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Wetting of a spherical particle by a nematic liquid crystal
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We discuss how the curvature of a substrate influences wetting by a nematic liquid crystal concentrating on
the surface of a spherical particle. Our investigation is based on Landau—de Gennes free energy formulated in
terms of second-rank nematic order param&gr We review the method to treat wetting transitions in curved
geometries and calculate the wetting phase diagram in terms of the temperature and a surface coupling
parameter. We find that the length of the prewetting line which corresponds to the boundary-layer transitions
introduced by ShenfPhys. Rev. A226, 1610(1982] gradually decreases with a decrease in particle radius until
it vanishes completely below a critical radius of about 100 nm. The prewetting line ends at a critical point
which we study in detail. By interpreting the effect of curvature as an effective shift in temperature in
Landau—de Gennes theory, we are able to formulate a good estimate for the critical temperature as a function
of the inverse particle radius. It demonstrates that splay deformations around the particle significantly influence
nematic wetting of curved surfaces.
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[. INTRODUCTION upon the connection to wetting. Experiments confirm the sur-
face induced nematic ordef18,19 and recently the
The wetting of surfaces by a fluid has tremendous indusboundary-layer transition was observ¢d0]. Numerical
trial applications as exemplified by the famous Lotus effectstudies and density functional theory established complete
[1]. For three decades, wetting has been intensively studiedrientational wetting21].
[2,3] and, in connection with nanostructuring of surfaces and In this article we report on the effect of curvature on
microfluidic, it gains further importance. In his seminal pa- nematic wetting layers. Our work is stimulated by recent
per[4], Cahn argued on the basis of mean-field theory that investigations of surface-induced nematic order around col-
two-phase system moving along the coexistence line towardsidal particles and their effect on the stability of colloidal
its critical point exhibits complete wetting beyond the wet- dispersions[22—24. So far theoretical studies have been
ting temperatureT,,. Furthermore, a prewetting line exists based on the harmonic approximation of the Landau—de
which starts on the coexistence CUI’VETQI and ends at a Gennes free energy functional. Here, we will emp|0y com-
critical point located in the region of either phase 1 or 2.pjete Landau—de Gennes theory to study orientational wet-
Cahn’s work was extendefb] and then wetting of curved ing around a spherical particle. Since the conventional
surfaces of cylinders and spheres was studd9], also  method to treat wetting transitions in planar geometries
within densny—func'gonal theory10]. The main features are 4,15 is no longer applicable for systems with curved
that complete wettlng cannqt occur on curve0_| surfaces an bundaries, we will apply a method outlined in Re#,8],
that the prewetting line vanishes with increasing curvatureand[g]_

Experimental observations of wetting phenomena on spheres The results of our investigation are summarized in Fig. 1,

and cylinders are reported in Ref4l] and[12]. SS9 :
Surface phenomena in liquid crystals are widely studiec{.\/here we plot the pre_wettlng line for different reduced par-
icle radii as a function of the temperature and surface-

[13,14 partly due to their importance in liquid crystal dis- oupling parametew, also called the surface-ordering field.

plays. Sheng was the first to investigate the so-calle > .
boundary-layer transition in nematic liquid crystals close to a etus f'r.St. review the pla_nar geomemf_o'] (tha_t corresponds
an infinite particle radiysand place it within the context

planar substrate and above the isotropic—nematic phase tralﬁ]); tting. At i I ab th duced bulk
sition [15]. It corresponds to the prewetting transition men-9" Wetting. emperatures well above he reduced bulk-

tioned above. Detailed investigations were then performe(’:'lranSItlon temperature,y=0.125, the nematic scalar order

by Poniewierski and Sluckifil6,17 who also elaborated ParameteQ, at the surface assumes its small “thin-layer”
value. When traversingy for w<<0.037, it jumps to a value
closer to that of nematic bulk parame@g . In the treatment
*Electronic address: fukuda@nanolc.jst.go.jp by Cahn[4], this corresponds to a situation where the nem-
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0.09 order parameter of a nematic liquid crystal for which we
adopt the second-rank symmetric and traceless tensor
Q,p(r) [26], also called the alignment tens@7]. The free
energy densityf,, of a nematic liquid crystal in the bulk
is given by the sum of the local and elastic energy. We write
the former in terms of Landau—de Gennes expan$i)
as floca= (L2)AQA5— (1/3)BQ,5Qp, Q.0+ (L4)C(Q2))2
with A,B and C phenomenological coefficients. Greek indi-
ces denote Cartesian coordinates and summation over
repeated indices is implied. For simplicity, we adopt the
one-constant form of the elastic energy a§
B =(1/2)L1(07Qaﬁ)2, wherel ; is the elastic constant.

FIG. 1. Prewetting lines for different reduced particle reRlij The phenomenological surface free energy derfsjtge-
(see numbers close to the plus sigas a function of temperature  scribes the capability of the bounding surfaces to induce ori-
and surface-coupling parameter The lines start at the bulk phase entational order right at the surface. In this article, following
transition temperature,,=1/8 and end at critical pointsr{,w*) the work of Sheng[15], we employ the simple fornfg
indicatEd by the plus sign. Surface-layer transitions do not occue= _WQwBVaVB* where the phenomenological surface-
below Ry=28.9. coupling parametew, also called the surface-ordering field,

) ] characterizes the strength of anchoring andis the unit
atic phase only partially wets the surface. Whvew0.037,  yector normal to the surface. This surface energy is a

the surface order parameter exhibits a boundary-layer transiraightforward generalization of that used by Shén],

tion at the prewetting line where it jumps from its thin-layer \yho giscussed the boundary-layer transition of a nematic on
to the larger “thick-layer” value. The prewetting line ends at 4 fja¢ supstrate. The minus sign in front\wt>0 implies that

a critical point (~*,w”) indicated by a plus sign. FON 4t the surface homeotropic ordering is preferred. We adopt
>w*, the surface order parameter behaves smoothly with g5 simple surface energy because one of the aims of this
decrease in temperature. Following the analysis of G4hn  4rticle is a concise presentation of the method needed to treat
the nematic phase completely wets the bounding surface ge effect of curvature on the boundary-layer transition.
7y if W is chosen larger than the so-called wetting surfacegased on the present investigation, more general types of

coupling parametew,=0.037[25] introduced in full anal-  gyrface free energy that contain, e.g., quadratic terms in
ogy to the wetting temperature. To see this we note that af 5, can be studied
af .

7y the thick-layer value of the Eurface order parameter is  The total free energy of the system is now writtenFas
always larger than the bulk valu@,. So between the sub- = [,d%f,,+ [<d?rfs, whereV is the volume occupied by
strate and isotropic phase, we can fill in a macroscopicallghe liquid crystal andS denotes the bounding surfaces. To
thick layer of nematic phase, i.e., complete wetting. Now,simplify the discussion below, we use reduced quantities. We
Fig. 1 clearly indicates the effect of curvature on the ggcale the orientational order paramete@tgfsaaﬁ with

boundary-layer transition. The length of the prewetting ””es:z\/EB/9C and write all lengths in units ofé&
n

gradually decreases with a decrease in particle radius and th_e\/l_ IC2= \27L,CI8BZ, where 2/2¢, denotes the nem
J i . . = 1 = 1 , n -
line completely vanishes below a reduced critical radius Ofatic coherence length at the isotropic—nematic phase transi-

R§ =28.9, corresponding to 100 nm for a typical nematicion, The rescaled free energy of the system then reads
mesogen. As a further effect of curvature, we observe that

complete wetting atr is suppressed since the surface ten- F
sion at the interface between the nematic and isotropic — 5. .=
phases grows according to the square of the distance from &n"Af
the center of the sphere. We will demonstrate in this article 1_ o
that, compared to wetting with, e.g., binary fluids, elastic +§(a7Qaﬁ)2) —J dzeraﬁvaVﬁ, (1)
distortion of the director field close to the particle surface has
a pronounced effect on the wetting properties of nematic
liquid crystals. wherer=r/&,, 3= &9, and 7=A/Cs?=27AC/8B? gives

In the following, we review theory needed to calculate thethe reduced temperature. The unit of the free enekdy
phase diagram of Fig. (Sec. I) and then discuss details of —cg#=6484/729C3 is proportional to the latent heat and
our results(Sec. Il). We finish with a conclusioiSec. IV)  {he reduced anchoring strength is definecvasWe, /LS.
where we suggest extensions of the present work and COM- |n this article we consider the effect of one spherical par-
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ment on experimental verification. ticle on the phase transition behavior of a nematic liquid
crystal close to the particle’s surface. We place the center of
Il. DESCRIPTION OF THE MODEL the sphere at the origin and denote the radius Ry
A. Free energy =Ryé,. According to the symmetry of the system, we

We begin with a description of our model by writing the ¢hoose the uniaxial order-parameter prof@g () =Q(r)
free energy of the system in terms of the local orientational><(e[Ye;;—%ﬁaﬁ), where€ is the unit vector along the radial
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direction(that represents the nematic dire¢gtand the scalar tion around the particle. We, therefore, restrict our discussion

order paramete®(r) only depends om, the (reducedl dis-  to the isotropic bulk state assuming- 7= 1/8. _
tance from the center of the particle. With this choice, the The boundary-layer transition is monitored by a jump of

free energy of Eq(1) is then written in terms 0Q(r) as the scalar order parameter at the surf&@g..r = Qo. In the
planar case, which follows from our system f8§— «, the

— 3F 1 wd_z E770) Q da) ? Euler—Lagrange equation, E@), with the vanishing second
= m_ ﬁ_%fﬁo rrs f(Q)+3 2 + 2 d_T and third terms can be integrated at once and together with
boundary conditior(5), the surface order parameter follows
~wQli—,, (2)  from [2f(Qo)]“?=w. When multiple solutions exist, the
absolute minimum of the total free energyF
with the bulk local energy in terms ofQ being =/ $4[2f(Q)]1¥?>~w}dQ has to be identified. Furthermore,

a boundary-layer transition between different branches of
—— 1 6, 1_— minima is indicated in a Maxwell construction. This path-
f(Q)= ETQZ_ EQg“L §Q4' 3 way, outlined by Shenl15] and by Cahr{4], is no Iongper
possible for curved surfaces. A first integral of Ed) no
Note that the second term of the integrand in B).is as-  longer exists. This is obvious from mechanical analogy with
sociated with splay deformation of the orientational orderthe replacement o®—x andr—t, where the second and
around the spherical particle. It is specific to a nematic liquicthird terms of Eq.(4) represent a time dependent potential
crystal and therefore absent in similar investigations of wetand a friction term, respectively?,9]. Instead, we follow a
ting in a binary fluid whose composition is specified by amethod outlined in Refd6] and[8] and use it in a version
scalar order parametg®]. In addition, this second term can jntroduced in Ref[9]. We solve Eq(4) for fixed Q, at the
be viewed as an effective shift in temperature, depending OBarticle surface. We thus arrive at a family of orientational

radial coordinate . profiles for which we calculate the free enef§¢Q,) which

: For .Iater Use€, we summarize the properties of the bu”?s now a function in the variab@o. On the other hand, we
isotropic—nematic transition deduced from the local free en- der th i tioBE of ¢ ithin the f
er the variatiodF of our free energy within the fam-

ergy (3). The bulk isotropic—nematic phase transition occurscONSIder the variaj ! _ _

at reduced temperature, = 1/8, and the nematic order pa- ily of profiles, just introduced. Since these profiles satisfy the
ter at th int of t ition @y, = y6/4~0.612. Th bulk Euler—Lagrange equation, E@), the bulk term in the

rameter at the point of transition @ = o-c. 1Ne v;?riation vanishes and the surface term gives

metastable nematic phase exists in the temperature range 0

n<7<9/64 with a limiting order parameter ofQ, —— —

=3./6/16=0.459 at the superheating temperature,9/64. dF(SO) - _d_Q —w (7)

Finally, the isotropic phase becomes unstable at the super- dQg dr '

cooling temperaturer=0.

r=Ry

B. Determination of the order-parameter profile where we replaceGBE by dE(aO)' The conditi_orljfldao
and phase behavior =0 for a minimum of the total free energy(Q,) then
reproduces boundary conditior(5). So if we plot

—(dQ/dr)[;_g, as a function ofQ,, the possible surface

order parameters are the intersections with the constant
(see Fig. 2 Their free energies are calculated by integrating

df 66 2 da dza_ Eqg. (7) and the absolute minimum dif(ao) then gives the

EJF = T 0, (4 stable surface-order parame®.

The order-parameter profi@(r_)_that minimizes the free

energy (1) is determined bysF/5Q=0, which yields the
following Euler—Lagrange equation:

rdr dr? — —
Suppose we find two solution§; and Q,, of Eq. (5),
then a first-order phase transition between the branches of

together with boundary conditions v X
the two minima occurs if

-
2 ®) = (%= dQ
Al g, FQ)-F(@)- a0l - -wl-0. ®
1 T=R,
Qly=»=0. (6)

This is a variant of Maxwell's construction illustrated in Fig.
Boundary conditior(6) implies that the bulk is in the isotro- 2; since the two shaded regions possess equal areas, the
pic state. Note that in the nematic state, the spherical synfoundary-layer transition takes place. Note that the third so-
metry of our system with its radial order parameter profile islution, Qs, corresponds to a maximum of the free energy and
an artificial situation since it creates global splay deformais therefore unstable. If surface constantlecreases relative
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A tions of boundary equatiotb) changes from three to one or
vice versa, so the “critical anchoring strengthv* for a

given particle radiusR, is the solution of Eq.(5) at the
saddle point.

IIl. RESULTS

In Fig. 3, we show plots of- (dQ/dr)[;_g; as a function

of 60 for various particle radiiﬁo. The parameter of the
curves in each plot is the temperature. In Figa)3 we

present, as a reference, the resultsﬁgltoo, i.e., a planar

Q1 Q3 Qa
Qo surface. Note that in this case the single curves can be deter-
mined completely analytically15]. At the bulk transition

FIG. 2. lllustration of generalized Maxwell constructi¢see temperaturer,y=0.125, the derivative- (dQ/dr)|r R, be-
Eq. (8)]. The first-order surface-layer transition occurs between the

Y

comes zero for bulk order paramet@g The critical point
in the phase diagram of Fig. 1 is given by the superheating
temperaturer* = 9/64=0.140 625 andv* =9/128=0.0703.

For 7> 7*, the curves are monotonic functions @f.

A large but finite radius oRy= 200 is chosen in Fig.(8).

hough it is similar to that in Fig. @), the derivative
The critical points in the phase diagram of Fig. 1 occur ™~ (dQ/dr)[;~&, never reaches zero for any finigy. This is

when dQ/dr)[;~ 7, as a function ofQ, possesses a saddle partly due to the effective shift in temperature, mentioned

small thin-layer Ql) and the large thick- Iayerqz) order param-
eters when the areas of the two shaded regions are equal.

to the value in Fig. 2, thin-layer paramet@ is stable,

whereas thick-layer paramet€), is realized for increasing Alt
w.

point [see Figs. G.i) 30)], earlier in the discussion following E43). .
Critical radiusRY , where the length of the prewetting
& dQ 2 dQ line shrinks to zero, is determined by the requirement that
= dq =0, 9) critical condition(9) is satisfied atr= 1. We numerically
‘7Q0 T:EO ‘7Q0 Ry obtain R§=28.9, and the appropriate plot is presented in

Fig. 3(c). For anyR,<R% [see Fig. &) for R,=10], the
which determines the “critical temperature™. By varying  curves are monotonic functions for alt> . Therefore, a
surface coupling parameter, the number of possible solu- boundary-layer transition can no longer occur. On the basis

(2) (c)
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FIG. 3. Plots of—(dQ/dr)[;~r, vs Q, for various particle radiiRy= (a) « (planar surfacg (b) 200, (c) 28.9 (critical radiug, and(d)
10. The numbers on the lines indicate The curves at the critical temperaturé are plotted as thick lines.
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FIG. 4. Scalar order paramet@ras a function of radial distance

T (measured from the center of the sphefer ﬁozzoo andw FIG. 5. Critical anchoring strength* (triangles and anchoring
=0.06. Curve(l) is at 7y . Curves(2) and (3) are the respective Strengthw, (circles, where the prewetting Ii_ne intersects the coex-
thick-film and thin-film profiles right at the prewetting line fer  istence line atry, plotted as a function of Rj. As a guide to the
=0.13224. eye, the lines connect the numerical data points.

of the plots in Fig. 3, we determined the phase diagram o[

. . - - — _* —
Fig. 1, which shows the prewetting lines for different particle r|b|;1_t|or|1ls, _vvh||:(_:h 'g reasolnga?rl]e f@(t)'>|7t_28.9.t -
radii, as already discussed in Sec. I. inafly, in F1g. 6, we plot the critical temperature as a

For typical nematic mesogens, the nematic coherenclinction of 1R, (see the plus symbdlsWe notice again
length 2/2¢,, is of the order of 10 nni26], so in real units that, for the planar surface @¢=0), the critical tempera-
the critical radius become®$ =100 nm. This means that in ture 7p,,,~ 9/64=0.140 625 coincides with the superheating
colloidal dispersions with particle radii larger than approxi-temperature of the nematic phase. Now, the decreas# of
mately 100 nm, the boundary-layer transition should be obwith increasing curvature (Rh) reflects suppression of the
servable. boundary-layer transition due to elastic deformation in the

In Fig. 4 we illustrate the order-parameter profiles for theorder parameter induced by the curved surface of the par-
reduced particle radiuR,=200 and surface-coupling pa- ticle. To show that distortion of the director field contributes
rameterw=0.06 by plotting the scalar order parame@eas significantly to this decrease, we present the following esti-
a function of radial distance (measured from the center of mate. The Il_near p%rt of Ee E_uIeL—L_agrange_e%;atlon, Eq.
the spherg At the bulk transition temperaturgy=0.125 (4), reads Q{r+6/r*—(2/r)(dQ/dr)/Q}—(d*Q/dr%)=0.
[see curvel)], the order parameter decays on a length scald he first and the fourth terms already.appe.ar in planar. geom-
of about four times the nematic coherence Iengﬂ‘ﬁen, gtry. Th(_a second term resgl_ts from d|stort|on of the director
indicating that the particle is wetted by the nematic phasefi€ld- It is, therefore, specific to the nematic problem. For
However, due to the spherical geometry, complete wettindh'CknesseS of the wetting layer much smaller than the par-
cannot occur since the surface tension at the interface béicle radius, we can approximate it byR/. The third term
tween nematic and isotropic phases growsasCurves(2) /S0 appears when critical wetting is studied in systems with
and(3) show the respective thick-film and thin-film solutions & Scalar order parameter. From the profiles in Fig. 3, we
right at the prewetting line at reduced temperaturerof Observe that, at the critical temperatwl€/dr|,—g  andQg
=0.13224. The discontinuity in the surface order parametepn|y weakly depend on Rp. With dQ/drf,_g ~—0.07,
is clearly visible. 0

In the following, we discuss further details of the prewet-

ting line. From Fig. 1 we know that the possible anchoring 014 T
strengthsw where a boundary-layer transition occurs are
bounded from above by the critical valug and from below 0.135 |
by a value which we denote by, . At anchoring strength

. L . . S
w;, the prewetting line intersects the coexistence line at the 013 |

bulk transition temperaturer,=0.125. Or, mathematically
speaking, forr, condition (8) of Maxwell's construction is
fulfilled at w;. In Fig. 5 we plot bothw* andw; as a func-
tion of the inverse particle radius, R4. We find that the
dependence ofiv* on the particle radius is rather weak and
that the width of the region bounded by the two curves
(Where bgundgry-layer t'ransmons ocputecreases almo§t FIG. 6. Critical temperature* (+) as a function of the inverse
linearly with 1R,. If we view the effect of curvature on this paricle radius R,. The horizontal dotted line indicates the bulk

width as expansion in terms ofﬁd, this means that the transition temperature;=0.125. The solid and dashed lines are
linear term is far more dominant than the higher-order conestimates forr* (see the text for details

0.125

0 0.01 0.02 0.03
1/Ro
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63 ~0.46, and I/— 1/R,, we write the third term as 0Bj.  around the particle. However, our assumption of radial sym-
The second and third terms can now be viewed as an effe¢netry no longer makes sense since far from the particle,
tive shift in temperature due to curvature which approxi-where the liquid crystal has already condensed into nematic
mately readssr= 6/§§+0-3ﬁo- We use it to estimate the phase, a radial dwgctpr f|e]d is unreahsuc_. On th(_e qther hand,
with the more realistic uniform director field at infinity, we
— } ST no longer have an effective one-dimensional problem, so the
—0.3R, which corresponds to the solid line in Fig. 6. It o5phjexity of the problem increases. Nevertheless, some in-
represents a good estimate of the numerical data. Deviationgyny into this modified system could also add to understand-
grow with an increase of B, as expected. If we just retain jng of the properties of recently observed soft solias],

the linear term in R, which appears in scalar-order- i.e., cellular structures whose walls are made up of particle
parameter theory, the dashed line results. In comparing bothgglomerates and whose cells are filled by nematic phase. Of
lines, it is obvious that distortion of the director field, spe-course, deep in the nematic phase typical configurations
cific to nematic liquid crystals, has a non-negligible effect onaround a spherical particle will occi81].

critical ~ temperature  as 7F =7y, 67=9/64— 6/R2

the wetting of curved surfaces. As a third extension, one can also study planar anchoring
of liquid crystal molecules. In the case of a planar substrate
IV. CONCLUSION this was done by Sluckin and Poniewier$ki7] who dis-

. i I ) : cussed a wealth of new phenomena, including the occurrence
Using generalized Maxwell construction, we discussedys 5 piayial surface state and the possibility of a Kosterlitz—

the bo_undary-layer_ transitio_n in a nematic liquid c_rystal SUrThouless—Halperin—Nelson—Young transition. It would be
rounding a spherical particle above the bulk ISOUrOPIC—interesting to extend the study to curved surfaces, especially

nematic transition temperature. For varying particle radii, Wespheres and for a uniaxial order parameter, where the topol-

determined the prewetting line to be a function of the tem—ogy requires the existence of surface defects with total

perature and the _s_urface-_coupling parameter. The prewetti%arge of+2 [32]. In a purely two-dimensionaD) nem-
line ends at a critical point. Furthermore, it shrinks with a0 e total charge is realized by fourl/2 disclinations
decrease in particle radius and vanishes completely below Qtting on the vertices of a tetrahedr§d3]. In the case of

critical radius of the order of 100 nm. In contrast to CONVEN-etting layers, we can show that for appropriate surface cou-
tional systems studied so far, with their scalar order param-

. . ) pling parameters the fout 1/2 disclinations still exist but
eter(e.g., binary fluidg the nematic tensor order parameter o " oalized by a biaxial order parameter fiE3d]
allows elastic distortion in the preferred orientational axis Before concluding this article we want to c;omment on
(director field. Splfiy defo_rmatlo_n In t.he nematic wetting experimental observation of nematic wetting layers of iso-
!ayer around spherical paruc_le; givesrise to an effectlve ShlfI[ated spheres and the effect of curvature on the prewetting
in temperature. Based on this interpretation, we introduced fne Clearly, the wetting layer affects the Stokes drag of a
good estimate for the critical temperature as a function of the,_ '

?)article and hence its Brownian motion since they are ob-

inverse particle radius. It demonstrates that director distorg, .\ ovia with dynamic light scattering in conventional col-
tions significantly alter the prewetting transition compared to

standard scalar-order-parameter the@y oidal dispersiong35]. Early experiments on liquid crystal

qcolloids using dynamic light scattering detected an increase
- n Stokes drag close to the isotropic—nematic transit88j.
take(o)tr;e Nobili-Durand surface free energ@¥V(Qas  \ye suggest the use of more refined experiments with varying
—Qup)°/2] which is quadratic in the tensor order parameter, icle radii to examine the details reported in this article.
[28]. As we already pointed out, the main goal of this article g antitative predictions for Stokes drag have to be based on
was to introduce a method by which to study boundary-layegynamic equations that involve the tensorial order parameter
trar_15|t|ons in the presence of curvature and to clarify thE{37] s, therefore, they present a more complicated problem.
main consequences of curvature. We do not expect dramati§,sed on our knowledge of Stokes drag deep in the nematic
chgnges when using Noblll—l?urapd surface free enezrgy. Foﬁhase[SS], we are currently thinking along this line.

uniaxial homeotropic anchoring it becom#$(Q—Q,)“/2 Considering the recent growing interest in liquid crystal
that contains two parameters, the anchoring streligéind  ¢q)ioidal dispersions, we hope that this article stimulates fur-

the preferred scalar surface order param@gr We already  ther experimental as well as theoretical studies on wetting
know the boundary-layer phase diagram in this case for Bhenomena in these systems.

planar surfac¢l6,29: for Q4 smaller than the bulk valu@,,
of the nematic phase, complete wetting cannot occur. Above
Qy, the prewetting line becomes a surface in the temperature-
Qs-W phase diagram which ends in a critical line. We expect
this surface to vanish gradually with an increase in inverse The authors thank R. Evans and especially W. Poon. Dis-
particle radius. cussions with the latter initiated this work. One of the au-
A second extension concerns temperatures beijqwWe  thors (H.S) thanks the Yokoyama Nano-structured Liquid
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