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Interspike interval statistics of neurons driven by colored noise
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A perfect integrate-and-fire model driven by colored noise is studied by means of the interspike interval~ISI!
density and the serial correlation coefficient. Exact and approximate expressions for these functions are derived
for weak dichotomous or Gaussian noise, respectively. It is shown that correlations in the input result in
positive correlations in the ISI sequence and in a reduction of ISI variability. The results also indicate that for
weak noise, the noise distribution only shapes the ISI density but not the ISI correlations which are determined
by the noise’s correlation function.
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INTRODUCTION

One of the milestones in theoretical neurobiology was
introduction of the perfect integrate-and-fire~IF! neuron~or
random walk! model by Gerstein and Mandelbrot@1#. In this
model the voltage across the nerve membrane obeys a si
white-noise~WN! driven dynamics

v̇5m1h~ t ! ~1!

with m.0 being a constant input andh(t) white Gaussian
noise of intensityD, i.e., ^h(t)h(t8)&52Dd(t2t8). The
model is supplemented by the spike generator rule: when
the voltage reaches a certain thresholdvT a d spike is gen-
erated and the voltage is reset to zero.

In general, the output of a spike generator model l
above is characterized by the statistics of the sequenc
intervals between subsequent spikes, i.e., interspike inter
~ISIs!, $ . . . ,I j 21 ,I j ,I j 11 , . . . % or, equivalently, by the sta
tistics of thenth order intervals~sum ofn subsequent inter
vals! Tn5( j 51

n I j . Furthermore, correlations among interva
can be quantified by the serial correlation coefficient~SCC!

rk5
^I j 1kI j&2^I j 1k&^I j&

^I j
2&2^I j&

2
. ~2!

For Eq. ~1! with WN driving, the probability density of the
nth order interval can be exactly calculated@1,2#

gn
WN~Tn!5

nvT

A4pDTn
3

expF2
~Tn2nvT /m!2

4~D/m2!Tn
G . ~3!

The variance and mean of this density are given
^DTn

2&WN52DnvT /m3 and ^Tn&WN5nvT /m, respectively.
Furthermore, the SCC for the model with WN input is giv
by rk5dk,0 . Since the driving process is uncorrelated a
the reset erases any memory carried by the voltage varia
the model generates a renewal spike train@3# with statisti-
cally independent ISIs.

The perfect IF model is a good approximation for mo
complicated neuronal models if the mean input currentm is
large. A severe limitation of Eq.~1!, however, is the uncor
related WN input. Massive spike train input received by c
tical neurons, for instance, is filtered by a first-order synap
dynamics, leading effectively to an Ornstein-Uhlenbeck p
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e

ple

er

e
of
ls

y

d
le,

-
c
-

cess~OUP! @4,5#, i.e., the input is an exponentially correlate
~colored! Gaussian noise. Another example is a neuron
ceiving input from a randomly bursting neuron; in the sim
plest nontrivial case the input can be approximated by a
chotomous process~DP! with exponential correlations.

Recent work has shown that correlations in the input c
affect spike count statistics@6,7# and signal transmission fea
tures @8# strongly and in unexpected ways, indicating t
need for a deeper theoretical understanding of the effect
colored noise in neural systems~for classic results on colored
noise in nonlinear dynamical systems, see Ref.@9#!. So far,
analytical results for~perfect or leaky! IF models have been
reported for the ISI’s mean and variance@4,10#, for spike
count and ISI statistics in case of a long-correlated~‘‘static’’ !
driving noise@6#, and for the response to additional period
stimuli @8#. A full characterization of the spontaneous~i.e.,
only noise driven! activity of a model neuron with colored
noise ofarbitrary correlation time by the ISI density and th
SCC is still missing. In particular, it is not clear wheth
exponentially correlated noise processes like the OUP or
increase or decrease the ISI variability compared to the W
case, whether they cause positive or negative ISI corr
tions, and how the noise distribution influences both ISI d
sity and ISI correlations.

The aim of this paper is to extend the above results for
WN case to a colored noise driven perfect IF neuron, ass
ing that the driving noise is weak. Exact or approxima
expressions for the ISI density and the SCC are derived
the cases thath(t) is not a WN but,~1!, a DP, switching
between two states6s with stationary densityp0(h)
5@d(h2s)1d(h1s)#/2 or ~2! an OUP with stationary
density p0(h)5exp@2h2/(2s2)#/A2ps2, respectively. Both
processes are characterized by variances2, correlation time
t, and an exponential correlation function̂h(t)h(t8)&
5s2exp@2(t2t8)/t#. On comparing with the WN case I sha
use thenoise intensity~i.e., the integral over the correlatio
function from 0 to infinity! given byD5s2t. The analytical
approach is based on the assumption of a small noise v
ance, i.e., for«5s2/m2 one requires«!1 in case of an OUP
and«<1 in case of a dichotomous driving.

THEORY

Since the dynamics, Eq.~1!, does not explicitly depend on
v, n subsequent passages fromv50 to v5vT ~correspond-
ing to thenth order intervalTn) are equivalent toone pas-
sage fromv50 to v5nvT without reset~see also Ref.@6#!.
©2004 The American Physical Society01-1
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For a given initial value of the noiseh(0)5h0, thenth order
interval density thus equals the first-passage-time den
~FPTD! from v50 to v5nvT . For n→`, the mean interval
^Tn& approachesnvT /m @11# which can be regarded as
time average of lower order intervals; hence one can c
clude that in general,̂Tn&5nvT /m as in the WN case and
independent of the noise statistics.

For either driving processes the FPTD problem can
formulated in terms of a Fokker-Planck equation for the tr
sition probability Ptr in the (v,h) plane with a reflecting
boundary condition forh,2m on the linev5nvT ~this pre-
vents multiple counting of realizations that have alrea
reachednvT and returned, see Ref.@4#!. The FPTD is then
given by the probability current in thev direction at v
5nvT which is (h11m)Ptr(nvT ,h1 ,Tnu0,h0,0) integrated
over all possible final valuesh1 of the noise. To obtain the
true density ofTn , the FPTD has to be averaged with resp
to the stationary density of noise valuesupon firing PF(h0).

For small noise variance~«!1!, values ofh below 2m
are highly unlikely; hence the reflecting boundary conditi
can be neglected and the transition probability of thefreely
evolving process@v(t),h(t)# can be used. This is don
throughout the remainder of the paper. Within the same
proximation, the densityPF(h0) is proportional to the sta
tionary probability current in thev direction; normalization
yields

PF~h0!5
h01m

m
p0~h0!, ~4!

wherep0(h0) is the stationary density of noise values. P
ting all of these together, thenth order interval at small noise
variance is given by

gn~Tn!5E E dh0dh1~m1h1!

3Ptr~nvT ,h1 ,Tnu0,h0,0!PF~h0!. ~5!

To keep the resulting expressions simple, these integrals
taken over the entire range of noise values. Note that
may lead to the occurrence of negative ‘‘probability’’ for tw
reasons:~1! our approximation ofPF(h0) is negative for
h0,2m; ~2! the second integration~i.e., that with respect to
h1) includes the back flux of probability forh1,2m which
is negative, too. These contributions, however, are neglig
for «!1; they are completely absent for the dichotomo
driving with «<1 in which case Eq.~5! is exact.

Knowledge of thenth order interval density also permit
the calculation of the SCCrk as follows: the variance of the
nth order interval obeys@3# ^DTn

2&/^DT1
2&5n12(k51

n21(n
2k)rk ; from this relation, the SCC is found to be

rk5
^DTk11

2 &1^DTk21
2 &

2^DT1
2&

2
^DTk

2&

^DT1
2&

. ~6!

IF NEURON DRIVEN BY DICHOTOMOUS NOISE

For s<m ~i.e., «<1!, the transition probability can be
derived from the solutionP6(v,t) with m50 and arbitrary
02290
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initial conditions as, e.g., in Ref.@12#. In terms of xn(T)
5nvT2mT, an(T)5As2T22xn

2(T)/(2ts), and the Heavi-
side function@13# Q5Q(sT2uxn(T)u) transitions fromv
50 to v5nvT and various combinations of initial and fina
values of the noise~indicated by the first and last index
respectively! occur with probability

P6,65e2T/~2t!Fd„xn~T!7sT…

1Q
sT7xn~T!

8an~T!~ts!2
I 1„an~T!…G , ~7!

P6,75e2T/~2t!QI 0„an~T!…/~4ts!, ~8!

where I 0(z) and I 1(z) are the modified Bessel function
@13#. Using the stationary distribution of noise values, o
obtains from Eq.~5! ~with the integrals reducing to sum
because of the discrete nature of the DP! the following exact
solution for the probability density of thenth order interspike
interval for s<m

gn
DP~Tn!5

e2Tn/~2t!vT

4st2b
F2stS d~Tn2Tn

1!

m2s
1

d~Tn2Tn
2!

m1s D
1„nb2Tn /~2t!…

I 1„an~Tn!…

an~Tn!
1I 0„an~Tn!…G . ~9!

This holds forTn
1<T<Tn

2 with Tn
65nvT /(m6s) while the

density is zero outside this range. The parameterb is given
by

b5
vTm/t

m22s2
. ~10!

The d spikes in the density correspond to realizations
which the noise value does not change during the pass
from 0 to nvT , while the continuous part in between tho
spikes results from at least one change of the noise va
The d spikes will dominate at large correlation time~for t
@nvT /m almost all probability is in thed spikes!. At smallt
the continuous part of the density contains most probab
and thed spikes may be safely neglected.

In Fig. 1 ~top! the ISI density@Eq. ~9! with n51] is
shown fors250.5 and different values of correlation tim
by solid lines. This is compared to results of computer sim
lations ~symbols! as well as to the densityg1

WN(T) ~dashed
lines! of the WN driven IF neuron, Eq.~3!, with noise inten-
sity D5s2t. The simulation results confirm our analytic
findings. Note that the noise intensity increases in proport
to the correlation time. It can therefore be expected that w
growing correlation time the density becomes broader
ISIs become more variable. Indeed, starting at small corr
tion timet50.01 I find a narrow density around the mean I
(^T&51). Here the density coincides withg1

WN(T) within
line thickness. Severe differences betweeng1

DP(T) and
g1

WN(T) are already observed fort50.1; due to the increase
in noise intensity the finite support of noise values becom
apparent by a peak atT5T1

1 beyond which no probability is
present in marked contrast to the WN case. Also, the lo
1-2
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maximum of the density is attained at slightly smaller I
than forg1

WN(T). Going to an even larger correlation time
t51 ~inset of Fig. 1, top! the density is dominated by th
peaks~their height depends on the binning of ISIs! while in
between the peaks there is a small continuous contribu
that drops with increasing ISI. Obviously, this shape h
nothing in common, anymore, with the ISI density of a W
driven IF neuron.

Further insights are provided by the interval varian
which can be analytically calculated from Eq.~9!

^DTn
2&DP5^DTn

2&WN@12~12e2nb!/~nb!#. ~11!

Note that the prefactor is exactly the variance of the W
driven IF neuron^DTn

2&WN52nDvT /m3 ~with D5s2t).
Sinceb.0, the variance of thenth order interval is always
smaller than for the WN case. Hence, compared to a W
driving, the IF neuron driven by dichotomous noise gen
ates a less variable ISI.

From Eqs.~11! and~6! one can also obtain the followin
strikingly simple expression for the SCC (k.0)

rk
DP52e2kbsinh2~b/2!/~b211e2b!. ~12!

The correlations among intervals are evidently positive. T
theoretical result is confirmed by simulations in Fig. 1~bot-
tom! for a fairly large noise variance corresponding
«50.5. Remarkably according to Eq.~12!, the SCCdepends
monotonously on all parameters only throughb given in Eq.
~10!, i.e., increasingb by increasings or decreasingt weak-

FIG. 1. ISI statistics for dichotomous noise and different valu
of the correlation timet at m5vT51. Top: ISI density~solid lines!
for s250.5 compared to simulations~symbols! and the density of
the WN caseg1

WN ~dashed lines!; for the latter,t is not a correlation
time but determines the noise intensity byD5s2t. Inset: logarithm
of density for t51. Bottom: SCC fors250.5, analytical result
~solid lines! compared to simulation results~symbols!.
02290
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ens the positive correlations among the ISIs. This also
plies that a decrease in correlation time can leave the co
lations among ISIs unchanged if the noise variance
decreased at the same time such thatb remains unchanged
This has been checked by simulating the system withs2

50.25, vT5m51, andt̃52t/3 ~t stands for the values in
dicated in Fig. 1, bottom!; indeed, the same data were o
tained as shown in Fig. 1~bottom!.

IF NEURON DRIVEN BY ORNSTEIN-UHLENBECK NOISE

The transition probability is given by the well-know
transition probability of Brownian motion@14# with an addi-
tional bias, introduced by replacing the second spatial ar
ment by nvT2mT. Since this probability is Gaussian th
integrals in Eq.~5! can be carried out yielding

gn
OU~Tn!5

1

2tA4p«g1
3

expF2
~Tn2nvT /m!2

4«t2g1
G

3F ~g2~nvT /m2Tn!12g1t!2

2g1t2

2«~g2
222g1e2Tn /t!G , ~13!

where g1(Tn)5Tn /t1e2Tn /t21 and g2(Tn)512e2Tn /t

are functions of thenth order interval. Equation~13! is

FIG. 2. ISI statistics for Ornstein-Uhlenbeck noise and differe
values of the correlation timet atm5vT51. Top: ISI density~solid
lines! for s250.5 compared to simulations~symbols! and the den-
sity of the WN caseg1

WN ~dashed!; for the latter,t is not a correla-
tion time but determines the noise intensity byD5s2t. Bottom:
SCC fors250.05, analytical approximation~solid lines! compared
to simulation results~symbols!.
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strictly valid only for an asymptotically small noise varian
~the second line becomes negative for a critical value o«
that depends onTn andt!. Excluding the exponentially sma
tail of the density, we find, however, an excellent agreem
to simulation resultseven at a fairly large noise intensit
corresponding to«50.5 ~Fig. 2, top!. At small correlation
time ~t50.01!, the density, Eq.~13!, coincides within line
thickness withg1

WN as it did for the DP driven neuron. Sma
differences show up fort50.1, although not as pronounce
as in the dichotomous case~cf. Fig. 1, top!. For t51, the
OUP driven neuron does not display short ISIs asg1

WN does.
Since the variance of the noise is small, values of the
beyondvT /(m1s) ~corresponding to the noise staying b
low 2s for an entire ISI! are unlikely irrespective of corre
lation time and hence also of noise intensity. Upon furth
increase oft the shape of the density does not change m
for the range of ISIs shown in Fig. 2~top!. Note that this
large-t density differs strongly from the WNas well asfrom
the dichotomous case.

To second order in« the variance is given by

^DTn
2&OU5^DTn

2&WNF12
12e2nd

nd

1«S e2nd1
~12e2nd!~122e2nd!

nd D G , ~14!

whered5vT /(tm). Remarkably, for«→0 this approaches
the same function as the variance for dichotomous driv
with «→0 in b given in Eq.~10!. Consequently, also the SC
approaches thesame functional formfor both driving pro-
cesses in the weak noise limit. It can be furthermore sho
that at small but finite«, the variance of thenth order inter-
val of an OUP driven IF neuron is smaller than for an unc
related driving of the same noise intensity, i.e., the facto
brackets in Eq.~14! is generally smaller than unity.

Using Eqs.~14! and ~6!, the SCC reads (k.0)

rk
OU52

^DT1
2&WN

^DT1
2&OU

e2kdFsinh2S d

2D1«S 2e2kdsinh2~d!

1~kd23!sinh2S d

2D2
d

2
sinh~d! D G . ~15!
s

f
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As in the dichotomous case, the correlations among ISIs
always positive, grow with increasing correlation time, a
drop with increasing noise variance~note that alsôDT1

2&OU

depends on«!. In Fig. 2 ~bottom! Eq. ~15! is compared to
simulations at a small noise variances250.05. While the
theory and simulations agree well at small to moderate c
relation time, discrepancies appear for large correlation t
~t510 or 100! and are expected to grow further with increa
ing t. In general the theory overestimates the strength
correlations.

CONCLUSIONS

A perfect IF model driven by a weak exponentially corr
lated noise generates an ISI sequence withexclusively posi-
tive correlations implying a strictly positive SCC~this is
somewhat surprising, since naively a correlation time of
order of the mean ISI could be expected to yield also ne
tive correlations!. The SCC is, furthermore, largely indepe
dent of the input’s distribution~dichotomous or Gaussian!,
in marked contrast to the ISI andnth order interval densi-
ties that depend both on the input correlationsand on the
distribution of the input. In comparison to the simple W
case, the most important finding is the decreased ISI varia
ity ~ISI variance! for a colored noise input. It is known
that ISI variability and ISI correlations of the spontaneo
neuronal activity have a strong effect on signal transmiss
and detection through a neuron@7#. Hence, the analytica
results achieved in this paper may help to understand
functional role of neural phenomena like synaptic filteri
and presynaptic bursting that lead to input correlations
thus to a modification in the signal processing properties o
neuron.
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