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Transverse fluctuations of grafted polymers
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We study the statistical mechanics of grafted polymers of arbitrary stiffness in a two-dimensional embedding
space with Monte Carlo simulations. The probability distribution function of the free end is found to be highly
anisotropic and non-Gaussian for typical semiflexible polymers. The reduced distribution in the transverse
direction, a Gaussian in the stiff and flexible limits, shows a double-peak structure at intermediate stiffnesses.
We also explore the response to a transverse force applied at the polymer free end. We identify F-Actin as an
ideal benchmark for the effects discussed.
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Healthy cells require an efficient and complex transport Here we investigate the mechanical and statistical proper-
network to carry out the overwhelming number of tasks thaties of a single chain grafted at one end, a problem of direct
are needed to accomplish their function. This network, alsgelevance for force generation in cellular systems. The other
known as thecytoskeletonis formed primarily byfilaments  end is either free or subject to a constant transverse force,
(actin filaments, microtubules, and intermediate filaments whose magnitude extends into the nonlinear regime. We re-
linked together by a large collection of accessory proteinstrict ourselves to a two-dimensional embedding space, since
[1]. A complete description of the structural and mechanicaly most experiments, fluctuations in one direction are se-
properties of these filaments is therefore essential in order Perely restricted, or cannot be observed. The generalization

unveil the mechanical properties of the entire cell. Advanceg,, 5 three-dimensional space is straightforward and will be
in the field have been significantly promoted by a unique SeFeported elsewherfg4].

of optical and mechanical techniques which allow to visual- We refer to the wormlike chain model introduced by

ize and manipulate single cytoskeletal filameffs-4] and : i
DNA [5]. Fluorescence videomicroscofi§] and nanoma- Kratky and Porod15]. In this framework, a polymer confor

nipulation[7] can be conveniently used to obtain quantitiesmation is represented by a successionNoBegmentst;

as the distribution function of the end-to-end distaf@eor ~ Whose direction is tangent to the polymer contour atithe

the mechanical response to an external force in great dets#egment. Since the polymer is assumed to be inextensible, all

and at the single molecule level. These quantities are am%egmentsfi have a prescribed length=L/N. The Hamil-

nable to a direct comparison with theoretical models. tonian is given by

The main material parameter in the description of a poly-

mer filament is its persistence length,. It is defined as the N-1 N

typical length over which correlations of the tangent vectors H=—e> t-tis,— 2 F-1, )

of the filament contour decay. Polymers are considered to be i=1 i=1

flexible when their persistence length is small compared to R

their total lengthL, ort:=L/€,=10. In this limit, they can be wheree is the energy associated with each bond &rid a

well described by the minimal model of the Gaussian Chairforce eventually applied to the second end. It is also possible

[8]. Polymers of biological importance, e.g., F-actin, are of-to define a continuum limit foa—0, N—o, with Na=L

ten semiflexible, meaning that their persistence length isind e=ea?/N held fixed. The Hamiltonian in Eq. 1 is then

comparable to their total length. While flexible polymers areequivalent to the following functiondll6,17:

dominated by entropic effects, the statistical mechanics of

semiflexible polymers is strongly affected by their bending KJL (5{(5))2 éde i)
st(s),

energy and the close vicinity of the classical Euler instability Hf=§ s —f

(2

0 0

for buckling a rigid beanj9].

The distribution functiorP(ﬁ) of the end-to-end vector B S
R, a simple Gaussian for a flexible polymer, is peaked to—Wheref_EL and t(.s) IS 'the tangent vector of the space
wards full stretching and is completely non-Gausgia@]. ~ curver(s) parametrized in terms of the arc lengthThe
The mechanical response of a semiflexible polymer is highlynextensibility of the filament is imposed by the local con-
anisotropic, depending on the direction in which the force isstraint [t(s)|=1. The continuous version of the wormlike
applied[11]. These findings result in bulk properties of so- chain has been successfully used to obtain various statistical
lutions and networks that are completely different from thequantities, such as the tangent-tangent correlation function or
isotropic elasticity of flexible polymer solutiorid2,13. In moments of the end-to-end distance distributj@6,18. It
addition, the inextensibility constraint becomes crucial in de-has been recently used to obtain the radial distribution func-
termining the approach to full stretching upon the applicatiortion [10] and force-extension relations,11,19.
of a forcef, as reported by Marko and Sigdia] for double- We have developed a Monte Carlo simulation to investi-
stranded DNA. gate the behavior of a semiflexible polymer in the proximity
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of the limit t—1. The rationale behind this choice is the 07 @) -
search for clear hallmarks of the onset of the “semiflexible”

nature of a filament. In this intermediate limit, analytical T 15
results are difficult to obtain: typical approximation schemes 05 (52
that build on either Gaussian chains or rigid rods are outside 1=27 -
their validity range; hence, computer simulations become _ %47 1=28
crucial. The first end of the filament is assumed to be & |

clamped, i.e., the orientation of its tangent vector is held ’

fixed along a direction, named tlxeaxis. The second end is 02t

left free to assume any possible orientation. The initial con-

figuration has been randomly chosen in the proximity of the 01 r

full stretching condition, thus ensuring a fast convergence to 0

equilibrium. A new configuration is generated by changing -1 1

the orientation of one segment, and accepted according to the
standard Metropolis algorithm and the discrete Hamiltonian,

Eq. (1). Effects resulting from self-avoidance are not consid- 06
ered, but we notice that configurations where the chain folds
back onto itself are strongly energetically suppressed for suf-
ficiently stiff polymers. Results ceased to depend on the 04 |
number of segments fo¥=50. On the order of f0Monte
Carlo steps per segment were performed, and results were 03|
averaged over different runs, obtaining a perfect agreement

0.7

0.5 |

P{y)

between measured expectation values of the end-to-end dis- 02 ¢

tance(R?) and(R*) with known exact expressions. The ra- o1l

dial distribution function was calculated and coincided with

the analytic results in Ref10] within the accuracy thereby 0 —
reported. -1 08 06 -04 -02 0 02 04 06 08 1

Here we are interested in the probability distribution func-

tion P(x,y) of the free end in the plane determined by the FIG. 1. Distribution function for the projection of the free end
direction of the clamped end (axis) and the transverse one along the transverse directiét(y) obtained by Monte Carlo simu-
(y axi9). This quantity is directly accessible to experimentslations. Lengths are measured in unitsLofErrors are comparable
allowing for a quantitative comparison with our predictions. to the point size in the insetga) Appearance of double peaks for
We will also consider the reduced distribution functionst=2.5.(b) Reentrance from the double peaks to a flat distribution in
P(x) and P(y), obtained by integratind®(x,y) over the the stiff limit t<0.75. Insets show details of the crossover regions.
variablesy andx, respectively.

It is important to notice that when both ends are free, thevalues the probability distribution function is not a smooth
radial distribution function is rotationally invariant and is interpolation between these two Gaussian limits but shows
therefore only a function of the distanBebetween the ends. interesting and qualitatively different features. Asap-
Clamping one end breaks rotational symmetry and leads tproaches the value 1 from abofftexible side, the Gaussian
distinctly different longitudinal and transverse distribution peak is first smeared out into an intrinsically non-Gaussian
functionsP(x) andP(y). Nonetheless, the broken rotational flat distribution[see Fig. 1a)]. At t=2.8 (see the insét the
symmetry does not affect the total energy of the configuradistribution contains three local maxima, but fss de-
tion. This implies, and is in fact confirmed by our simula- creased, the central peak yat=0 loses weight to the two
tions (data not shown that the longitudinal distribution symmetric peaks off the x axis. The double-peak structure is
function P(x) coincides with the radial distribution function most pronounced arourte=1.5, i.e.L~1.5(,.

P(R) of the end-to-end distance, apart from a constant nor- As the stiffness is increase8(y) recovers its flat struc-
malization factor. The characteristic feature of this functionture, as shown in Fig. (b). Notice also[inset of Fig. 1b)]

is a crossover from a universal Gaussian shape centered thiat att=0.75 the two peaks start to compete with a growing
the origin with a characteristic width determined by the ra-peak centered at=0, such that one finds a triple maxima
dius of gyration to yet another universal shdi€], whose shape again. Although intrinsically non-Gaussian, this cen-
peak is shifted towards full stretching and whose width istral peak will eventually tend to a Gaussian distribution in
determined by a new longitudinal length scalg« L2/€p. the stiff limit. The reentrance from the double-peak structure

This has to be contrasted with the transverse distributionio a flat distribution is a genuine hallmark of semiflexibility.
function. Not surprisingly, given the intrinsic isotropy of This effect cannot be explained by analytical calculations
flexible polymers, the distributio®?(y) is a Gaussian and using a harmoniqor weakly bending rodapproximation,
identical toP(x) for high values ot. In the stiff limit, P(y), whose prediction folP(y) would be a Gaussian centered at
at variance withP(x), is again a Gaussian centeredyat 0 [20]. Higher-order cumulant expansions about a Gaussian
=0, whose width is now given by a new transverse lengthdistribution have also failed to provide a fast convergence to
scaleL, = \/2L3/3€p [20,21]. Surprisingly, at intermediate our P(y). An entirely analytical solution can be provided by
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FIG. 2. (Color) Density plots obtained by Monte Carlo simula- o8y ,,-'gff“a
tions: dense regions are colored in red, scarcely populated in blue 05 r ,/j
on a color scale appropriately chosen to enhance the confaast. 04| ,g
t=2/3; (b) t=1; (c) t=2; (d) t=20. o
the eigenfunction approach described in R2g] for persis- 02 E t=5 ——
tent random walks, although the connection to our probabil- 01 | R
ity distributions would only be numerical. ot . . , 1505 v
Finally, let us emphasize that the double-peak structure of 0 5 10 15 20
P(y) does not indicate a bistability in the constant force f

ens.e.mble. As shown be'PW’ I!near .response theory leads to FIG. 3. Response to a transverse force, obtained by Monte Carlo
positive force ConSta_ntS,m this regime. What actpally h""p'simulations. Forces are measured in unitggf/L, lengths in units
pens ur!der the E?\ppllcatlon of an eXtemal force is t_hat t_h%f L. Error bars are shownAbove) Response in the clamping
distribution function becomes asymmetric and weight isgjrection. (Below) Response in the transverse direction is odd with
shifted from one peak to the other. In an experimental setting only part of the explored parameter region is shown for clarity.
with a fixed transverse distangeand a correspondingly ad-

justing force, one would probB directly and be able to . . . ) . L
Jobser%e a kind of “bistab?lity.” ) y direction [see Fig. 20)]. Eventually, in the flexible limit,

Further insight can be gained by the inspection of the joinyvhere transver;e and longitudinal fluctuations become com-
distribution functionP(x,y), represented with density plots Parable,P(x,y) is spread so as to cover almost all the avail-
in Fig. 2. In the stiff limit, P(x,y) should be confined to the able spac¢Fig. 2c)], before the isotropic Gaussian distribu-
classical contour obtained by applying the elasticity equation is recoveredFig. 2(d)].
tions to a rigid rod. This contour can be approximated by a We have also explored the transverse response of semi-
parabola in the proximity of full stretching and is obtained flexible polymers by applying a constant forci the trans-
through elliptic functions for any deformatidi®]. In Fig.  verse direction. The effect of a small applied force on the
2(a) the classical contour coincides with the ridge of theaverage end-to-end distan@# force extension relatigrhas
probability distribution function. As we relax the stiffness, been studied within linear-response in Réfl]. In this work,
thermal fluctuations will make the tip of the filament explore we will consider the effect of an external transverse force of
the configuration space in the vicinity of the classical con-arbitrary magnitude on the average positiéx)s and(y); of
tour. Roughly speaking, transverd®nding fluctuations en-  the free end.
hance fluctuations along the classical contour and shift In general, we expedly); to have the same parity of the
weight from the center to the upper and lower wings in Figs.applied force, and hence to be odd, while); should not
2(a) and 2b). In contrast, longitudinal fluctuations widen the depend on the sign of the force and hence should be even. In
distribution function perpendicular to the classical contourthe continuum limit, it is possible to write down the exact
Since for a semiflexible polymer, the corresponding lengthexpressions fo{x); and(y); and to show that the expected
Ly andL, scale differently(transverse fluctuations are much parities hold on very general grounds and that the response
“softer” than longitudinal onel upon lowering the stiffness of the longitudinal extension to a transverse force is intrinsi-
P(x,y) gains more weight in the wings rather than in thecally nonlinear in the small force regime. Monte Carlo simu-
center. It is precisely this effect that gives rise to the doublelations confirm these predictions, as shown in Fig. 3. The
peak distribution, whe(x,y) is projected in the transverse response in the direction of the clamped end is everaimd
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it can be approximated by a parabola centered onf th® structure is a clear hallmark of semiflexibility and hence it
axis. The response in the transverse direction is odcaimd ~ might be used to obtain a rough estimate of the persistence
shows the same reentrance phenomenon reported ifIRef.  length of a particular polymer filament, such as, for instance,
for the linear response coefficient. the nanometer sized stalks of kinesins and myosins.

Note that while in the case of a longitudinal force, the |n summary, we have presented evidence from extensive
approach towards full stretchir(gr saturatiopcan be calcu-  Monte Carlo simulations that the parameter region corre-
lated within the weakly bending rod approximation, this is sponding to semiflexible polymers is hallmarked by the ap-
no longer true for transverse forces. The position of the fregearance of a series of effects in the radial distribution func-
end can be calculated from_clgssmal _elast|C|ty the_{@ﬂ)and_ tion and in the response of the clamped polymer to an
expressed by means of elliptic functions. Only in the highgyiermal transverse force. A semiflexible polymer shows a
force regime or in the stiff limit, when fluctuations become jstinct anisotropy in the probability distribution function of
unimportant, results from our simulations coincide with clas-ie free end along the direction of the clamped end. At inter-
sical elasticity theory. _ mediate stiffnessl.~¢,, the distribution function shows a

The effects hereby reported are amenable to a direct comysynounced double-peak structure in the transverse direction.
parison with exp_enments rega}rdmg cytoskele_tal filaments, 0gamiflexible polymers have been previously repofted] to
even DNA. For instance, optical systems might be used t9yq anisotropic objects, i.e. to respond in different ways to
get thex ory projection of the radial distribution function for ¢, .o applied in the clamping or transverse direction. Here
a particular class of semiflexible polymers. For F-actin V\_/ithWe have shown that even their response to a force along the
€,~16 um [6], the double-peak effect should be well vis- yansyerse direction alone is intrinsically anisotropic, being

ible for a range of lengths, 12m=L=<43 um. In this pa- jinear in the transverse direction and nonlinear along the di-
rameter range the difference between the central relatiVgssiion of the clamped end in the small force regime.

minimum and the double-peak maxima results in 10% of the

total length(see Fig. 1, in the range 1—4um that is well We acknowledge helpful discussions with P. Benetatos, A.
above the experimental precision of 0.05n reported in  Parmeggiani, J. Wilhelm, T. Franosch, and K. Kroy. This
Ref. [6]. Hence F-actin would provide an ideal benchmarkresearch was supported by Contract No. HPMF-CT-2001-
for the effects we report. We emphasize that the double-peaB1432.
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