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Interspike interval statistics of neurons driven by colored noise
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A perfect integrate-and-fire model driven by colored noise is studied by means of the interspike {ih&jval
density and the serial correlation coefficient. Exact and approximate expressions for these functions are derived
for weak dichotomous or Gaussian noise, respectively. It is shown that correlations in the input result in
positive correlations in the I1SI sequence and in a reduction of ISI variability. The results also indicate that for
weak noise, the noise distribution only shapes the ISI density but not the ISI correlations which are determined
by the noise’s correlation function.
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INTRODUCTION cess(OUP) [4,5], i.e., the input is an exponentially correlated
(colored Gaussian noise. Another example is a neuron re-
. i . ) E‘ceiving input from a randomly bursting neuron; in the sim-
introduction of the perfect integrate-and-fil) neuron(or et nontrivial case the input can be approximated by a di-
random walk model by Gerstein and Mandelbridt]. In this  chotomous proces®P) with exponential correlations.

model the voltage across the nerve membrane obeys a simple Recent work has shown that correlations in the input can

white-noise(WN) driven dynamics affect spike count statistid$,7] and signal transmission fea-
. tures [8] strongly and in unexpected ways, indicating the
v=ptn(t) oy need for a deeper theoretical understanding of the effects of

ith 4>0 bei tant input 1) white G . colored noise in neural systertfsr classic results on colored
with w eing a constant input ang((t) white Gaussian  ise in nonlinear dynamical systems, see R@h. So far,

hoise of intensityD, i.e., (n(t)7(t'))=2Do(t—t"). The  gnaitical results fofperfect or leaky IF models have been
model is supplemented by th_e spike generator_rule_: Whe”eV%ported for the I1SI's mean and varianp&10], for spike
the voltage reaches a certain threshojda & spike is gen-  count and IS statistics in case of a long-correlatasdatic” )
erated and the voltage is reset to zero. driving noise[6], and for the response to additional periodic
In general, the output of a spike generator model likestimuli [8]. A full characterization of the spontaneo(i®.,
above is characterized by the statistics of the sequence ohly noise driveh activity of a model neuron with colored
intervals between subsequent spikes, i.e., interspike intervatmise ofarbitrary correlation time by the ISI density and the
(ISls), { ....lj—1.1j,lj41, .. .} or, equivalently, by the sta- SCC is still missing. In particular, it is not clear whether
tistics of thenth order intervalgsum ofn subsequent inter- exponentially correlated noise processes like the OUP or DP
vals) Tn:Ejnzllj . Furthermore, correlations among intervals increase or decrease the ISI variability compared to the WN

can be quantified by the serial correlation coeffici(8€C  case, whether they cause positive or negative ISI correla-
tions, and how the noise distribution influences both ISI den-

Ui Y=o ) sity and ISI correlations.
P= Itk 12 kAT 2 The aim of this paper is to extend the above results for the
(15)=(1;)? WN case to a colored noise driven perfect IF neuron, assum-

ing that the driving noise is weak. Exact or approximate
For Eq.(1) with WN driving, the probability density of the expressions for the ISI density and the SCC are derived for
nth order interval can be exactly calculated?] the cases thap(t) is not a WN but,(1), a DP, switching
between two statesto with stationary densitypg(7)
W not (To—nvr/p)? =[8(n—0)+3(n+0a)]/2 or (2) an OUP with stationary
On (Tn)=4—ex YN () density po(7) = exd — 72202 ]/N27 a2, respectively. Both
«DT; 4(D/ )T, : . o
processes are characterized by variaméecorrelation time
The variance and mean of this density are given by” e;nd an e>fponentlal corre_latlon_ functiofw(t) n(t"))
(AT2)\wn=2Dnv1/u® and (T)wn=nvt/u, respectively. 7 (ar]xqj(t—_t )/7}. On comr;])ar]ng W'trl] the Wf']\l case Ilshall
Furthermore, the SCC for the model with WN input is given;Jse tt en:nse |(1)1tten_5|ft_}(|_:{e., the wg)tegril c;ver_rthe corlret_atmlm
by px= 0. Since the driving process is uncorrelated and ' o" hr(')mb O('jn ni %gwen yb=o 7% € aﬂay_lca .
the reset erases any memory carried by the voltage variab/gPProach 1s a_se2 OQ the assqmptlon Ot a smafl noise vari-
the model generates a renewal spike tf@hwith statisti- ahce, €., fok = o/ one requireg=<l in case of an OUP
cally independent ISs, ande<1 in case of a dichotomous driving.

The perfect IF model is a good approximation for more
complicated neuronal models if the mean input curyens
large. A severe limitation of Eql), however, is the uncor- Since the dynamics, E€l), does not explicitly depend on
related WN input. Massive spike train input received by cor-v, n subsequent passages frons 0 to v =v+ (correspond-
tical neurons, for instance, is filtered by a first-order synaptidng to thenth order intervalT,) are equivalent t@mne pas-
dynamics, leading effectively to an Ornstein-Uhlenbeck prosage fromw =0 to v = nv without reset(see also Ref(6]).

THEORY
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For a given initial value of the noisg(0)= 7,, thenth order  initial conditions as, e.g., in Ref12]. In terms ofx,(T)
interval density thus equals the first-passage-time densitynvt—uT, a’n(T)Z\/O'ZTZ—XZn(T)/(ZTO'), and the Heavi-
(FPTD) fromv=0 tov=nvy. Forn—o, the mean interval side function[13] ® =0 (oT—|x,(T)|) transitions fromv
(T,) approachesw+/u [11] which can be regarded as a =0tov=nvt anc_j vgriqus combinations of initial anq final
time average of lower order intervals; hence one can convalues of the noisdindicated by the first and last index,
clude that in generalT,)=nv/x as in the WN case and €SPectively occur with probability

independent of the noise statistics.
For elthgr driving processes the FPTD problem can be P. .=e 7| 5(x,(T)FoT)
formulated in terms of a Fokker-Planck equation for the tran- ’
sition probability Py, in the (v,#) plane with a reflecting
boundary condition form<—u on the linev =nv+ (this pre- +0 aT+Xa(T) (an(T)) o
vents multiple counting of realizations that have already 8ay(T)(ra)2 & " ’
reachednv; and returned, see Rd#]). The FPTD is then
given by the probability current in the direction atv P. -=e "0l y(an(T))(470), (8)

=nvy which is (n;+ u) Py (nvt,71,Th0,70,0) integrated
over all possible final valueg; of the noise. To obtain the
true density ofT,,, the FPTD has to be averaged with respec
to the stationary density of noise valugson firing P=(7,).
For small noise variancé<1), values of below —pu
are highly unlikely; hence the reflecting boundary condition
can be neglected and the transition probability of fileely
evolving procesquv(t),#n(t)] can be used. This is done op e Ty
throughout the remainder of the paper. Within the same apdn (Tn) = —72 2
proximation, the densityP-(7y) is proportional to the sta- 4o p

where 14(z) and 1,(z) are the modified Bessel functions
[[13]. Using the stationary distribution of noise values, one
obtains from Eq.(5) (with the integrals reducing to sums
because of the discrete nature of the) B¢ following exact
solution for the probability density of theth order interspike
interval foro=pu

(aTm4ﬁ> aﬂrTn)
oT +
m—0c nto

tionary probability current in the direction; normalization 11(an(Ty))
yi8|dS +(nB—Tn/(27'))W+I0(an(Tn))}. 9)
Pe(n0)= T by o) @ 1 R -

F{70 Pol770) This holds forTf <T<T, with T> =nv1/(= o) while the
wherepg( 7o) is the stationary density of noise values. Put-g;\nsny Is zero outside this range. The paramgtés given
ting all of these together, theth order interval at small noise
variance is given by _ vrpl T (10)

Mz_ o2
gn(Tn)=f fdﬂod??1(ﬂ+771) The 6 spikes in the density correspond to realizations for
which the noise value does not change during the passage
X Py (nvr,71,Tn|0,70,00Pe(70)- (5  from 0 tonuy, while the continuous part in between those

) ) ) . spikes results from at least one change of the noise value.
To keep the resulting expressions simple, these integrals akg,e s spikes will dominate at large correlation tingeor =
taken over the entire range of nois_e values. N_ote that thi;an/M almost all probability is in the spikes. At small 7
may lead to the occurrence of negative “probability” for two he continuous part of the density contains most probability
reasons:(1) our approximation ofPg(7o) is negative for  5nq thes spikes may be safely neglected.
170o<— m; (2) the second integratiofi.e., that with respect to In Fig. 1 (top) the ISI density[Eq. (9) with n=1] is
71) includes the back flux of probability fop, <—u which ghown foro2=0.5 and different values of correlation time
is negative, too. These contributions, however, are negligibl«@,y solid lines. This is compared to results of computer simu-
for e<1; they are completely absent for the dichotomousiztions (symbol3 as well as to the densitg‘{VN(T) (dashed

driving with #<1 in which case EqlS) is exact. .. lines) of the WN driven IF neuron, Edq3), with noise inten-
Knowledge of thenth order interval density glso permits sity D=o?7. The simulation results confirm our analytical
the calculation of the SC@ as f°';°W31 t?e vanancs_cl)f the findings. Note that the noise intensity increases in proportion
nth order interval obeyq3] (ATy)/(AT)=n+22,_i(N (g the correlation time. It can therefore be expected that with
—K)pi; from this relation, the SCC is found to be growing correlation time the density becomes broader and
ISIs become more variable. Indeed, starting at small correla-
tion time 7=0.01 | find a narrow density around the mean ISl
((T)=1). Here the density coincides witdp'"(T) within
line thickness. Severe differences betwegf”(T) and
g‘l’VN(T) are already observed for=0.1; due to the increase
in noise intensity the finite support of noise values becomes
For o<u (i.e., e<1), the transition probability can be apparent by a peak at=T, beyond which no probability is
derived from the solutiorP . (v,t) with ©=0 and arbitrary present in marked contrast to the WN case. Also, the local

(TR +(ATEY (aT)
287 (AT

(6)

Pk

IF NEURON DRIVEN BY DICHOTOMOUS NOISE
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FIG. 1. ISI statistics for dichotomous noise and different values
of the correlation timer at u=v=1. Top: ISI density(solid lineg
for ¢2=0.5 compared to simulatiorisymbol$ and the density of
the WN caseg‘l’VN (dashed lines for the latter,r is not a correlation
time but determines the noise intensityDy= o%7. Inset: logarithm
of density for ~=1. Bottom: SCC fora?=0.5, analytical result
(solid lineg compared to simulation resultsymbols.

FIG. 2. ISI statistics for Ornstein-Uhlenbeck noise and different
values of the correlation timeat u=v+=1. Top: ISI density(solid
lines) for ¢2=0.5 compared to simulatiorisymbol$ and the den-
sity of the WN caseg‘l’VN (dashedt for the latter,7 is not a correla-
tion time but determines the noise intensity By= o?7. Bottom:
SCC foro?=0.05, analytical approximatiogsolid lines compared
to simulation resultgsymbols.

maximum of the density is attained at slightly smaller ISl

than forg‘l’VN(T). Going to an even larger correlation time of ens the positive correlations among the ISIs. This also im-

=1 (inset of Fig. 1, top the density is dominated by the plies that a decrease in correlation time can leave the corre-
lations among ISIs unchanged if the noise variance is

peaks(their height depends on the binning of IStehile in ecreased at the same time such {Baemains unchanged.

between the peaks there is a small continuous contributioah. has b hecked by simulating th " 2h
that drops with increasing ISI. Obviously, this shape has IS has been checked by simuialing the Sysiem wi

o . . =0.25,v7=u=1, and7=217/3 (7 stands for the values in-
h h the ISI fawN o2 0T— K=~ ;
Sﬁflégg”;nn(;%rporgon, anymore, with the ISI density of a dicated in Fig. 1, bottom indeed, the same data were ob-

Further insights are provided by the interval variancet"’“ned as shown in Fig. (bottom.

which can be analytically calculated from E®)

AT pp=(ATH N 1-(1—e " .1

(ATn)op=(ATh)w 1~(1=e")/(np)] (1) The transition probability is given by the well-known
driven IE neuron(ATz)WN= 2nDu1/u® (With D=a?7) tional bias, introduced by replacing the second spatial argu-
Since 8>0, the variance of thath order interval is always Ment bynur—uT. Since this probability is Gaussian the
smaller than for the WN case. Hence, compared to a WNNtegrals in Eq(5) can be carried out yielding

IF NEURON DRIVEN BY ORNSTEIN-UHLENBECK NOISE

driving, the IF neuron driven by dichotomous noise gener- 5
ates a less variable ISI. oU/T \_ 1 ~ (Th—nur/p)
. . g, (Th)= ex
From Egs.(11) and(6) one can also obtain the following 2rJA7re 731 4er’y,

strikingly simple expression for the SC&%0)
y (vo(Nup/ =Ty +2y,7)?

prT=2e " ¥fsint?(BI2)/(B—1+e P). (12 .
Y1
The correlations among intervals are evidently positive. The
theoretical result is confirmed by simulations in Fig(hbt- —e(y2—2y.e /") (13)
tom) for a fairly large noise variance corresponding to 2 ! ’

£=0.5. Remarkably according to E(L2), the SCCdepends
monotonously on all parameters only througlgiven in Eq.  where y,(T,)=T,/7+e ™/"—1 and y,(T,)=1—e "n'7
(10), i.e., increasings by increasingr or decreasing weak- are functions of thenth order interval. Equation(13) is
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strictly valid only for an asymptotically small noise variance As in the dichotomous case, the correlations among ISIs are
(the second line becomes negative for a critical value of always positive, grow with increasing correlation time, and

that depends om,, and 7). Excluding the exponentially small

drop with increasing noise varian¢eote that alsqAT2)qy

tail of the density, we find, however, an excellent agreemen§iepends orx). In Fig. 2 (bottom) Eq. (15) is compared to

to simulation resulteven at a fairly large noise intensity
corresponding te=0.5 (Fig. 2, top. At small correlation
time (7=0.01), the density, Eq(13), coincides within line
thickness withg}'N as it did for the DP driven neuron. Small
differences show up for=0.1, although not as pronounced
as in the dichotomous cagef. Fig. 1, top. For =1, the
OUP driven neuron does not display short ISIgy#s' does.

simulations at a small noise variane€=0.05. While the
theory and simulations agree well at small to moderate cor-
relation time, discrepancies appear for large correlation time
(7=10 or 100 and are expected to grow further with increas-
ing 7. In general the theory overestimates the strength of
correlations.

Since the variance of the noise is small, values of the ISI

beyondv/(x+ o) (corresponding to the noise staying be-

low —¢ for an entire IS) are unlikely irrespective of corre-

lation time and hence also of noise intensity. Upon further

CONCLUSIONS

A perfect IF model driven by a weak exponentially corre-

increase ofr the shape of the density does not change muchgted noise generates an ISI sequence weitblusively posi-

for the range of ISIs shown in Fig. @op). Note that this
larger density differs strongly from the Wids well asfrom
the dichotomous case.

To second order ir the variance is given by

(AT ou= (AT 1- 0
n/OU n/WN né
1-e ™)(1-2e"™
+e e*”5+( )n(§ )” (14

where 6=v+ /(7). Remarkably, fore—0 this approaches
the same function as the variance for dichotomous drivin
with e—0in 8 given in Eq.(10). Consequently, also the SCC
approaches theame functional fornfor both driving pro-

cesses in the weak noise limit. It can be furthermore shown

that at small but finites, the variance of th@th order inter-

val of an OUP driven IF neuron is smaller than for an uncor

tive correlations implying a strictly positive SCQhis is
somewhat surprising, since naively a correlation time of the
order of the mean ISI could be expected to yield also nega-
tive correlations The SCC is, furthermore, largely indepen-
dent of the input's distributioridichotomous or Gaussian

in marked contrast to the ISI angth order interval densi-
ties that depend both on the input correlati@ml on the
distribution of the input. In comparison to the simple WN
case, the most important finding is the decreased ISI variabil-
ity (ISI variance for a colored noise input. It is known
that ISI variability and ISI correlations of the spontaneous
neuronal activity have a strong effect on signal transmission

%nd detection through a neurdi]. Hence, the analytical

results achieved in this paper may help to understand the
functional role of neural phenomena like synaptic filtering

and presynaptic bursting that lead to input correlations and
thus to a modification in the signal processing properties of a

.. heuron.

related driving of the same noise intensity, i.e., the factor in

brackets in Eq(14) is generally smaller than unity.
Using Eqgs.(14) and (6), the SCC readsk{>0)

ou_ <AT%>WNe,k§

7k§ .
pel= 2e *9sink?(8)
(AT%)ou

+e&

sinhz(g

)
> (15

. o .
+(ké— 3)smhz( ) —Esmr( 5)) }
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