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Universality in two-dimensional Kardar-Parisi-Zhang growth
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We analyze simulation results of a model proposed for etching of a crystalline solid and results of other
discrete models in the (211)-dimensional Kardar-Parisi-Zhang~KPZ! class. In the steady states, the moments
Wn of ordersn52,3,4 of the height distribution are estimated. Results for the etching model, the ballistic
deposition model, and the temperature-dependent body-centered restricted solid-on-solid model suggest the
universality of the absolute value of the skewnessS[W3/W2

3/2 and of the value of the kurtosisQ[W4 /W2
2

23. The sign of the skewness is the same as of the parameterl of the KPZ equation which represents the
process in the continuum limit. The best numerical estimates, obtained from the etching model, areuSu
50.2660.01 andQ50.13460.015. For this model, the roughness exponenta50.38360.008 is obtained,
accounting for a constant correction term~intrinsic width! in the scaling of the squared interface width. This
value is slightly below previous estimates of extensive simulations and rules out the proposal of the exact value
a52/5. The conclusion is supported by results for the ballistic deposition model. Independent estimates of the
dynamical exponent and of the growth exponent are 1.605<z<1.64 andb50.22960.005, respectively, which
are consistent with the relationsa1z52 andz5a/b.

DOI: 10.1103/PhysRevE.69.0216XX PACS number~s!: 81.15.Aa, 05.40.2a, 05.50.1q
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I. INTRODUCTION

Surface growth processes and deposition of thin fil
have attracted much interest from the technological poin
view @1–3# and motivated the proposal of continuum a
discrete models for surface and interface growth, which a
play an important role in the field of non-equilibrium stati
tical mechanics. One of the most important phenomenolo
cal theories is that of Kardar, Parisi, and Zhang~KPZ! @4#, in
which the time evolution of the interface described by t
height functionh at positionxW and timet is given by the KPZ
equation

]h

]t
5n¹2h1

l

2
~¹h!21h~xW ,t !. ~1!

Heren represents the surface tension,l represents the exces
velocity, andh is the Gaussian noise@2,4# with zero mean
and variance ^h(xW ,t)h(x8W ,t8)&5Ddd(xW2x8W )d(t2t8),
whered is the dimension of the substrate.

The interface widthj(L,t)5^h̄22h̄2&1/2 characterizes the
roughness of the interface, for growth in a substrate of len
L ~overbars denote spatial averages and angular bracket
note configurational averages!. For short times, the interfac
width scales as

j;tb, ~2!

whereb is the roughness exponent. For long times, a ste
state is attained and the width saturates at

jsat;La, ~3!

where a is the roughness exponent. Equations~2! and ~3!
correspond to limits of the dynamical scaling relation
Family and Vicsek@5#,
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j'La f ~ tL2z!, ~4!

where the dynamical exponentz5a/b characterizes the
crossover from the growth regime to the steady state. G
ilean invariance givesa1z52 for KPZ in all dimensions
@2,3#. The exact scaling exponents are known ind51, but no
exact value was already obtained in two or more dimensi
@2,3#.

Many discrete models fall into the KPZ class, such as
restricted solid-on-solid~RSOS! model of Kim and Koster-
litz @6# and ballistic deposition~BD! @7#. Numerical esti-
mates of the scaling exponents ind51 are consistent with
the exact values@6,8,9# and simulations ind52 are fre-
quently used to estimate them. Most of the reported value
a range froma50.37 to a50.4 @6,10–13#, which is con-
firmed by numerical solutions of the KPZ equation@14–17#.

In 1998, assuming certain properties of the height cor
lation functions, La¨ssig obtained a quantization condition fo
the KPZ exponents which gavea52/5 as the only solution
consistent with the range of numerical estimates@18#. An-
other consequence of his work was that the moments of
steady state height distribution,

Wn[^~h2h̄!n&, ~5!

would obey power counting, i.e., they would scale asWn
;Lna. The second moment is the squared interface wi
j2. Moreover, the validity of his assumptions requires th
the steady state distribution is skewed~nonzero third mo-
ment!, contrary to the one-dimensional case~Gaussian distri-
bution!.

Recent numerical results of Chin and den Nijs for t
RSOS and the body-centered solid-on-solid~BCSOS! mod-
els were consistent witha50.4 @19#, but extensive simula-
tions of Marinari et al. for the RSOS model rule out tha
value@20#. A recent study of the KPZ equation in the mod
coupling approximation provided an estimatez'1.62 in d
©2004 The American Physical Society10-1
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52 @21#. Despite this controversy, various works@19,20,22#
confirm the power-counting property for models with r
stricted height differences~RSOS, BCSOS! and suggest tha
the skewness

S[
W3

W2
3/2 ~6!

and the kurtosis

Q[
W4

W2
2 23 ~7!

are universal at the steady state. According to Chin and
Nijs, these universal values do not depend on the sign of
coefficientl of the nonlinear term of the KPZ equation~1!.

Consequently, the value of KPZ exponents ind52 is still
an open question, and the universality of the values of
skewness and the kurtosis deserves to be tested in mo
other than those with restricted height differences. The m
contribution of this paper is the analysis of simulation resu
of a recently proposed model for etching of crystalline sol
@23# which belongs to the KPZ class. Additional support
some of our conclusions will be provided by simulation r
sults of ballistic deposition and of the temperature-depend
BCSOS model@19#. For the etching model, we will obtain
a'0.38 after a detailed analysis of finite-size correctio
Characteristic relaxation times will be calculated indep
dently and will provide estimates of the dynamical expon
z.1.6, while estimates of the growth exponent giveb
'0.23. Although our error bars intercept those obtain
from extensive simulations of the RSOS model@20#, our
central estimates ofa are smaller and, consequently, mo
distant from the theoretically proposed valuea50.4 @18#.
On the other hand, our estimates are near those by Col
and Moore @21# from renormalization under the mode
coupling approximation. We will also show that our data f
various models confirm the universality of the steady st
skewness and kurtosis. Concerning the steady state s
ness, although its absolute value is universal, its sign cha
with the coefficientl of the KPZ equation.

This paper is organized as follows. In Sec. II we brie
describe the models, the simulation procedure, the meth
to estimateWn , and the method to calculate characteris
relaxation times. In Sec. III, we analyze the skewness and
kurtosis at the steady states. In Sec. IV, we analyze the fin
size estimates of the scaling exponents of the etching mo
also showing some results for BD. In Sec. V we summar
our results and present our conclusions.

II. MODELS AND SIMULATION PROCEDURE

The model for etching of a crystalline solid of Melloet al.
@23# is illustrated in Fig. 1 in its growth version. The solid
have square and simple cubic lattice structures in 111 and
211 dimensions, respectively. At each growth attempt
column i, with current heighth( i )[h0, is randomly chosen
Then its height is increased by one unit@h( i )→h011# and
any neighboring column whose height is smaller thanh0
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grows until its height becomesh0. One time unit corre-
sponds toL2 growth attempts in 211 dimensions. In the true
etching version of this model, the columns’ heights decre
by the same quantities above. However, in this paper we
always refer to the growth version of Fig. 1 as ‘‘the etchi
model.’’

In the BD model, particles are sequentially released fr
randomly chosen positions above the substrate, follow a
jectory perpendicular to the surface, and stick upon first c
tact with a nearest neighbor occupied site@2,7#.

In the BCSOS model defined by Chin and den Nijs@19#,
the substrate is a square lattice and the heightsh in the first
~second! sublattice are restricted to assume even~odd! val-
ues. Also, the nearest neighbor columns always differ
height byDh561. The energy of a given height configura

tion $h% is given byE($h%)5(^ i , j &
1
4 K(hi2hj )

2, whereK is
an inverse temperature parameter and the sum runs ove
next nearest neighbor pairs. At each deposition attemp
column c is randomly chosen and, if the constraint of th
height difference is satisfied, thenh(c)→h(c)12 with prob-
ability p[min„1,exp(2DE)…, where DE is the energy
change if the deposition takes place. The corresponding
efficient l @Eq. ~1!# changes sign at a critical pointKc
@19,24#.

The etching model was simulated in lattices of leng
L52n (n55 to n510) and lattices of lengthsL52m350
(m50 to m54). The maximum deposition time range
from 103 for the smallest lattices to 63104 for the largest
ones. During half of this time or more, the systems ha
undoubtedly attained their steady states. For the smalles
tices, 23104 realizations were simulated, and nearly 3
realizations for the largest lattices (L5800 andL51024).
BD was simulated in lattices of lengthsL52n, from n55
(L532) to n511 (L52048). For the analysis of the skew
ness and of the kurtosis, it was essential to simulate
model in very large lattices, thus the number of realizatio
was relatively small: typically 103 realizations forL<512,
35 for L51024, and 8 forL52048. The temperature
dependent BCSOS model was simulated withK50.25 (L

FIG. 1. The growth rules of the model of Melloet al. ~original
growth version!. The arrows indicate the randomly chosen colum
and the new particles are shown in gray.
0-2
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516 to L5128) andK51.0 (L516 to L5512). For L
<256, 103 different realizations were considered, and
realizations forL5512.

The procedure to calculate average quantities, descr
below, followed the same lines for all models. It was pre
ously used in the analysis of other growth models in 111
and 211 dimensions@9,25,26#.

One important point is the criterion to determine the i
tial time tmin for estimating average quantities at the stea
state. In this regime, the interface widthj fluctuates around
an average value instead of increasing systematically, w
was the case in the growth and in the crossover regio
Thus, for a fixed lattice lengthL, the first step was choosin
a time intervaltmin<t<tmax, with nearly constantj, from
visual inspection of thej3t plot (tmax was always the maxi-
mum simulation time!. Subsequently, two tests were pe
formed. For the first test, the interval was divided in fi
subintervals and the average value ofj was calculated in
each one, forming a sequence of estimates$j( i )%, with i
51, . . . ,5. If j( i ),j( i 21) at least two times along thi
sequence, then the average value ofj in the regiontmin<t
<tmax, jsat

trial , was calculated. In the second test, from t
plot of ln@jsat

trial2j(t)#3t, for t in the crossover region, we
obtained a rough estimate of the characteristic timet of re-
laxation to the steady state, as shown in Ref.@25#. If tmin
.10t, then the intervaltmin<t<tmax was accepted as rep
resentative of the steady state. Otherwise, a larger valu
tmin was chosen and the tests were repeated~it seldom oc-
curred!.

In order to estimate the moments of the height distribut
and their error bars, we used their average values within
five subintervals defined above. Final estimates ofWn are
averages of these values, and error bars were obtained
their variances.

The dynamical exponent was estimated using a rece
proposed method@25#, in which a characteristic timet0,
proportional to the relaxation timet, is calculated. For fixed
L, after calculating the saturation widthjsat(L), t0 is defined
through

j~L,t0!5kjsat~L !, ~8!

with a constantk&1. From relation~4!, we obtain

t0;Lz. ~9!

Typically, the uncertainty int0 is much smaller than that o
t, estimated from ln(jsat2j)3t plots—see Ref.@25#.

We estimatedt0 with k ranging fromk50.5 to k50.8.
Although these constants are not much different, the va
of t0 for k50.5 andk50.8 typically differ by a factor 4, for
fixed L. This method was already applied with success
calculate the dynamical exponent of other models in vari
universality classes@25,26#.

III. UNIVERSALITY OF SKEWNESS AND KURTOSIS

In Fig. 2~a! we show the steady state skewnessS(L,t
→`) of the etching model as a function of the inverse latt
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length, which provides a good linear fit of the data, with
asymptotic estimateS50.2660.01. The absolute value ofS
agrees with results of Chin and den Nijs@19#, Shim and
Landau@22#, and Marinariet al. @20# for the RSOS model of
Kim and Kosterlitz @6# and for BCSOS models, but thos
authors obtainedSwith negative sign. Here, the positive sig
is related to the presence of sharp hills~see process at the le
in Fig. 1! and wide valleys at the surface of the deposit, t
opposite being observed in RSOS deposits.

Note that Eq.~1! is invariant under the transformation
h→2h andl→2l, without changing the other parameter
This transformation changes the sign of the skewness. C
sequently, we expect that the sign ofS is related to that ofl,
as previously observed in the growth regimes
(111)-dimensional KPZ systems@27#. In fact, in the true
etching version of this model, with erosion leading to d
creasing heights, the sign ofSchanges, corresponding to th
transformationh→2h, l→2l.

Results for the other models contribute to this discussi
In Fig. 2~b! we show S(L,t→`) versus 1/L for the BD
model. Note thatS is negative for small lattices~typically
L,500), but for large lattices it becomes positive, showi
that there are significant morphological differences betw
the steady states of small lattices and those of very la
systems. This is the main reason to avoid extrapolating
data in Fig. 2~b!, even choosing extrapolation variables oth
than 1/L @this abscissa in Fig. 2~b! was chosen only to illus-
trate the evolution ofS with L]. Other consequences of thi
complex finite-size behavior were previously discussed
Ref. @9#. However, it is clear from Fig. 2~b! thatS is asymp-
totically positive.

In Figs. 2~c! and 2~d! we show the steady state skewne
for the temperature-dependent BCSOS models withK
50.25 andK51.0, respectively. ForK50.25, the extrapo-
lation of the three last data points givesS520.2860.015,

FIG. 2. Steady state skewness of various models vs inverse
tice length:~a! etching model~in the growth version!, ~b! ballistic
deposition,~c! BCSOS model withK50.25, ~d! BCSOS model
with K51.0. The solid lines in~a! and ~c! are least squares fits o
the data.
0-3
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reinforcing the conclusion on the universality ofuSu. Due to
the small number of data points, the asymptotic correct
term may be other than 1/L, but it would not affect that
conclusion. ForK51.0, the skewness is always positive a
rapidly increases withL, thus no extrapolation variable of th
form L2D, with D.0, provides a reasonable linear fit. How
ever, S will certainly converge to a positive value asL
→`, showing that the sign of the steady state skewn
changes asK increases.

The sign of the corresponding parameterl is obtained
from the size dependence of the growth velocity. The ste
state growth velocityvs(L), and the velocity in an infinitely
large substrate at long timesv` obey the relation@28#

vs~L !5v`2alL2a i, ~10!

wherea i52(12a) anda is positive. Consideringa50.38
~see Sec. IV!, we obtaina i51.24. In Figs. 3~a!–3~d!, we
plottedvs(L) versusx[1/L1.24 for the four models. For the
etching model, the BD model, and the BCSOS model w
K51.0 @Figs. 3~a,b,d!#, vs decreases withx, which gives a
positive l, while the opposite occurs in the BCSOS mod
with K50.25. It confirms that the steady state skewness
the KPZ equation has the same sign of the parameterl, its
absolute value being universal. The same conclusion
derived from the time dependence of the velocity in t
growth regime@28#.

At this point, we recall that Chin and den Nijs@19# simu-
lated the temperature-dependent BCSOS model withK
520.25 andK50.25, obtainingS'20.26 in both cases
They concluded thatSdid not depend onl, but they did not
estimate the values of this parameter. Sincel is expected to

FIG. 3. Steady state velocities vs 1/La i, with a i51.24, for ~a!
etching model,~b! ballistic deposition model,~c! BCSOS model
with K50.25, ~d! BCSOS model withK51.0. Error bars are
smaller than the size of the data points.
02161
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cross zero for a positiveK, we conclude that their work
failed to consider the regime of positivel, which is repre-
sented here byK51.0.

Now we turn to the analysis of the kurtosis@Eq. ~7!#. In
Fig. 4~a! we show the steady stateQ for the etching model,
as a function of 1/L. The size dependence is much weak
than that of the skewness, so that extrapolation variab
other than 1/L do not have a significant influence on th
asymptotic estimate,Q50.13460.015~the large error bar is
mainly a consequence of the uncertainties of the finite-s
data!. This estimate agrees with previous ones for mod
with restricted height differences@19,22,20#, suggesting that
the steady state kurtosis is also universal. In Fig. 4~b!, we
show the data for the BD model and for the BCSOS mo
with K50.25 andK51.0, which have significant finite-siz
dependence~in particular, those for BD!. Thus, the extrapo-
lated values have very large error bars, but are still consis
with a universal value ofQ.

IV. ROUGHNESS, DYNAMICAL, AND GROWTH
EXPONENTS

Our first step to estimate the roughness exponent wa
calculate effective exponentsa (L,i ) defined as

a (L,i )[
ln@jsat~L !/jsat~L/ i !#

ln i
. ~11!

It is expected thata (L,i )→a for any value ofi.
Using different values ofi in Eq. ~11!, we noticed that

a (L,i ) varied with L typically in the range 0.33<a (L,i )
<0.38 for 50<L<1024, which suggests that corrections
the scaling relation~3! are relevant. Our first proposal is t
assume the main scaling correction as

jsat;La~a01a1L2D!, ~12!

wherea0 and a1 are constants. Consequently,a (L,i ) is ex-
pected to vary as

FIG. 4. Steady state kurtosis of various models vs inverse lat
length: ~a! etching model;~b! ballistic deposition model~squares!,
BCSOS model withK50.25 ~triangles!, and BCSOS model with
K51.0 ~crosses!. Error bars in~b! ~not shown! are smaller than the
size of the data points, except for BD in the largest latticeL
51024).
0-4
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TABLE I. For eachi in Eq. ~11! are given the values of the correction exponentD which provided the
largest correlation coefficientsr of fits of a (L,i )3L2D and the corresponding asymptotica, the values of the
slopeB of the fits with fixedD50.55, and the corresponding values of asymptotica and ofBln i/(12iD).

i @Eq. ~11!# D a B a Bln i/(12iD)
~largestr ) ~largestr ) (D50.55 fixed! (D50.55 fixed! (D50.55 fixed!

2 0.55 0.384 0.472 0.384 0.705
2.56 0.50 0.383 0.434 0.381 0.603
3.125 0.6 0.383 0.553 0.385 0.723

4 0.65 0.381 0.545 0.383 0.661
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a (L,i )'a1BL2D, ~13!

where

B5
~12 i D!

ln~ i !

a1

a0
. ~14!

Our data with 50<L<1024 were analyzed using four va
ues of i in Eq. ~11!: i 52, i 52.56, i 53.125, andi 54 ~for
nonintegeri, only three or four effective exponents can
calculated!. For eachi, we plotteda (L,i )3L2D using several
exponentsD and did least squares fits of those plots, fro
which the linear correlation coefficientsr (D,i ) were ob-
tained. Since there is no argument to predict the value ofD,
we adopted the condition of maximizing the coefficientr to
extrapolate our data. In Table I, we show the exponentD
which gave the largestr ~best linear fits! for each i. The
procedure is illustrated in Figs. 5~a! and 5~b!, in which we
show a (L,2)3L20.55 and a (L,2)3L20.65, respectively, with
the corresponding linear fits. The values ofD in Figs. 5~a!
and 5~b! are those which give the best fits withi 52 and i
54, respectively~see Table I!.

D is expected to be independent of the particular cho
of i in Eq. ~11!, so the differences between the estimates
Table I are effects of the maximization ofr. Moreover, other
exponentsD near the values shown in Table I also provid
reasonable linear fits ofa (L,i )3L2D plots. In other words,
large linear correlation coefficients were also obtained
considering 0.3&D&0.8 for different choices ofi. Conse-
quently, it is not possible to obtain a reliable estimate of t
correction exponent. On the other hand, the asymptotia

FIG. 5. Effective exponentsa (L,2) and a (L,4) for the etching
model vsL2D, with the exponentsD that give the best linear fits fo
i 52 andi 54, respectively.
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obtained from the same fits fluctuate within a narrow ran
Accounting for the error bars of the data, we obtaineda
50.38560.01 for i 52 anda50.38260.01 for i 54.

We also checked the effect of considering a fixed corr
tion exponentD50.55 ~which is near the values in Table I!
for all values of i. This procedure will be called fixedD
method. Least squares fits of thea (L,i )3L20.55 plots were
performed, providing the slopesB which are shown in Table
I. From Eq. ~14!, it is expected thatBlni/(12iD)5a1 /a0
5const@see also Eqs.~12! and~13!#, thus we also showed in
Table I the corresponding estimates ofBlni/(12iD). This
quantity fluctuates withi, indicating that there is no system
atic trend in our results due to choice of different values oi
for calculating effective exponents. Also notice that the e
mates ofa from the fixedD method are in same range a
those obtained from the maximization of correlation coe
cients.

Since the range of lattice lengths considered here is
very large and the correction exponentsD estimated above
are relatively small, we tried to improve our analysis with
different assumption for the scaling corrections. Contrary
the previous procedure, now we will consider a well defin
form for the main scaling correction, which is an addition
constant termj I

2 in the dynamic scaling relation~4! for the
squared interface width:

j2~L,t !5j I
21L2ag~ tL2z!, ~15!

whereg is a scaling function.j I is called intrinsic width and
represents contributions of small length scale fluctuatio
typical of models with large local height differences@29–31#
such as the etching model and the BD model. From Eqs.~15!
and ~12!, the assumption of the intrinsic width as the mo
relevant subleading correction corresponds to a~fixed! cor-
rection exponentD52a'0.8. It is slightly larger than the
typical values obtained in the previous analysis.

Effective exponentsaL
(I ) which cancel the contribution o

j I
2 are defined as

aL
(I )[

1

2

ln@jsat
2 ~2L !2jsat

2 ~L !#/@jsat
2 ~L !2jsat

2 ~L/2!#

ln 2
.

~16!

In Fig. 6~a! we show aL
(I ) versus 1/L for the etching

model and a least squares fit of these data, which prov
a50.383 asymptotically. Here, the variable 1/L in the ab-
scissa was chosen only to illustrate the behavior of theaL

(I )
0-5
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data. It represents a second correction term for thej scaling,
which is still more difficult to measure than the first corre
tion term. Thus, we also tested other variables in the fo
L2D1 to extrapolateaL

(I ) , with 0.5<D1<2 @D151 was used
in Fig. 6~a!#. The corresponding linear fits give 0.380,a
,0.387. The small range of the asymptotica is a conse-
quence of the slow variation ofaL

(I ) with L (2% from L
5100 toL5500), as shown in Fig. 6~a!. Accounting for the
error bars of the data, our final estimate isa50.383
60.008.

The forms of finite-size corrections analyzed above, E
~13! and~15!, cannot be rigorously justified, but are based
heuristic arguments. See, e.g., Ref.@2# and references
therein. Certainly, the fact thataL

(I ) increases slowly withL is

FIG. 6. Effective exponentsaL
(I ) ~from interface width! and

aL
(I ,4) ~from the fourth moment of the height distribution! for the

etching model vs inverse lattice length.
ib
e
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a support to the assumption that the intrinsic width is
most relevant correction term toj2. Anyway, using different
assumptions on the scaling corrections was essential to
firm the reliability of the above estimate of the roughne
exponent.

The universality of the values of skewness and kurto
implies thatW3 andW4 may also be used to estimatea. The
effective exponents obtained from the third moment ha
very large error bars, but those obtained from the fourth m
ment behave similarly to the ones obtained from the interf
width. The analogs of exponentsa (L,2) anda (L,4) @Eq. ~11!#
calculated withW4 also converge to the range 0.38<a
<0.385 with strong corrections to scaling. Effective exp
nents which cancel the contribution of a constant addit
term in the dynamic scaling relation forW4 ~analogous to
aL

(I )) are defined as

FIG. 7. Effective exponentsaL
(I ) for the ballistic deposition

model vs inverse lattice length.
aL
(I ,4)[

1

4

ln@W4~2L,t→`!2W4~L,t→`!#/@W4~L,t→`!2W4~L/2,t→`!#

ln 2
. ~17!
-
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They are plotted in Fig. 6~b! as a function of 1/L. The
asymptotic estimate, obtained with the procedure descr
above, isa50.37960.012. It is in good agreement with th
estimate from the interface width and also excludesa
50.4.

The same analysis was also performed with the
model, as shown in Fig. 7, with data forL<512. Although
the results are less accurate than those for the etching m
they also suggest thata,0.4 asymptotically.

In order to estimate the dynamical exponentz, we calcu-
lated effective exponentszL defined as

zL[
ln@t0~2L !/t0~L/2!#

ln 4
, ~18!

using the characteristic timest0 defined in Sec. II@Eqs.~8!
and~9!#. In Figs. 8~a! and 8~b! we showzL versus 1/L for the
etching model, obtained usingk50.6 andk50.8 to calculate
t0, respectively. Here, the abscissa 1/L is also chosen to
ed

el,

illustrate the evolution ofzL , but not to perform extrapola
tions of the data. Although the error bar of the data forL
5800 is relatively large, those plots indicate thatz.1.6.
Considering the trend for largeL and different values ofk,
we estimate 1.605<z<1.64. These values are consiste
with the above estimates ofa and the exact relationa1z
52.

Finally, we estimated the growth exponent@Eq. ~2!# of the
etching model with the same procedure previously app
with success to BD and to the Das Sarma and Tambore
model in 111 dimensions@9,26#. The growth region for
eachL begins att0550 and ends at the maximum timetmax
such that the linear correlation coefficient of the data in
range t0<t<tmax exceeds a fixed valuer min @9#. Here,
r min50.999 95 andr min50.9999 are considered. Effectiv
exponentsbL are defined as the slopes of the linear fits
lnW3lnt plots using all data in the above-defined grow
regions. In Fig. 9 we plotbL versus 1/L for the etching
model using r min50.999 95 andr min50.9999. The error
0-6
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bars of those effective exponents are very small. We a
show in Fig. 9 the linear fits of thebL31/L data for each
r min . Other variables in the formL2D were used to extrapo
late the bL data, giving asymptotic estimatesb50.229
60.005. Within error bars, it agrees with the valu
a/z50.23460.009 obtained from the above estimates ofa
andz.

V. CONCLUSION

We studied four (211)-dimensional discrete growt
models in the KPZ class, determining critical exponents a
steady state values of the skewnessS and the kurtosisQ.
Accurate estimates of the scaling exponents were obta
for the etching model proposed by Melloet al. @23#: a
50.38360.008, 1.605<z<1.64, b50.22960.005. Results
for the ballistic deposition model also indicate thata,0.4.
The presence of the intrinsic width as the main correction
the interface width scaling was considered to extrapolate
simulations data. We also obtain the estimatesS50.26
60.01 andQ50.13460.015 in the steady state regime
the etching model. Results for the BD model and of t
BCSOS model, together with previous results for the RS

FIG. 8. Effective exponentszL for the etching model vs invers
lattice length. Relaxation timest0 were obtained with~a! k50.6
and ~b! k50.8 in Eq.~8!.
ys

02161
o

d

ed

o
e

e
S

model, suggest that the absolute value ofS and the value of
Q are universal, the sign of the skewness being the sam
that of the parameterl of the corresponding KPZ equation

The above estimate intercepts the error bar of the rou
ness exponent of the RSOS model given by Marinari a
co-workers@20#, a50.39360.003. However, our central es
timate is significantly lower than theirs, and the result for B
confirms this trend. On the other hand, our estimate is v
near that by Colaiori and Moore,a'0.38, from renormal-
ization methods@21#. Additional support to our conclusion
was given by the independent calculation of exponentsz and
b, contrary to recent simulation works on these lines@19,20#,
which were limited to the calculation of exponenta.

We believe that much more accurate estimates ofa are
difficult to be achieved with numerical simulations of th
type of lattice model. However, we consider that this wo
provides a significant amount of numerical results indicat
that the theoretically proposed valuea50.4 @18# is not valid,
within the limits of the assumptions made about the form
finite-size scaling corrections. This result and the evidenc
universality of the values of the skewness and the kurto
may motivate further analytical~maybe also numerical! stud-
ies of the KPZ theory in 211 dimensions.

FIG. 9. Effective exponentsbL for the etching model vs inverse
lattice length, obtained with minimum correlation coefficientsr min

50.9999 ~squares! and r min50.999 95~triangles!. Solid lines are
least squares fits of each set of data (200<L<1024).
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@18# M. Lässig, Phys. Rev. Lett.80, 2366~1998!.
@19# C.-S. Chin and M. den Nijs, Phys. Rev. E59, 2633~1999!.
@20# E. Marinari, A. Pagnani, and G. Parisi, J. Phys. A33, 8181

~2000!.
0-7
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