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Extinction in population dynamics
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We study a generic reaction-diffusion model for single-species population dynamics that includes reproduc-
tion, death, and competition. The population is assumed to be confined in a refuge beyond which conditions are
so harsh that they lead to certain extinction. Standard continuum mean field models in one dimension yield a
critical refuge lengthLc such that a population in a refuge larger than this is assured survival. Herein we extend
the model to take into account the discreteness and finiteness of the population, which leads us to a stochastic
description. We present a particular critical criterion for likely extinction, namely, that the standard deviation of
the population be equal to the mean. According to this criterion, we find that while survival can no longer be
guaranteed for any refuge size, for sufficiently weak competition one can make the refuge large enough
~certainly larger thanLc) to cause extinction to be unlikely. However, beyond a certain value of the competi-
tion rate parameter it is no longer possible to escape a likelihood of extinction even in an infinite refuge. These
unavoidable fluctuations therefore have a severe impact on refuge design issues.

DOI: 10.1103/PhysRevE.69.021908 PACS number~s!: 87.23.Cc, 05.65.1b, 05.40.2a
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I. INTRODUCTION

Population dynamics is a venerable and important sub
that has been studied thoroughly for decades@1#. Under-
standing ecological systems is interesting in itself, as
applications of this understanding to a large variety of i
portant practical problems such as, for example, the sp
of a virus or other disease over a host population@2#, and
strategies for the elimination of pests or for the protection
endangered species@3#. These examples point to the impo
tance of the study of the extinction of populations and of
conditions that lead to extinction as well as those that pro
against it.

In this paper we deal with the particular issue ofextinc-
tion. It is well documented, and a cause of serious ecolog
concern, that a large number of species become extinct
year, and the literature on this topic is vast. To arbitrar
pick a few examples, the Florida Fish and Wildlife Cons
vation Commission maintains the state list of 117 anim
currently threatened with extinction. The Florida Departm
of Agriculture and Consumer Services maintains a sim
list of 413 plants. Each state maintains such lists, as does
U.S. Fish and Wildlife Services@4#. In most of these cases
the fear of imminent extinction is intimately tied to the sm
number of extant individualsand to the fact that their habi-
tats are increasingly confined to smaller areas due to in
trialization and development. In other words, while large u
expected catastrophic events are at times responsible fo
extinction of species~most every child is aware of som
version of the dinosaur extinction story!, far more serious are
the almost daily extinctions caused by the inevitable fluct
tions associated with small numbers in restricted habit
Our goal in this work is to provide ananalyticassessment o
the effects of these inevitable fluctuations and of the fe
bility ~or not! of designing habitats that are sufficiently larg
to provide assurance against extinction. Our interest is no
provide specific numbers for particular species, nor even
1063-651X/2004/69~2!/021908~9!/$22.50 69 0219
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pick the most realistic and complete description that wo
inevitably require numerical solution. Rather, we focus on
simplified yet generic model from which we can extract ne
information ~and some rather unexpected results! analyti-
cally.

The oldest population models pose relatively simple r
equations for a total population, e.g., those of the logis
variety, and typically take basic events such as births
deaths into account through appropriate rate processes. A
neric example is the logistic form@5,6#

dX

dt
5mX2X2, ~1!

where X is a measure of the size of a population and
therefore nonnegative. The parameterm is the difference be-
tween birth and death rates of the population, andX50, m
are its steady states. All that is required for survival is th
m.0. This model has had enormous impact in the biologi
as well as the physico-chemical literature.

Fairly early on, the possible role of fluctuations in the
models was recognized and included by way of additio
fluctuating terms, often in a fairly ad hoc~but at times quite
appropriate! manner. The sources of the fluctuations includ
in this way in the earliest models were associated with va
tions in theexternal environment in which the population
evolves, and often appeared as a fluctuation in the param
of the equations. For example, a fluctuating birth and
death rate in the logistic form might lead to the descripti
@5#

dX

dt
5mX2X21j~ t !X, ~2!

where j(t) is a zero-centered Gaussian white noise. Ot
sources of externally driven stochasticity such as those a
©2004 The American Physical Society08-1
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ing from natural catastrophes and from changes in gene
quencies@7# have also been recognized.

We make a strong distinction between externally induc
stochasticity caused by environmental and other fac
whose origin has nothing to do with the numbers of individ
als in the population~and are in this sense controllable e
ternally!, from fluctuations that arise from the fact that pop
lations are finite and discrete. Theseinternal fluctuations can
decrease only if the population increases, but this can in
only happen if the deterministic parameters of the system
changed. For example, for the logistic model~1! the nonzero
steady state populations isX5m. Internal fluctuations are
associated with the fact thatm is finite ~see below!, a fact that
can not be changed unless one can changem itself. The role
of internal fluctuations arising from the fact that the popul
tions are finite and discrete has of course also been re
nized, and the associated stochastic contributions to
population equations have been obtained from an approp
expansion of a master equation@6#. Writing the logistic equa-
tion in appropriately rescaled form, one would have withY
5X/m andt5mt,

dY

dt
5Y~12Y!1sAY~12Y!j~ t !. ~3!

The parameters is also determined by the rates that det
mine m. Note that the fluctuations in Eqs.~2! and ~3! are
multiplicative, thus assuring thatX50 is an absorbing state
If this were not so~e.g., if there were additive fluctuations!, a
fluctuation would be able to create a population from noth
~and might even lead to negative populations!, a case not
envisioned in any of these discussions.

The per capita growth rate of the population according
the deterministic logistic model~1! is

1

X

dX

dt
5m2X, ~4!

which clearly decreases to zero asX approaches the stead
state valuem but that has a maximum asX→0. A point that
was observed early on in the biological ecology literature
that this latter behavior is not descriptive of real populatio
in many cases, and that in fact the per capita growth rate
tends to decrease when the population becomes very s
@3,8,9#. Various possible mechanisms have been discus
for this in the literature, but many of them are based on
recognition that not only the total population but also
densitymay play a crucial role in population dynamics, pa
ticularly in questions related to extinction.

More recent population models have recognized the
portance of describing not only the total populations but a
its spatial distribution, thereby getting a handle on dens
related issues. Perhaps the easiest way of dealing with a
tial distribution is by way of reaction-diffusion equation
and indeed such studies in the biological/ecological con
have a long history@10–16#. Reaction-diffusion equation
describe deterministic continuous densities. Therefo
whereas they do deal with some of the density-depende
issues of great importance in the assessment of extinc
02190
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probabilities, they do not in general include the other feat
discussed above that is also of great consequence in t
problems, namely, the effect of fluctuations. These fluct
tions can again arise from a variety of internal and exter
sources. As noted earlier, herein we address the problem
internal fluctuations.

Populations are composed of discrete numbers of in
viduals. That populations are not continuous is particula
relevant at low densities and at low total populations. T
importance of these effects has been recognized and
lyzed in various ways in recent years, most prominently
works that deal with a master equation description of
population instead of a reaction-diffusion model@17,18#.
These master equations are typically solved numerically
provide important information on various measures for e
tinction. We take a different approach to the problem, o
interest lying in an analytic formulation of the problem
internal fluctuations and their consequences. On the
hand, an analytic approach necessarily requires a more
row focus on a particular question, and therefore requ
some restriction as to the range of issues that we can add
On the other hand, analytic results may provide insights t
are difficult to obtain in purely numerical work.

Our specific question arises from the following situatio
Suppose that a population lives in a one-dimensio
bounded refuge with favorable conditions for life, while ou
side of the refuge the conditions are extremely harsh. A qu
tion that has been considered prominently in the mathem
cal literature is that of the critical sizeLc of such a refuge
that will guarantee the survival of the population@11,15,16#,
that is, the critical size beyond which the extinction probab
ity vanishes,Pext50. This problem, and many generaliz
tions of it, have been solved, but to our knowledge exist
analytic solutions are based on the assumption of a cont
ous population. We show that accounting for the discreten
and finiteness of the population profoundly modifies t
known results and may reopen an array of questions for
consideration.

Our starting point is a master equation to describe
following scenario. In a refuge of volumeV we have a popu-
lation composed of a single stream of individuals calledA
that diffuse with constant diffusion coefficientD on a
d-dimensional lattice~laterd is set to unity! with lattice spac-
ing Dx. We further suppose that the individuals reproduce
fission (A→A1A) with rate constants1 ~sexual reproduc-
tion complicates the equations without changing our ba
conclusions!, they die (A→B) with rate coefficients2, and
they compete according to the reactionA1A→A with rate
coefficient l. We suppose thats1.s2, because otherwise
the population eventually becomes extinct with certainty.
also assume that the nutrients are homogeneously distrib
so that the coefficients do not depend on the lattice site.
microscopic description of the system within the refuge
given by the master equation

dP~$ni%;t !

dt
5(

i
H D

~Dx!2 (
$m%

@~nm11!P~ . . . ,ni21,

nm11, . . . ;t !2ni P~ . . . ,ni ,nm , . . . ;t !#

1l@~ni11!ni P~ . . . ,ni11, . . . ;t !
8-2
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EXTINCTION IN POPULATION DYNAMICS PHYSICAL REVIEW E69, 021908 ~2004!
2ni~ni21!P~ . . . ,ni , . . . ;t !#

1s1@~ni21!P~ . . . ,ni21, . . . ;t !

2ni P~ . . . ,ni , . . . ;t !#

1s2@~ni11!P~ . . . ,ni11, . . . ;t !

2ni P~ . . . ,ni , . . . ;t !#J . ~5!

Here the occupation numbernj is the number of individuals
at sitej and$nj%[( . . . ,nj 21 ,nj ,nj 11 , . . . ) is the set of all
occupation numbers. The indexi in the sum ranges over a
lattice sites and$m% denotes the set of nearest neighbors oi.
We choose a homogeneous initial condition given by an
correlated Poisson distribution with average populationn at
each site:

P~$ni%;0!5e2n)
i

nni

ni !
. ~6!

Outside of the refuge living conditions are assumed to
extremely harsh, represented by the addition of the proc
A→B with a large rate coefficientg. In the limit g→` ~cer-
tain death outside of the refuge!, we can implement this con
tribution by requiring thatP($ni%;t) vanish whenevernk
Þ0, wherek denotes any site just beyond the refuge bou
ary. Thus, ‘‘harshness’’ is implemented as a set of bound
conditions.

Although the formulation of the master equation
straightforward, its analytic solution does not appear p
sible, nor does the possibility of extracting analytic mome
directly from the equation. Since our goal is ananalytic as-
sessment of the likelihood of extinction, we turn to oth
methods that offer this possibility. In Sec. II we discuss
derivation of a stochastic Langevin equation whose mome
can be related to those of the fluctuating population
scribed by the master equation. In Sec. III we present crit
for survival or extinction. In this section we discuss wheth
a refuge can be made sufficiently large to make extinct
unlikely. A summary of our results and some directions
future research are presented in Sec. IV.

II. MODEL

A. Review of the traditional mean field model

It is well known that the continuum~mean field! descrip-
tion of the local concentrationr(r,t) is the Fisher-
Kolmogorov-Petrovsky-Piscunov~FKPP! equation@19#

]r~r,t !

]t
5D¹2r~r,t !1~s12s2!r~r,t !2lr~r,t !2, ~7!

which has been the phenomenological starting point i
huge number of problems in physics, chemistry, and biolo
In one dimension and with the refuge extending inside
interval @2L/2,L/2#, the equation is to be solved subject
the boundary conditions
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,t D5rS L

2
,t D50. ~8!

For small L the only solution to this problem ast→` is
r(x,t)→0, that is, the population becomes extinct. There
a critical refuge sizeLc beyond which extinction does no
occur and the population will be nonzero~albeit small!.
Sincer(x,t) is small nearLc , to find this critical value it is
appropriate to linearize Eq.~7! around zero population den
sity and solve the simpler equation@15#

]r~x,t !

]t
5D

]2r~x,t !

]x2
1~s12s2!r~x,t !, ~9!

subject to the boundary conditions~8!. The Fourier decom-
position of the solution is given by

r~x,t !5(
n

anrn~x,t !,

rn~x,t !5expF S s2
n2p2

L2
D D tGsinFnp

L S x1
L

2D G , ~10!

wheres5s12s2 , n51,2, . . . , and thean depend on the
initial condition. Thus, all Fourier modes decrease to zero
time if and only if L,pAD/s, leading to the conclusion
that for these values ofL, rn(x,t)→0 whent→` for anyn.
One can therefore conclude that the critical length of
refuge is

Lc5pAD

s
. ~11!

That is, the population becomes extinct with certainty ifL
,Lc and it certainly does not become extinct ifL.Lc ~in
fact, the Fourier components grow without bound in th
case, but the linearized equation is then no longer val!.
This result, and extensions of it, have been known for m
than fifty years@10#, and has served as a background for t
design and analysis of refuges. Note that the lineariza
argument that leads to Eq.~9! is valid for any nonlinearity
that can be neglected near extinction in Eq.~7!, and that
therefore the resultingLc is obtained not only for this spe
cific model @15#.

B. Inclusion of internal fluctuations

The above mean field analysis does not take into acco
the effect of the fluctuations associated with the fact that
population is really discrete and finite. To do this short
solving the full master equation~which seems impossible!,
one must formulate a generalization of the FKPP model t
takes the resulting fluctuations into account. Such gene
zations exist in the literature in other contexts. In particul
on the basis of a beautiful theory first proposed by Doi@20#,
further elucidated by Peliti@21#, used for the study of critica
phenomena associated with bulk transitions in reaction
namics@22#, explicitly applied to a reaction-diffusion fron
8-3
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problem by Pechekin and Levine@23#, and subsequently
used in a number of other contexts related to Fisher wa
~see, e.g., Ref.@24#!, one arrives at a stochastic differenti
equation for a field whose moments can be related to thos
the population in the original master equation. The conn
tion comes about as follows. The master equation Eq.~5! can
be projected onto a problem in quantum field theory by
construction of an adequate Fock space. Since this calc
tion has been performed many times in the literature we o
indicate some of the main steps. A detailed review of
procedure can be found in Ref.@22#.

Consider the following operator algebra:

@ai ,aj
1#5d i j , @ai ,aj #50, @ai

1 ,aj
1#50, ~12!

whereai , ai
1 are destruction and creation operators and

square brackets denote the commutator@21#. A state vector
can be defined as

uc~ t !&5(
$ni %

P~n1 ,n2 , . . . ;t !a1
1n1a2

1n2 . . . u0&, ~13!

where P(n1 ,n2 , . . . ;t)5P($ni%,t) is the solution of the
master equation, and the sum is performed over all poss
configurations of the$ni%. The state vector obeys the imag
nary time Schro¨dinger equation

duc~ t !&
dt

52Ĥuc~ t !&, ~14!

whose formal solution is

uc~ t !&5e2Ĥtuc~0!&. ~15!

In our case the~non-hermitian! Hamiltonian is

Ĥ5(
i

F2
D

~Dx!2 (
$m%

ai
1~am2ai !2l~12ai

1!ai
1ai

2

1s1@12ai
1#ai

1ai2s2~12ai
1!ai G . ~16!

Note that we recover Eq.~5! by substituting Eqs.~13! and
~16! into Eq. ~14!.

One introduces the Glauber state as the projection sta

^Su5^0u)
i

N

eai. ~17!

The expected values of observablesA($ni%) can then be
written as

^A~ t !&5(
$ni %

A~$ni%!P~$ni%;t !5^SuÂe2Ĥtuc~0!&,

~18!

whereÂ is the operator obtained by replacing everyni in the
function A($ni%) by the number operatorn̂i5ai

1ai .
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The steps that we do not repeat@22,23# show that this
second-quantized theory can be expressed in terms of a
integral. Furthermore, from this path integral one can der
a ‘‘classical’’ action from which one can in turn derive th
mean field continuum equation Eq.~7!. If one concentrates
on the path integral itself instead of moving on to the cla
sical action, one can show an equivalence between the m
ter equation and the following Langevin equation@22,23#:

]c~r,t !

]t
5D¹2c~r,t !1~s12s2!c~r,t !2lc2~r,t !

1A2@s1c~r,t !2lc2~r,t !#j~r,t !, ~19!

wherej(r,t) is Gaussian white noise with mean and cor
lation given by@25#:

^j~r,t !&50, ~20!

^j~r,t !j~r8,t8!&5d~ t2t8!d~r2r8!. ~21!

The multiplicative noise in Eq.~19! mustbe interpreted ac-
cording to Itô. A number of crucial points must be stress
here.

~1! The fieldc(r,t) is not the population. In fact, by itself
it is not a physical quantity in this problem. Only itsmo-
mentsare related~exactly! to those of the population~see
below!.

~2! Becausec(r,t) is not a population, the fact that th
noise in Eq.~19! can be imaginary and the value ofc in
general complex is not a difficulty. Indeed, these featu
simply emerge as a consequence of the exact mathema
correspondence between moments ofc and of the population
r and have not been introduced extraneously.

~3! The fluctuationsj(r,t) are multiplicative, Gaussian
and d correlated, a result that emerges from the derivat
~i.e., it is already inherent in the master equation! and is in no
way an additional ad hoc assumption. Any modification
these fluctuations, even their interpretation, would amoun
a modification of the original master equation and wou
therefore have to be handled with great caution.

The field c is the complex eigenvalue of the destructio
operator, so one can relate its moments to the moments o
population density using the commutation relations Eq.~12!
and the property of the Glauber state^Sua15^Su. For the
first two moments we have

^r~r,t !&5^ni&5^ai
1ai&5^Suai

1ai uc~ t !&

5^Suai uc~ t !&5^ai&5^c~r,t !&,
~22!

^r2~r,t !&5^nini&5^ai
1aiai

1ai&5^ai
1ai

1aiai1ai
1ai&

5^Suai
12ai

21ai
1ai uc~ t !&

5^Suai
2uc~ t !&1^Suai uc~ t !&

5^ai
2&1^ai&5^c2~r,t !&1^c~r,t !&.

Higher moments can also be calculated following this pro
dure. Here the lattice sitei is associated with the volum
8-4
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(Dx)d around pointr and we have setDx[1 for economy of
notation. These exact moment relations are the crucial m
ematical connection that makes analytic conclusions p
sible.

As a side note we point out that the so-called stocha
FKPP equation of the form

]r~x,t !

]t
5D

]2r~x,t !

]x2
1s1r~x,t !2lr2~x,t !

1A2@s1r~x,t !2lr2~x,t !#j~x,t ! ~23!

cannot represent the population density either since it d
not allow fluctuations around the equilibrium populatio
densityr5s1 /l because the population is real, while the
fluctuations do not vanish in the original discrete syste
However, a connection between Eq.~23! and the original
master equation Eq.~5! without the death process has r
cently been elaborated@6#. This connection is different from
the one presented above involving the stochastic equa
~19!.

III. EXTINCTION PROBABILITY

A. Finite extinction probability

The mean field model for the refuge population predi
certain extinction if the refuge sizeL,Lc and certain sur-
vival if L.Lc . In this section we show that the fluctuation
destroy this certainty of survival, that is, that survival is
fact never guaranteed.

In the biological literature one encounters the concept o
minimum viable population@7,17#. There are some variation
in its definition, but one that seems to be widely accepte
that a minimum viable population is the smallest isola
population having a 99% chance of remaining extant
1000 years despite the presence of foreseeable fluctuat
Clearly one can vary the two numbers that appear in
criterion, and one certainly must for the myriad species t
are currently near extinction, but, in any case, it involve
probability of survivalin a finite period of time. We wish to
make clear at the outset that our analytic theory is not
developed to the point of being able to handle finite tim
and we are therefore not able to implement a criterion of
sort. Instead, the theory~like the mean field prediction state
above! deals only with steady state probabilities.

That extinction is certain forL,Lc is most easily shown
~as is done below! by starting with the systemnear extinc-
tion and exploring the conditions that lead from there
certain extinction. First, though, one might question whet
the population achieves a ‘‘near-extinction’’ state in a fin
time. This is easily answered in the affirmative by noting th
the population in the absence of competition is never low
than the population in the presence of competition, that
that the model withl50 leads to a solution that is an upp
bound to our problem. In the absence of competition
contributionslc2 in the stochastic equation~19! are absent,
and the description reduces to the simpler Langevin equa
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]c~x,t !

]t
5D¹2c~x,t !1sc~x,t !1A2s1c~x,t !j~x,t !.

~24!

The mean value ofc obeys the equation

]^c~x,t !&
]t

5D
]2^c~x,t !&

]x2
1s^c~x,t !&, ~25!

which is the same equation@Eq. ~9!# that we solved for the
deterministic case. Sincêc(x,t)&5^r(x,t)&, we have the
same boundary conditions as in Eq.~9!. Solution ~10! is a
sum of exponentials that all decay whenL,Lc , and so the
population is smaller than any finite designated value a
finite time. Again, this is an upper bound for the solution
the presence of competition, so it is indeed appropriate
deal with the system near extinction since we know that s
a state will be reached in a finite time.

Near extinction one can show directly from the mas
equation~5! that the competition term~the term proportional
to l! can be neglected. As a result, in this limit the contrib
tions lc2 in the stochastic equation~19! can be neglected
and to find the critical refuge size one again only needs
deal with the simpler Langevin equation~24! and the asso-
ciated mean value equation~25!. We can thus immediately
conclude that forL,Lc the mean value of the populatio
density is zero, that is, that extinction is certain. Sin
^c(x,t)&5^r(x,t)&.0 for L.Lc , this in turn implies that
extinction is certain if and only ifL,Lc . This, however,
does not tell us whether or not the extinction probability
zero for L.Lc ~as predicted in mean field theory!. Indeed,
we now show thatthe extinction probability is greater than
zero for any finite length of the refuge.

It is fairly obvious thatPext does not vanish if one has
finite population and thus a nonzero probability~albeit per-
haps small! of a total extinction event. We will place thi
statement on a more formal footing. However, an arbitra
small extinction probability is not necessarily very importa
since in most design problems one deals with at least s
uncertainties. It is therefore useful to establish a criterion
to what constitutes a non-negligible extinction probabil
and what the minimal sizeL* of the refuge must be to insur
a probability smaller than this. Clearly,L* >Lc . We will
establish such a criterion and show that~depending on pa-
rameter values! the sizeL* may be much larger thanLc and
even infinite.

First, to establish the obvious fact that fluctuations lead
a nonzero extinction probability even forL.Lc , let us sup-
pose that we begin with an infinite refuge and exclude de
eventsA→B altogether. The population inside an interval
lengthL of this infinite refuge is then greater than or equal
the population inside our actual finite refuge of lengthL. The
population density inside the finite interval of the infini
refuge in the steady state is given by the Poisson distribu

P~$ni%!5e22s1 /l)
i

~2s1 /l!ni

ni !
, ~26!
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so that the probability of an unbounded realization of
process is zero. Since the integral of a bounded function o
a bounded interval is bounded, we can conclude that the
population inside the interval is finite. Therefore so is t
total population inside the finite refuge. Furthermore, w
d-correlated Gaussian fluctuations@26,27# any fluctuation oc-
curs in afinite mean time, and therefore a fluctuation~even if
rare! caused by the reactionA→B could kill the entire
population in a finite time. We thus conclude that the pro
ability of extinction is greater than zero wheneverL,`. In
the case of an unbounded refuge the mean value of the p
lation density iss/l and is homogeneously distributed, so
local fluctuation cannot kill the population. We can summ
rize these conclusions as follows:

Pext51 if L,Lc ,

0,Pext,1 if Lc,L,`, ~27!

Pext→0 when L→`.

We can furthermore state that since the number of indivi
als in the population increases as the length of the ref
increases, the probability of extinction decreases monot
cally and continuously asL increases continuously. Thu
consideration of the internal fluctuations drastically chan
the picture;now there is no finite size of the refuge that c
be considered absolutely safe for the population. However,
we have not been able to derive the explicit functional
pendence ofPext on the size of the refuge.

B. An alternative criterion for extinction

As an alternative to such an explicit full solution, we pr
pose a criterion for deciding when a population is under s
stantial risk of extinction, and calculate the critical sizeL* of
the refuge associated with this criterion. Suppose tha
population densityr(x) in a refuge of lengthL described
according to the mean field equation~7! has a maximum
steady state densityM.0. Clearly,L>Lc . The maximum
occurs at x50, in the middle of the refuge, that is
r(x50)5M @15,28#. Now consider the description of thi
population that includes the fluctuations, and compare
average population densitŷc(x)&5^r(x)& with the deter-
ministic result r(x). This average distribution also has
maximum atx50 ~see below!, ^c(x50)&5M 8. We define
the critical sizeL* as the refuge length associated with tw
conditions:~1! the deterministic and stochastically obtain
maxima are equal,M5M 8; and~2! the standard deviation o
the stochastic population density is equal to its mean at e
x. Clearly, our idea is that a population density whose st
dard deviation everywhere equals its mean is in dange
extinction, and we call this a ‘‘critical population.’’ It is no
clear a priori that these conditions can be simultaneou
satisfied, but in fact it turns out that they can. The seco
condition above says that for the critical population

^r~x,t !&25^r2~x,t !&2^r~x,t !&2, ~28!

or, equivalently, in terms of the fieldc, one for which
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^c~x,t !&25^c2~x,t !&1^c~x,t !&2^c~x,t !&2. ~29!

From Eq.~19! we obtain the following equation linking the
first and second moments ofc:

]^c~x,t !&
]t

5D¹2^c~x,t !&1s^c~x,t !&2l^c2~x,t !&.

~30!

Inserting Eq.~29! for the critical field then results in a close
equation for the first moment:

]^c~x,t !&
]t

5D¹2^c~x,t !&1~s1l!^c~x,t !&

22l^c~x,t !&2. ~31!

Note that the apparent irrelevance of the fluctuations in
~19! other than their mean value in arriving at Eq.~31! is
illusory since the relation~22! and consequently Eq.~29! are
intimately connected to the precise form of the fluctuatio

In the steady state Eq.~31! reduces to a classic bounda
value problem

D
d2^c~x!&

dx2
1~s1l!^c~x!&22l^c~x!&250, ~32!

with boundary conditions as in Eq.~9!. To find L* we mul-
tiply Eq. ~32! by d^c(x)&/dx and rewrite the result as

d

dx FD

2 S d^c~x!&
dx D 2

1
~s1l!

2
^c~x!&22

2l

3
^c~x!&3G50,

~33!

from which it follows that

D

2 S d^c~x!&
dx D 2

1
~s1l!

2
^c~x!&22

2l

3
^c~x!&35const.

~34!

Symmetry considerations show that the solution of this pr
lem has only one maximum atx50 @28#, and since the first
derivative of the solution should vanish at any maximum,
can explicitly write the constant as

D

2 S d^c~x!&
dx D 2

1
~s1l!

2
^c~x!&22

2l

3
^c~x!&3

5
~s1l!

2
M22

2l

3
M3, ~35!

whereM is the maximum introduced earlier. Since this ma
mum occurs atx50, we can integrate Eq.~35! for x.0 to
obtain

x

5AD

2
Ê

c(x)&

M dz

A~s1l!

2
M22

2l

3
M32

~s1l!

2
z21

2l

3
z3

.

~36!
8-6
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Taking into account that the population vanishes at the e
of the refuge we can obtain the value of the lengthL of the
refuge as a function of the maximum of the average pop
tion density:

L5A2DE
0

M dz

A~s1l!

2
M22

2l

3
M32

~s1l!

2
z21

2l

3
z3

.

~37!

With the change of variablesw5z/M and setting«[l/s
we can rewrite this relation as

As

D
L52A 1

11«
E

0

1 dw

A12w22
4

3

«

~11«!
~12w3!M

.

~38!

The steady state deterministic equation obtained by se
the left hand side of Eq.~7! equal to zero is formally identi-
cal to the critical field equation Eq.~32! with modified pa-
rameters. Since we are choosingL* as the value where th
maximum of the critical average population density is eq
to the maximum of the mean field population density, t
mean field model provides us with a second relation betw
M andL:

As

D
L52A1

«
E

0

1 dw

A12w22
2

3
«~12w3!M

. ~39!

The simultaneous solution of Eqs.~38! and~39! then leads to
the value ofL* ~and incidentally also ofM ).

The two equations reduce to the same equation ifl50
~«50!, and in this caseL* 5Lc andM diverges. The reason
for the equality is that when the nonlinearity is not prese
the total steady state population is unbounded~thermody-
namic limit! and there are no fluctuations. In general, the t
simultaneous equations can only be solved numerically,
the results are shown in Fig. 1.

A number of important points should be noted about o
results. First,L* is indeed greater thanLc except for the
single trivially coincident point whenl50, that is, when
there is no competition. Thus, according to our criteri
whereby the risk of extinction is substantial when the me
and standard deviation of the population density are eq
one must increase the size of the refuge considerably bey
the deterministic refuge size to avoid this risk. Indeed, wh
l/s51 the sizeL* diverges logarithmically and the popu
lation density becomes uniform at densitys/l. As l grows
beyonds it is no longer possible to avoid considerable ri
of extinction for any finite size of the refuge. The increase
M with decreasingL* can be understood by moving from
right to left in the figure: decreasing critical refuge size
associated with the requirement of a larger population~and
hence a larger maximum population density! to insure
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against extinction. AtLc the maximumM diverges because
no population, no matter how large, can be protected aga
extinction below this length. We can obtain an analytic e
pression forL* for small values ofl/s:

As

D
L* 5pF11

l

2s
1oXS l

s D 2CG . ~40!

We can also see analytically thatL* must diverge when
l/s51: at this point the two integrals forL can only be
equal if they both vanish~which they do not! or if they both
diverge~which they do whenM51).

IV. CONCLUSIONS

The main point of this paper has been to assess the ef
of internal fluctuations inevitably associated with finite d
crete populations on the prediction of the risk of extincti
of a population in a refuge as a function of the size of t
refuge. In the usual mean field deterministic model in o
dimension, the population is treated as a continuum and
obtains a critical refuge lengthLc such that the population
becomes extinct with certainty if the length of the refuge
below this critical value,L,Lc , whereas survival is certain
if L.Lc . It is well known that, as predicted by the mea
field approach, the smaller the area occupied by a popula
the lower are its chances for survival@29#. However, it is also
known that a small size or low density of a population m
also increase its chances of extinction, a feature that m
field theories do not capture@3#. Our approach deals with
both of these features simultaneously through the interp
of discreteness and nonlinearity in a spatially distribu
model. We have argued that the discreteness of the pop
tion and its finite size make fluctuations unavoidable, a
have shown that whereasL,Lc still guarantees extinction
L.Lc by no means guarantees survival. While we have
been able to find an analytic expression for the survival pr
ability as a function ofL, we have focused on a sensible ris
criterion for which we have found explicit results up

FIG. 1. Left scale:As/DLc ~dotted line! and As/DL* ~solid
line! vs l/s. Note thatAs/DLc5p for all values ofl/s, while
L* grows monotonically up tol/s51, where it diverges logarith-
mically. Also note thatLc5L* whenl50, and that this is the only
common point of the lengths. Right scale and dashed curve: m
mum M of the average population density as defined in the tex
l/s.
8-7
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quadrature. Comparing deterministic and average stoch
population densities with a given maximumM, we have cho-
sen to define a new critical lengthL* as one for which the
mean of the population density and its standard deviation
equal, reasoning that this variability implies considera
susceptibility of the population to extinction. We have sho
that L* >Lc and, most importantly, thatL* diverges when
the competition rate coefficient grows beyond that of the
growth rate of the population. For some parameter value
is possible to protect~albeit not with certainty! a population
from extinction by placing it in a sufficiently large refuge
one that is certainly larger than that predicted by the stand
mean field model. For other parameter values~in particular,
when competition is too strong!, it is not possible to evade
the risk of extinction~at least according to our criterion! by
enlarging the size of the refuge. Clearly, these results h
serious implications for the expectations in the design
refuges.

Real physical refuges are not one dimensional, and so
might question the applicability of our results to them. Th
is an issue that has been addressed broadly in the litera
~see, e.g., the discussion in Ref.@15#! because so many math
ematical models are one-dimensional. The criteria~27! cer-
tainly hold for two and three dimensions as well, with a fin
critical volume Vc that depends on geometry. If only on
dimension of a refuge is small, e.g., a very long strip of la
of width L, then our analysis holds exactly as presented w
the extinction criterion applicable to the width. The critic
radius Rc has been explicitly evaluated in terms of Bes
functions for a circular geometry@10#. If a refuge is finite in
two directions or even three, e.g., a rectangular or circula
oval geometry, the detailed curves in Fig. 1 will be differe
but it will still be the case that~1! the fluctuations lead to the
requirement of a larger refuge than predicted by mean fi
theory, and~2! the critical refuge size~be it the sideL of a
ol

:
g

f

,
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square or a cubic refuge, or the radiusR of a circular or
spherical one, or even an appropriate length measure
more complicated shape! still diverges whenl/s51. This
latter divergence can easily be shown from the equation
this paper.

Many questions still remain to be answered. For instan
an exact result for the extinction probability would clari
many issues. So would the ability to obtain time depend
solutions so as to deal with a more realistic criterion of s
vival over a long but finite time interval. Also, we have on
considered the simplest most generic situation, whereas
systems~particularly ones not designed in the laboratory! are
likely to be seriously affected by many complicating facto
Examples include the presence of convection, differ
boundary conditions, and spatial inhomogeneities inside
refuge. Similar questions can and should be posed w
multiple species are present. In any case, in light of our
sults it would seem prudent to reconsider other critical s
population problems to assess the effects of discretenes
we have shown in the simple model considered here,
consequences can indeed be profound.
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