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Statistical properties of two particle systems in a rectangular box: Molecular dynamics simulations

Soong-Hyuck Suh1,* and Soon-Chul Kim2,†

1Department of Chemical Engineering, Keimyung University, Taegu, 704-701 Korea
2Department of Physics, Andong National University, Andong 760-749, Korea

~Received 30 June 2003; revised manuscript received 20 November 2003; published 24 February 2004!

Statistical properties of two particle systems, in which the interaction potentials include the soft repulsion/
attraction within a hard rectangular box, are studied using molecular dynamics simulations. The pore size and
the potential dependence of van der Waals instability arising from the packing mechanism are investigated. The
van der Waals instability strongly depends both on the soft repulsion and on the position of soft attraction in
these model systems. An addition of the soft repulsion to the hard-core system gives rise to the van der Waals
instability near the position where two particles tend to face each other on the diagonal line of the rectangular
box. For the hard-sphere system with the soft repulsion/attractions, the soft attraction significantly enhances the
van der Waals instability, whereas, for the square-well spheres with the soft repulsion, the soft attraction
reduces the van der Waals instability.
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Phase behavior in a confined system is well known to
influenced by geometrical confinements@1,2#. Much work
has been done on layering transition for molecular system
walls, condensation in pores, and freezing and melting
pores @3–5#. The interesting question is that whether a
how the bulk phase transition manifests itself in a finite s
tem because the packing is one of the most important fac
controlling the structural properties of the fluid.

For the freezing problem ofN hard disks in the two-
dimensional circular cavity, Ne´meth and Lo¨wen@6# have car-
ried out computer simulations via the molecular dynam
method, and have shown that the hard disk model exhi
the transition from ergodic to nonergodic behavior at diff
ent densities. One important conclusion is that it display
sequence of ergodicity-breaking and ergodicity-restor
transitions with increasing the area fraction for the system
hN

l ,hN
h for N.7, wherehN

l andhN
h denote the lowest and

the highest ergodic area fraction, respectively. For a few p
ticles system confined in the circular cavity, however,
solid-liquid transition does not occur, which is related to t
transition from ergodic to nonergodic behavior. Streppet al.
@7# have recently employed molecular dynamic simulation
investigate the phase transition of hard disks under the p
odic external field. Awazu@8# has studied the van der Waa
instability of two hard disks in a two-dimensional rectang
lar box using molecular dynamics simulations, which imita
the solid-liquid transition of the bulk system. For the sam
model, Munakata and Hu@9# have calculated the exact pa
tition function and the equation of state. They have obtain
the similar relationship like the van der Waals equation
tween the width of the box and the pressure at the side w
They have also shown that the range of the box width, wh
the volume compressibility becomes negative, goes to z
when the height of the box passes through the critical va
Comparisons with the results of Ne¨meth and Lo¨wen @6# in-
dicate that the van der Waals instability or the phase tra
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tion in the confined system is strongly influenced by t
geometrical properties of such systems. Most studies in
area are restricted to the systems containing 5 –103 particles
by Monte Carlo and molecular dynamics simulations.

Many researchers@10–12# have studied the freezing an
the glass transition for the three-dimensional hard sph
system confined in a spherical pore. They have shown
the crossover densities for the finiteN are found to be sig-
nificantly smaller than the corresponding bulk densities.
the other hand, recent experimental results and comp
simulations for specific models such as supercooled wa
liquid carbon, and supercooled silica predict the low-dens
liquid ~LDL ! and the high-density-liquid~HDL! phase
@13,14#. It was also shown even in the simple hard-core s
tems investigated in this work that the presence of the L
and the HDL in the bulk phase can arises solely from
isotropic interaction potential with characteristic sho
ranged attractive/repulsive distances@15#. This result sug-
gests that, for two particle systems with the soft-core rep
sion confined in the two-dimensional cavity or the thre
dimensional spherical pore, the van der Waals instability m
occur because it is not directly related to the transition fr
ergodic to nonergodic behavior. In particular, Kim and M
nakata@16# have more recently studied the statistical prop
ties of two particle systems within the radially symmetr
spherical pore. Through theoretical approaches, they h
shown that the addition of the soft repulsion to the hard c
gives rise to the negative van der Waals instability which
originated from the packing mechanism, while it does n
rise the van der Waals instability for the systems with t
attractive part of potentials such as the Lennard-Jones fl
For the two particle system with the soft repulsion in a ha
rectangular box, it may occur two different van der Waa
instabilities, which are originated from the intermolecul
potential between particles and the geometrical propertie

As a model fluid for the two particle system, we ha
used a simple potentialf(r ) described by

f~r !5`, r ,s5e1 , s,r ,s1s15e2 ,
©2004 The American Physical Society11-1
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s1s1,r ,s1s11s250, r .s1s11s2 . ~1!

Here, the model potential in Eq.~1! is reduced to the square
well system fore1,0 ande250. Fore1.0 ande250, this
model becomes the hard-sphere system with the soft re
sion ~the HSR model! which was previously employed t
investigate the isostructural solid-solid transition@17,18#. For
e1.0 and e2,0, it becomes the hard-sphere system w
both the soft repulsion and the soft attraction~the HSRA
model! @15#. For e1,0 ande2.0, it becomes the square
well system with the soft repulsion~the HSAR model! which
was used to study the influence of short-ranged attract
repulsive interactions on the phase behavior of colloidal s
pensions@19#. It is known that for the bulk system the add
tions of the repulsive/attractive interactions beyond the h
core may profoundly influence the phase behavior of s
tems.

We have carried out molecular dynamics~MD! simula-
tions in a manner similar to that originally proposed by Ald
and Wainwright for hard-core systems@20#. The width and
the height of a hard rectangular box have been taken asa and
b, respectively. The hard-wall collisions with the boundar
of the box were treated by the rule of elastic specular s
tering, in which the tangential component of velocities to t
collision plane was preserved but the normal componen
velocities was changed. Postcollisional velocities for coll
ing particles were also assigned according to specular c
sion dynamics. Each simulation run was, at a given con
tion, conducted for a total of 203106 collisional events. Our
MD results were all scaled to reduced dimensionless qua
ties, using the unit hard-disk diameters, the particle massm,
and the unit thermal energykBT. In this system of units, the
translational kinetic energy of the particles in total is sca
to 2, which should be conserved during the MD simulatio
regardless of the system input parameters for the box si

It would be interesting to note that quite different effec
could emerge in finite systems, which are not observed in
infinite bulk behavior. In the Monte Carlo simulation studi
of finite hard spheres confined within a spherical cavity@21#,
it was reported that the statistical mechanical ensembles w
no longer equivalent between the canonical and the gr
canonical ensemble simulations. For instance, in certain s
ations, the significant differences were found in the pore d
sity profiles mainly due to packing constraints. Our MD r
sults are closely related to the canonical ensem
simulations.

The wall pressure diagrams (a vs Pa anda vs Pb) for two
square-well spheres withb52.1s (e1,0 and e250) are
presented in Fig. 1. The pressures at the wall,Pa andPb , are
defined as the time average of the impulse momen
changes by the bouncing of particles on the walls per u
length per unit time. Near the critical width~'2s! of a rect-
angular box, where two particles cannot exchange their
sition, the wall pressurePa shows the negative compressib
ity of the van der Waals type imitating the liquid-sol
transition in the bulk hard-sphere systems. However, the w
pressurePb continuously decreases with increasing the w
width a @8,9#. This suggests that under the closely pack
situation the van der Waals instability may result from t
02611
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structural changes during the packing mechanism. The m
difference between two hard-spheres and two square-
spheres is that the negative compressibility of the van
Waals type occurs at the higher pressure with increasing
soft attraction, comparing with the two hard-sphere syste
However, the position of the van der Waals instability do
not change and appears near the critical width,a'2.05s.
This means that~i! the addition of the soft attraction to har
spheres enhances the wall pressure, and~ii ! near the critical
width, the van der Waals instability results from the ge
metrical properties of the rectangular box, not depending
the soft attraction for the hard spheres. This conclusion s
ports why the van der Waals instability does not exist for t
hard-spheres and square-well spheres confined in the sp
cal hard-wall pore due to the radially symmetric propert
@16#.

The wall pressure for two hard-spheres with the soft
pulsion~the HSR model! with s150.5s is shown in Fig. 2.
Our simulation results display the two types of van der Wa
instabilities; the first van der Waals instability occurs ne
a'2.05s when two hard spheres approach each other,
the second van der Waals instability neara'2.55s. As we
increase the soft repulsion, the wall pressurePa decreases,
while the wall pressurePb increases. For two square-we
spheres, however, bothPa and Pb increase with increasing
the soft attraction. One interesting observation is that
position of the second van der Waals instability appea
neara'2.55s, not depending on the height of the soft r
pulsion, even though the second van der Waals instab
occurs for highly repulsive systems.

The density profilesr(x,y) and the radial distribution
functions~RDF’s! for the HSR model withe150.9 are pre-
sented in Fig. 3. The contact density distributionr(x,y50)
at the lower and upper walls also shows the two peaks n
a'2.05s anda'2.55s, while the contact density distribu
tion r(x50,y) at the side walls continuously decreases w
increasing the wall widtha. Under those conditions the wa
pressure itself satisfies the contact value theorem whic

FIG. 1. The wall pressure for two square-well spheres (s1

50.5s ande250) with b52.1s; ~a! Pa and ~b! Pb .
1-2
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STATISTICAL PROPERTIES OF TWO PARTICLE . . . PHYSICAL REVIEW E 69, 026111 ~2004!
related to the density distribution on the wall@2,22#. Two
types of van der Waals instabilities can be understood as
arrangement of two hard spheres with the soft repulsion
rectangular box. When the width of a box at the fixed s
wall (b52.1s) is larger than the particle size, two particle
tend to arrange along the horizontal line of a rectangular b
In this case, the impulse momentum change at the side w
is greater than that of the upper or lower walls. When
size of the side wallsa is reduced, two particles tend to fac
each other on a diagonal line of the rectangular box, and
wall pressure is strongly affected by the soft repulsion int
action (e1.0). Finally, when the side wall is further re
duced, two particles tend to face each other on a vertical
of a rectangular box and the hard sphere interaction stro
influences on the wall pressure. Such structural proper
were confirmed from the radial distribution functions, d
fined as the two-particle probability as a function of the re
tive distancer. The RDF’s obtained from our simulations a
illustrated in Fig. 3~c!, and the profound structural chang
are displayed nearr /s50.5 due to the repulsive potential i
the HSR model. This implies that the second van der Wa
instability appears at the position where two particles tend
face each other on the diagonal line of a rectangular b
depending on the soft repulsion of model potentials.

Figure 4 illustrates the wall pressurePa (e150.9 andb
52.1s) for the HSR model with the different repulsiv
shoulder. Once again, the position of the first van der Wa
instability exactly coincides with that of two hard sphere
However, the position of the second van der Waals instab
appears over the largea value with increasing the width o
the soft repulsion, even though the wall pressure decre
with increasing the soft repulsion, i.e., with increasing t
width of the repulsive shoulder. Comparison with Figs. 2 a
3 indicates that the position of the second van der Wa
instability only depends on the widths1 of the repulsive
shoulder~or the range of the soft repulsion!, but not the
height of the soft repulsione1. Here, one question is how t

FIG. 2. The wall pressure for two hard spheres with the s
repulsion~the HSR model! (s150.5s and e250) with b52.1s;
~a! Pa and ~b! Pb .
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interpret the second van der Waals instability. It is know
that for the bulk model systems with the purely repulsi
interactions the liquid-gas transition does not exist. In su
systems, there is no distinction between the gas and the
uid phases and the liquid-gas transition results mainly fr
the attractive force between two particles.

ft

FIG. 3. The contact density profiler at the wall, and the radia
distribution function,RDF, for the HSR model (s150.5s ande2

50) with b52.1s; ~a! r(x,y50)s2 ~from left to right, a51.9s,
a52.05s, a52.2s, a52.4s, a52.5s, a52.55s, a52.6s, and
a52.8s), ~b! r(x50,y)s2 @the conditions fora are the same as in
~a! but from top to bottom at the wall#, and~c! RDF @the conditions
for a are the same as in~a! but from left to right#.

FIG. 4. The wall pressurePa for the HSR model (e150.9 and
e250) with b52.1s.
1-3
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To understand the detailed dynamic properties of the
der Waals instabilities, the autocorrelation functions for
position of each particle were illustrated in Fig. 5. The po
tion autocorrelation functionC(t) is defined as

C~ t !5
^x~0!x~ t !&

^x~0!x~0!&
, ~2!

wherex(t) is the position of particle at a given timet . In the
solid state, the position autocorrelation function has a n
zero finite value fort→`. In this case, two particles in
rectangular box cannot exchange their positions each o
In the liquid state, the faster relaxation is expected to
processed which is not observed in the case of the solid s
As can be seen in Fig. 5, the relaxation process beco
slower when the width of the boxa approaches closer to th
first van der Waals instability (a'2.05s). For the wide wall
(b52.5s), the position autocorrelation function converg
very rapidly as the width of the box increases. An interest
observation can be found in the case of the narrow wallb
52.1s). In this condition and near the first van der Waa
instability, the position autocorrelation function converg
very rapidly such as purely hard sphere systems@8#. How-
ever, near the second van der Waals instability, the time
which the autocorrelation approaches to zero becomes lo
than the first van der Waals instability. These curves a
show the fast and the slow relaxations for a little above a
below the second van der Waals instability (a'2.55s).
These relaxations are similar to thea- and b- relaxation of
the density fluctuation in a supercooled liquid@8,23#. The
fast and the slow relations are separated by the appearan
plateau. The liquid state above the second van der W
instability (a.2.55s) is different from that below the sec
ond van der Waals instability (2.05s,a,2.55s) as de-
tected in the HDL and the LDL. From this observation, w
may suggest that~i! our two particles system may imitate th

FIG. 5. The position autocorrelation functionC(t) for the HSR
model (e150.9, s150.5s, and e250); ~a! b52.1s and ~b! b
52.5s.
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bulk liquid-liquid phase transition in the system consisting
many particles and~ii ! the addition of the soft repulsion to
the hard core can give rise to the van der Waals instabili

For the HSRA model with the soft repulsion (e1.0) and
the soft attraction (e2,0), the pressurePa and the position
autocorrelation functionC(t) obtained from our simulations
are illustrated in Figs. 6 and 7, respectively. Figure 6 in
cates that the addition of the soft attraction enhances
second van der Waals instability. However, the positions
the van der Waals instabilities exactly coincide with that
the HSR model as shown in Figs. 3 and 4. Even though
did not display the density distributionr(x,y)s2 in these
figures, the sharp and narrow density distributions near
van der Waals instabilities are observed as in the HSR mo
The density enhancement near the van der Waals instab
can be understood by considering the role of the soft att
tion. This result confirms that the position of the second v
der Waals instability only depends on the width of the rep
sive shoulder, but not the soft attraction. We can conclu

FIG. 6. ~a! The wall pressurePa for the HSRA model (e1

50.9, s150.5s, ands150.5s) with b52.1s. ~b! The wall pres-
sure Pa for the HSRA model (e2520.9, s150.5s, and s1

50.5s) with b52.1s.

FIG. 7. The position autocorrelation functionC(t) for the
HSRA model (e150.9, e2520.9, s150.5s, ands250.5s) with
b52.1s.
1-4
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that the addition of the soft attraction to the HSR mod
enhances the van der Waals instability which is somew
similar to the liquid-liquid phase transition in the bulk sy
tem. We can also check the contribution of the soft repuls
from the position autocorrelation function~Fig. 7!. Near the
second van der Waals instability, the HSRA model leads
the slower relaxation compared with the HSR model, wh
near the first van der Waals instability the faster relaxatio
detected. The soft attraction in the HSRA model results
the slower relaxation. This can be understood by conside
the effect of the soft attraction in the packing mechanis
This enhancement is similar with the solid-solid enhan
ment of the bulk system@18#. The addition of the soft repul
sion to the square well gives rise to the liquid-liquid tran
tion. It is noted that the combination of narrow attracti
square well with the repulsive square-shoulder poten
would enhance the stability of isostructural solid-solid tra
sition over the system of the square-well potential alone@19#.

Furthermore, in order to understand the role of the s
attraction for the van der Waals instability, we have cons
ered two square-well spheres with the soft repulsion~the
HSAR model!. The wall pressure and the position autoc
relation function were displayed in Fig. 8. For two squa
well spheres~the HSAR model withe250), the second van
der Waals instability does not exist. In this case, it is e

@1# R. Evans, inFundamentals of Inhomogeneous Fluids, edited
by D. Henderson~Marcel Dekker, New York, 1992!; H. Lö-
wen, Phys. Rep.237, 249 ~1994!.

@2# H.T. Davis, Statistical Mechanics of Phases, Interfaces, a

FIG. 8. ~a! The wall pressurePa for the HSAR model (e15
20.05, e250.96, ands250.5s) with b52.1s. ~b! The position
autocorrelation functionC(t) (e1520.05, e250.96, s150.02s,
ands250.5s) with b52.1s.
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pected that for the weak repulsion the soft attraction ov
comes the soft repulsion and the second van deer Waal
stability eventually disappears. As we increases the width
the repulsive shoulder~or the soft attraction!, the position of
the second van der Waals instability moves to highera val-
ues. The wall pressure near the first van der Waals instab
increases, but decreases near the second ven der Waals
bility. Comparison with Fig. 7 indicates that the position
the second van der Waals instability strongly depends on
position of the soft repulsion as well as the width of the s
repulsion. This result again confirms that the second van
Waals instability is directly related to the soft repulsion
model potentials, while the addition of the soft repulsion
the square-well system enhances the second van der W
instability. The general trend for the position autocorrelati
function for the HSAR model as shown in Fig. 8~b! is very
similar with that of the HSR model~Fig. 7! except for the
faster relaxation near the second van der Waals instab
From these figures we observe the following.~i! In the sol-
idlike state, the position autocorrelation functions have a
nite positive value because two particles cannot excha
their positions, ~ii ! the position autocorrelation function
drop off rapidly in the fluidlike state where particle position
are available over all configurational space, and~iii ! in the
intermediate range between the solid and fluid states,
position autocorrelation functions exhibit a plateau due
relaxation processes resulting from the collisions betw
two particles. These time-dependent functions also exp
that the soft attraction in the HSAR model reduces the s
ond van der Waals instability. The overall picture shows t
the van der Waals instabilities are strongly affected by
position of soft attraction of model potentials.

In summary, we have considered many different poten
models to study the van der Waals instability arising from
packing mechanism. The van der Waals instabilities are
fected not only by the soft repulsion but also by the posit
of the soft attraction in model potentials. For two ha
spheres in the spherical pore@24#, the van der Waals insta
bility related to the solid-liquid transition in the bulk syste
does not occur mainly due to the geometrical properties o
spherical symmetry. However, the present result sugg
that two hard ellipsoids in the hard spherical pore may g
rise to the two types of van der Waals instabilities as o
served in the system of two hard spheres with the soft re
sion @25#. It is expected that the van der Waals instability
the confined systems can also be affected by the wall po
tial, e.g., nitrogen in zeolite systems@26#. It would be inter-
esting to study the statistical properties of two hard ellipso
in the two-dimensional rectangular box or the spherical p
and we will discuss these problems in the near future.

This work was in part supported by Korea Resea
Foundation Grant~Grant No. KRF-2003-015-C00230! and
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