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Analysis of clusters formed by the moving average of a long-range correlated time series
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We analyze the stochastic functiﬁn,(i) y(i)=V,(i), wherey(i) is a long-range correlated time series of
length Nyax and (i) = (1) =R y(| —Kk) is the moving average with window. We argue thaC,(i) gen-
erates a stationary sequence of self-affine clustevith length¢, lifetime 7, and area. Thelengthand the
areaare related to théfetime by the relationshipg ~ 7¥¢ ands~ 7, wherey,=1 andys=1+H. We also
find that¢, 7, ands are power law distributed with exponents dependingioP(£)~¢~¢, P(7)~ 7 #, and
P(s)~s™ 7, with «a=B8=2—H and y=2/(1+H). These predictions are tested by extensive simulations on
series generated by the midpoint displacement algorithm of assigned Hurst explofranging from 0.05 to
0.95 of length up toN.,=2%* andn up to 2%3,
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Long-range correlated time series, such as fractional 1"
Brownian motion, have been widely used for the theoretical )= h 2 y(i—k) (4)
description of diverse phenomena. The variance at large k=0
scales as a power law:
~t2H (1) is the moving average of window sizei.e., the average of

the signal oven points. It is a linear operator, whose output

Here H, the Hurst exponent, ranges from 0 to 1, wkh  are the low-frequency components of the signal, which are
=0.5 corresponding to ordinary uncorrelated Brownian mo-Selected on the basis of the window amplitudgl3]. The
tion. H is related to the fractal dimensidd by D=2—H .  function | T shows a power-law dependence ani.e.,
The Hurst exponent has been successfully exploited for practma~n" [11,12.
tical purposes in fields as different as biophysics, econophys- We explore the properties of the functid®,(i) which
ics, and climate physids—9]. For example, heartbeat inter- generates, for eackiy(i), a sequence otlustersC, each
vals of healthy and sick hearts can be distinguished on theorresponding to the region delimited by two consecutive
basis of the value oH [3-5,9. The stock price volatility intersections betweeg(i) and V,(i) (see Fig. 1 Three
shows a degree of persistence @H<0.8) larger than that quantities can be defined:
of the price seriesH~0.5) [6]. The validation of climate
models is based on the analysis of a long-term correlation ofog . r . ' . ;
atmospheric serigs]. -

A number of approaches are currently used to obtain ac-
curate estimates oH. Such procedures generally consist
of calculating appropriate statistical functions from the entire
signal. Each procedure produces a slightly different estimate
so in order to obtain the most reliable estimatesHofit =
is useful to apply as many approaches as possible, preferabl
combining techniques working in the spectral and time do-
mains [10]. Here we propose an approach motivated by
detrended moving average analysis, which was recently de
veloped[11,17 as an alternative to the detrended fluctua-
tion analysis techniqué¢l4]. One begins by defining the
function
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FIG. 1. Stochastic serieg(i) of length N,,.,=2° obtained by

whereN,.x is the length of the series, the random midpoint displacement algorithm with=0.8. Also
shown is the moving averadg,(i), with box dimensionn=30.
Ch(ih)=y(i)=V,(i), 3 The time interval between two subsequent crossing pgifijsand
Vn(i) define the lengti;, the durationr;, and the area; of the
and cluster according to Eq$5), (6), and(7).
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FIG. 2. (a) Log-log plot of the cluster length vs the cluster lifetimer for series having differeritt, H=0.2, 0.3, 0.4, 0.5, and 0.8)
Log-log plot of the cluster areavs the cluster lifetimer for H varying betweerH=0.1 and 0.9 in steps of size 0.1.

(1) cluster lengtht;,
=2 v,
(2) cluster lifetimer;,
=ig(j+1)—ig()),
and(3) cluster area $,

ic(i+1)

= Z(j) |y (i) = V(i) Al

=i

clustersC having the same value of lifetime Figures 2a)
and Zb) show log-log plots of the cluster lengthand the
cluster areas plotted against the cluster lifetimefor long-

(5 range correlated time series constructed with the random
midpoint displacement technique and with different values of
H. The log-log plots are consistent with linearity over more
than two decades, i.e., with the power law relationships
(6)
C~7 (=1), (8
and[15]
(7
s~7’s  (g=1+H). 9

where the index refers to each clusterg(j) andiy(j+1)

are the values of the indexcorresponding to two subsequent The values ofis, and ¢ are plotted as functions dfl re-
intersections betweep, (i) andy(i) andAi is the time in-  spectively in Figs. @& and 3b), and compared with the
terval corresponding to an elementary fluctuation in the timeheoretical prediction§15].

series. Finally, let andsindicate the value of the length and Next we calculate the probability density functiGRDF)
of the area obtained by averagifigands; over the subset of of the cluster lifetimer [see Fig. 4a)] of the cluster length
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FIG. 3. Plot of the exponents) ¢, vsH [Eq. (8)] and(b) ¢ vs H [Eq. (9)] for series having differerttl [from H=0.05 to 0.95 in steps

of size 0.05(circles]. The relationshipg/;=1 andys=1+H are shown(dashed lines
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FIG. 4. (a) The PDFP(7) of the cluster lifetimer for a time series withH =0.3; the results are consistent with a power-law dependence
P(7)~ 7 #. The curves, from left to right, are obtained for window sines200, 600, and 1000. The onset of the finite-size effect is visible
when 7 is approximately equal to the moving average window(b) The PDFP(s) of cluster areas for n=1000, consistent with a
power-law dependende(s)~s™?, and three different values &f, H=0.3, 0.5, and 0.8.

and of the cluster aredsee Fig. 4b)]. The results are con- By using Eqs(8) and(12), the exponentr can be written in
sistent with a power-law behavior: terms of the exponer® as

P(r)~ 1A, (10 a=B=2—H. (14)

P(7) is the first return probability distributiof16—18 of the

crossing points betwed(i) andy(i), with exponents: Analogously, using Eqg9) and(13), y can be expressed in

terms of 8 and 5 as
=2—H. 11
B 11 Bil-y, 2
Equations(8) and (9) allow us to relate the probability O T
density functiondP(€) and P(s) to P(7):

(15

d To test the predictions of Eq$14) and (15), we have

p(g):p(T(g))iwg—a, (12)  calculated the exponents, B, and y for a wide range of
d¢ parametersN ., ranges from 2*to 22! while n ranges from

23 up to 2'3. The exponent® andy are plotted againgt in

dr Figs. §a) and 3b), and compared with thepredictions of
P(s)=P(#(s)) = ~s 7. 13 gs. ’ P P
() (7(s)) ds (13 Egs.(14) and(15).
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FIG. 5. (a) The exponeniB vs H [Eq. (10)] for series having differenti (H=0.05-0.95 with step size 0.p5The relationshipd=2
—H is also showr{dashed ling (b) Plot of the exponeny vs H [Eq. (15)] for series having differertt (H=0.05-0.95 with step 0.05The
relationshipy=2/(1+H) is also showr(dashed ling
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In summary, the statistical properties of the sequence gproperties of theC clusters are reminiscent of the self-

stationary self-affine clustetsgenerated by the intersections
of the time seriey(i) with the moving averag§,(i) have
been analyzed. For model series of length upNtQ,=10°*
we calculate the area~7%s and the PDFsP({)~¢~ ¢,
P(7)~€ #, andP(s)~s~”. Our results are consistent with
power laws whose exponents agree with the predictians
=1+H, a=B=2-H, andy=2/(1+H) for a wide range
of H (0.05<H<0.95). It is noteworthy that the scaling

organized criticality(SOQ model, proposed by Bak, Tang,
and Wiesenfeld19]. This similarity can be derived from the
relation between the growth dynamics of telusters and

of the steady-state SOC clusters. An in-depth discussion of
such issue is however beyond the scope of the present work
and will be developed elsewhere.
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