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Growing networks with geographical attachment preference: Emergence of small worlds
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We introduce a simple mechanism for the evolution of small world networks. Our model is a growing
network in which all connections are made locally to geographically nearby sites. Although connections are
made purely locally, network growth leads to stretching of old connections and to high clustering. Our results
suggest that the abundance of small world networks in geographically constrained systems is a natural conse-
guence of system growth and local interactions.
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I. INTRODUCTION nodes, wherenis even and nearest here refers to the distance
along the circumference of the circle. In this way a regular
Recently there has been considerable interest in the clasetwork with a large average clustering is created. Next, a
sification of physical systems according to the topologicalproportion p of the links are chosen at random and “re-
properties of the networks to which they m@pg.,[1-10),  wired” such that one end of the link is kept fixed and the
where the constituent parts are modeled as nodes and linksher end is linked to a randomly chosen node. These ran-
between nodes denote some type of interactionreviews  dom links can serve as short cuts across the circle, drastically
see[11-14)). This method of classification has the potential decreasing the characteristic path length of the network. It
to shed light on underlying organizational principles. In thiswas found 1] that, for a relatively small rewiring probability
spirit, we focus on the “small world” network topology in- p, the characteristic path length of the network becomes

troduced by Watts and Strogdi]. _ comparable to that of an ER random network, while the net-
Here we represent a network as an undirected graph: work still maintains a high average clustering.
collection of N points (node$ with connectiong(links) be- The network construction of the Watts and Strogatz model

tween some pairs of them. If two nodes are connected, weery nicely illustrates the small world property and, further-
say that they ar@eighbors We call the number of connec- more, it is probably a reasonable model for how some net-
tions to node the degreeof nodei and we denote ik; . works are formed. However, the small world property is, of
Small world networks are characterized by two maincourse, much more general than their particular example, and
properties. First, their characteristic path lengtiyrows as it is useful to study other mechanisms for forming small
InN or slower, similar to an ErdeRenyi (ER) random net-  world networks. In particular, we will be interested in net-
work. The characteristic path length is the smallest numbeworks that grow in time from small size to large size by the
of links connecting a pair of nodes, averaged over all pairs o§uccessive addition of new nodésee[5,11-14 for other
nodes. Second, the network has a high average clusteringodels of growing networks
compared to an ER random network of equal size and aver- Many networks have their topology influenced by geo-
age node degree. The clusteri@g of nodei is defined by graphical constraints. The nodes are separated by some
Ci=q; /[ (1/12)k;(ki—1)], whereq; is the total number of physical distance and thus their ability to know the complete
links between thek; neighbors of nodd, and (1/2k;(k; state of all the network nodes at a given time is restricted.
—1) is the maximum number of links that could exist be- Consequently, in our model we restrict the formation of links
tweenk; nodes. Networks exhibiting small world character- between nodes to result from geographically local processes.
istics are found in many and varied fields of research. Somé&hat is, when a new node appears, it forms links only to
examples of such networks are the neuronal network of théhose preexisting nodes that are geographically close to it. In
worm C. elegansthe electric power grid of southern Cali- spite of the link formation being exclusively local, long-
fornia, and the friendship network of Madison Junior Highrange links will be shown to arise as a result of network
School studentf2]. growth. This in addition to the clustering induced by local
The Watts and Strogatz model is the following prescrip-connections yields the small world property.

tion for creating a small world network. The initial state has We say that a growing network model has the small world
a fixed number of nodes equally spaced on the circumferengaroperty if it satisfies the following three criteria as the num-
of a circle. Each node is linked to its nearest neighbor ber of nodesN—«: (a) small average node degreg)

=0(1); (b) small characteristic path length,~InN; and

(c) high average clusteringC)=0(1) (i.e., (C) does not
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FIG. 2. The open circles represent the degree distriblRigh)
FIG. 1. Our growing network model, illustrated for=2. We for a network grown according to our model wikh=1x 10° and

begin withm+ 1 completely connected nodes on the circumferencdN® solid line is the analytically calculated ensemble averaged de-
of a circle(top left). At each subsequent time step @ add a new ~ 9ree distributio{Eq. (2)], both withm=2.
node in a randomly chosen internode interval along the circle cir- . . ) .
cumference, with every interval having equal probability of beingWith degreek when the system sizer time) is N. Since all
chosen, andb) connect the new node to ita nearest neighbors, New nodes are initially created witk=m, and links can
with nearest here referring to distance along the circle circumferonly be added to nodeé;‘,(k,N):O fork<m. Attime N, a
ence. Stepsa) and(b) are repeated until the desired system size isnode with degree&k=m is added to the network, and if it
reached. links to a previously existing nodi thenk;—k;+1. Each
L _ preexisting node is equally likely to be connected to the new
Part(a) of the definition is included to ensure that highly node, and therefore the probability that a given preexisting
connected networks that trivially satisfy critefie) and (C)  pode has its degree increased by IniN.
are not considered to be small world netwotksy., if every We now take the average over all realizations of the pos-
node is connected to every other node then(C)=1 but  gjple random placements of the new node. This yields the

(k)=N-1). following evolution equation for the average@f which we

denoteG,
Il. GROWING NETWORK MODEL

Our model, as mentioned above, is a growing network. Gk, N+1)=(1—T)G(k,N)+ TG(k—l, N) + S
We begin with an initial state ofn+1 all-to-all connected N N
nodes on the circumference of a cir¢lg. 1). (We takemto Y

be even. We note that this initial state is chosen solely for . . .
convenience and it has no effect on the lona-time networ where &y, is the Kronecker delta function. The first term on
g l%he right-hand side is the expected number of nodes with

properties. At each subsequent discrete time step we gro‘é’egreek at time N whose degree remain the same at time
the network according to the following prescriptiof®) a N-+1. The second term is the expected number of nodes

new node is placed in a randomly chosen internode interval . ) .
along the circle circumference, where all intervals have th .'th degreek—1 at timeN whose degree increase koat

same probability of being chosefi) the new node makes (;me N+1. The third term represents the new node with
links to itsm (previously existingynearest neighbors. Nearest egreem

here refers to the distance measured in number of intervals "/ IetH(_k,N)=_G(k,N)/N be the_ frz_icnqn of nodes with
along the circumference of the circle. egreek at timeN, i.e., the degree distribution. In the appen-

These steps are repeated sequentially, creating a netwofl: We show that for largél, H(k,N) approaches an asymp-
with a temporally growing number of nod#s We note that, totically N invariant formH(k), given by
since the network siz&l is incremented by one with each

k—m
discrete time step\ can be used interchangeably as a system H(k) = —— _m )
size or a time variable. m+1\m+1
Ill. DEGREE DISTRIBUTION for k=m andH (k) =0 for k<m.

o In Fig. 2, the data points represent the degree distribution
We now calculate the dggree distribution for our networkp (k) for a single network realization randomly grown by our
whenN is large. We definé&(k,N) as the number of nodes algorithm (illustrated in Fig. 1 for m=2 at N=10°. The
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FIG. 3. Average clusteringC) vs system sizeN for simu_lated FIG. 4. Semilogarithmic graph of the characteristic path length
networks withm=2. As N grows, the average clustering ap- | ys the system sizdl. The data shows the small world slow path
proaches the valugdashed ling predicted in Eq(4). length growth characteristit,~ In N. The straight line is a fit to the
data.

solid line isH(k) from Eq.(2), also withm=2. We observe
good agreement between the analytical calculation for th@pproach of(C) to a constant asymptotic value &bin-

ensemble average over realizations and the simulation of &easegthe asymptotigC) grows withm; e.g., form=4
single realization, with both showing an exponentially de'gc>20.653). ’ ’ '

caying degree distribution. This agreement illustrates that The network maintains a high average clustering\as

‘self-averaging” applies for large\. —o and, therefore, the second criterion for a small world
In addition, we can calculate the average node degree Qfonyork is met. This high clustering is expected due to the

time N, (k), asN—=: local nature of the links made. A new link is inserted in a
o region that already has high interconnectivity, assuring that
K e = KH(K)=2m. 3 the nodes with which the new connections are made have a
{Kim kzm (k) ® high probability of having connecting links to each other.

This can be seen also by observing that each tiinam-
creases by Inmnew links are formed, and since each link has
two ends, the sum of the degrees of all nodes increases by
2m at each time step. Thus, our first criterion for a small
world network(that (k) remains bounded d$— ) is met.

V. CHARACTERISTIC PATH LENGTH

The open circles in Fig. 4 sholy, the shortest path length
between pairs of nodes averaged over all node pairs of single
growing network realizations, on a linear scale vefsdum a
logarithmic scale. The data shows a linear trend, demonstrat-
ing the desired slow growth of geodesic path lengths with
) system size; i.e.l.~InN. Thus, the third, and final, small
For the particular case oh=2 we can calculate the av- \yorld network criterion is also satisfied.
erage cIusteri_ng of the network e>_<act|y. For this valuempf To see whyL grows more slowly thal, consider the fact
a new node joins the network witk=2 andgq=1. Each that, although the links made by incoming nodes are always
subsequent addition of a link to that node increments koth |ocal, the network itself is growing. The older nodes that had
andq by one. Thusg=k—1 for all nodes. Since, by defini- once been nearest neighbors along the citated therefore
tion, C;=2q;/ki(ki—1), the average clustering over all |inked) are pushed apart as newer nodes are inserted into the
nodes in them=2 case is given by interval between them. Figure 5 illustrates this for the case of
m=2. The network begins as three nodes linked to each
other. By the time the network reachids- 100, we see that
the original nodes are not adjacent but, rather, have a large
number of newer nodes between them. Thus, growth leads to
The open circles in Fig. 3 are the node averaged clustetong links between old nodes, and these long links are the
ing for single network realizations randomly grown by our shortcuts responsible for a short characteristic path length.
algorithm(illustrated in Fig. 1 versus the network sizg for To see whyL ~In N, imagine a network of sizBl>1 and
m=2. As N grows, these data are observed to approach theharacteristic path length Now if we grow the network by
ensemble averaged lar@eéresult given by Eq(4) (dashed addingN new nodes, these nodes will be roughly uniformly
line). In networks with larger values ah we also observe distributed along the circle circumference. This means that,

IV. CLUSTERING

<c>=2<%> :zkzz % H(k)= ;In 3-1~0.648. (4)
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A

_ 1
H(k)= ——

m+1 (A3)

for k=m and ﬁ(k)=0 for k<m.

Now we show that adl—, H(k,N) approacheg(k).
Dividing (A1) by N+1 and subtracting from this the same
equation but witrﬁ(k) inserted, we obtain after some alge-
bra

— N—m
H(k, N+1)—H(k)= NT1

— m
[H(kN)=H (k) ]+ G [H(k
FIG. 5. An illustration of network growth in our model fan

=2. The network starts offleft) with three adjacent nodes, labeled —1,N)— ﬁ(k— 1)]. (A4)
by A, B, andC, connected to each other via links. When the network

reaches a network size of 100 nodeight), the original three la- Lettlng F(k,N):( N l)[H(k,N)_ﬁ(k)], we find that(A4)
beled nodes are no longer adjacent, but have been “pushed apar i equivalent to m+

by the new nodes that were inserted between them. The links con-

nectingA, B, andC serve as shortcutsimilar to the shortcuts in the

Watts-Strogatz moddl1]), resulting in a small characteristic path F(k,N+1)=F(k,N)+ F(k—1, N). (A5)
length for the network. N—m
on average, a new node would be a distanc®¢f) from  Our goal is to show tha (k,N)/(y; 1) —0 asN—e.
one of the firstN nodes. Thus, adl—2N [i.e., INN—InN Consider first the casé=m. Since F(m—1,N)=0,
+0(1)], we expectL to increase td.+O(1), resulting in  (A5) implies thatF(m,N) = C for some constar indepen-
L~InN. dent of N. Thus, in particular,

VI. CONCLUSION H(m,N)—ﬁ(m)z N , (AB)

We presented a small world network model that has only <m+1

geographically local interactions. This model provides a
physically realistic mechamsm by which growing physical andH(m,N)—>ﬁ(m) asN— . Then wherk=m-+ 1, (A5)
systems that have geographical constraints, and therefo[)eecomes

limited global information available to each individual node,

can form networks with small world characteristics. Addi-

tionally, our results suggest that small world networks in F(m+1N+1)=F(m+1N)+ m C (A7)
geographically constrained physical systems may be a natu- N—m
ral consequence of system growth and local interactions.
and hence
APPENDIX: CALCULATING ﬁ(K) N-1
We substituteH (k,N)=G(k,N)/N, the fraction of nodes F(m+1, N)=F(m+1,m+1)+ CN, :EmH N —m ~InN

with degreek at timeN, into Eq. (1), obtaining, (A8)

(N+1)H(k,N+1)=(N—m)H(k,N) for large N.

Furthermore, it is possible to show by induction lothat
+mH(k—1, N)+ 6. (Al
= . : [F(k,N)|<C(k)(mInN)*~™ (A9)
We defineH (k) to be theN independent solution to Eq.
(A1). Substituting into Eq(Al) and rearranging terms we for someC(k) independent oN. In other words,
get

— (mIinNyk-—m
0 m — Skm [HIGN) —H(K)[<C(k) ————  (A10)
HUO= g D+ (A2 (m+1)
This recursion relation is solved to yield which approaches 0 d$— .
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