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Analysis of clusters formed by the moving average of a long-range correlated time series
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We analyze the stochastic functionCn( i )[y( i )2 ỹn( i ), wherey( i ) is a long-range correlated time series of
lengthNmax and ỹn( i )[(1/n)(k50

n21y( i 2k) is the moving average with windown. We argue thatCn( i ) gen-
erates a stationary sequence of self-affine clustersC with length,, lifetime t, and areas. The lengthand the
area are related to thelifetime by the relationships,;tc, ands;tcs, wherec,51 andcs511H. We also
find that,, t, ands are power law distributed with exponents depending onH: P(,);,2a, P(t);t2b, and
P(s);s2g, with a5b522H and g52/(11H). These predictions are tested by extensive simulations on
series generated by the midpoint displacement algorithm of assigned Hurst exponentH ~ranging from 0.05 to
0.95! of length up toNmax5221 andn up to 213.
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Long-range correlated time series, such as fractio
Brownian motion, have been widely used for the theoreti
description of diverse phenomena. The variance at largt
scales as a power law:

s2;t2H. ~1!

Here H, the Hurst exponent, ranges from 0 to 1, withH
50.5 corresponding to ordinary uncorrelated Brownian m
tion. H is related to the fractal dimensionD by D522H .
The Hurst exponent has been successfully exploited for p
tical purposes in fields as different as biophysics, econoph
ics, and climate physics@1–9#. For example, heartbeat inte
vals of healthy and sick hearts can be distinguished on
basis of the value ofH @3–5,9#. The stock price volatility
shows a degree of persistence (0.7,H,0.8) larger than that
of the price series (H;0.5) @6#. The validation of climate
models is based on the analysis of a long-term correlatio
atmospheric series@7#.

A number of approaches are currently used to obtain
curate estimates ofH. Such procedures generally cons
of calculating appropriate statistical functions from the en
signal. Each procedure produces a slightly different estim
so in order to obtain the most reliable estimates ofH it
is useful to apply as many approaches as possible, prefer
combining techniques working in the spectral and time
mains @10#. Here we propose an approach motivated
detrended moving average analysis, which was recently
veloped @11,12# as an alternative to the detrended fluctu
tion analysis technique@14#. One begins by defining the
function

sMA[A 1

Nmax2n (
i 5n

Nmax

Cn~ i !2, ~2!

whereNmax is the length of the series,

Cn~ i ![y~ i !2 ỹn~ i !, ~3!

and
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k50

n21

y~ i 2k! ~4!

is the moving average of window sizen, i.e., the average o
the signal overn points. It is a linear operator, whose outp
are the low-frequency components of the signal, which
selected on the basis of the window amplituden @13#. The
function sMA shows a power-law dependence onn, i.e.,
sMA;nH @11,12#.

We explore the properties of the functionCn( i ) which
generates, for eachỹn( i ), a sequence ofclustersC, each
corresponding to the region delimited by two consecut
intersections betweeny( i ) and ỹn( i ) ~see Fig. 1!. Three
quantities can be defined:

FIG. 1. Stochastic seriesy( i ) of length Nmax5219 obtained by
the random midpoint displacement algorithm withH50.8. Also
shown is the moving averageỹn( i ), with box dimensionn530.
The time interval between two subsequent crossing pointsy( i ) and
ỹn( i ) define the length, j , the durationt j , and the areasj of the
cluster according to Eqs.~5!, ~6!, and~7!.
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FIG. 2. ~a! Log-log plot of the cluster length, vs the cluster lifetimet for series having differentH, H50.2, 0.3, 0.4, 0.5, and 0.8.~b!
Log-log plot of the cluster areas vs the cluster lifetimet for H varying betweenH50.1 and 0.9 in steps of size 0.1.
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~1! cluster length, j ,

, j[ (
i 5 i c( j )

i c( j 11)

y~ i !, ~5!

~2! cluster lifetimet j ,

t j[ i c~ j 11!2 i c~ j !, ~6!

and ~3! cluster area sj ,

sj[ (
i 5 i c( j )

i c( j 11)

uy~ i !2 ỹn~ i !uD i , ~7!

where the indexj refers to each cluster,i c( j ) and i c( j 11)
are the values of the indexi corresponding to two subseque
intersections betweenỹn( i ) and y( i ) andD i is the time in-
terval corresponding to an elementary fluctuation in the ti
series. Finally, let, ands indicate the value of the length an
of the area obtained by averaging, j andsj over the subset o
02610
e

clustersC having the same value of lifetimet. Figures 2~a!
and 2~b! show log-log plots of the cluster length, and the
cluster areas plotted against the cluster lifetimet for long-
range correlated time series constructed with the rand
midpoint displacement technique and with different values
H. The log-log plots are consistent with linearity over mo
than two decades, i.e., with the power law relationships

,;tc, ~c,51!, ~8!

and @15#

s;tcs ~cs511H !. ~9!

The values ofc, and cs are plotted as functions ofH re-
spectively in Figs. 3~a! and 3~b!, and compared with the
theoretical predictions@15#.

Next we calculate the probability density function~PDF!
of the cluster lifetimet @see Fig. 4~a!# of the cluster length,
FIG. 3. Plot of the exponents~a! c, vs H @Eq. ~8!# and~b! cs vs H @Eq. ~9!# for series having differentH @from H50.05 to 0.95 in steps
of size 0.05~circles!#. The relationshipsc l51 andcs511H are shown~dashed lines!.
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FIG. 4. ~a! The PDFP(t) of the cluster lifetimet for a time series withH50.3; the results are consistent with a power-law depende
P(t);t2b. The curves, from left to right, are obtained for window sizesn5200, 600, and 1000. The onset of the finite-size effect is visi
when t is approximately equal to the moving average windown. ~b! The PDFP(s) of cluster areas for n51000, consistent with a
power-law dependenceP(s);s2g, and three different values ofH, H50.3, 0.5, and 0.8.
-

f

and of the cluster areas@see Fig. 4~b!#. The results are con
sistent with a power-law behavior:

P~t!;t2b. ~10!

P(t) is the first return probability distribution@16–18# of the
crossing points betweenỹn( i ) andy( i ), with exponentb:

b522H. ~11!

Equations~8! and ~9! allow us to relate the probability
density functionsP(,) andP(s) to P(t):

P~, !5P~t~, !!
dt

d,
;,2a, ~12!

P~s!5P~t~s!!
dt

ds
;s2g. ~13!
02610
By using Eqs.~8! and~12!, the exponenta can be written in
terms of the exponentb as

a5b522H. ~14!

Analogously, using Eqs.~9! and~13!, g can be expressed in
terms ofb andcs as

g5
b112cs

cs
5

2

11H
. ~15!

To test the predictions of Eqs.~14! and ~15!, we have
calculated the exponentsa, b, and g for a wide range of
parameters:Nmax ranges from 214 to 221 while n ranges from
23 up to 213. The exponentsb andg are plotted againstH in
Figs. 5~a! and 5~b!, and compared with thepredictions o
Eqs.~14! and ~15!.
FIG. 5. ~a! The exponentb vs H @Eq. ~10!# for series having differentH (H50.05–0.95 with step size 0.05!. The relationshipb52
2H is also shown~dashed line!. ~b! Plot of the exponentg vs H @Eq. ~15!# for series having differentH (H50.05–0.95 with step 0.05!. The
relationshipg52/(11H) is also shown~dashed line!.
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In summary, the statistical properties of the sequence
stationary self-affine clustersC generated by the intersection
of the time seriesy( i ) with the moving averageỹn( i ) have
been analyzed. For model series of length up toNmax51021

we calculate the areas;tcs and the PDFsP(,);,2a,
P(t);,2b, andP(s);s2g. Our results are consistent wit
power laws whose exponents agree with the predictionscs

511H, a5b522H, andg52/(11H) for a wide range
of H (0.05,H,0.95). It is noteworthy that the scalin
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02610
ofproperties of theC clusters are reminiscent of the sel
organized criticality~SOC! model, proposed by Bak, Tang
and Wiesenfeld@19#. This similarity can be derived from the
relation between the growth dynamics of theC clusters and
of the steady-state SOC clusters. An in-depth discussion
such issue is however beyond the scope of the present w
and will be developed elsewhere.

We thank L. A. N. Amaral, S. Havlin, and P. Ch. Ivano
for helpful discussions and NIH/National Center for R
search Resources~P41RR13622! for support.
er
ide

he

-P.

ing
ts
@1# D. Ben-Avraham and S. Havlin,Diffusion and Reactions in
Fractals and Disordered Systems~Cambridge University
Press, Cambridge, 2000!.

@2# M.S. Taqqu, V. Teverosky, and W. Willinger, Fractals3, 785
~1995!.

@3# P.Ch. Ivanov, L.A.N. Amaral, A.L. Goldberger, S. Havlin
M.G. Rosenblum, R. Zbigniew, and H.E. Stanley, Nature~Lon-
don! 410, 242 ~1999!.

@4# Z. Chen, P.Ch. Ivanov, K. Hu, and H.E. Stanley, Phys. Rev
65, 041107~2002!.

@5# K. Hu, P.Ch. Ivanov, Z. Chen, P. Carpena, and H.E. Stan
Phys. Rev. E64, 011114~2001!.

@6# Y. Liu, P. Gopikrishnan, P. Cizeau, M. Meyer, C.-K. Peng, a
H.E. Stanley, Phys. Rev. E60, 1390~1999!.

@7# The Science of Disasters: Climate Disruptions, Heart Atta
and Market Crashes, edited by A. Bunde, H. J. Schellnhube
and J. Kropp~Springer, Berlin, 2002!.

@8# N. Vandewalle and M. Ausloos, Phys. Rev. E58, 6832~1998!.
@9# Y. Ashkenazy, M. Lewkowicz, J. Levitan, S. Havlin, K. Sae

mark, H. Moelgaard, and P.E.B. Thomsen, Fractals7, 85
~1999!.

@10# G. Rangarajan and M. Ding, Phys. Rev. E61, 04991~2000!.
@11# E. Alessio, A. Carbone, G. Castelli, and V. Frappietro, E

Phys. J. B27, 197 ~2002!.
@12# A. Carbone and G. Castelli, Proc. SPIE5114, 406 ~2003!.
@13# The moving average filterdynamicallydetrends the series: a

the discrete indexi increases by unity, the box windown
switches its position by the same amount.

@14# C.K. Peng, S.V. Buldyrev, S. Havlin, M. Simons, H.E. Stanle
and A.L. Goldberger, Phys. Rev. E49, 1685 ~1994!; C.K.
Peng, S. Ha, H.E. Stanley, and A.L. Goldberger, Chaos5, 82
~1995!.

@15# Equation ~8! follows if the constitutive relation of the frac
tional Brownian motionDy( i );D i H is taken into account to
E

y,

s

.

,

calculate the length of they( i ) segments limited byi c( j ) and
i c( j 11). Equation~9! follows if the relationship
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