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Statistical properties of two particle systems in a rectangular box: Molecular dynamics simulations
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Statistical properties of two particle systems, in which the interaction potentials include the soft repulsion/
attraction within a hard rectangular box, are studied using molecular dynamics simulations. The pore size and
the potential dependence of van der Waals instability arising from the packing mechanism are investigated. The
van der Waals instability strongly depends both on the soft repulsion and on the position of soft attraction in
these model systems. An addition of the soft repulsion to the hard-core system gives rise to the van der Waals
instability near the position where two particles tend to face each other on the diagonal line of the rectangular
box. For the hard-sphere system with the soft repulsion/attractions, the soft attraction significantly enhances the
van der Waals instability, whereas, for the square-well spheres with the soft repulsion, the soft attraction
reduces the van der Waals instability.
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Phase behavior in a confined system is well known to bdion in the confined system is strongly influenced by the
influenced by geometrical confinemerjts2]. Much work  geometrical properties of such systems. Most studies in this
has been done on layering transition for molecular systems area are restricted to the systems containing 5-pHticles
walls, condensation in pores, and freezing and melting irby Monte Carlo and molecular dynamics simulations.
pores[3-5]. The interesting question is that whether and Many researchergl0—12 have studied the freezing and
how the bulk phase transition manifests itself in a finite systhe glass transition for the three-dimensional hard sphere
tem because the packing is one of the most important factorsystem confined in a spherical pore. They have shown that
controlling the structural properties of the fluid. the crossover densities for the finitéare found to be sig-

For the freezing problem oN hard disks in the two- nificantly smaller than the corresponding bulk densities. On
dimensional circular cavity, Neeth and Laven[6] have car- the other hand, recent experimental results and computer
ried out computer simulations via the molecular dynamicssimulations for specific models such as supercooled water,
method, and have shown that the hard disk model exhibitiquid carbon, and supercooled silica predict the low-density-
the transition from ergodic to nonergodic behavior at differ-liqguid (LDL) and the high-density-liquid(HDL) phase
ent densities. One important conclusion is that it displays #13,14. It was also shown even in the simple hard-core sys-
sequence of ergodicity-breaking and ergodicity-restoringems investigated in this work that the presence of the LDL
transitions with increasing the area fraction for the system ofind the HDL in the bulk phase can arises solely from an
77}\‘< 17*,5 for N>7, wherenl\‘ and 7/',1' denote the lowest and isotropic interaction potential with characteristic short-
the highest ergodic area fraction, respectively. For a few parranged attractive/repulsive distanclsb]. This result sug-
ticles system confined in the circular cavity, however, thegests that, for two particle systems with the soft-core repul-
solid-liquid transition does not occur, which is related to thesion confined in the two-dimensional cavity or the three-
transition from ergodic to nonergodic behavior. Strep@l.  dimensional spherical pore, the van der Waals instability may
[7] have recently employed molecular dynamic simulation tooccur because it is not directly related to the transition from
investigate the phase transition of hard disks under the perergodic to nonergodic behavior. In particular, Kim and Mu-
odic external field. Awaz(i8] has studied the van der Waals nakata16] have more recently studied the statistical proper-
instability of two hard disks in a two-dimensional rectangu-ties of two particle systems within the radially symmetric
lar box using molecular dynamics simulations, which imitatespherical pore. Through theoretical approaches, they have
the solid-liquid transition of the bulk system. For the sameshown that the addition of the soft repulsion to the hard core
model, Munakata and H[B] have calculated the exact par- gives rise to the negative van der Waals instability which is
tition function and the equation of state. They have obtaineariginated from the packing mechanism, while it does not
the similar relationship like the van der Waals equation befise the van der Waals instability for the systems with the
tween the width of the box and the pressure at the side wallsittractive part of potentials such as the Lennard-Jones fluid.
They have also shown that the range of the box width, wher&or the two particle system with the soft repulsion in a hard
the volume compressibility becomes negative, goes to zertectangular box, it may occur two different van der Waals
when the height of the box passes through the critical valuenstabilities, which are originated from the intermolecular
Comparisons with the results of NMeth and Laven[6] in-  potential between particles and the geometrical properties.
dicate that the van der Waals instability or the phase transi- As a model fluid for the two particle system, we have

used a simple potentiab(r) described by
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Here, the model potential in E¢l) is reduced to the square-
well system fore;<0 ande,=0. Fore;>0 ande,=0, this g
model becomes the hard-sphere system with the soft repul- 2
sion (the HSR model which was previously employed to i
investigate the isostructural solid-solid transit[d7,1§. For
€,>0 and e,<0, it becomes the hard-sphere system with
both the soft repulsion and the soft attractithe HSRA
mode) [15]. For €;,<0 ande,>0, it becomes the square- o
well system with the soft repulsiaithe HSAR modélwhich o
was used to study the influence of short-ranged attractive/ <
repulsive interactions on the phase behavior of colloidal sus-
pensiong 19]. It is known that for the bulk system the addi-
tions of the repulsive/attractive interactions beyond the hard
core may profoundly influence the phase behavior of sys-
tems.
We have carried out molecular dynami@gD) simula-
tions in a manner similar to that originally proposed by Alder  FIG. 1. The wall pressure for two square-well spheres (
and Wainwright for hard-core systerfi20]. The width and =0.50 ande,=0) with b=2.1c; (@) P, and(b) Py,
the height of a hard rectangular box have been takeneasl
b, respectively. The hard-wall collisions with the boundariesstructural changes during the packing mechanism. The main
of the box were treated by the rule of elastic specular scatdifference between two hard-spheres and two square-well
tering, in which the tangential component of velocities to thespheres is that the negative compressibility of the van der
collision plane was preserved but the normal component o¥Vaals type occurs at the higher pressure with increasing the
velocities was changed. Postcollisional velocities for collid-soft attraction, comparing with the two hard-sphere system.
ing particles were also assigned according to specular colliHowever, the position of the van der Waals instability does
sion dynamics. Each simulation run was, at a given condinot change and appears near the critical widtt,2.05.
tion, conducted for a total of 201C° collisional events. Our  This means thati) the addition of the soft attraction to hard
MD results were all scaled to reduced dimensionless quantspheres enhances the wall pressure, @ndear the critical
ties, using the unit hard-disk diametey the particle masg), ~ Wwidth, the van der Waals instability results from the geo-
and the unit thermal enerdgsT. In this system of units, the metrical properties of the rectangular box, not depending on
translational kinetic energy of the particles in total is scaledhe soft attraction for the hard spheres. This conclusion sup-
to 2, which should be conserved during the MD simulationsports why the van der Waals instability does not exist for two
regardless of the system input parameters for the box size hard-spheres and square-well spheres confined in the spheri-
It would be interesting to note that quite different effectscal hard-wall pore due to the radially symmetric properties
could emerge in finite systems, which are not observed in thEL6].
infinite bulk behavior. In the Monte Carlo simulation studies ~ The wall pressure for two hard-spheres with the soft re-
of finite hard spheres confined within a spherical caj®y],  pulsion(the HSR modslwith o;=0.50 is shown in Fig. 2.
it was reported that the statistical mechanical ensembles wefur simulation results display the two types of van der Waals
no longer equivalent between the canonical and the grandstabilities; the first van der Waals instability occurs near
canonical ensemble simulations. For instance, in certain sitta=~2.05% when two hard spheres approach each other, and
ations, the significant differences were found in the pore denthe second van der Waals instability near2.55. As we
sity profiles mainly due to packing constraints. Our MD re-increase the soft repulsion, the wall pressBredecreases,
sults are closely related to the canonical ensemblavhile the wall pressurd®, increases. For two square-well
simulations. spheres, however, both, and Py, increase with increasing
The wall pressure diagrama s P, andavs P,) fortwo  the soft attraction. One interesting observation is that the
square-well spheres with=2.10 (¢;<0 and e,=0) are position of the second van der Waals instability appeared
presented in Fig. 1. The pressures at the viggJlandP,, are  neara~2.55%, not depending on the height of the soft re-
defined as the time average of the impulse momentunpulsion, even though the second van der Waals instability
changes by the bouncing of particles on the walls per unipccurs for highly repulsive systems.
length per unit time. Near the critical width=20) of a rect- The density profilesp(x,y) and the radial distribution
angular box, where two particles cannot exchange their pofunctions(RDF's) for the HSR model withe;=0.9 are pre-
sition, the wall pressur®, shows the negative compressibil- sented in Fig. 3. The contact density distributjofx,y=0)
ity of the van der Waals type imitating the liquid-solid at the lower and upper walls also shows the two peaks near
transition in the bulk hard-sphere systems. However, the wakhi~2.05 anda~2.55, while the contact density distribu-
pressureP,, continuously decreases with increasing the walltion p(x=0,y) at the side walls continuously decreases with
width a [8,9]. This suggests that under the closely packedncreasing the wall widtla. Under those conditions the wall
situation the van der Waals instability may result from thepressure itself satisfies the contact value theorem which is
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FIG. 2. The wall pressure for two hard spheres with the soft

repulsion(the HSR model (o;=0.50 and e,=0) with b=2.10;

(& P, and(b) P,.

related to the density distribution on the w§#i,22]. Two
types of van der Waals instabilities can be understood as the
arrangement of two hard spheres with the soft repulsion in a
rectangular box. When the width of a box at the fixed side
wall (b=2.10) is larger than the particle size, two particles
tend to arrange along the horizontal line of a rectangular box.
In this case, the impulse momentum change at the side walls 1.0 1.2 1.4 1.6 1.8 2.0
is greater than that of the upper or lower walls. When the
size of the side walla is reduced, two particles tend to face r/c

each other on a diagonal line of the rectangular box, and the g 3, The contact density profile at the wall, and the radial

wall pressure is strongly affected by the soft repulsion interjstribution function,RDF, for the HSR model ¢,=0.50 and e,
action (e;>0). Finally, when the side wall is further re- =) with b=2.10; (a) p(x,y=0)a? (from left to right,a= 1.9,
duced, two particles tend to face each other on a vertical ling=2.05r, a=2.20, a=2.40, a=2.50, a=2.55r, a=2.6¢, and
of a rectangular box and the hard sphere interaction strongly=2.8+), (b) p(x=0,y)¢? [the conditions for are the same as in
influences on the wall pressure. Such structural propertie) but from top to bottom at the walland(c) RDF [the conditions
were confirmed from the radial distribution functions, de-for a are the same as if@ but from left to right.
fined as the two-particle probability as a function of the rela-
tive distance. The RDF's obtained from our simulations are interpret the second van der Waals instability. It is known
illustrated in Fig. &), and the profound structural changes that for the bulk model systems with the purely repulsive
are displayed near/o=0.5 due to the repulsive potential in interactions the liquid-gas transition does not exist. In such
the HSR model. This implies that the second van der Waal§ystems, there is no distinction between the gas and the lig-
instability appears at the position where two particles tend tdlid phases and the liquid-gas transition results mainly from
face each other on the diagonal line of a rectangular boxthe attractive force between two particles.
depending on the soft repulsion of model potentials. 3

Figure 4 illustrates the wall pressuRg, (e;=0.9 andb -
=2.10) for the HSR model with the different repulsive i
shoulder. Once again, the position of the first van der Waals © 2
instability exactly coincides with that of two hard spheres. oL e ot
However, the position of the second van der Waals instability ® 1k
appears over the largevalue with increasing the width of [
the soft repulsion, even though the wall pressure decreases

RDF

with increasing the soft repulsion, i.e., with increasing the o———t——l———

width of the repulsive shoulder. Comparison with Figs. 2 and 2.0 2.5 3.0 35

3 indicates that the position of the second van der Waals a/c

instability only depends on the widthr; of the repulsive

shoulder(or the range of the soft repulsipnbut not the FIG. 4. The wall pressur®, for the HSR model é;=0.9 and

height of the soft repulsior;. Here, one question is how to e,=0) with b=2.10.
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FIG. 5. The position autocorrelation functi@{(t) for the HSR
model (¢;,=0.9, 0,=0.50, and €,=0); (@) b=2.10 and (b) b
=2.50.
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FIG. 6. (@ The wall pressureP, for the HSRA model &,
=0.9, 0,=0.50, ando;=0.50) with b=2.10. (b) The wall pres-
sure P, for the HSRA model é=-0.9, 0;=0.50, and o,
To understand the detailed dynamic properties of the van 0-50) with b=2.17.
der_V_VaaIs 'nStab'“t'e.S’ the aut_ocorrelatpn fL_mct|ons for th_ebulk liquid-liquid phase transition in the system consisting of
posmon of each 'partlcle were |Ilgstratgd in Fig. 5. The pos"many particles andii) the addition of the soft repulsion to
tion autocorrelation functiol(t) is defined as the hard core can give rise to the van der Waals instability.

For the HSRA model with the soft repulsiog,(>0) and
(x(0)x(1)) ) "
— L (2)  the soft attraction ,<0), the pressur®, and the position
(x(0)x(0)) autocorrelation functiol©(t) obtained from our simulations
are illustrated in Figs. 6 and 7, respectively. Figure 6 indi-
. ”» . . cates that the addition of the soft attraction enhances the
solid state, the position autocorrelation function has a NONzacond van der Waals instability. However, the positions of

zero finite value fari—c. In this case, two.partlcles N @ the van der Waals instabilities exactly coincide with that of
rectangular box cannot exchange their positions each oth%e HSR model as shown in Figs. 3 and 4. Even though we

In the liquid state, the faster relaxation is expected to bed- . ; I 2
S ; . id not display the density distributiop(x,y)o< in these
processed which is not observed in the case of the solid statge ures, thepshyarp and nar)r/ow densitync(iist);i)butions near the

As can be seen n Fig. 5, the relaxation process becom n der Waals instabilities are observed as in the HSR mode.
s_Iower bk W'.dth of.t.he hax approaches chser to the The density enhancement near the van der Waals instability
first van der Waals !nstabllltye(~2.05q). For th_e wide wall can be understood by considering the role of the soft attrac-
(b=2.50), the position autocorrelation function cONVergesj,, This result confirms that the position of the second van

very rapidly as the width of the box increases. An interestingder Waals instability only depends on the width of the repul-

observation can be found in the case of the narrow Wall (' gjye shoulder, but not the soft attraction. We can conclude
=2.10). In this condition and near the first van der Waals

instability, the position autocorrelation function converges

very rapidly such as purely hard sphere systégjs How- 1.0
ever, near the second van der Waals instability, the time in 08¢ a=1.9¢
which the autocorrelation approaches to zero becomes Ionger:\ 08}
than the first van der Waals instability. These curves also ;< g4} a=2.05¢
show the fast and the slow relaxations for a little above and o2l a=2.10
below the second van der Waals instabilitg~2.55). a2.30

C(t)=

wherex(t) is the position of particle at a given tinte In the

a=2.7¢ i
a=3.09

These relaxations are similar to tlhe and 8- relaxation of 0.0 . a=2-530 .

the density fluctuation in a supercooled liqUi8,23]. The '0'201 1 10 100 1000
fast and the slow relations are separated by the appearance o '

plateau. The liquid state above the second van der Waals |Og10t

instability (a>2.550) is different from that below the sec-

ond van der Waals instability (2.65<a<2.55%) as de- FIG. 7. The position autocorrelation functio(t) for the

tected in the HDL and the LDL. From this observation, we HSRA model €;=0.9, e,=—0.9, 0;=0.50, ando,=0.50) with
may suggest thdt) our two particles system may imitate the b=2.1s.

026111-4



STATISTICAL PROPERTIES OF TWO PARTICE. . . PHYSICAL REVIEW E 69, 026111 (2004

77— pected that for the weak repulsion the soft attraction over-
comes the soft repulsion and the second van deer Waals in-
stability eventually disappears. As we increases the width of
the repulsive shoulddor the soft attraction the position of
the second van der Waals instability moves to higheal-
ues. The wall pressure near the first van der Waals instability
increases, but decreases near the second ven der Waals insta-
bility. Comparison with Fig. 7 indicates that the position of
the second van der Waals instability strongly depends on the
position of the soft repulsion as well as the width of the soft
repulsion. This result again confirms that the second van der
Waals instability is directly related to the soft repulsion of
model potentials, while the addition of the soft repulsion to
the square-well system enhances the second van der Waals
instability. The general trend for the position autocorrelation
function for the HSAR model as shown in Figb8is very
similar with that of the HSR modglFig. 7) except for the
faster relaxation near the second van der Waals instability.
) . . . From these figures we observe the followirig.In the sol-

0.1 1 10 100 1000 idlike state, the position autocorrelation functions have a fi-

log t nite positive value because two particles cannot exchange
g10 their positions, (i) the position autocorrelation functions

drop off rapidly in the fluidlike state where particle positions
are available over all configurational space, diiid in the
intermediate range between the solid and fluid states, the
position autocorrelation functions exhibit a plateau due to
relaxation processes resulting from the collisions between
two particles. These time-dependent functions also explain
that the addition of the soft attraction to the HSR modelthat the soft attraction in the HSAR model reduces the sec-
enhances the van der Waals instability which is somewhabnd van der Waals instability. The overall picture shows that
similar to the liquid-liquid phase transition in the bulk sys- the van der Waals instabilities are strongly affected by the
tem. We can also check the contribution of the soft repulsiorposition of soft attraction of model potentials.
from the position autocorrelation functidfig. 7). Near the In summary, we have considered many different potential
second van der Waals instability, the HSRA model leads tanodels to study the van der Waals instability arising from the
the slower relaxation compared with the HSR model, whilepacking mechanism. The van der Waals instabilities are af-
near the first van der Waals instability the faster relaxation igected not only by the soft repulsion but also by the position
detected. The soft attraction in the HSRA model results irof the soft attraction in model potentials. For two hard
the slower relaxation. This can be understood by consideringpheres in the spherical pof24], the van der Waals insta-
the effect of the soft attraction in the packing mechanismbility related to the solid-liquid transition in the bulk system
This enhancement is similar with the solid-solid enhancedoes not occur mainly due to the geometrical properties of a
ment of the bulk systerfiL8]. The addition of the soft repul- spherical symmetry. However, the present result suggests
sion to the square well gives rise to the liquid-liquid transi-that two hard ellipsoids in the hard spherical pore may give
tion. It is noted that the combination of narrow attractiverise to the two types of van der Waals instabilities as ob-
square well with the repulsive square-shoulder potentiakerved in the system of two hard spheres with the soft repul-
would enhance the stability of isostructural solid-solid tran-sion[25]. It is expected that the van der Waals instability in
sition over the system of the square-well potential ald®.  the confined systems can also be affected by the wall poten-
Furthermore, in order to understand the role of the softial, e.g., nitrogen in zeolite systemi6]. It would be inter-
attraction for the van der Waals instability, we have consid-esting to study the statistical properties of two hard ellipsoids
ered two square-well spheres with the soft repulsjte  in the two-dimensional rectangular box or the spherical pore
HSAR mode]. The wall pressure and the position autocor-and we will discuss these problems in the near future.
relation function were displayed in Fig. 8. For two square- This work was in part supported by Korea Research
well spheregthe HSAR model withe,=0), the second van Foundation Gran{Grant No. KRF-2003-015-C0028&nd
der Waals instability does not exist. In this case, it is ex-the KOSEF.

FIG. 8. (@ The wall pressureP, for the HSAR model &,=
—0.05, €,=0.96, ando,=0.50) with b=2.1¢. (b) The position
autocorrelation functiorC(t) (e;=—0.05, €,=0.96, 04,=0.020,
and o,=0.50) with b=2.10.
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