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Eigen model as a quantum spin chain: Exact dynamics
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We map the Eigen model of biological evolutifiNaturwissenschafteb8, 465(1971)] into a quantum spin
model with non-Hermitian Hamiltonian. Based on such a connection, we derive exact relaxation periods for the
Eigen model to approach static energy landscape from various initial conditions. We also study a simple case
of dynamic fitness function.
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The Eigen model of asexual evolutiph,?] is one of the In the Eigen model, elements of the mutation ma@ix
main mathematical models in this field. In this model indi- represent the probability that an offspring produced by gtate

viduals have offsprings that are subjected to mutation thaghanges to statie and the evolution is given by the set df 2
connects with a selection rule. In his original work Eigen coupled equations for"2probabilitiesp; ,

found an error threshold similar to the critical point in criti-

cal phenomena such that when the mutation is larger than the dp, 2N 2N

error threshold the organism cannot survive. Later, statistical —=> Qijf P~ Pi( > r,—pj) ) (1)

mechanics has been applied to investigate the discrete time dt =1 =1

version of the original moddl3,4]. Franz and Pelitf5] de- .

rived another important result in the Eigen model: concenHere p; satisfiesEizzlpFl and Q; =N 4D (1 —q)diD

tration of individuals around the peak configuration. with d(i ,j)E(N_lezls:s})/z being the Hamming distance
In the paraHEI mutation-selection model, an alternative tq:)etweena and SJ . The parameter _]:q describes the effi-

the Eigen model, a mutation mechanism and a selectiogiency of mutations. For the parallel mutation-selection
mechanisms are two independent processes that take plaggdel, the dynamics is given by

concurrently{ 6]. Baakeet al.[7] proved that for the parallel

mutation-selection scheme, the time evolution equation for dp, 2N 2N

i . T . :
the frequencies of different species is equivalent to the E:E mijpj+piri_pi(2 Fjpj), 2)
Schralinger equation in imaginary time for quantum spins in =1 i=

a transverse magnetic field. Based on such a connection, re-
cently we used Suzuki-Trotter formalisf8] to study both ~wherem;; are the elements of the mutation matmx; = y,
statics and dynamics of the model with a single peak fitnesfor d(i,j)=1, m;j=—Ny, for i=j, andm;;=0 for d(i,j)
function[9]. In the present paper, we will extend such study>1.

to the Eigen mode[1] by reexpressing the Eigen model's  Eigen found that it is enough to solve E@.) for only
dynamics via quantum chain problem, then solving the dydinear partd1]. Let us decompose the first, linear part of Eq.
namics to obtain exact relaxation periods for the Eigen(1l) via mutations to the fixed lengtth(i,j)=I:

model. The dynamic aspects play important role during the

evolution in changing environmenf&0—12. Thus such as- dp,
pects in the Eigen model have been considered in recent W_Z A Z: Qijrip; - (©)
works[13,14], in which approximate formulas for the relax- !

a_tion _periods have been found and applied to describe $he second sum is over all configurations having Hamming

virus-immune system coevgluuon. .Our equations for exaClisiancel from the peak configuration. Using the relation
relaxation periods are consistent with approximate formulas ,n

in Refs.[13,14 for the case of one mutation per replication. ~i-1Qi,j=1, we can show that whep; satisfies Eq(3),
As in Ref.[9], the genome configuration is specified by athen
sequence ol spin valuess,= + 1, 1<k<N. We denote the
ith genome configuration b =(s;,S,, ...,Sy) and the P/ ()= pi(t) @)
probability of theith genome at timet is given by pg ! S p(t)
=p;(t) and the fitness; is the average number of offsprings ] i
per unit time. In our language, the chosen fithnesss a
functionf that operates on the genome configuratni.e.,  satisfies Eq(1). We can compare Eq3) with Eq. (2) with-
ri=f(S). out the last nonlinear term. The terihs 1 andl =0 in Eq.
(3) correspond, respectively, to the first and second terms in
Eqg. (2). In Eq. (3), there are terms with higher leve:2
*Corresponding author. spin flips. Baakeet al. [7] mapped Eq(2) into a model of
Electronic address: huck@phys.sinica.edu.tw quantum spin chain. Here we will use the same method to
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map the model of Eq$1) and(3) into a quantum spin model —(S;|H|S,)=Ae?,
with additional higher level spin flip terms.

Let us reformulate the system of E@). As we identify (SIHIS)=(SIHairilS), i#1,
configurationS; with a collection of spins},---,s\=*1
and define fitness functidrasr;=f(s} ,- - -,s)=f(S)). Let N
us consider vectors in the Hilbert spaceMfjuantum Pauli =~ —H . =fe 7+ > e~ 7(
spins. With thep; of Eq. (3), we connect a vector in Hilbert =1
spacex? 1p/|S). Thenr;—f(o?%,---,0%). Thel spin flip
term Q;; in Eq. (3) can be identified with a matrix element
(§jIDy|S;) of quantum operator

N
—q\ 2
1 q X X
O'I .. ;O'I y
q /) i=<ip<iz =N 1 '

(10

wherel is identity operator;y=— N In(g)~N(1—qg)<<N. For
us only termsl<N are relevant, therefore the substitution
B B aV[(1—q)/q]'—e Y(y/N)' can be applied.
Di=gN "4 (1—q)dt) > of o (9 To calculate matrix elements df(t)=e ", one should
1=iy{-hi=N introduce the Suzuki-Trotter formalisf8]. To perform ana-
Thus Eq.(3) is equivalent to Séidinger equation Iytical calculf_;ltion, it is more convenient to use E@). for the
fitness function then Eq10). For any value ofp an exact
—H=f(o% - of)q"+g" method of Suzuki-Trotter formalisii8] can map the system
N to the problem in classical statistical mechanics. Moreover,
1—q\' 2 for the large values of it is well known that the problem is
) Uixl' : 'Uf(lf(ffi' o), drastically simplified. For the quantupmspin interactions in
a transverse magnetic field, Goldschnjiths] has found that
all the order parameter@nagnetizationsare either 1 or 0
and one should take either only transverse interaction terms
(ai‘l~ . ~a§‘|) or only the longitudinal one(e™ "1+ (A

—1)(Z;o{IN)P]). Therefore, we can work with system of
and Eq.(4) to Eq. (10) using the following trick. With exponential accuracy
of order 1/2, it is possible to neglect the] terms in Eq(6)

z=2 (Sle"s)p}, and get
]

(I=siq<ip---ij=N)

oN

d 2
gt ;1 pj(t)|5j>:_HJZl p;(D)[S;), (6)

(Sile™ ™Sy ~exf (Ae™t]. (12)

“Ht[a\pn0
; (Sle”™IS)p, Matrix elements(S|e”"!|S;) for i#1 can be replaced with
pi= Z : (7)  exponential accuracy b§5 |ex —Hgit]lS). Equation

N N
where o denotes the spin operator af) is the standard z z

d
notation for the spin state. One can multiply E6). from the ) x(1)|S)= _Hdiff;2 X ()|Sp) (12)
left by (S;| and obtain Eq(3).

For the single-peaked fitness function, we take is equivalent to Eq(3) with r;=1 for j=2, . .. M andr,

f(S)=A =0. Then we derive that
N N
and 2 z
> xi(t)=expt) >, x. (13)
f(S)=1 for i#1, (8) 1=2 =2
with S;=(+1,+1,...,+1), which is equivalent to choos- From Egs.(11) and (13), we havep,~exf(Ae ")t] and
ing Eizzzpi~et. Therefore, we derive the Eigen’s exact formula
o for the error threshold
= Si A>e?. (14)
f(S)=1+(A-1)| —— ©

Let us calculate now the transition probabilities
at the limitp— . A careful look at the Hamiltonian of Eq. (Si|eXP(~Hiaift)|S) between two states with the total number
(6) reveals that it is non-Hermitian. But we will mainly work Of M flips between configuration§={s, ... sy} and s
with the matrix elements betwe@h# S, andS;# S, and for ~ ={sl, ... s} and definen=1—2M/N. We will show be-
these situations we can miss the multipligfo?---o%) 0w that the model can be solved at
=1. For that sector of Hilbert space Hamiltonian is Hermit-
ian. To investigate the dynamics, we are using the matrix £~(1— )<1 (15)
elements of Hamiltonian N d '
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For the finite (- m), we guess that the relaxation tirhés
of orderN and define

T=te Y/N. (16)
There areN(1+m)/2 spins without flips(+1 sping and
N(1—m)/2 flipped spins (1 sping. Let us denote
by h, the term ofl spin flip in the Hamiltonian. To calculate
the matrix elementS;|exp(—Hgiit)|S)=(Slexp(—tZh)[S),

let us use an equality emﬁ‘lo{;- : -oﬁ]=cosh(a)[1
+tanl[a]a{‘la{‘2~ : ~a)if] and expand the product keeping terms
till the Mth degree

M M
(se™Marr|s)~ > o costiy DN

VNP

K=1 I+
. |
T | X| _ i
Xtanl’( ’yT)lJ-]__[ ( Y )<—i__:!.0-l| >l .
i>1 N'~Hil

7

We find via the saddle point the principal term in the expres
sion of Eq.(17) among all distributions with differert. We

keep cosh,tanh only for the one spin flip terms. We calculate

also the combinatorics of insertion inkd site box combina-
tion of |, single points], duplets, .. I, k plets, which sat-
isfy the constraint

M

> ili=M. (18)
=1

We can take the constraint of E(L.8) into account via a

Lagrange parametér and writel; asx;N. For the logarithm
of a typical term for summation in Eq17), we have

N@(T,m,y)= N[ Incosh yT)+x4In[tank( yT) ]+ ! 5

1-m 1-m
5~ 5~ 2 DGl T —xi]

M
1INy iXi—XqIN X +Xq
i=2

XIn

1-m
N[ ixi—T”. (19)
I
The extremum conditions fog; of Eq. (19) give
x;=tanlyT)z/y, ilx=T7Z, i=2, (20)

where z=ye'. Using formulas: =M x;=T3;_,Z'/i!
=T(exp@—z—1), =M,izllit=3M,iz'/il—z=zexp@)z
-2, EiMzzinn(xii!/U=Tln Z>,_,iZ/i'=TzIn Zexp@)—1], and
Eq. (18), we have:

2

zT€—Tz+ztanl(yT)/y=
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1-m

I(1—m)y 1-m
2 " -

2 2

d(T,m,y)= +IncoshyT)

+ztanhyT)[1—-Inz]/y+T[e*(1—-zInz)

-z(1-Inz)—1]. (21
Let us now consider an ansatz @, |e |S)):
(Silexd AN(T—T0)1|S1)(S,|e™ "air'o]s;)
=exp[N[A(T—Ty) + ¢(Ty,m,y)1}. (22

While calculating this expression via saddle point, we first
find the extremal poinTy=e~"ty/N from the saddle point
condition

o G6(T0

= T (23

The transition period;=Ne’T; is defined from the condi-
tion that the contributiofS,|e”™!|S) into Z of Eq. (7) is
larger than the contributions of other ternis;|e™"|S;)
[equal toe! according to Eq(13)]:

exp(N[¢(To.m,y) +A(T1—To) )=exp(Ne'Ty),

A

A—e?

¢(To,m,y)

T.=
! A—e?

0 (24)

Thus Egs(21), (23), and(24) give the relaxation period
=e~ "t1/N under the constraint of Eq14) for the fitnessA.
There are several phases in dynamics. Fat€t,, there
is a random drift to the peak configuratid. For to<t
<t,, there is a growth in the value qf;, but the macro-
scopic majority is still out of the peak configuration. Ror
>t,, the macroscopic majority is near the peak configura-
tion.
Let us give an explicit expressions for the case

7(1—m)<

A 1.

(25

This is a typical biological situation for observing—Im

<1. Inthis case, as we can check later; (1—m) <1, thus
one can replacetanh(yT)/y—zT and derive a simplified
system of equations:

2

m
5 —(1+Inz)|+T(e*—1),

H(T,m,y)= Iny

Tze=1"M
2€=——,

d
—¢=ez—1:A.

daT (26)

Then To=(1—m)/[2(1+A)In(1+A)]. Thus for the relax-
ation periodt=T,e”N, one has an expression
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2ein(A+1) (Sile" s,y =2"NexdAe ’t] with expt) (sum of other
In (I—m)y contributions for their contributions t&Z of Eq. (7) and find
t;=(1-mN————. (27)  that
2(Ae 7—1)
NiIn2

Equation(27) gives relaxation period from the original dis-
tribution, concentrated at the configuration with the overlap
Nm with the peak fitness configuration, and mutation per site
1—g=y/N. The physical meaning of the term-Im)N/2 is To derive the steady state distributionsmpf we can set
trivial (for the case of infinite populationthe relaxation dp;/dt=0 in Eq. (1). For A>1 we can derive thap;
period is proportional to the Hamming distance. We can un=g"[(1—q)/q]®®" and the result obtained in Ref5]:
derstand also the termAg™ ?—1) in the dominator: it is a (1/N)Eipi2,“‘:1$!=2q—1.
natural consequence of the fact that relaxation period should Let us briefly consider the case of two isolated flat peaks
diverge at the error thresholde™”—1. Our derivation is in fitness landscape with fitness heights and A,, and
valid when the condition of Eq25) is satisfied. An estimate widths g; and g,. The peak of height; hasg; one-flip
for t; has been given in Ref§13,14]. neighbors of the same height. A simple consideration gives
for the effective fithes#\,[1+g;(1—q)]. Thus the Svetina-

ty (32)

CAe -1

In 1 InE Scuster phenomenofil6] for two peaks appears &;[1
- l1-a v sy 91T A]=AA1+(170)0,].
1_AefN(17q)_ 1 Ae 7—1 (28 In 1971, Eigen1] found an exact error threshold for his

model from information theory arguments. After more than
We note that Eq(28) is qualitatively correct and consistent 30 years of different approximate or numerical investigations
with Eq. (27) for the caséN(1—m)/2=1 considered in those of the Eigen model, we have found the exact dynamics of the
works. Our derivation is rigorous only for a large number of model presented in Eq$21), (23), and(24). Our Eq.(27)
flipped spins, i.eN(1—m)/2>1. For a small number of gives the relaxation periods with a high degree of accuracy
flipped spins considered in Refd3,14, we still cannot de- O(1—m)?~(d/N)?, it is more accurate than E¢28) de-
rive an exact analytical formula. rived in[13,14. In [9] we compared the accurate result of
Let us briefly consider a simple case of a dynamic fitnes$his work Eq.(27) with the corresponding relaxation period
landscape: a fitness pedKt) in the first configuratior,, of parallel scheme to conclude that even at the limit of van-
which changes with the time. Now for th&;|e M|S,), we ishing mutation rates two mutation schemes give a finite

have expe ?fLA(7)dr]. Equations(23) and (24) transform  (nonvanishing difference in relaxation periods. Therefore,
into there is at least one situation in which our exact &¢) or

accurate approximation, Eq27), gives a new qualitative
dep(To) T result. We have also applied the similar method to study a
aT, ¢(To,m,7)+fT A(r)dr>e’T;. simple case of dynamical environments and obtained Egs.
0 (29) (29) and(30). The more involved situations with a very rich
and interesting phase structufg2] as well as the virus-
Now this could be a very rich phase structure with differentimmune system coevolutidii4] can also be investigated by

A(1o)=

solutions forT,. For T,=t;e” ¥/N, we have our method. The main open problem is an application of the
same method to the finite population case. In this case the
leA( )d search of a peak configuration could be an exponentially
N T ET A H(To,m,y) large function ofN, instead of a linear in Eq27). We hope
A=———, Ti=x To— —= . (30  that progress in this direction is possible in the near future,
T1—To A—e” A—e?

considering funnel-like fitness landscapes. In any case in this
work we considered the Eigen model’'s dynamics as a statis-

Now A is replaced with a mean value. For the caseAof . ; :
tical mechanics problem and exactly solved it.

> y(1—m), we again have Eq27), only with A—A.

For A>1, we can calculate the relaxation time from an  This work was partially supported by the National Sci-
original uniform distribution on a static landscape; ence Council of the Republic of Chirfdaiwan under Grant
=1/2N. For this purpose, we compare the contributionNo. NSC 92-2112-M-001-063.
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