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Universality in two-dimensional Kardar-Parisi-Zhang growth
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We analyze simulation results of a model proposed for etching of a crystalline solid and results of other
discrete models in the (21)-dimensional Kardar-Parisi-ZhariPZ) class. In the steady states, the moments
W, of ordersn=2,3,4 of the height distribution are estimated. Results for the etching model, the ballistic
deposition model, and the temperature-dependent body-centered restricted solid-on-solid model suggest the
universality of the absolute value of the skewn&ssW,/W,>? and of the value of the kurtos@EW4/W§
—3. The sign of the skewness is the same as of the parametéthe KPZ equation which represents the
process in the continuum limit. The best numerical estimates, obtained from the etching mode&}, are
=0.26+:0.01 andQ=0.134+0.015. For this model, the roughness exponert0.383+0.008 is obtained,
accounting for a constant correction tefmtrinsic width) in the scaling of the squared interface width. This
value is slightly below previous estimates of extensive simulations and rules out the proposal of the exact value
a=2/5. The conclusion is supported by results for the ballistic deposition model. Independent estimates of the
dynamical exponent and of the growth exponent are 6651.64 and3=0.22%+ 0.005, respectively, which
are consistent with the relationst+ z=2 andz= a/p.
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. INTRODUCTION E~Lf(tL™), (4)

Surface growth processes and deposition of thin filmsvhere the dynamical exponert=«/B characterizes the
have attracted much interest from the technological point ofrossover from the growth regime to the steady state. Gal-
view [1-3] and motivated the proposal of continuum andilean invariance givesy+z=2 for KPZ in all dimensions
discrete models for surface and interface growth, which als$2,3]. The exact scaling exponents are knowuinl, but no
play an important role in the field of non-equilibrium statis- exact value was already obtained in two or more dimensions
tical mechanics. One of the most important phenomenologif2,3].
cal theories is that of Kardar, Parisi, and ZhdK&Z) [4], in Many discrete models fall into the KPZ class, such as the
which the time evolution of the interface described by therestricted solid-on-solidRSOS model of Kim and Koster-
height functionh at positionx and timet is given by the KPz  litz [6] and ballistic depositionBD) [7]. Numerical esti-
equation mates of the scaling exponentsdrs=1 are consistent with

the exact value$6,8,9 and simulations ind=2 are fre-
oh A . quently used to estimate them. Most of the reported values of
EZWZWF E(Vh)2+ 7(X,t). (1) & range froma=0.37 to a=0.4[6,10—13, which is con-
firmed by numerical solutions of the KPZ equatida—17.

Herev represents the surface tensiamrepresents the excess 'In 1998’. assuming certa}m propertle§ of.the he|ght corre-
lation functions, Lasig obtained a quantization condition for

velocity, andz is the Gaussian nois@,4] with zero mean the KPZ exponents which gawe=2/5 as the only solution

and variance (7(Xxt) (X’ t))=D&*x=x")8(t=t'),  consistent with the range of numerical estimgt&8]. An-
whered is the dimension of the substrate. other consequence of his work was that the moments of the
The interface widthg(L,t) = (h?—h?)? characterizes the steady state height distribution,

roughness of the interface, for growth in a substrate of length

L (overbars denote spatial averages and angular brackets de- W,=((h—h)"), (5)

note configurational average$-or short times, the interface

width scales as would obey power counting, i.e., they would scale\&ls
~L" The second moment is the squared interface width

E~tP, (2 £2. Moreover, the validity of his assumptions requires that

the steady state distribution is skewétbnzero third mo-

wherep is the roughness exponent. For long times, a steadyhend, contrary to the one-dimensional ca&aussian distri-

state is attained and the width saturates at bution).
Recent numerical results of Chin and den Nijs for the
Esar~ LY, (3  RSOS and the body-centered solid-on-s¢BRCSOS mod-

els were consistent witkk=0.4[19], but extensive simula-
where « is the roughness exponent. Equatid2s and (3) tions of Marinariet al. for the RSOS model rule out that
correspond to limits of the dynamical scaling relation ofvalue[20]. A recent study of the KPZ equation in the mode-
Family and VicseK5], coupling approximation provided an estimate 1.62 ind
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=2 [21]. Despite this controversy, various workk9,20,23 ‘ ¢ *
confirm the power-counting property for models with re-
stricted height differenceRSOS, BCSOBand suggest that —
the skewness ™ =
W; O |}

S= Wﬁ (6)
and the kurtosis \U/

W 4 7

Q= W2 (7)

are universal at the steady state. According to Chin and den
Nijs, these universal values do not depend on the sign of the
coefficienth of the nonlinear term of the KPZ (_aqua_lticﬁm_), FIG. 1. The growth rules of the model of Melkt al. (original
Consequently, the value of KPZ exponentslin2 is still goth version. The arrows indicate the randomly chosen columns
an open question, and the universality of the values of thg,q the new particles are shown in gray.
skewness and the kurtosis deserves to be tested in models
other than those with restricted height differences. The main - . . .
contribution of this paper is the analysis of simulation resultd OWS “”“2' its _height becomebo. C_)ne tlr_ne unit corre-
of a recently proposed model for etching of crystalline solidss'por?dS ta growth qttempts ina1 dlmens[ons'. In the true
[23] which belongs to the KPZ class. Additional support to etching version of Fh'S model, the columr)s hglghts decreage
some of our conclusions will be provided by simulation re—by the same quantities above. I-_|owever_, in this Baper We.W'”
sults of ballistic deposition and of the temperature-depender?(h’vays refer to the growth version of Fig. 1 as “the etching

BCSOS mode[19]. For the etching model, we will obtain model. . .
a~0.38 after a detailed analysis of finite-size corrections. In the BD model, particles are sequentially released from

Characteristic relaxation times will be calculated indepen-.ralndomly chose_n positions above the subs_trate, follqw a tra-
ectory perpendicular to the surface, and stick upon first con-

dently and will provide estimates of the dynamical exponenftact with a nearest neighbor occupied §2¢7]

z>1.6, while estimates of the growth exponent gige ) .
- . : In the BCSOS model defined by Chin and den N9,
froohzi-xtéggsligrs]irﬁﬂlr at(iacr)rnosr (?fa;ﬁ elnéesrcoesp tﬂ:g%zg] Ogltf:me({he substrate is a square lattice and the heighitsthe first

. f second sublattice are restricted to assume evedd val-
central estimates oft are smaller and, consequently, more Eles. A?Iso the nearest neighbor columns alyvayi) differ in

distant from the theoretically proposed value=0.4 [18]. ; h : ; .
On the other hand, our estimates are near those by Colaiorr.]f‘a'ght byAh==1. The energy of a given height configura-

and Moore [21] from renormalization under the mode- tion {h} is given byE({h}) == ;7K (hi—h))? whereK is
coupling approximation. We will also show that our data foran inverse temperature parameter and the sum runs over all
various models confirm the universality of the steady staté1€xt nearest neighbor pairs. At each deposition attempt, a
skewness and kurtosis. Concerning the steady state skewolumnc is randomly chosen and, if the constraint of the
ness, although its absolute value is universal, its sign changé&gight difference is satisfied, théc) —h(c) +2 with prob-
with the coefficient\ of the KPZ equation. ability p=min(1,exp(-AE)), where AE is the energy
This paper is organized as follows. In Sec. Il we briefly change if the deposition takes place. The corresponding co-
describe the models, the simulation procedure, the methodgfficient X [Eq. (1)] changes sign at a critical poirk,
to estimateW,,, and the method to calculate characteristic[19,24.
relaxation times. In Sec. Ill, we analyze the skewness and the The etching model was simulated in lattices of lengths
kurtosis at the steady states. In Sec. IV, we analyze the finitd-=2" (n=5 to n=10) and lattices of lengthk =2"x50
size estimates of the scaling exponents of the etching modeim=0 to m=4). The maximum deposition time ranged
also showing some results for BD. In Sec. V we summarizérom 10° for the smallest lattices to 610" for the largest
our results and present our conclusions. ones. During half of this time or more, the systems have
undoubtedly attained their steady states. For the smallest lat-
tices, 2x10* realizations were simulated, and nearly 300
realizations for the largest lattices €800 andL =1024).
The model for etching of a crystalline solid of Mekt al.  BD was simulated in lattices of lengths=2", from n=5
[23] is illustrated in Fig. 1 in its growth version. The solids (L=32) ton=11 (L=2048). For the analysis of the skew-
have square and simple cubic lattice structuresdnlland ness and of the kurtosis, it was essential to simulate this
2+1 dimensions, respectively. At each growth attempt, anodel in very large lattices, thus the number of realizations
columni, with current heighh(i)=h,, is randomly chosen. was relatively small: typically IDrealizations forL <512,
Then its height is increased by one uftit(i) —hy+1] and 35 for L=1024, and 8 forL=2048. The temperature-
any neighboring column whose height is smaller thgn dependent BCSOS model was simulated whtk0.25 (L

Il. MODELS AND SIMULATION PROCEDURE
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=16 to L=128) andK=1.0 (L=16 to L=512). ForL 0.8 prr 7]

~~ - = -
<256, 1G different realizations were considered, and 40 8 C ] 0.4 ¢ 3
realizations for. =512, T o2s 4 o= }- E
The procedure to calculate average quantities, described 3 C ] Y 3 - . E
below, followed the same lines for all models. It was previ- 17e 0.2 3 1-02F -
ously used in the analysis of other growth models in 11 i T X T
and 2+ 1 dimensiong9,25,26. 0 0.005 0.01 0 0.005 0.01
One important point is the criterion to determine the ini-
tial time t,;, for estimating average quantities at the steady (a) 1/L (b) 1/L
state. In this regime, the interface widghfluctuates around 0.3
an average value instead of increasing systematically, which ’é\ _02 LA e L
was the case in the growth and in the crossover regions. L 1 o2 F E
Thus, for a fixed lattice length, the first step was choosing - C ] H ]
a time intervalt ,j;<t<t;,a,, With nearly constang, from = 035 T 01 E - . =
visual inspection of th&Xxt plot (t,,,Was always the maxi- n ’ ] - * ]
mum simulation timg Subsequently, two tests were per- -3+ 01 o J S T R
formed. For the first test, the interval was divided in five 0 0.05 0 0.02
subintervals and the average value ffvas calculated in (C‘) 1/L (d) 1/L
each one, forming a sequence of estimgtéd)}, with i
=1,...,5. If§(i)<é(i—1) at least two times along this  F|G. 2. Steady state skewness of various models vs inverse lat-

sequence, then the average valuefoh the regiont, <t tice length:(a) etching modelin the growth versio) (b) ballistic
<trax g;;“_, was calculated. In the second test, from thedeposition,(c) BCSOS model withkK=0.25, (d) BCSOS model
plot of In[&1a—g(t)]xt, for t in the crossover region, we with K=1.0. The solid lines ir(a) and(c) are least squares fits of

obtained a rough estimate of the characteristic tirmaf re-  the data.

laxation to the ;teady state, as shown in R@6]. If tyi, length, which provides a good linear fit of the data, with an
>107, then the intervaty,<t<tya, was accepted as rep- pqymntotic estimaté=0.26+0.01. The absolute value &
resentative of the steady state. Otherwise, a larger value %fgrees with results of Chin and den N[$9], Shim and
tmin Was chosen and the tests were repediieseldom oc- | andau[22], and Marinariet al.[20] for the RSOS model of
curred. Kim and Kosterlitz[6] and for BCSOS models, but those
In order to estimate the moments of the height distributionauthors obtaine®with negative sign. Here, the positive sign
and their error bars, we used their average values within thg related to the presence of sharp hilee process at the left
five subintervals defined above. Final estimatesAgf are  in Fig. 1) and wide valleys at the surface of the deposit, the
averages of these values, and error bars were obtained froopposite being observed in RSOS deposits.
their variances. Note that Eq.(1) is invariant under the transformations
The dynamical exponent was estimated using a recentlf— —h and\— — X, without changing the other parameters.
proposed method25], in which a characteristic timer, This transformation changes the sign of the skewness. Con-
proportional to the relaxation time is calculated. For fixed sequently, we expect that the sign3is related to that of,

L, after calculating the saturation widgh,(L), o is defined ~as previously observed in the growth regimes of
through (1+1)-dimensional KPZ system27]. In fact, in the true

etching version of this model, with erosion leading to de-
E(L, 7o) =kégaiL), (8) creasing heights, the sign 8fchanges, corresponding to the
transformatiorh— —h, A— —A.
with a constank=<1. From relation(4), we obtain Results for the other models contribute to this discussion.
In Fig. 2b) we show S(L,t—x) versus 1L for the BD
o~ L% (99  model. Note thatS is negative for small latticegtypically
L <500), but for large lattices it becomes positive, showing
Typically, the uncertainty inry is much smaller than that of that there are significant morphological differences between
7, estimated from Inf,— &)Xt plots—see Ref[25]. the steady states of small lattices and those of very large
We estimatedr, with k ranging fromk=0.5 tok=0.8.  Systems. This is the main reason to avoid extrapolating the
Although these constants are not much different, the valuedata in Fig. 2b), even choosing extrapolation variables other
of 7o for k=0.5 andk=0.8 typically differ by a factor 4, for than 1L [this abscissa in Fig.(B) was chosen only to illus-
fixed L. This method was already applied with success tdrate the evolution oS with L]. Other consequences of this
calculate the dynamical exponent of other models in variousomplex finite-size behavior were previously discussed in

universality classef?5,26]. Ref.[9]. However, it is clear from Fig. (®) thatSis asymp-
totically positive.
IIl. UNIVERSALITY OF SKEWNESS AND KURTOSIS In Figs. 2c) and 2d) we show the steady state skewness
for the temperature-dependent BCSOS models wkth
In Fig. 2(@) we show the steady state skewne3{t,t =0.25 andK=1.0, respectively. FOK=0.25, the extrapo-

—m) of the etching model as a function of the inverse latticelation of the three last data points giv8s- —0.28+0.015,
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3 3 3 E 3 - 3
—~ 3.33 4 333 3 0.2 | 3 : ]
= . 1 e ] N 1 osfe .
> ] ' ] .JO'IBE_IEEE h T RPN s
3 . S~ F 3 0 Ppey —
3.31 - 3.31 - < 0.1 x E E x| E
0 0.005 0 0.005 0.050:' o 0'0'5' '62):1 -0.5 52- ol
1 L1.24 1 L1.24 ’ ' y
(a) 1/ ) 1/ 1/L 1/L
0.34 Frrr T 1 T ] -
T : (a) (b)
= E 4 0.135 .
~ 0.33 = 3 . FIG. 4. Steady state kurtosis of various models vs inverse lattice
> E g ] length: (a) etching modelyb) ballistic deposition modelsquarey
E i 0.134 J BCSOS model withk =0.25 (triangles, and BCSOS model with
032 B+ v 1y 03 K=1.0(crosses Error bars in(b) (not shown are smaller than the
o 0.02 0.04 0 0.01 size of the data points, except for BD in the largest lattite (
(c) 1/L1'24 (d) 1/L1~24 =1024).

FIG. 3. Steady state velocities vaL¥, with a=1.24, for(a) ~ Cross zero for a positivk, we conclude that their work
etching model,(b) ballistic deposition model(c) BCSOS model ~failed to consider the regime of positive which is repre-
with K=0.25, (d) BCSOS model withK=1.0. Error bars are Sented here biX=1.0.
smaller than the size of the data points. Now we turn to the analysis of the kurtogigg. (7)]. In
Fig. 4@ we show the steady sta€@ for the etching model,
as a function of 1/. The size dependence is much weaker

reinforcing the conclusion on the un|versallty|651_. Dueto than that of the skewness, so that extrapolation variables
the small number of data points, the asymptotic correction

. other than 1/ do not have a significant influence on the
E;eorrzrgzll:g?gn bgocnzth:e{ éhazﬁeus/kgwngs\g?;lgllv\?:tsaﬁ:;:i\:ga;n dasymptotic estimate&) =0.134+ 0.015(the large error bar is
s o ways p mainly a consequence of the uncertainties of the finite-size
rap'd'y_'che?‘seS with, thu_s ho extrapolation Ya”able of the datg. This estimate agrees with previous ones for models
form L ’.W'th A?O’ provides a reasonaplg linear fit. How- with restricted height differencd49,22,2(), suggesting that
ever, S will certainly converge to a positive value ds

. . the steady state kurtosis is also universal. In Figp),4we
—, showing that the sign of the steady state skewnesghow the data for the BD model and for the BCSOS model
changes a¥ increases.

The si f th di feris obtained with K=0.25 andK=1.0, which have significant finite-size
f tehS|g'n od € (cjorrespc;rlhlng part:;\]mel "?t oTﬁunet ddependencéin particular, those for BD Thus, the extrapo-
rom the size dependence of the growth velocily. The Steady,q yaues have very large error bars, but are still consistent
state growth velocity (L), and the velocity in an infinitely

. . with a universal value 0.
large substrate at long times, obey the relatiorj28] Q

IV. ROUGHNESS, DYNAMICAL, AND GROWTH
ve(L)=v,—arL ", (10) EXPONENTS

Our first step to estimate the roughness exponent was to

wherea=2(1-a) anda is positive. Considering:=0.38 calculate effective exponents ;) defined as

(see Sec. IV, we obtainay=1.24. In Figs. 8)—3(d), we .

plotteduv (L) versusle/L‘ 24 for the four models. For the = |”[fsat(|—)/_§sat(|-/l)]' (11
etching model, the BD model, and the BCSOS model with (- Ini

K=1.0[Figs. 3a,b,d], vs decreases witlx, which gives a

positive \, while the opposite occurs in the BCSOS modellt is expected thaty ;)— a for any value ofi.

with K=0.25. It confirms that the steady state skewness of Using different values of in Eq. (11), we noticed that
the KPZ equation has the same sign of the parametéts  «(,iy varied with L typically in the range 0.33«(
absolute value being universal. The same conclusion was 0.38 for 56<L <1024, which suggests that corrections to
derived from the time dependence of the velocity in thethe scaling relation3) are relevant. Our first proposal is to

growth regime[28]. assume the main scaling correction as
At this point, we recall that Chin and den N[j$9] simu-
lated the temperature-dependent BCSOS model wWdth Esar-L¥(@o+a L"), (12

=—0.25 andK=0.25, obtainingS~ —0.26 in both cases.
They concluded thadid not depend on, but they did not wherea, and a, are constants. Consequently, ;) is ex-
estimate the values of this parameter. Sincs expected to pected to vary as
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TABLE |. For eachi in Eq. (11) are given the values of the correction expon&nivhich provided the
largest correlation coefficientsof fits of « ;)X L2 and the corresponding asymptotic the values of the
slopeB of the fits with fixedA =0.55, and the corresponding values of asymptatiand of Bln i/(1—i%).

i [Eq. (1D)] A a B a Blni/(1—i%)
(largestr) (largestr) (A=0.55 fixed (A=0.55 fixed (A=0.55 fixed
2 0.55 0.384 0.472 0.384 0.705
2.56 0.50 0.383 0.434 0.381 0.603
3.125 0.6 0.383 0.553 0.385 0.723
4 0.65 0.381 0.545 0.383 0.661
agy~a+ BL™ 2, (13 obtained from the same fits fluctuate within a narrow range.
Accounting for the error bars of the data, we obtained
where =0.385-0.01 fori=2 anda=0.382+0.01 fori=4.
We also checked the effect of considering a fixed correc-
(1-i%) a, tion exponentA =0.55 (which is near the values in Tablg |
= In() 3y (14 for all values ofi. This procedure will be called fixed

method. Least squares fits of tlag_;x L~ %% plots were

Our data with 5L <1024 were analyzed using four val- P€rformed, providing the slop&which are shown in Table
ues ofi in Eq. (11): i=2, i=2.56,i=3.125, and =4 (for - From Eq. (14), it is expected thaBIni/(1-i")=a/a,
nonintegeri, only three or four effective exponents can be ~constisee also Eqd12) and(13)], thus we aiso showed in
calculated. For eachi, we plotteda, XL~ using several Table | the corresponding estimates Bini/(1~i%). This
exponentsA and did least squares fits of those plots, fromduantity fluctuates with, indicating that there is no system-
which the linear correlation coefficientA,i) were ob- atic trend in our results due to choice of different values of
tained. Since there is no argument to prediét the valua.of for calculating effective exponents. Also notice that the esti-
we adopted the condition of maximizing the coefficieto ~ Mates ofa from the fixedA method are in same range as
extrapolate our data. In Table I, we show the expondnts those obtained from the maximization of correlation coeffi-
which gave the largest (best linear fits for eachi. The ~ Cl€Nts. _ _ _
procedure is illustrated in Figs(& and 5b), in which we Since the range of lattice lengths considered here is not
show a »xL %% and a »xL %%, respectively, with very large and the correction exponedisestimated above
the corresponding linear fits. The valuesdfin Figs. §a) &€ relatively small, we tried to improve our analysis with a
and 5b) are those which give the best fits witk2 andi different assumption for the scaling corrections. Contrary to
=4, respectivelysee Table)l the previous procedure, now we will consider a well defined

A’ is expected to be independent of the particular choicéorm for the main scaling correction, which is an additional
of i in Eq. (11), so the differences between the estimates jEonStant terme? in the dynamic scaling relatiot) for the
Table | are effects of the maximization nfMoreover, other ~ Sduared interface width:
exponentsA near the values shown in Table | also provided 2 2. 2a —y

. . — +

reasonable linear fits of ;)X L2 plots. In other words, L=+ gL, (15

large linear correlation coefficients were also obtained byyhereg is a scaling functioné, is called intrinsic width and
considering 0.3A=0.8 for different choices of. Conse-  ygpresents contributions of small length scale fluctuations,
quently, it is not possible to obtain a reliable estimate of thatyical of models with large local height differende9—31
correction exponent. On the other hand, the asymptetic gy ch as the etching model and the BD model. From Bds.
and (12), the assumption of the intrinsic width as the most

04 ) 04 T relevant subleading correction corresponds tidixed) cor-
& 038 ! 1 4 0.38 ! rection exponen\ =2a~0.8. It is slightly larger than the
‘;; T ] ; T typical values obtained in the previous analysis.
S sael 1 8 ossk ) Effective exponents:{"” which cancel the contribution of
[ ] [ & are defined as
"M Sm o1 *Mo om oo oy L INLEa(20) ~ £ LV Eal L)~ &l LI2)]
1,/10%5 1 /1068 al’=3 = .

(16)

a b _ .

( ) ( ) In Fig. 6@ we show a!"” versus 1l for the etching
FIG. 5. Effective exponentsy , and a4 for the etching model and a least squares fit of these.data, yvhich provides

model vsL ~2, with the exponenta that give the best linear fits for a=0.383 asymptotically. Here, the variablelL1ih the ab-

i=2 andi=4, respectively. scissa was chosen only to illustrate the behavior ofdfle
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(a) (b) /L

FIG. 6. Effective exponents!’ (from interface width and FIG. 7. Ef‘fective_exponentsy(L') for the ballistic deposition
o{'¥ (from the fourth moment of the height distributiofor the ~ M0del vs inverse lattice length.

etching model vs inverse lattice length. . S . .
ng ve v I g a support to the assumption that the intrinsic width is the

most relevant correction term &. Anyway, using different

data. It represents a second correction term foréteealing,  assumptions on the scaling corrections was essential to con-
which is still more difficult to measure than the first correc- firm the reliability of the above estimate of the roughness
tion term. Thus, we also tested other variables in the formexponent.
L1 to extrapolatexr"’, with 0.5<A;<2[A;=1 was used The universality of the values of skewness and kurtosis
in Fig. 6@]. The corresponding linear fits give 0.38& implies thatW; andW, may also be used to estimate The
<0.387. The small range of the asymptoticis a conse- effective exponents obtained from the third moment have
guence of the slow variation ofz(L') with L (2% from L very large error bars, but those obtained from the fourth mo-
=100 toL=500), as shown in Fig.(6). Accounting for the ment behave similarly to the ones obtained from the interface
error bars of the data, our final estimate is=0.383  width. The analogs of exponentg, » anda 4 [Eq. (11)]
+0.008. calculated withW, also converge to the range 03&

The forms of finite-size corrections analyzed above, Eqs=<0.385 with strong corrections to scaling. Effective expo-
(13) and(15), cannot be rigorously justified, but are based onnents which cancel the contribution of a constant additive
heuristic arguments. See, e.g., R¢R2] and references term in the dynamic scaling relation fal/, (analogous to
therein. Certainly, the fact that) increases slowly with. is (") are defined as

1 IN[Wi(2L ,t—50) = Wy( L, t—50) J/[W(L,t—0) —W,(L/2t )]
(14— =
Ty In2 ' a7

They are plotted in Fig. ®) as a function of 1/. The illustrate the evolution of , but not to perform extrapola-
asymptotic estimate, obtained with the procedure describetions of the data. Although the error bar of the data lfor
above, ise«=0.379-0.012. It is in good agreement with the =800 is relatively large, those plots indicate thzat 1.6.
estimate from the interface width and also excludes Considering the trend for large and different values ok,

=0.4. we estimate 1.605z<1.64. These values are consistent

The same analysis was also performed with the BDyjth the above estimates ef and the exact relation + z
model, as shown in Fig. 7, with data far<512. Although _—o_

the results are less accurate than those for the etching model, Finally, we estimated the growth expongggy. (2)] of the
they also suggest that<0.4 asymptotically.

In order to estimate the dynamical exponentve calcu-
lated effective exponentg defined as

etching model with the same procedure previously applied

with success to BD and to the Das Sarma and Tamborenea

model in 1+1 dimensions[9,26]. The growth region for

eachL begins aty=50 and ends at the maximum timg,

In[7o(2L)/7o(L/2)] (18) such that the linear correlation coefficient of the data in the
In4 ' range to<t<r,,, exceeds a fixed value;, [9]. Here,

M min=0.99995 andr ,;;=0.9999 are considered. Effective
using the characteristic timesg defined in Sec. I[Egs.(8) exponentsB, are defined as the slopes of the linear fits of
and(9)]. In Figs. 8a) and 8b) we showz, versus 1L forthe  InWxInt plots using all data in the above-defined growth
etching model, obtained usitkg= 0.6 andk=0.8 to calculate regions. In Fig. 9 we plo{3, versus 1L for the etching
7o, respectively. Here, the abscissd 16 also chosen to model usingr,;,=0.99995 andr,;,=0.9999. The error

Z
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( ) ( ) FIG. 9. Effective exponentg, for the etching model vs inverse

FIG. 8. Effective exponents, for the etching model vs inverse lattice length, obtained with minimum correlation coefficients,
lattice length. Relaxation times, were obtained witha) k=0.6 ~ =0.9999(squarep andr ,;,=0.999 95(triangle. Solid lines are
and(b) k=0.8 in Eq.(8). least squares fits of each set of data (206=1024).

bars of those effective exponents are very small. We alsgodel, suggest that the absolute valueSeind the value of
show in Fig. 9 the linear fits of th@ X 1/L data for each Q are universal, the sign of the skewness being the same as
Fmin- Other variables in the forrn~* were used to extrapo- that of the parametex of the corresponding KPZ equation.
late the B, data, giving asymptotic estimate8=0.229 The above estimate intercepts the error bar of the rough-
+0.005. Within error bars, it agrees with the value N€ss exponent of the RSOS model given by Marinari and
alz=0.234+0.009 obtained from the above estimatesaof CO-Workers20], a=0.393*0.003. However, our central es-
andz timate is significantly lower than theirs, and the result for BD
confirms this trend. On the other hand, our estimate is very
near that by Colaiori and Moorey~0.38, from renormal-
ization methodg21]. Additional support to our conclusions
We studied four (2-1)-dimensional discrete growth was given by the independent calculation of exponerisd
models in the KPZ class, determining critical exponents ang3, contrary to recent simulation works on these lifie%,20,
steady state values of the skewn&and the kurtosigQ.  which were limited to the calculation of exponemt
Accurate estimates of the scaling exponents were obtained We believe that much more accurate estimates afre
for the etching model proposed by Mellet al. [23]: « difficult to be achieved with numerical simulations of this
=0.383+-0.008, 1.605z=<1.64, 3=0.229t0.005. Results type of lattice model. However, we consider that this work
for the ballistic deposition model also indicate thet0.4.  provides a significant amount of numerical results indicating
The presence of the intrinsic width as the main correction tahat the theoretically proposed value= 0.4[18] is not valid,
the interface width scaling was considered to extrapolate theithin the limits of the assumptions made about the form of
simulations data. We also obtain the estima®s0.26 finite-size scaling corrections. This result and the evidence of
+0.01 andQ=0.134+0.015 in the steady state regime of universality of the values of the skewness and the kurtosis
the etching model. Results for the BD model and of themay motivate further analyticéimaybe also numericpastud-
BCSOS model, together with previous results for the RSOSes of the KPZ theory in 21 dimensions.

V. CONCLUSION
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