not be a continuous
dynamical calculation at depinning. This hints at a generafunction. This is not what one expects. Indeed, discontinuity
property thatall one-loop diagrams are undistinguishable insingularities(the shocks are expected to occur only in the
the statics and at depinning. It would be extremely interestforce Fg(u,x)=—V,Vgr(u,x) as is clear from the study of
ing to perform higher-precision numerical simulations of thethe Burgers equatiofsee, e.g.[54] for a discussion of the
statics and to determine not only exponents, but universadimple case: in the elastic manifold formulation the shocks
amplitudes and scaling functions, to test the predictions oforresponds to rare ground-state degenerade thus ex-
our theory. We strongly encourage such studies. pectsVg(u,x) to be a continuous function af.

Thus in this paper we have proposed an answer to the A further and more stringent assumption, discussed
highly nontrivial issue of constructing a renormalizable fieldabove, is the absence of a supercusp. A supercusp would
theory for disordered elastic systems. Contrarily to themeanR’(0")>0. Thus we assume that the nonanalyticity in

APPENDIX A: SYMMETRIZATION METHOD

The first observation is that one expet@fslecomposition
n p-replica terms is to mean anythintpat one can write the
local disorder part of theeffective action as a sum over
Jwell-definedp-replica terms in the form
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the effective action starts 4s|3. The usual interpretatidns

that there is a finite density of shocks and just counting how BNHEH abRabRA
many shocks there is in a interval betwaegandu’ yields '
the [u—u’[® nonanalyticity inR(u). 2 P
Let us summarize the method before detailing actual cal- _abéﬁz abRab +abc;22¢2 RapRabRac (A3)
culations.

We thus define here the symmetrization method assumingith clearly no ambiguity. Performing similar rearrangement
no supercusp as a working hypothesis. We tbemputecor-  on all the graphs of clasa yields the sum of the graphs:
rections to thelocal disorder part of theeffective action up
to a given order in powers d®, with excluded vertices for
any vector such that,# u, for a#b, thus with no ambigu-
ity. This yields, as in Sec. VB 1, sums over more than two 1
tr'ephcas with .exclusmns. Thesg excluspns are nqt .permuta- _ - E " RIRL 42 2 gbR'é'cz
ion symmetric, so we first rewrite them in an explicitly per- 2 apc2+2 abG2#2
mutation symmetric way which can be done with no ambi-
guity (see below. Thus we have a sum of terms of the form n } " RIRY (A%)

2 abéd2+2 '

— /" m2 4 " "
5AR_4ab§¢2 RabRab + 2abc22¢2 RabRabRac

Now we use the property that has worked on all the ex-
> . F(Ugys- U ), (A2)  amples needed here: namely, that a symmetric continuous
function on{(xy,... Xp); i #j=X;#X;} is continuous orRP.
Writing for any f(x,,...,Xp) symmetric and continuous,

where 2#2 is a shorthand notation foa;#a; for all
i #j—i.e., symmetrized exclusions. Each functibis fully > f= > I] (1= 6aa)f(Xa,...Xa), (AB)
permutation symmetric, as indicated by thesuperscript. 242 ag,..@p <] ) ! P
Next, the nontrivial part is that wexplicitly verifythat these
symmetrizedorrections can indeed be continued to coinci
ing points unambiguously—e.g., the limit
fS(ul,ul,ug,...,uap) exists and is independent of the direc- > fane= 2 fane—32 faapt2> fana
tion of approach. This in itself shows that the continuity ape2#2 abe ab a
discussed above seems to work. The existence of a four-
repllca ter_m.obllges us to glsol consider three co_mmdmg 2 fapod= 2 fobod— 62 foapct 32 foanh
points. This is done by considerif§3(u;,u;,us,us)—i.e., abcd2#2 abcd abc ab
symmetrizing the result of two coinciding points ovey,
Uz, U, and then takingi;—u; . We check explicitly that this +82 faaab_GE fonna (AB)
again gives a function which can be continued unambigu- ab a
ously. Thus, at first sight, it would appear as the ideal method
to extract the function§(®) above to ordeR®. in shorthand notation such tha, 4= f(Ua,Up,Uc ,Ug) . This
is just combinatorics.
For the three-replica sums the procedure is straightfor-
2. Calculations ward, as symmetrization makes manifest the continuity. One

Let us reconsider the diagrams of Fig. 13. We first trans—eaSIIy finds(we drop an uninteresting single-replica t¢rm

form them in sum with symmetrized constraints. We illus-

. H H 4 " " __ 4 " " " /!!2
trate this on diagrand where the sum can be reorganized as abgﬁ rpRapRa= gc b abRac—% aoRan

d_and expanding yields, for the three and four-replica sums,

“One should be careful in these arguments, and consider the pre- "o e "o
9 p > RLR 2—% RILRYZ— > [RI,R”(0+)2

cise definition ofR(u). Indeed, one could argue that if there are ab&d+2 ac ac
many small shocks they could build a supercusp. For instance, con- 5 5
sider the nontriviald=0 limit of the random-field model, when +R,Rap + R (0)RG, ]

V(u) has at largau the statistics of a Brownian motion. Then, in

some definitions of a coarse-grained disorder, e.g., such as used in

[71] where this model was solved exactlg(u) is a continuous > noRIRE = >, Ro,RIRE— >, R'(0)RLZ,
one-dimensional Brownian motion, thus with a infinite number of ~ 2°%27%2 abc ab

small shocks and indeed a supercusp. However, in the present pa-, . . . .
per, Vx(u) is defined from the replicated effective action and not Where in the first line we have applied EQA6) to fap.

— " 11" " H
from the action, and should possess—in that case—a weaker singd SYMabc RapRapRac and so on(we define sym .., as the

larity. sum over all permutations divided Ip}).
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For the four-replica term we find thatf,pcqg
= SYyMypcq RapRacRaq has the following limits(in a symbolic
form, omitting the free summations

1 1
faabczg R"(0) abRac_ g abRabRbe T g RacRac bc
1 " m2 1 " m2
+ 1_2RbcRab + 1_2RbcRac )
1 " m2
faanp=73 R"(0)Rzp,

1 ” " 2 1 " m2
faaab:]__ZRabR (0+)°+ 2 RabRab »

where at each step we had to symmetrize before taking co-

inciding point limits(checking that this limit was unambigu-
ous in each case
The final result is found to be

5
SaRav=[Riy~ R'(0) (R~ 3 RALR"(0")]2
(A7)

PHYSICAL REVIEW E69, 026112 (2004

"+ B+ Y+ 8+ "N+ =0, (A16)
in agreement with the result of the ambiguous diagrammatics
in the case of an analytic function.

To conclude, although promising at first sight, this method
is not satisfactory. The projection defined here seems to fail
to commute with further contractions. For instance, one can
check that upon building diagrandsby contracting the sub-
diagram(a) in Fig. 2 onto a third vertex does give different
answers if one first projects) or not. Since(a) is the diver-
gent subdiagram, this spoils renormalizability. Since the ini-
tial assumptions of the method were rather weak and natural,
it would be interesting to see whether this problem can be
better understood in order to repair this method.

APPENDIX B: DIRECT NONANALYTIC
PERTURBATION THEORY

In this section we give some details on the method where
one performs straight perturbation theory using a nonanalytic
disorder correlatoRy(u) in the action. Expanding iRg(u),
this involves computing Gaussian averages of nonanalytic
functions: thus, we start by giving a short list of formulas
useful for the field theory calculations of this section. One
should keep in mind that these formulas are equally useful

The same procedure applied to the repeated counterterm colff computing averages of nonanalytabservablesin a

firms that it is unambiguous and given by E§.39. Thus,

Gaussian(or more generally, analyticheory.

because of the ominous 5/3 coefficient above, rather than the
expected 1, the theory, using this procedure, is not renormal- 1. Gaussian averages of nonanalytic functions: Formulas

izable.
Diagrams of clas88 and C behave properly. One finds

We start by deriving some auxiliary functions, then give a
list of expectation values for nonanalytic observables of a

with the same method their projections on the two—replicagenera| Gaussian measure.

part:
! 1 n 4 "
a = E RabRabRab' (AS)
’ 1 " 4 " mr " 2
B'=7[2R"(0O)R"(0)Rzp + RpR"(0)7],  (A9)
y' =8 (A10)
8'=—-2[R"(0)R"(0)R,,+RIR2,R"(0)].  (Al1)

Note the R™(0), which here is defined askR”(0)
=R”(0")=R"(07) since R”(u), can be continued at
zero. One has, using the expressions given in Appendix C,

I

ab

"

a"=R"(0)(Rp)*+2RIR'(0)RL,,  (A12)

B+ 8"=—2[R"(0)R"(0)Ry,+ RIRIR"(0)],

(A13)
Y+ N =RyR"(0)%+2R"(0)R"(0)Ry,,  (Al4)
v+ 7= —{R"(0)(Ryp) >+ R[R"(0)]%}.  (A15)

These graphgsmore precisely their contribution to two-
replica termg sum exactly to zero:

We need
" Ao el 4 a—iaX) o= 70—
fo dg(e'P+e 'Ye vy (B1)
Integrating once ovex starting at O yields
1 (-dg . . B X
.—f —(e'*—e e M=2 arctan—|. (B2
I'Jo g n

The right-hand side reduces in the limit pf-0 to 7 sgn),
which gives a representation of sgh(

sgn(x) = IimE Jmﬂsir\(qx)e 4
7—0T™Jo g
.1 (=dq ~
:I|m—f —sin(gx)e 7lal, (B3)
7)~>07T -® q
By integrating once more, we obtain
.2 (=dq _
|x|=I|m—J —[1—cogqgx)]e” 7. (B4)
WHOW 0q

This formula is easily generalized to higher odd powers of
|x|, by integrating more often. The result is

026112-34



FUNCTIONAL RENORMALIZATION GROUP AND THE . .. PHYSICAL REVIEW E 69, 026112 (2004

2 »dq from which the general case can be obtained by simple res-
|x|2" 1= Iim;(—l)“F(Zn)f —me "codqx)|y, caling x—x/{(xx)*2, y—y/(yy)*. Let us give an explicit
7=0 04 example(we drop the convergence-generating factor’
(BS) since it will turn out to be superfluoys.

where cosgfx)|, means that one has to subtract the first

Taylor coefficients of cosf), such that cosfy|, starts at <|x|):%fwd_g(2—<eiqx>_<eiqx>)

order (x)2": 0
o [—(@03]" 2 fOOdq o
=S = 1 =—| —(1—e @
cosax)[n= 2 gy (B6) o )
We now study expectation values. We use the measure _ \ﬁ B8
(xx) (xy)| (1 t T
(yxy (yy)) \t 1) BY A more interesting example is
|
1 (=dq (=dp ) )
(sgrnx)sgniy))=— v Jo Ffo o Z+1 or(e'97e'P7)
1focqu’OOdp 7(2+2 _
== — - _ 2 ogre pc+qg°)/2—orpqt
™ o Q o P or==1
= % jm E o %e(p2+q2)/2(epqt_ equt)
1 t * * 2, 2
= ﬁf dsf dqf dp e (P +a7)/2(gPas g~ pas)
0 —o0 —o
2 ftd 1 2 - .
7)o Sm—ﬂarcsm). (B9)

Another generally valid strategy is to use a path integral. Welhe very existence of the path-integral representatiit0)

note the important formula also proves that Wick's theorem remains valid. Let us give
an example which can be checked by using either(Bj0)
or (B8):
1 © 0
(f(x,y))= —f de dy f(x,y)
2mVI=ti e e (ClyD =0yl +2(xy)(x sgr(y))

(B10) =(EXYD +2(xy)X(8(y)
\F
= V- (1+t3). (B12)

We finish our excursion by giving a list of useful formulas,

" x2+y?—2txy
ex -0 |

An immediate consequence is

0 B(YYy = 1 fw dx f F{— NG } which can be obtained by both methods:
< (X) (y)>_2ﬂ_m o X (x)ex 2(1—t2)
2 .
:if dz 2V I=P)exp(— 2) (|xy|):;[\/1—tz+tarc5|r(t)], (B13)
1 2
:\/T—w<f(X\/1_t2)>- (B11) (xy|y|)=2\£t, (B14)
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2 .
(xy|xyl)= ;[3t\/l—t2+(l+2t2)ar03|r(t)], (B15)
(B16)

(Ixy?|)= %[(2+t2) J1—t?+3tarcsint)].

2. Perturbative calculation of the two-point function
with a nonanalytic action

Let us consider the expansion of the two-point function

1 1
(udud) = _I—_z(uiuty’R) + ﬁwiugRR) +O(R?)
(B17)

in powers of the disordBwhere R= %IZEefRO(uﬁf), with
us'=ué—ul. We want to evaluate these averagesTat0
with a nonanalytic actiolRy(u). We restrict ourselves ta
#b, since atT=0 the result should be the same b,

and we drop the subscript O from now on. As mentioned
above, the Wick theorem still applies: thus, we can first con-
tract the external legs. The term linear R yields the di-

mensional reduction resul2.14): thus, we note(uxuy>
—(uxuy)DR+<u ) and we find

1
<U TZJ' (zeGyw<§ R,(U?C)R,(u\?vd)>

—%zeeyz<2 R"(u’;‘b>R(u5J’>>) (B18)
cd

PHYSICAL REVIEW E69, 026112 (2004

Gow
t'= = (8ac+ Spa— Sad— o)

26, (B22)
d)l(t):%[St\/l—t2+(1+2t2)arcsir(t)], (B23)

do(t)= %[(2+t’2)\/1—t’2+3t’ arcsir(t’)].
(B24)

Note that the cross termR”(0)R”(0*%) involve analytic
averag® and yield zero(a remnant of dimensional reduc-
tion). Also, to this order, no terms with negative powersTof
survive for n=0 (see discussion belgw Performing the
combinatorics in the replica sums, we find, for 0,

G,
(uguy '=R"'(o+)2cs§f [GXZGYW(IM(G )
zZ

G,
+ zeGyz(I)Z( ” (825)
zz

091=201| 5] - a5 (B26)

2 8 S
‘I)z(s):_§¢2(3)+§¢2<§)_2¢2(0)- (B27)

It is important for the following to note that cancellation
occur in the small-argument behavior of these functions:

up toO(R3) terms. For peace of mind one can introduce the"@mely, one has®;(s)=—s%7+0(s%) and ®,(s)

restrictionsc#a, d#b in the first sum and¢#d in the sec-

—S/(47T)+O(SG) In d=0 it simplifies (setting Gy,

ond, but this turns out to be immaterial at the end. We need 1/m* and restoring the subscrjpto

only, in addition to Eq(5.2),

1 1
R,(U) R”(O)U“’ Rm(0+)u|u|+ Rrw(0+)u

1
R'(u)=R"(0)+R"(0%)|ul+ gR"(0")u?  (B19)

since higher-order terms imyield higher powers of. Using
Eqg. (B13) to evaluate Gaussian averages, this yields

<u)e(1u§) [ R/”(OJr)ZG;ZLW( GXZGywé ¢1(t)

l !
—2Gy,Gy, 2, dalt') ], (B20)
3 cd
where we denote
G,w
t= 5= (Sap+ Seq— Sad— dve) (B21)

2G,,

8These averages are connected but this is not needed here.

R;(0)  Ry(0%)?
pov A - +O(RYm

(uduby=— , (B28)

with A=(24—-273+8)/(37). As such, this formula and
Eqg. (B25) seem fine and it may even be possible to check
them numerically ind=0 for largem using a bare disorder
with the proper nonanalytic correlat®,(u). To obtain the
asymptoticm—O0 and large-scale behavior in amy one
must resum higher orders and use an RG procedure. The
question is whether the above formB25) can be used in

an RG treatment.

3. Discussion

We found that this procedure does not work and we now
explain why. Let us rewrite the resulB25), including the
dimensional reduction term:

—R(0) =Ry (07)’[A1(q) +A(0)]
(q2+ m2)2 ’

Can(q)=

R"(0) can always be set formally to zero by a trivial additive
random force contribution.
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Ai(q)= f d% €G(x)2¢;(X),

2
G(O)) i( G(x) | ©29

*"“X):‘(m G(0)

with i =1,2. One notes that if;(x) were a constant equal to
unity, one would recover the resy.5 obtained in Sec. VI.
However, one easily sees that whilg,(x)~0.346 ap-
proaches a constant as<a wherea~1/A is an ultraviolet

PHYSICAL REVIEW E 69, 026112 (2004

i.e., the presence of fractional powers at higher orders of the
expansion in a nonanalytic disorder—and it may be worth
reexamining. It is however important to note that, sinceehe
expansion proposed in the main text is not based on such a
direct expansion, idoes notyield fractional powers Ofe,
contrarily to what was conjectured [A7].

Finally, let us point out some properties of nonanalytic
observablesLet us study, e.g{|u}|). Expansion in powers
of R yields a first-order term~1/\T. This is the sign of
nonanalytic behavior, and indeed it is easy to find that

cutoff, it decreases ag;(x)~x>"9 at largex, as a result of )

the above-mentioned cancellations in the small-argument be-

havior of the functionsb;(x). Thus the infrared divergence (lualy= - (U2 or—
responsible for all interesting anomalous dimensions in the
two-point function as the nontrivial value dfis destroyed,
and the method fails. Even more, the theory would not even
be renormalizable.

2‘/2R”’O+GOZ
3 0 (07)G(0)

X L[\/l—tz(2+t2) +3tarcsir(t) — 2]+ O(R?),

We have performed a similar calculation in the dynamical (B32)
field theory formulation of the equilibrium problem in the o2 v o
limit T—0, using a nonanalytic action. There the method"nere  ((Uz)%pr=—JqRo(0)"/(q*+m") and t

fails for very similar reasons. Only at the depinning thresh-= G(¥)/v2G(0). Thefirst term is obtained by nofing that
old were we able to construct the dynamical theory as exRo(0) acts as a Gaussian random force, which can then be

plained in[68,69. One might suspect that one has to startseparated from the nonlinear force, and the last term, evalu-
with a somehow “normal-ordered” theory where self- ated using the above formula, is the only one which survives

contractions—i.e., terms proportional @&,,—are removed,
since theyneverappear in thel =0 perturbation theory. We
have not been able to find such a formulation.

at T=0 to linear order irRy. The formula(B32) is interest-
ing as a starting point to compute universal ratio, such as
(luzh?((u)?) or (luz—ud[)*((uz—u})?). Indeed, one

Another problem with direct perturbation theory in a notes that ford<<4 the integral in the term proportional to
nonanalytic action is that thereaspriori no guarantee that it R (0™) is infrared divergent at largg This is left for future
has a well-definedT=0 limit. Let us illustrate this in a study.
simple example id=0. The following correlation has been

computed exactly by a completely different met@d] for
the random-field model id=0 (Brownian motion plus qua-
dratic energy landscapé: ), indicates averages over al:

o 1
<U§>a=<U§eXP(% ﬁwc_udl_zng U§>>O
_ C20_2/3m78/3, (830)

a result which is also obtained by extrapolation frdm 4
using the FRG, as detailed in Sec. IVB 2.

On the other hand, the above perturbative method yields,

expanding ino,

1
— > (1+t?)+0(a?), (B31)

\/;mS ar c#d

with  t=(8,c— 8a9)/v2. In the zero-temperature limit,
(u3),~— o/ JTm*+0(o?), which is ill behaved. The ab-

<u621>0':_ +
m

T o
2

APPENDIX C: DIAGRAMS OF CLASS C

In this appendix we give the expression of each of the
diagrams of clas€ represented in Fig. 13 in the excluded
(nonambiguous diagrammatics. One finds, including all
combinatorial factors,

o"=p", N'=y", V=79, (Cy
with
"=~ RapRacRbe (C2)
B+ "= 2RURLRG, ©3
YN = RERIRLg, ca
7'+ =RIURG) (cs

sence of a well-defined Taylor expansion in the zero-

temperature limit is of course a sign that the correct result

(B30) is simply nonanalytic ino. Although this solvable ex-
ample involves a correlatoRy(u) with a supercuspit is
possible that a similar problem occurs at higher ordémsee

APPENDIX D: SLOOP CALCULATION OF DIAGRAMS
B AND C

Let us consider the expressi@gR for the B diagrams in

or highe) in the expansion of the two-point function in the the excluded diagrammatic¢S.14). Let us start again from a
case of the usual cusp nonanalyticity. There have been comsingle sloop(5.18 and(5.19 and contract this time between

flicting claims in the literature about this questiptv,54—

y andz twice to produce a diagram of type B. This yields
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- 1
:, \: — _RII 0 R/I/I 7 . .
s 3t ); ab"tab We now turn to graphs<C. The expression focR is
1 1 given as the sum of all contributions in Appendix C. Within
+5R'(0) > RyRL+ 3 > RLRR, the sloop method it gives immediately zeroScR=0. This

arbbre aFbbre is because one can start by contracting the tadpole. Since this
+1 Z " RMRY, is a sloop, it can be set to zero:
a#b,a#ec,c#d 1
1
+7 Y. RLRIURL=0 (D1) 57500 2 RI(Ui)RUWgR(UG)=0.  (D§)
4 asteb#e,ctd abcdef

. o ] ) Upon further contractions, proceeding as in Sec. VB, one
the termsR"(0) arising because the first vertex is not con-pptains exactly that the sum of all grapBswith excluded

tracted in the process, so one must separatéuthambigu-  vertices is identically zero. Grapl@sum to zero since they
ous diagonal part to obtain excluded sums. are all descendants of a sloop.

If one subtracts this identity from Ed5.14), one finds
that there remain some improper three-replica teftme im-
proper four-replica term, however, cangel§his is because
in the process of our last contractions we have generated new We will illustrate the universality of
sloops, but since replicas were excluded, they have to be
extracted with care. 2e(2l5—1%)

Let us rewrite the two possible “double sloops” from un- X= T (e (ED)
restricted sums to restricted:

APPENDIX E: CALCULATION OF AN INTEGRAL

using a broad class of IR cutoff functions—namely, a propa-

1
XOXOS = Y RLRYR, gator
- 1 9(x)
- l Z R' R™R" + l ZR//(0)2 1t ﬁ—)J’ Xﬁ. (EZ)
= 3 et actVab L lad 9 = ab q +m q +Xxm
+ZR”(0)R;’{,’ . (D2) Here we denotd ,A(x)=/fdx g(x)A(x) and we normalize
ab Jdx g(x) =1 (consistent with fixing the elastic coefficient to

unity). We will show thatX=1+ O(€) independent o§(x).
First, we write

2% =3 S RLRURL,

abed 1
1=,
= % > RLRyR,+ %ZR”(O)Z o U )ax Ja(aP+xm?) (g2 +x"m?)
a#b,ate,btd a#b
+ Y RORSR, . (D3) E f f g~ aa(a e x) +afq?ex )
atb x,x" J a;>0,a,>0
2 e 2] o
In the process we have set to zero the terms _ J e d )J' J dalf day(ag+ ay) 92
q x,x"JO 0
1 nmr " 4 2 ’
SR (O)aECd R.Rig—0, (D4) x @~ Melarxtax’), E3)

1 and using the parametrization=a,+a, and Aa=(a;
§RW(O) > R!.R!,—0, (D5)  —@,)/2, one obtains
acbhd

a
) 112 %
f e d f f d)\f da ot~ 9?
q x,x"J —1/2 0

xe~ m2af (x+x" )12+ N (x—x")]

) € 1/2
[e)elg][ [“ o
q 2 x,x"J —1/2

since they are proper three- and four-replica terms. li=
Defining now

oeie g [XOROS 4 1sy] . (P9

=m €

The simplest combination which allows to extract the two-

replica part is X+ X’ —el2
X +N(x—x") (E4)
(T —20 0 e + o 0 e
1
- 521%{;;,’ (R, — RIY? . (D7) The hat diagram is
a,b
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1
=, ,
A I g ap(d+ xam?) (G5 + Xom?) (95 +X5mP) (0l +Gp) 2+ Xam?)

— f f e a(Qi‘*’lez)—ﬁl(Q§+X2m2)—Bz(Q§+Xém2)— Y(a1+02)%+x3m?]
Xj a,ﬁl,ﬁz,'y>o

2 , a+
:( f eqz) f f e*mz(X1“+Xzﬁ1+le32+X37) Det( Y Y
q XjJa,B1,B2,7>0

Yy  BitBaty
2 ) )
:( f eqz) f f Y3 dem M et xbrt X B o+ B+ Bo+ e Br+ Ba)] W2
q X J a,B1,B2,y>0

—di2

2
=Ueq2) I'(4—dym=2¢J, (E5)
q
|
where we split the divergent integrdlin pieces, which are ,\2 5
either finite or where the divergence can be calculated ana- A= je_q ) ['(4—d)m™°¢ —+1+0(e)
: : q
lytically:
12 [ XX, €
X J dx +A(Xa— X5
2] o] X2 Xé —1/2 2
\]:f J‘ daf dBG(a,ﬂ,Xi)=J1+J2+J3, (E6)
xJ0 0 B 1 1 O |2 E11
=52t 72 TO€) | (el)?, (E1D
—2+€l2 2
G(a,B,x)=(at+ B+ap) f_md)‘ where we have used that in the one-loop integEal),
X+ X} ) e _
X{Xja+ B FNXp— X)) |+ X3 112 [x+x' €l2
2 f ,f dx 5 +A(x—Xx")
(E7) x,x"J —=1/2
1
= 1+§a’6+0(62)>, (E12

oo 1
e[ [ aefasciepnimnz o, e

with « depending on the regulating functigiix) and in the

two-loop integral(E11):

“da 1
Jz:JXi Jo daJl dﬂ[ G(a,B,X%i)— AT o) 25"

112 X+ X' —€
f f dx +N(x—Xx")
12 X+ X} N xx'J—1/2 2
XJ71/2d)\ 5 +X(Xo—X5) . 5
=[1+ ae+0O(e?)]= 1+—a’6+0(62)> , (E13
——In2+0(e), (E9) 2
. . 1 " with the samea.
S e w—
S PR '8(1+a)2 2B Jy xy ) —ar2
+x! —€ g - . i "Q
Xp+ X
X 22 2 - N (Xp—xb) (E10 a b c d e
This gives the final result for the hat diagram, FIG. 15. Diagrams to ordeFR? with excluded vertices.
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8 QO

FIG. 17. Diagrams to ordeF?R with excluded vertices.

0PR=|2 S RORWLRI— S, REGRRL

a#bh,a#c a,b,c,2#2
+ mr RH 4
. o . . a#b,a;c,a#d ab™lactad
FIG. 16. Diagrams to ordeFR* with nonexcluded vertices.
+ M(REDZ 1T, F5
APPENDIX F: SUMMARY OF ALL NONAMBIGUOUS a;&;a#:c ab(Rac)” |1l 7 F9

DIAGRAMS, FINITE TEMPERATURE

In this appendix we give all one- and two-loop diagramswhile the finiteT diagrams are given by
including finite T, evaluated with the unambiguous diagram-
matics, which have not been given in the text; see Figs.
15-18. We use the unambiguous vertey. ,R(u,—uy), de- 8P R=
note R;p=R(U,—Up), R,=R'(us—Uuy), etc.

The list of all UV-divergent diagrams up to two loops is

1 1
ST2S RG|IE+ 5T 3 RURL
a#b

12+
t 6 a#b,a#c

1
given in Fig. 18. We write their contribution to the effective + ET(R;{’D)2 “+[T> RURL
action as azb
JFTEH&%#C g’gRgc) Iy, (F6)
1 ,
I‘|:u:||ux=u:_ﬁR (F1)
= - 7
N %v%ngg(ql_"QZ)z.
R=>, Ryt SVR+ PR+ . (F2)
ab For ananalytic Rone substituteR,,— Rap(1— 84p) in the
above formula and selects the two-replica terms:
The total one-loop contribution is Q A TR
) ) <= InA R?
SYR= —(RL)%+ —RI R
azb 2( ab) aibE,a#c 2 ab'tac|'1 O() (A2 )2 T2R
+ Tazb Zb) It (F3) S A2 TR®

A2 T R?

The total two-loop contribution is In A R?

In A R’

Ol >
SPR= 62 R+ 82R+ 52 R+ 8?'R, (F4) E7 In A R?

wheresR is given Eq.(5.13, s&)R is given in Eq.(5.14),

and FIG. 18. Divergent unsplit diagrams to one and two loops.

026112-40



FUNCTIONAL RENORMALIZATION GROUP AND THE . ..

(1) /r 1 "\ 2 ” "
SPR=TR'l;+| 5 (R)?=R"(O)R"|I4, (F8)

(2) 1 mr o " 212
s8'R=ZR"[R' =R (013, (F9)
5(A2)R:[Ru_Rrr(o)](Rm)ZlA, (FlO)
SZR=0, (F11)

1 1
6£|_2)R: T2R////|t2+ 5-I-( R///)ZI 4+{TRIII/[R//_ R//(O)]

2

~TR'R"(0)}H,4l;. (F12

PHYSICAL REVIEW E 69, 026112 (2004

mn

SHPR=| RIL(Rap) *+ Rap(Rap)*+ RapRa,Ra o+ Rap(Rao)?

mr

ab

Wi

4 4
abRacRad+

mr

4
abRac

"

bd

2

+
2

4 4
abRac+

" "

1 1
ab abRg,c+ 5 gbRg,cRg,d_l_ E

+ 2

4 n "
a bRacRac

"

IdiV
bc ’

1 R// R///
ab'ac

3 (F14

1

omitting all (excluded sums. One checks that
1
€

2(8%'R+ 55\2>R)~5<1v1>R+o( ) (F15

H _12 . .
Let us show that if one renounces to the projection ontd'Sing that 2,=1%+O(1/e). Thus there is some renormaliz-
two-replica terms, one can still obtain some formal renormal&bility property forR. One can thus define formally A

izability property, but at the cost of introducing an unman-

ageable series of terms with more than two replicas.

We show how to subtract divergences by adding counter- —md,,R=eR+ E

terms of similar form. Let us discuss only=0. To cancel
the one-loop divergences we introduce the counterterm

SYR+| >

div
I 1 .
a#b

RIDZ+ >

1
_ _ '’ R!/
2 ( a#b,a#c 2 ab’tac

(F13

The repeated counterterm is

unction
1

2 RgbRgc (El 1)

1
—(R)%+
a#b 2( ab) a#%#c

5

e(la—31%)

+oPRA
A

(F19

R, however, includes a series of terms each with excluded
sums overp replica. Thus to be consistent one should in
principle include them from the start and pursue the method.
It is not clear that it can be closed in any way.
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