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Extinction in population dynamics
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We study a generic reaction-diffusion model for single-species population dynamics that includes reproduc-
tion, death, and competition. The population is assumed to be confined in a refuge beyond which conditions are
so harsh that they lead to certain extinction. Standard continuum mean field models in one dimension yield a
critical refuge length.. such that a population in a refuge larger than this is assured survival. Herein we extend
the model to take into account the discreteness and finiteness of the population, which leads us to a stochastic
description. We present a particular critical criterion for likely extinction, namely, that the standard deviation of
the population be equal to the mean. According to this criterion, we find that while survival can no longer be
guaranteed for any refuge size, for sufficiently weak competition one can make the refuge large enough
(certainly larger tharh.;) to cause extinction to be unlikely. However, beyond a certain value of the competi-
tion rate parameter it is no longer possible to escape a likelihood of extinction even in an infinite refuge. These
unavoidable fluctuations therefore have a severe impact on refuge design issues.
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[. INTRODUCTION pick the most realistic and complete description that would
inevitably require numerical solution. Rather, we focus on a
Population dynamics is a venerable and important subjecimplified yet generic model from which we can extract new
that has been studied thoroughly for decafles Under-  information (and some rather unexpected resulisialyti-
standing ecological systems is interesting in itself, as argally.
applications of this understanding to a large variety of im- The oldest population models pose relatively simple rate
portant practical problems such as, for example, the sprea@duations for a total population, e.g., those of the logistic
of a virus or other disease over a host popu'aﬁ@h and Vanety,.and typ|Ca.”y take baS|C eV(.%ntS Such as blrthS and
strategies for the elimination of pests or for the protection ofdeaths into account through appropriate rate processes. A ge-
endangered speci¢8]. These examples point to the impor- Neric example is the logistic foriib,6]
tance of the study of the extinction of populations and of the
conditions that lead to extinction as well as those that protect dX 2
against it. qJp T HR=X @
In this paper we deal with the particular issueestinc-
tion. It is well documented, and a cause of serious ecologicq;hh

concern, that a large number of species become extinct ea¢farefore nonnegative. The parameteis the difference be-
year, and the literature on this topic is vast. To arbitrarilytWeen birth and death rates of the population, ¥md0, u
pick a few examples, the Florida Fish and Wildlife Conser-5¢ jtq steady states. All that is required for survival is that

vation ICOE"m'SS'O”d malhntams the sta;;ce |'|St _gf 117 animals 4 This model has had enormous impact in the biological
currently threatened with extinction. The Florida Departmen s well as the physico-chemical literature.

of Agriculture and Consumer Services maintains a similar Fairly early on, the possible role of fluctuations in these
. L , NRodels was recognized and included by way of additional
U.S. Fish a_md \.N'Id“fe S_,erv_lceE_A]._ In most O.f these cases, fluctuating terms, often in a fairly ad hgbut at times quite
the fear of imminent extinction is intimately tied to the small 5,55 riate manner. The sources of the fluctuations included
number 9f extant |nd|V|dugIand to the fact that their hap|- in this way in the earliest models were associated with varia-
tats are increasingly confined to smaller areas due to |ndu§|—0ns in the external environment in which the population

trialization and develp pment. In other_words, while I_arge UN-ayolves, and often appeared as a fluctuation in the parameters
expected catastrophic events are at times responsible for tqu, the equations. For example, a fluctuating birth and/or

extinction of sp_emes(most_ cevery child is aware _Of SOME death rate in the logistic form might lead to the description
version of the dinosaur extinction stgryar more serious are [5]

the almost daily extinctions caused by the inevitable fluctua-

tions associated with small nhumbers in restricted habitats. dx

Our goal in this work is to provide aanalyticassessment of —— = uX— X2+ EDX, )

the effects of these inevitable fluctuations and of the feasi- dt

bility (or noy of designing habitats that are sufficiently large

to provide assurance against extinction. Our interest is not tavhere £(t) is a zero-centered Gaussian white noise. Other
provide specific numbers for particular species, nor even tsources of externally driven stochasticity such as those aris-

ere X is a measure of the size of a population and is
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ing from natural catastrophes and from changes in gene frggrobabilities, they do not in general include the other feature
guencieq 7] have also been recognized. discussed above that is also of great consequence in these
We make a strong distinction between externally inducedroblems, namely, the effect of fluctuations. These fluctua-
stochasticity caused by environmental and other factor§ons can again arise from a variety of internal and external
whose origin has nothing to do with the numbers of individu-sources. As noted earlier, herein we address the problem of
als in the populatiorfand are in this sense controllable ex- internal fluctuations. _ o
ternally), from fluctuations that arise from the fact that popu- _ Populations are composed of discrete numbers of indi-
lations are finite and discrete. Theseernal fluctuations can  Viduals. That populations are not continuous is particularly
decrease only if the population increases, but this can in turfE!evant at low densities and at low total populations. The
only happen if the deterministic parameters of the system ar: portance .Of these effects has been recogmzec_i and ana-
changed. For example, for the logistic mo¢®l the nonzero yzed in various ways In recent years, most pr_omlnently n
. a . works that deal with a master equation description of the
steady state populations = w. Internal fluctuations are

4 . e population instead of a reaction-diffusion modél7,1§.
izior%at‘tgg \(,:vrllt:ntg:df icrflzgingr:g] I(t:(:\gsgﬁat;ﬁglg\gifa_ﬁg :gfg These master equations are typically solved numerically and

. ) e provide important information on various measures for ex-
of internal fluctuations arising from the fact that the popula- tiction. We take a different approach to the problem, our
tions are finite and discrete has of course also been recogsierest lying in an analytic formulation of the problem of
population equations have been obtained from an appropriaigand, an analytic approach necessarily requires a more nar-
expansion of a master equatigsl. Writing the logistic equa-  row focus on a particular question, and therefore requires
tion in appropriately rescaled form, one would have with  some restriction as to the range of issues that we can address.

=X/ and 7= ut, On the other hand, analytic results may provide insights that
are difficult to obtain in purely numerical work.
dy Our specific question arises from the following situation.
E:Y(l_YH‘WY(l_Y)g(t)- 3) Suppose that a population lives in a one-dimensional

bounded refuge with favorable conditions for life, while out-

The parameterr is also determined by the rates that deter-sfide of the refuge the co_nditions arelextremgly harsh. Aques-
mine «. Note that the fluctuations in Eq2) and (3) are  tion that has been considered prominently in the mathemati-
multiplicative, thus assuring that=0 is an absorbing state. C@l litérature is that of the critical size; of such a refuge

If this were not sde.g., if there were additive fluctuations that .W'" guarantee _the survival of.the populatlm,15,16, .
fluctuation would be able to create a population from nothin hat is, the critical size beyond which the extinction probabil-

(and might even lead to negative populatiprs case not ty vanls_hes,Pext=0. This problem, and many generahz(_a\-
envisioned in any of these discussions. tions of it, have been solved, but to our knowledge existing

The per capita growth rate of the population according toanalytic soll_Jtions are based on the a§sumption Of a continu-

the deterministic logistic modél) is ous pppulatlon. We show that accounting for the dlspreteness
and finiteness of the population profoundly modifies the

1 dX known results and may reopen an array of questions for re-

o —=u—X, (4)  consideration.

X dt Our starting point is a master equation to describe the

hich clearly d ¢ % hes the stead following scenario. In a refuge of voluméwe have a popu-
V\; ItC clear yb tetcr:e;aﬁes 0 z€ro sapproa(c): is € tstheat Y lation composed of a single stream of individuals calked
staté valugu but that has a maximum -Apointihal = ypat diffuse with constant diffusion coefficier on a
was observed early on in the biological ecology literature is

) S . .~ d-dimensional latticélaterd is set to unity with lattice spac-
that this latter behavior is not descriptive of real populat|on§ng Ax. We further suppose that the individuals reproduce by

in many cases, and that in fact the per capita growth rate alsﬁ) sion (A—A-+A) with rate constantr; (sexual reproduc-

Egng‘;] tci/dgcrease W%(Ien the ﬂOpylat'qu bec%mes \(/jgry Sm?g%n complicates the equations without changing our basic
0,9 various possible mechanisms have been diScusse nclusiong they die @— ) with rate coefficientr,, and

o i 1 e Meratre, bul many of e are based o1 ey compee accoring o the reactirA—A i at
densgilt mav blay a crucigl role in opulgtion dvnamics. par- coefficient\. We suppose thatr;> 05, because otherwise
ymay play pop y P e population eventually becomes extinct with certainty. We

ticularly in questions related to extinction. also assume that the nutrients are homogeneously distributed

More recent population models have recognized the 'MS0 that the coefficients do not depend on the lattice site. The

portance of describing not only the total populations but alsomicroscopic description of the system within the refuge is

its spatial distribution, thereby getting a handle on density- . :
related issues. Perhaps the easiest way of dealing with a sp%'yen by the master equation

tial distribution is by way of reaction-diffusion equations, dP({n;};t) D
and indeed such studies in the biological/ecological context dtl =2 5 > [((np+D)P(...,n—1,
have a long historff10—16. Reaction-diffusion equations b (Ax)”

describe deterministic continuous densities. Therefore,
whereas they do deal with some of the density-dependence
issues of great importance in the assessment of extinction AN+ )niP(. .. m+1, .00

Np+21,...;0)—nP(...,nj,Ny, ...50)]
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n(ni—1)P(...,n;,...;0] p(—;,t)=p<;,t)=0. ®
+oq[(m=1)P(...,nm—=1,...)
—nP(...n,...0] For smallL the only solution to this problem as—c is
p(x,t)—0, that is, the population becomes extinct. There is
Too[(m+1)P(... m+1,...1) a critical refuge sizd_. beyond which extinction does not
occur and the population will be nonzefalbeit small.
—nP(...n, .01 (5) Sincep(x,t) is small neal ., to find this critical value it is

appropriate to linearize Eq7) around zero population den-
sity and solve the simpler equatiph5]
Here the occupation numbey is the number of individuals
at sitej and{n;}=(...,n;_1,N;,nj.1, ...) is the set of all ap(x,t) _ Fp(x.t)
occupation numbers. The indéxn the sum ranges over all o X2 +(o1=a)p(x1), ©
lattice sites andm} denotes the set of nearest neighbors. of
We choose a homogeneous initial condition given by an ungypject to the boundary conditiot8). The Fourier decom-
correlated Poisson distribution with average populaticet  position of the solution is given by
each site:

B nh P(X't)zz anpn(X,t),
P(n}:0=e"l] - (6) "
i!
252 | nm L
Outside of the refuge living conditions are assumed to be  pn(X,t)=exp | o— B DJt|sin—/—|x+ 3], (10

extremely harsh, represented by the addition of the process

A_—>® with a Ia_rge rate coefficieng. In t_he limit y—o0 _(cer- where o= o,— o5, N=12, . .., and the, depend on the

tain death outside of the refugeve can implement this con- . .. o . .
initial condition. Thus, all Fourier modes decrease to zero in

tribution by requiring thatP({n;};t) vanish whenevemn, . . . _— . .
#0, wherek denotes any site just beyond the refuge bound-tlme it and only if L<avD/s, leading to the conclusion

ary. Thus, “harshness” is implemented as a set of boundargat for these values df, pn(x,t)—0 whent e for anyn.
conditions ne can therefore conclude that the critical length of the

Although the formulation of the master equation is refuge is
straightforward, its analytic solution does not appear pos- D
sible, nor does the possibility of extracting analytic moments L= W\ﬁ
directly from the equation. Since our goal is analytic as-
sessment of the likelihood of extinction, we turn to other i ) ) . ) )
methods that offer this possibility. In Sec. Il we discuss the'hat is, the population becomes extinct with certainty. if
derivation of a stochastic Langevin equation whose moments-Lc and it certainly does not become extinctlif-L (in
can be related to those of the fluctuating population defact, the Fourier components grow without bound in this
scribed by the master equation. In Sec. Il we present criteri§aS€, but the linearized equation is then no longer yalid
for survival or extinction. In this section we discuss whether This result, and extensions of it, have been known for more
a refuge can be made sufficiently large to make extinctiofhan fifty yearg10], and has served as a background for the
unlikely. A summary of our results and some directions fordesign and analysis of refuges. Note that the linearization

future research are presented in Sec. IV. argument that leads to E¢) is valid for any nonlinearity
that can be neglected near extinction in K@), and that

therefore the resulting.. is obtained not only for this spe-

11

Il. MODEL cific model[15].
A. Review of the traditional mean field model
It is well known that the continuurtmean fieldl descrip- B. Inclusion of internal fluctuations
tion of the local concentrationp(r,t) is the Fisher- The above mean field analysis does not take into account
Kolmogorov-Petrovsky-PiscunoKPP equation[19] the effect of the fluctuations associated with the fact that the
ap(r.t) population is really discrete and finite. To do this short of
Pt Iving the full master equatio(which seems impossibl
=DV2p(r,t)+(o;— rt)—ap(r,t)2, (7) Soving quatiotwr P £
ot p(nD+(a1=02)p(hh=Ap(rh%  (7) one must formulate a generalization of the FKPP model that

takes the resulting fluctuations into account. Such generali-
which has been the phenomenological starting point in a&ations exist in the literature in other contexts. In particular,
huge number of problems in physics, chemistry, and biologyon the basis of a beautiful theory first proposed by [24],
In one dimension and with the refuge extending inside thedurther elucidated by Pelifi21], used for the study of critical
interval [ —L/2,L/2], the equation is to be solved subject to phenomena associated with bulk transitions in reaction dy-
the boundary conditions namics[22], explicitly applied to a reaction-diffusion front
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problem by Pechekin and Leving3], and subsequently The steps that we do not repd&2,23 show that this

used in a number of other contexts related to Fisher wavesecond-quantized theory can be expressed in terms of a path

(see, e.g., Refl24]), one arrives at a stochastic differential integral. Furthermore, from this path integral one can derive

equation for a field whose moments can be related to those @f “classical” action from which one can in turn derive the

the population in the original master equation. The connecmean field continuum equation E€). If one concentrates

tion comes about as follows. The master equation(BEgcan  on the path integral itself instead of moving on to the clas-

be projected onto a problem in quantum field theory by thesical action, one can show an equivalence between the mas-

construction of an adequate Fock space. Since this calculéer equation and the following Langevin equati®2,23:

tion has been performed many times in the literature we only D)

indicate some of the main steps. A detailed review of the  d¥(r,t

procedure can be found in RQQ%]. ot =DV2Y(r,0) +(a1= o) ¢(r,) = Ay*(r,0)
Consider the following operator algebra:

+\/2[0'11//(I‘,'[)—)\(/fz(r,t)]f(r,t), (19)

where &(r,t) is Gaussian white noise with mean and corre-
wherea;, a; are destruction and creation operators and thdation given by[25]:
square brackets denote the commutdfd]. A state vector
can be defined as (&(r,1))=0, (20)

(E(rDE(r t))=o(t—t")s(r—r"). (21)

The multiplicative noise in Eq19) mustbe interpreted ac-

where P(ny.n,, ... :1)=P({n;}.t) is the solution of the ﬁg:(;mg to Ita A number of crucial points must be stressed

master equation, and the sum is performed over all possible ( ) . . .
. . . . 1) The fieldy(r,t) is notthe population. In fact, by itself
configurations of thén;}. The state vector obeys the imagi- it is not a physical quantity in this problem. Only itso-

nary time Schrdinger equation mentsare related(exactly to those of the populatiofisee

dlgv) below. . .

———=—H|¥(1)), (14) (2) Becausey(r,t) is not a population, the fact that the

dt noise in Eq.(19) can be imaginary and the value ¢fin
general complex is not a difficulty. Indeed, these features
simply emerge as a consequence of the exact mathematical
; correspondence between momentg/@nd of the population

|[p()=e""](0)). (19 p and have not been introduced extraneously.

(3) The fluctuationsé(r,t) are multiplicative, Gaussian,
and & correlated, a result that emerges from the derivation
(i.e., it is already inherent in the master equatiand is in no
HZE _ D E afr(am_ai)_)\(l_a%)a%aZ way an additional ad hoc assumption. Any modification of

i (Ax)2 fmy o these fluctuations, even their interpretation, would amount to
a modification of the original master equation and would
therefore have to be handled with great caution.

The field ¢ is the complex eigenvalue of the destruction
operator, so one can relate its moments to the moments of the

Note that we recover Eq5) by substituting Egs(13) and population density using the commutation relations @Q)
(16) into Eq. (14). and the property of the Glauber stat§a”=(S|. For the

One introduces the Glauber state as the projection statefirst two moments we have

[ai,a] =6, [a.a]=0, [a'.,a']=0, (12

|z,/;(t)>={% P(ny,n,, ... ;ta, Ma, ... [0), (13)

whose formal solution is

In our case thénon-hermitian Hamiltonian is

+oi[1-a']a a—o,(1—a )a|. (16)

ﬁ (p(r.0)=(n)=(a"a;)=(Slaaiy(1))
S|=(0|]] e*. 1
S=olL ”) = (Sfay D) = ()= ((r.1),
(22)
The expected values of observablag{n;}) can then be (p2(r,1))=(nin)=(a a;a"a))=(a"a a;a;+aa)
written as
=(Sla"%af+a"aly(t))
<A<t>>={;_} A{NHP({n}D=(SAe™ " 4(0)), =(Slaf|y(t)) +(Sla| y(t))
(18 = (@) + (@)= (y2(r,0)) + (s(r,b).
whereA is the operator obtained by replacing everyn the  Higher moments can also be calculated following this proce-
function A({n;}) by the number operatar,=a;" a; . dure. Here the lattice siteis associated with the volume
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(Ax)9 around point and we have seix=1 for economy of JP(X,t) )

notation. These exact moment relations are the crucial math- — gg PV XD+ 0d(X,)+ V201X DX, 1).
ematical connection that makes analytic conclusions pos- (24)
sible.

FKPP equation of the form

a(p(x,1) PP(h(x,1)
<at >:D <(9X2 >Jr<f<l,//(x,t)>, (25)

ap(x.t) _ Fp(x,t)

o P +o1p(X,t) = Ap?(X,t)

which is the same equatidiqg. (9)] that we solved for the
deterministic case. Sincgy(x,t))={p(x,t)), we have the
same boundary conditions as in H§). Solution(10) is a
cannot represent the population density either since it doesum of exponentials that all decay wher<L;, and so the
not allow fluctuations around the equilibrium population population is smaller than any finite designated value at a
densityp= o, /\ because the population is real, while thesefinite time. Again, this is an upper bound for the solution in
fluctuations do not vanish in the original discrete systemthe presence of competition, so it is indeed appropriate to
However, a connection between E@3) and the original deal with the system near extinction since we know that such
master equation Eq5) without the death process has re- a state will be reached in a finite time.
cently been elaboratd@]. This connection is different from Near extinction one can show directly from the master
the one presented above involving the stochastic equatioequation(5) that the competition terrfthe term proportional
(19). to \) can be neglected. As a result, in this limit the contribu-
tions A2 in the stochastic equatiofi9) can be neglected,
and to find the critical refuge size one again only needs to
lll. EXTINCTION PROBABILITY deal with the simpler Langevin equati¢®4) and the asso-
A. Finite extinction probability ciated mean value equatig®5). We can thus immediately

. . .. conclude that folL<L. the mean value of the population
The mean field model for the refuge population perICtSdensity is zero, that is, that extinction is certain. Since

certain extinction if the refuge size<L. and certain sur- ((x,0))=(p(x,1))>0 for L>L,, this in turn implies that
vival if L>L. In this section we show that the fluctuations g inction is certain if and onfy’ i <L. This. however
Cc* L 1

destroy this certainty of survival, that is, that survival is in yoas not tell us whether or not the extinction probability is

fact never guaranteed. zero forL>L, (as predicted in mean field thegryndeed,

.".1 the bi(_)logical Iitera_ture one encounters the concept of Rve now show thathe extinction probability is greater than
minimum viable populatiofi7,17]. There are some variations .. tor any finite length of the refuge

in its definition, but one that seems to be widely accepted is It is fairly obvious thatP,,, does not vanish if one has a
that a minimum viable population is the smallest isolate inite popuiation and thus :(nonzero probabiligibeit per-
population having a 99% chance of remaining extant forhaps sma)l of a total extinction event. We will place this
1000 years despite the presence of foreseeable fluctuationg,iement on a more formal footing. However, an arbitrarily

Clearly one can vary the two numbers that appear in thig, o extinction probability is not necessarily very important
criterion, and one cert.alnlly must fqr the myriad Species thaEince in most design problems one deals with at least some
are currently near extinction, but, in any case, it involves § o rainties. It is therefore useful to establish a criterion as

probability of survivalin afinite period of t'imeWe Wi,Sh 0 5 what constitutes a non-negligible extinction probability
make clear at the outset that our analytic theory is not yel 4\ hat the minimal size* of the refuge must be to insure

developed to the point of being able to handle finite timesa probability smaller than this. Clearly,* =L.. We wil

%stablish such a criterion and show tiidepending on pa-
rameter valuesthe sizeL* may be much larger than, and
even infinite.

First, to establish the obvious fact that fluctuations lead to
a nonzero extinction probability even fae>L ., let us sup-
pose that we begin with an infinite refuge and exclude death
eventsA— J altogether. The population inside an interval of

+2[op(x,H) = NpA(X,D]EXD) (29

sort. Instead, the theoriike the mean field prediction stated
above deals only with steady state probabilities.

That extinction is certain fok <L is most easily shown
(as is done belowby starting with the systemear extinc-
tion and exploring the conditions that lead from there to
certain extinction. First, though, one might question whethe

the population achieves a “near-extinction” state in a 1Em'telengthL of this infinite refuge is then greater than or equal to

time. This is easily answered in the affirmative by noting thatthe population inside our actual finite refuge of lenptfThe
the population in the absence of competition is never IOWebopulation density inside the finite interval of the infinite

than the population in the presence of competition, that is . o . L
that the model with=0 leads to a solution that is an upper tefuge in the steady state is given by the Poisson distribution

bound to our problem. In the absence of competition the
contributions\ 2 in the stochastic equatidil9) are absent, P({nh)=e" 201/)\1_[
and the description reduces to the simpler Langevin equation ! [

(20'1/)\)ni

n;! ’ (26)
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so that the probability of an unbounded realization of the (P(x,0))2= (2 (X, 1))+ (p(x,1)) = ((x,1))2. (29
process is zero. Since the integral of a bounded function over

a bounded interval is bounded, we can conclude that the tot&rom Eq.(19) we obtain the following equation linking the
population inside the interval is finite. Therefore so is thefirst and second moments ¢t

total population inside the finite refuge. Furthermore, with

s-correlated Gaussian fluctuatiof6,27] any fluctuation oc- Hp(x.0) _ DV2(p(x, 1))+ o (1))~ M(#2(x, 1)),
curs in afinite mean time, and therefore a fluctuati@ven if at ' ’ ’
rare caused by the reactioA—& could kill the entire (30

pg!?.lt"at'?n 'tf? atflnltg t|me.tWeththus Condlﬁde t\r;:igelpmb'lnserting Eq.(29) for the critical field then results in a closed
ability of extinction is greater than zero whene . In equation for the first moment:

the case of an unbounded refuge the mean value of the popu-

lation density iso/A and is homogeneously distributed, so a Hp(x,1)) 5
local fluctuation cannot kill the population. We can summa- — DV (P(x,0)) + (T + M) {(Ph(x,1))
rize these conclusions as follows:
— 20 (P(x,1))2. (31
Pey=1 if L<Lg,
Note that the apparent irrelevance of the fluctuations in Eq.
0<Peu<l if L.<L<o, (27 (19 other than their mean value in arriving at E§1) is
illusory since the relatioi22) and consequently E§29) are
Pexi—0 when L—oo. intimately connected to the precise form of the fluctuations.

In the steady state E¢31) reduces to a classic boundary
We can furthermore state that since the number of individuvalue problem
als in the population increases as the length of the refuge 5
increases, the probability of extinction decreases monotoni- d(g(x))
cally and continuously a& increases continuously. Thus, dx?
consideration of the internal fluctuations drastically changes
the picture;now there is no finite size of the refuge that canwith boundary conditions as in E¢9). To find L* we mul-
be considered absolutely safe for the populatibiowever, tiply Eq. (32) by d(¢(x))/dx and rewrite the result as
we have not been able to derive the explicit functional de- 5
pendence oP,,; on the size of the refuge. i E(dW(X))) + (a+h) W,(X))z_z_)\w(x)):%} -0
dx| 2 dx 2 3 '

(33

+(o+N){(P(X)) = 2N (P(x))*=0, (32

B. An alternative criterion for extinction

As an alternative to such an explicit full solution, we pro- from which it follows that
pose a criterion for deciding when a population is under sub- 2
stantial risk of extinction, and calculate the critical siz®e of E « ¢(X)>) + (o+)) (h(x))2— 2_A<,/,(X)>3: const.
the refuge associated with this criterion. Suppose that a 2 dx 2 3
population densityp(x) in a refuge of lengthL described (34)

according to the mean field equatig¢r) has a maximum  symmetry considerations show that the solution of this prob-
steady state densityl>0. Clearly,L=L.. The maximum |em has only one maximum at=0 [28], and since the first

occurs atx=0, in the middle of the refuge, that is, gerivative of the solution should vanish at any maximum, we

population that includes the fluctuations, and compare the

average population densitys(x))={(p(x)) with the deter- D [d(g(x))\? (o+N\) , 2\ 3
ministic result p(x). This average distribution also has a 217 dx + 2 ((x)) _?W(X»
maximum atx=0 (see beloy, (#(x=0))=M". We define

the critical sizeL* as the refuge length associated with two _(o+N) M2 2_7\M3 (35)
conditions:(1) the deterministic and stochastically obtained 2 3 '

maxima are equaM =M"'; and(2) the standard deviation of ) ) ) ) ) ) )
the stochastic population density is equal to its mean at eacphereM is the maximum mtrqduced earlier. Since this maxi-
x. Clearly, our idea is that a population density whose stanMum occurs ak=0, we can integrate Eq35) for x>0 to
dard deviation everywhere equals its mean is in danger d?Ptain
extinction, and we call this a “critical population.” It is not X
clear a priori that these conditions can be simultaneously
satisfied, but in fact it turns out that they can. The second \F M dz

2 f ()

condition above says that for the critical population
\/(o-—i—)\) " 2\ " (+N) , 2\

(p(x,1))2=(p*(x,1)) = (p(x,1))?, (28) 5 3 5 3

or, equivalently, in terms of the fielg, one for which (36)
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Taking into account that the population vanishes at the edge¢ 10

of the refuge we can obtain the value of the lengthf the

refuge as a function of the maximum of the average popula-

tion density:
M dz
L=+v2D
0 (o+N\) 2\ (o+N\) 2\
2_ T w3 24+ 78
2 3 2 3
(37)

With the change of variablew=2z/M and settinge=\/o
we can rewrite this relation as

o 1
—L=2
D 1+e¢

dw

fl
0 4 ¢ .
\/1—w2—— (1-w3M
3(1+e)

(39)
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FIG. 1. Left scale:/a/DL, (dotted liné and \Jo/DL* (solid
line) vs N o. Note that\o/DL.= for all values of\/c, while
L* grows monotonically up ta/o=1, where it diverges logarith-
mically. Also note that .=L* when\ =0, and that this is the only
common point of the lengths. Right scale and dashed curve: maxi-
mum M of the average population density as defined in the text vs
No.

The steady state deterministic equation obtained by settin§9@inst extinction. AL the maximumM diverges because

the left hand side of Eq.7) equal to zero is formally identi-

cal to the critical field equation Eq32) with modified pa-

no population, no matter how large, can be protected against
extinction below this length. We can obtain an analytic ex-

rameters. Since we are choosib§ as the value where the Pression forL* for small values of\/o
maximum of the critical average population density is equal

to the maximum of the mean field population density, the
mean field model provides us with a second relation between

M andL:
\/; \ﬁ 1 dw
—L=2 —f .
D gJo 2
\/1—w2— 58(1—w3)|v|

The simultaneous solution of Eq88) and(39) then leads to
the value ofL* (and incidentally also oM).
The two equations reduce to the same equation=D

(39

\F "= M) 40
We can also see analytically that® must diverge when
NMo=1: at this point the two integrals fdr can only be
equal if they both vaniskwhich they do notor if they both
diverge(which they do wherM =1).

142
20'0

IV. CONCLUSIONS

The main point of this paper has been to assess the effects
of internal fluctuations inevitably associated with finite dis-

(¢=0), and in this cas&* =L, andM diverges. The reason crete populations on the prediction of the risk of extinction
for the equality is that when the nonlinearity is not presentof a population in a refuge as a function of the size of the

the total steady state population is unboundttermody-

refuge. In the usual mean field deterministic model in one

namic limit) and there are no fluctuations. In general, the twodimension, the population is treated as a continuum and one
simultaneous equations can only be solved numerically, andbtains a critical refuge length. such that the population

the results are shown in Fig. 1.

becomes extinct with certainty if the length of the refuge is

A number of important points should be noted about ourbelow this critical valuel. <L ., whereas survival is certain

results. FirstL* is indeed greater thah. except for the
single trivially coincident point whem.=0, that is, when

if L>L.. It is well known that, as predicted by the mean
field approach, the smaller the area occupied by a population,

there is no competition. Thus, according to our criterionthe lower are its chances for surviy@B]. However, it is also
whereby the risk of extinction is substantial when the mearknown that a small size or low density of a population may
and standard deviation of the population density are equahlso increase its chances of extinction, a feature that mean
one must increase the size of the refuge considerably beyorfigld theories do not capturgd]. Our approach deals with
the deterministic refuge size to avoid this risk. Indeed, wherboth of these features simultaneously through the interplay
Mo=1 the sizeL* diverges logarithmically and the popu- of discreteness and nonlinearity in a spatially distributed

lation density becomes uniform at densityA. As A grows

model. We have argued that the discreteness of the popula-

beyondo it is no longer possible to avoid considerable risktion and its finite size make fluctuations unavoidable, and
of extinction for any finite size of the refuge. The increase inhave shown that whereds<L. still guarantees extinction,

M with decreasing-* can be understood by moving from L>L_. by no means guarantees survival. While we have not
right to left in the figure: decreasing critical refuge size isbeen able to find an analytic expression for the survival prob-

associated with the requirement of a larger populatemd
hence a larger maximum population denkity insure

ability as a function ot., we have focused on a sensible risk
criterion for which we have found explicit results up to

021908-7



ESCUDERCQet al. PHYSICAL REVIEW E 69, 021908 (2004

guadrature. Comparing deterministic and average stochastguare or a cubic refuge, or the radiRsof a circular or
population densities with a given maximuvhy we have cho- spherical one, or even an appropriate length measure of a
sen to define a new critical lengtl¥ as one for which the more complicated shapstill diverges when\/o=1. This
mean of the population density and its standard deviation arkatter divergence can easily be shown from the equations in
equal, reasoning that this variability implies considerablethis paper.
susceptibility of the population to extinction. We have shown Many questions still remain to be answered. For instance,
thatL*=L. and, most importantly, thdt* diverges when an exact result for the extinction probability would clarify
the competition rate coefficient grows beyond that of the netany issues. So would the ability to obtain time dependent
growth rate of the population. For some parameter values golutions so as to deal with a more realistic criterion of sur-
is possible to protedalbeit not with certaintya population  vival over a long but finite time interval. Also, we have only
from extinction by placing it in a sufficiently large refuge, considered the simplest most generic situation, whereas real
one that is certainly larger than that predicted by the standarslystemgparticularly ones not designed in the laborajaye
mean field model. For other parameter valesparticular, likely to be seriously affected by many complicating factors.
when competition is too stromgit is not possible to evade Examples include the presence of convection, different
the risk of extinction(at least according to our criteripby  boundary conditions, and spatial inhomogeneities inside the
enlarging the size of the refuge. Clearly, these results haveefuge. Similar questions can and should be posed when
serious implications for the expectations in the design oimultiple species are present. In any case, in light of our re-
refuges. sults it would seem prudent to reconsider other critical size
Real physical refuges are not one dimensional, and so orgopulation problems to assess the effects of discreteness. As
might question the applicability of our results to them. Thiswe have shown in the simple model considered here, the
is an issue that has been addressed broadly in the literatucensequences can indeed be profound.
(see, e.g., the discussion in REf5]) because so many math-
ematlcal models are one-dlm_en5|or_1al. The crltézl‘_é) cer- ACKNOWLEDGMENTS
tainly hold for two and three dimensions as well, with a finite
critical volume V. that depends on geometry. If only one  The authors gratefully acknowledge input from J. L.
dimension of a refuge is small, e.g., a very long strip of landCardy. C.E. is grateful to the Department of Chemistry and
of width L, then our analysis holds exactly as presented wittBiochemistry of the University of California, San Diego for
the extinction criterion applicable to the width. The critical its hospitality. This work has been partially supported by the
radius R, has been explicitly evaluated in terms of BesselEngineering Research Program of the Office of Basic Energy
functions for a circular geometfyi0]. If a refuge is finite in ~ Sciences at the U. S. Department of Energy under Grant No.
two directions or even three, e.g., a rectangular or circular obE-FG03-86ER13606, by a grant from tiNew Del Amo
oval geometry, the detailed curves in Fig. 1 will be different, Program(U.C.M.), by the Ministerio de Educaaioy Cultura
but it will still be the case thatl) the fluctuations lead to the (Spain through Grant Nos. AP2001-2598 and EX2001-
requirement of a larger refuge than predicted by mean fiel®2880680, and by the Ministerio de Ciencia y Tecnaog!
theory, and(2) the critical refuge sizé€be it the sideL of a  (Spain, Project No. BFM2001-0291.

[1] 3.D. Murray, Mathematical Biology 2nd ed.(Springer, New  [10] J.G. Skellam, Biometrik&8, 196 (1951).

York, 1993. [11] N.F. Briton, Reaction-Diffusion Equations and Their Applica-
[2] G. Abramson and V.M. Kenkre, Phys. Rev. @b, 011912 tions to Biology(Academic Press, New York, 1986
(2002. [12] R.S. Cantrell and C. Cosner, J. Math. BiaB, 315(1991).
[3] F. Courchamp, T. Clutton-Brock, and B. Grenfell, Trends Ecol.[13] O. Diekmann and N.M. Temm&|onlinear Diffusion Problems
Evaol. 14, 405(1999. (Mathematisch Centrum, Amsterdam, 1976
[4] http://edis.ifas.ufl.edu/BODY_CRO006. [14] P.C. Fife,Mathematical Aspects of Reacting and Diffusing Sys-
[5] W. Horsthemke and R. LefeveNoise-Induced Transitions: tems Lecture Notes in Biomathematics Vol. 2&pringer-
Theory and Applications in Physics, Chemistry, and Biology Verlag, New York, 1978
(Springer-Verlag, Berlin, 1984 [15] D. Ludwig, D.G. Aronson, and H.F. Weinberger, J. Math. Biol.
[6] C.R. Doering, C. Mueller, and P. Smereka, Physicz28, 243 8, 217(1979.
(2003, and references therein; and msolved Problems of [16] A. Okubo, Diffusion and Ecological Problems: Mathematical
Noise and Fluctuations: UPoN 2002edited by S. M. Models Biomathematics Vol. 10(Springer-Verlag, Berlin,
Bezrukov, AIP Conf. Proc. No. 668AIP, New York, 2003, p. 1980.
223. [17] K. Sznajd-Weron, Eur. Phys. J. B5, 183(2000.
[7] M.L. Shaffer, BioScienc&1, 131(1981). [18] K. Sznajd-Weron and M. Wolaki, Eur. Phys. J. B5, 253
[8] W.C. Allee et al, Principles of Animal EcologySaunders, (2002.
Philadelphia, 1949 [19] R.A. Fisher, Ann. Eugenicg, 355 (1936; A. Kolmogorov, |.
[9] P.E. OdumFundamentals of Ecolog§Saunders, Philadelphia, Petrovsky, and N. Piscunov, Mosc. Univ. Bull. Math.1A 1
1959. (1937.

021908-8



EXTINCTION IN POPULATION DYNAMICS PHYSICAL REVIEW E69, 021908 (2004

[20] M. Doi, J. Phys. A9, 1479(1976. and ApplicationgSpringer-Verlag, Berlin, 1984

[21] L. Peliti, J. Phys(Pari9 46, 1469(1985. [27] K. Lindenberg and V. Seshadri, J. Chem. Phy4, 4075

[22] J.L. Cardy and U.C. Tber, J. Stat. Phy<€0, 1 (1998, and (1979; K. Lindenberg and B.J. West, J. Stat. Phyg, 201
references therein. (1986.

[23] L. Pechenik and H. Levine, Phys. Rev.58, 3893(1999. [28] B. Gidas, W.M. Ni, and L. Nirenberg, Commun. Math. Phys.

[24] E. Moro, Phys. Rev. Leti87, 238303(2001). 68, 200(1979.

[25] The effects of some correlated initial conditions are discussecﬂzg] R.H. MacArthur and E.O. WilsoriThe Theory of Island Bio-

in J. Cardy and P-A. Rey, J. Phys.32, 1585(1999. _ geography(Princeton University Press, Princeton, NJ, 1967
[26] H. Risken,The Fokker-Planck Equation: Methods of Solution

021908-9



