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Phase field modeling of electrochemistry. II. Kinetics
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The kinetic behavior of a phase field model of electrochemistry is explored for advancing~electrodeposition!
and receding~electrodissolution! conditions in one dimension. We previously described the equilibrium be-
havior of this model@J. E. Guyer, W. J. Boettinger, J. A. Warren, and G. B. McFadden, Phys. Rev. E69,
021603~2004!#. We examine the relationship between the parameters of the phase field method and the more
typical parameters of electrochemistry. We demonstrate ohmic conduction in the electrode and ionic conduc-
tion in the electrolyte. We find that, despite making simple, linear dynamic postulates, we obtain the nonlinear
relationship between current and overpotential predicted by the classical ‘‘Butler-Volmer’’ equation and ob-
served in electrochemical experiments. The charge distribution in the interfacial double layer changes with the
passage of current and, at sufficiently high currents, we find that the diffusion limited deposition of a more
noble cation leads to alloy deposition with less noble species.

DOI: 10.1103/PhysRevE.69.021604 PACS number~s!: 81.15.Aa, 81.15.Pq, 82.20.Wt, 82.45.Qr
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I. INTRODUCTION

In Ref. @1#, we developed an equilibrium phase fie
model of an electrochemical system. In this paper, we ex
ine the dynamic aspects of that model. Models of ph
transformations can be broadly categorized into sharp or
fuse interface approaches. Sharp interface models trea
transition between phases as mathematically abrupt. Dif
interface models assume that the phase interface has
finite thickness over which material properties va
smoothly. Both cases are simplifications of the physical
terface between phases, in which properties vary over s
finite, atomic-scale distance which is often smaller than
sumed in diffuse interface models. Traditional equilibriu
models of electrochemical interfaces take the interface
tween phases~the transition between ‘‘electrode’’ and ‘‘elec
trolyte’’ ! to be abrupt, but frequently consider the distrib
tion of charge and electrostatic potential to be diffuse in
electrolyte, as by the Gouy-Chapman-Stern model@2#. Dy-
namic models of electrochemistry typically take the pha
inteface to be abrupt and ignore the details of the cha
distribution at the interface.

The phase field technique is one particular diffuse int
face approach. The method employs a phase field varia
which is a function of position and time, to describe wheth
the material is one phase or another, e.g., solid or liquid.
behavior of this variable is governed by a partial different
equation that is coupled to the relevant transport equat
for the material. The interface between the phases is
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†Electronic address: william.boettinger@nist.gov
‡Electronic address: jwarren@nist.gov
§Electronic address: mcfadden@nist.gov
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scribed by smooth but highly localized changes of this va
able. This approach avoids the mathematically difficult pro
lem of applying boundary conditions at an interface who
location is part of the unknown solution. The phase fie
method is powerful because it can easily treat complex in
face shapes and topology changes. Our long term goal
treat the complex geometry, including void formation, th
occurs during electrodeposition in vias and trenches for
chip metallization and in the dendritic structures that fo
during battery recharging. Phase field methods will allow
rigorous examination of the interplay between current, p
tential gradients, curvature, and adsorption in intricate geo
etries.

There is a rich body of literature of sharp interface mod
of electrodeposition, which we will sketch briefly in Sec. I
but the application of diffuse interface techniques to the m
tion of electrochemical interfaces has been relatively limit
Dussault and Powell have applied phase field technique
the modeling of electrochemical processes in steel s
@3,4#, but their approach neglects the effects of charge at
interfacial double layer. As a result, they are able to mo
much larger domains and much longer time spans than
present here, but the essential physics of the electrocapi
interface is not examined. Wheeler, Josell, and Moffat ha
performed a level set analysis of so-called ‘‘superconform
electrodeposition in high aspect ratio features, with particu
emphasis on the role of additives@5#. Like phase field mod-
els, level set techniques allow the treatment of complex m
phologies, such as the formation of voids during trench fi
ing, but the motion of the interface is handled phenom
nologically rather than physically, as by the phase field
proach, so again the structure of the double layer is not c
sidered. Bernard, Plapp, and Gouyet have recently prese
a lattice-gas model of an electrochemical system@6,7# that
exhibits many of the same interfacial and dynamic behav
04-1
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that we find in this paper, as well as exhibiting the ea
stages of dendritic growth. This type of discrete model
should provide a useful bridge between an atomistic view
the electrochemical interface and the continuum approac
phase field models.

To place our results in context, Sec. II outlines the tra
tional sharp interface description of electrodeposition. S
tion III presents the dynamic postulates governing the e
lution of the phase, concentration, and electrostatic poten
fields which we proposed in Ref.@1#. Section IV describes
our numerical approach and boundary conditions. Sectio
discusses the selection of materials parameters, including
relationship between the phase field mobility and the But
Volmer exchange current of traditional electrochemical m
eling. Section VI presents the results of numerical calcu
tions in one spatial dimension that span a range
electrodeposition and electrodissolution conditions.

II. SHARP INTERFACE APPROACH FOR
ELECTRODEPOSITION

In Ref. @1#, we present a phase field model of the equil
rium between an electrode phasea and an electrolyte phas
b, consisting of a set of four charged components,e2, M 1m,
N1n, andA2a. A superscripta denotes that the quantity i
evaluated in the bulk electrode~metal! phase and a super
script b denotes that the quantity is evaluated in the b
electrolyte phase. At equilibrium, the difference in potent
f between the electrode and the electrolyte in
n-component system is given by

Df5fa2fb52
Dm j

+

ziF 1
RT

zjF ln
Xj

b

Xj
a , j 51,...,n, ~1!

whereDm j
+5m j

+a2m j
+b and m j

+ is the chemical potential o
pure componentj in the respective phase,zj is the valence of
componentj, Xj is the mole fraction of componentj, F is
Faraday’s constant,R is the molar gas constant, andT is
temperature. Equation~1! is the generalization, for all of the
components, of the Nernst equation of traditional elect
chemical analysis. The equation is normally only written
the electroactive species. In Ref.@1# we explain the origin of
an equation for each component in the system and the
tionship between the term proportional toDm j

+ and the stan-
dard cell potential.

When current is passed through the interface, the pote
differenceDf shifts. Alternatively, when a potential differ
ence other than the equilibrium value is imposed, curr
will pass and the interface will move. The shift in the pote
tial difference across the interface~excluding the Ohmic
drops across the bulk phases! is referred to as the overpoten
tial h @8,9#.

For an electrochemical system with only one monoval
electroactive speciesM 1, chemical reaction rate theor
gives the relationship between current densityi and total
overpotentialh for a planar interface as@8#

i 5 i 0H expF ~12n!Fh

RT G2
CM1

CM1
d expF2

nFh

RT G J . ~2!
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The first term in the curly brackets represents the ano
oxidizing reaction and the second term represents
cathodic/reducing reaction.CM1 is the concentration of cat
ions M 1 in the electrolyte at electrode-electrolyte interfa
andCM1

d is the bulk electrolyte concentration of cationsM 1

at the edge of the diffusion boundary layer. The exchan
current densityi 0 and the transfer coefficientn characterize
the facility and symmetry of the forward and reverse re
tions. The current densityi[ i•n, where the normaln points
from a into b and i is the current density vector. Thus, pos
tive values ofi result in dissolution.

If the diffusion field can be assumed to be linear, t
implicit dependence ofCM1 on i can be eliminated in Eq
~2!, giving

i 5 i 0H expF ~12n!Fh

RT G2S 12
i

i lim
DexpF2

nFh

RT G J . ~3!

This expression can be rearranged to givei as an explicit
function of h, which is useful for comparison to our phas
field results. Linearity of the concentration profile is appr
priate only if the interface velocity is much less tha
DM1 /dD , whereDM1 is the diffusivity ofM 1 anddD is the
thickness of the diffusion boundary layer. The limiting dep
sition currenti lim is determined by the complete depletion
M 1 in the electrolyte at the interface, such that

i lim5
FDM1CM1

d

dD
~4!

The classical ‘‘Butler-Volmer’’ equation of electrochemistr
is a special case of Eq.~3! in which the effects of mass
transfer are neglected (i / i lim→0).

For small overpotentials, the linearized form of Eq.~3! is

h' i
RT

F S 1

i 0
2

1

i lim
D . ~5!

We will use this relationship in Sec. V C to relatei 0 to the
parameters of our phase field model. WhenuhuF/RT@1 and
i ! i lim , Eq. ~4! reduces to

i' i 0 expF ~12n!Fh

RT G for h.0 ~6a!

and

i'2 i 0 expF2
nFh

RT G for h,0. ~6b!

The quantities (12n)F/RT and2nF/RT are known as the
anodic and cathodic ‘‘Tafel slopes’’ from the slopes of t
lines when lnuiu is plotted againsth. These slopes can be use
to deduce experimental values forn.

Equation ~2! was originally derived from reaction rat
theory to explain experimentally observed curre
overpotential behavior. More recently, atomistic and qu
tum mechanical treatments of electron and ion transfer re
tions have been performed to replace this chemical reac
4-2
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PHASE FIELD MODELING OF . . . . II. . . . PHYSICAL REVIEW E 69, 021604 ~2004!
rate approach@10#. These treatments have led to a bet
physical understanding of the phenomenological constann
and i 0 , but they do not fundamentally alter the form of Eq
~2! and ~3!.

III. MODEL

A. General kinetic equations

In Ref. @1#, we performed a variational analysis to deri
the governing equations for the equilibrium electrochemi
interface. We also postulated the simplest time depend
forms of those governing equations that guarantee a decr
in total free energy with timet. We restate those dynami
postulates here. The time variation of the phase fieldj is
given by

]j

]t
52M jF] f V

]j
2kj¹

2j2
e8~j!

2
~“f!2G , ~7!

where f V is the Helmholtz free energy density per unit vo
ume,kj is the phase field gradient energy coefficient,e~j! is
the dielectric constant, which we take to depend explicitly
the phase; because all of the fields are coupled, it will a
depend implicitly on the electrolyte concentration.M j is the
mobility of the phase field. Under the assumption that
nonzero partial molar volumes are identical, the fluxJj of
each componentj is

Jj52M j“F m̄ j2
V̄j

V̄s

m̄nG , j 51,...,n21, ~8!

wherem̄ j is the electrochemical potential of speciesj andV̄j
is the partial molar volume of speciesj. We divide the com-
ponents into electronse2 with j 51, which haveV̄e250, and
substitutional species withj .1, which all have the same
V̄j5V̄s50. One consequence of this assumption is t
( j 52

n Cj5V̄s
215const, whereCj is the concentration of spe

cies j. A specific choice is made of a substitutional comp
nent n with nonzero partial molar volume to be called th
reference species. The quantityM j is the mobility of com-
ponentj. Since conservation of species requires

]Cj

]t
52“•Jj , j 51,...,n21, ~9!

one obtains

]Cj

]t
5“•H M j“F m̄ j2

V̄j

V̄s

m̄nG J , j 51,...,n21. ~10!

Poisson’s equation

“•@e~j!“f#1r50 ~11!

must also be satisfied everywhere, where the charge de
is
02160
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r5F(
j 51

n

zjCj . ~12!

The mobilitiesM j andM j will be related to the parameter
of electrokinetics in Sec. V B and V C.

B. Form of the dynamic equations for ideal solution behavior

For simplicity, we assumed in Ref.@1# that the chemical
part of the Helmholtz free energy per unit volume is d
scribed by an interpolation between two ideal solutions
the components,

f V~j,Cj !5(
j 51

n

Cj$m j
+b1Dm j

+p~j!1RT ln CjVm1Wjg~j!%,

~13!

where the molar volumeVm5(( j 51
n Cj )

21. We use an inter-
polating function p(j)5j3(6j2215j110) to bridge be-
tween the descriptions of the two bulk phases and a dou
well function g(j)5j2(12j)2 with a barrier heightWj for
each componentj to establish the metal/electrolyte interfac
@11#. The polynomials are chosen to have the properties
p(0)50, p(1)51, p8(0)5p8(1)50, and g8(0)5g8(1)
50. The classical chemical potential is given bym j
5] f V /]Cj and the corresponding classical electrochemi
potential ism̄ j5m j1zjFf.

Substituting Eq.~13! into Eqs.~7! and ~8!, we obtain the
governing equation for evolution of the phase field und
ideal solution thermodynamics

]j

]t
52M jFp8~j!(

j 51

n

CjDm j
+1g8~j!(

j 51

n

CjWj2kj¹
2j

2
e8~j!

2
~“f!2G ~14!

and the flux in the diffusion equation, Eq.~9!, is given by

Jj52M j“F ~Dm j
+2Dmn

+ !p~j!1RT ln
Cj

Cn
1~zj2zn!Ff

1~Wj2Wn!g~j!G , j 52,...,n21, ~15a!

Je252Me2“FDme2
+ p~j!1RT ln

V̄sCe2

11V̄sCe2

1ze2Ff1We2g~j!G . ~15b!

The flux of substitutional species does not explicitly depe
on the electron concentration and the flux of electrons d
not explicitly depend on the concentration of substition
species; the flux of substitutional species is affected by
displacement of other substitutional species, but electr
4-3
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can move without displacing other ions. The fluxes of
species are coupled indirectly through the total charge di
bution and Eq.~11!.

IV. NUMERICAL METHODS

The one-dimensional~1D! form of the governing equa
tions was transformed to a frame moving at a velocityv.
Simulations were performed in a domain of lengthL with an
initially abrupt interface between the bulk electrode and el
trolyte phases atx5L/2, such thatjux,L/25ja51 and
jux.L/25jb50. After choosing an initial bulk value fo
CM1

b , the remaining initial bulkCj
a and Cj

b were the equi-
librium values obtained by equating the bulk electrochem
potentialsm̄ j @1#. The boundary condition on the phase fie
is n•“j50 at both ends of the solution domain. At the ele
trolyte end, we setf50 and at the electrode end we spec
i. At the leading edge of the moving frame, we model t
stirred bulk electrolyte by applying a fixed concentrati
boundary condition. At the trailing edge of the frame, w
discard the material leaving the frame by setting the div
gence of the species fluxes to zero.

Equations~9!, ~11!, ~14!, and ~15! were solved with ex-
plicit finite differences. Spatial derivatives were taken to s
ond order on a uniform mesh. Transient solutions were in
grated numerically with an adaptive, fifth-order Runge-Ku
time stepper~based onODEINT of Ref. @12#! until a steady
state was achieved~current became constant!. We have de-
fined steady state in our simulations as the point when e
Jj2vCj were uniform to within 0.1%. Becausev is an un-
known result of the simulation, the frame velocity was a
justed at each iteration to keep the interface stationary in
frame.

V. MATERIAL PARAMETERS

A. Equilibrium material parameters

We examine the dynamic behavior of a four compon
model under a different set of thermodynamic parame
than described in Ref.@1#. In this paper, all components hav
valencezj561. We are primarily interested in the ele
trodeposition of the more noble cationM 1, where the less
noble cationN1 and the anionA2 make up the bulk of the
supporting electrolyte. This electrolyte containing on
charged species represents a molten salt system. The
ence of the second cationN1 introduces the possibility o
alloy deposition.

We take the partial molar volume of the ‘‘substitutiona
components (M 1, N1, and A2) as V̄s51025 m3/mol.
Equation~1! states that for any givenXj

a and Xj
b , there is

some potential differenceDf between that bulk phases th
is related to the chemical potential difference of the p
componentsDm j

+ . Conversely, we showed in Ref.@1# that
we can establish a value forDm j

+ if we know Df for some
particularXj

a andXj
b , for instance, the standard state valu

Dm j
+5RT ln

Xj
b+

Xj
a+2zjFDf +, j 51,...,n. ~16!
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The voltage-independent portion ofDm j
+ is given in Table I.

In this paper, we takeDf + to be zero. Following Ref.@1#,
this implies that the equilibrium state for this material syste
at the standard state concentration is near the point of
charge. The mole fraction ratios in Table I of the norma
electroinactive species are chosen to give the correspon
small standard state mole fractions asXe2

b+
5XN1

a+
5XA2

a+

51029.
To permit a convenient graphical display of bulk equili

rium, we invoke charge neutrality to transform the four co
ponents$e2,M 1,N1,A2% into an alternate set of four com
ponents that are charge neutral$M,N,MA,NA%. We plot the
equilibrium phase diagram in terms of these transform
components in Fig. 1. Equilibrium states exist only betwe
20.5138 V,Df,10.1005 V. It can be seen that over th
majority of the potential range, from20.4 V&Df&0 V, the
equilibrium is between an electrode of essentially pureM
and aNA electrolyte containing a dilute concentration ofMA.
At the positiveDf extreme, the equilibrium is betweenM

FIG. 1. Potential-composition phase diagram for the parame
in Table 1, illustrating the bulk equilibrium between aM electrode
and an electrolyte containingMA salt dissolved inNA. Tie-lines
denote different values of the quantity (Df2Df +). The inset
shows the position of this charge neutral phase diagram within
quaternary domain of the charged species.

TABLE I. Numeric values of the potential-independent portio
of the chemical potential differencesDm j

+ .

ln(Xj
bo/Xj

ao)

e2 220.03
M 1 23.912
N1 20.01
A2 20.03
4-4
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PHASE FIELD MODELING OF . . . . II. . . . PHYSICAL REVIEW E 69, 021604 ~2004!
andMA and at the negativeDf extreme, the equilibrium is
between a phase ofM andN and a solution ofN andNA for
this choice ofXj

+ .
Table II lists our choice of the parameters that charac

ize the thickness and energy of the electrode-electrolyte
terface. Our assumption that the barrier heightsWj are equal
for the substitutional species and zero for electrons is
cussed in Ref.@1#.

B. Single phase transport properties„values for M j…

To identify the mobilitiesM j , we examine single-phas
systems. In a single-phase electrode,j5p(j)51. In a
single-phase electrolyte,j5p(j)50. In either phaseg(j)
5“p(j)5“g(j)50. We thus can write the fluxes in Eq
~15! as

Jj
bulk52M jFRT~Cn1Cj !

CnCj
“Cj1

RT

Cn
(
i 52
iÞ j

n21

“Ci

1~zj2zn!F“fG , j 52,...,n21, ~17a!

Je2
bulk

52Me2F RT“Ce2

~11V̄sCe2!Ce2

1ze2F“fG . ~17b!

The total current is given by the relationship

i5F(
j 51

n

zjJj . ~18!

The flux of componentn balances the other fluxes such th

(
j 52

n

Jj50. ~19!

We first consider an electrolyte with“f50. If we com-
pare the resulting form of Eq.~17a! with the classical diffu-
sive flux equation with diffusivitiesDi j ,

Jj52 (
i 52

n21

Di j“Ci , j 52,...,n21 ~20!

the mobilities can be expressed in terms of the diagona
ements ofDi j as

TABLE II. Parameters characterizing the equilibrium interfac
e0 . is the permittivity of free space.

Parameter Value

kj 7.2310211 J/m
Wj P2,...,n 3.63105 J/mol
We2 0 J/mol
e 8e0
02160
r-
n-

s-

t

l-

M j5
D j j CnCj

RT~Cn1Cj !
, j 52,...,n21. ~21!

For simplicity, we assume the diagonal elements ofDi j are
constants, thus inducing a concentration dependence in
mobilities as defined by Eq.~21! and in the off-diagonal
Di j ’s.

We next consider an electrode with all“Cj50, where the
current is entirely carried by the electromigration of ele
trons. The resulting form of Eq.~17b!

Je252Me2ze2F“f ~22!

can be substituted into Eq.~18! to give

i'2ze2
2 F2Me2“f. ~23!

By comparison with Ohm’s law,i52s“f, we readily see
that the electron mobility

Me25
s

ze2
2 F2 5

s

F2 . ~24!

Thus Eqs.~21! and ~24! relate theM j ’s to the electronic
conductivity and ionic diffusivities.

On substitution of Eq.~21! into Eq.~17a!, we see that the
electromigration flux~due to gradients inf! within the elec-
trolyte is

Jj
f52M j~zj2zn!F“f52

D j j ~zj2zn!CnCjF
RT~Cn1Cj !

“f

'2
D j j ~zj2zn!CjF

RT
“f, j 52,...,n21. ~25!

This is just as expected from traditional electrochemi
theory, in the dilute limit whereCn /(Cn1Cj )'1. We will
find in Sec. VIA that, for our supported ionic electrolyte an
our electronic conducting electrode, the contributions of
electromigration current in the bulk electrolyte and of t
diffusion current in the bulk electrode are indeed small.

It is interesting to note that the conductivity predicted
Eq. ~24! is completely analogous to that predicted by t
Drude model~and by the Fermi-Dirac model, for that matte!
@13#

s5
ze2

2 F2tCe2

me2
, ~26!

whereme2 is the mass of the electron. The relaxation timet
can only be determined by quantum mechanical means an
simply an unknown constant in classical models of elect
transport. Following an analysis for the electrons similar
that which gave us Eq.~21!, we find that we can describe th
mobility of electronsMe2 in terms of a constant diffusivity
of electronsDe2,

.

4-5
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FIG. 2. ~a! Dimensional and~b! dimensionless relationship between overpotentialh and currenti as a function of the inverse phase fie
mobility M j

21 when CM1
b

510 mol/m3 and D j j 51029 m2/s. Points are plotted for each permutation ofi 5(2500,2100,100) A/m2 and
M j5(1023,1.531023,331023,1022,1021,1) m3/(J s). Points are also plotted for i 5100 A/m2 and M j5(1.531023,3

31023,1022,1) m3/(J s) with D j j 510210 m2/s. The line in ~b! is a fit to h/ i 5aMj
211b with a5(6.61060.006)(V̄s

2/LF2) and b

5(456461)(RTV̄sL/D j j F2). The points in the dotted box contribute to Fig. 5.
ns
a

6

k

ing
ce
u

t
th
e
x-
a-

e

Me25

De2~11V̄sCe2!Ce2

RT
. ~27!

In a single-phase conductor with uniform concentratio
(11V̄sCe2) is a dimensionless constant of order 1. We c
see thatDe2 /(RT) is dimensionally equivalent tot/me2 and
all other terms in Eqs.~24! and~26! are identical. The room
temperature conductivity of silver of approximately
3107 V21 m21 results in De2'831025 m2/s and Me2

'631023 mol2/(J s m). We observe that one of the wea
nesses of the Drude model is that it fails to predict thes
;T21 dependence found in experiments without mak
some unsatisfactoryad hoc assumptions; this dependen
arises naturally in our fundamentally thermodynamic form
lation.

C. Interfacial kinetics „value for M j…

Along with the transfer coefficientn, the exchange curren
i 0 characterizes the kinetics of the interface and we hypo
esize that it has an intimate relationship to the phase fi
mobility M j . To test this hypothesis for our model, we e
amine Eq.~5! and ploth obtained from steady-state calcul
tions againstM j

21 for variousD j j and small values ofi in
02160
,
n

-

-

-
ld

Fig. 2. If we scale length byL ~the length of the solution
domain!, time by L2/D j j , energy density byRT/V̄s , and
potential byRT/F, we find that all of the points satisfy th
linear relationship

h/ i 5~6.61060.006!M j
21

V̄s
2

LF2 1~456361!
RTV̄sL

D j j F2 .

~28!

Comparison with Eq.~5! reveals that

i 05~0.151360.0001!M j

RTFL

V̄s
2

'3.623106 A/m2

when M j51022 m3/~Js! ~29!

and

i lim5~2.19160.004!31024
D j j F
LV̄s

'2.113106 A/m2

when D j j 51029 m2/s. ~30!
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TABLE III. Correspondence between kinetic parameters used in this phase field model and thos
sured in experiments or typical of sharp-interface models. Typical physical values@9# are compared with the
values used in our numerical calculations. The diffusivities are given for the electrolyte phase; diffusivi
the solid electrode are expected to be many orders of magnitude smaller. For the calculations in this pa
treat the diagonal diffusivities as constant and uniform. To simplify the notation, we takeD j[D j j . No DA2

is necessary becauseA2 is the reference species in our calculations.

Phase field Physical Numeric

De251029 m2/s s563107 V21 m21 s5750V21 m21

DM151029 m2/s DM151029 m2/s DM151029 m2/s
DN151029 m2/s DN151029 m2/s DN151029 m2/s
M j51022 m3/(J s) i 05(10216 to 1022) A/cm2 i 053.73106 A
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Equation~29! confirms our hypothesis thati 0 is directly re-
lated to M j . Comparing Eq.~30! to Eq. ~4!, and taking
CM1

d
510 mol/m3, we see that this implies that the diffusio

boundary layer thickness isdD5(0.456460.0001)L. This is
very close to the thickness of the electrolyte, which valida
that we are computing the diffusion field correctly~because
we are modeling a diffuse interface, the electrolyte thickn
is somewhat less than 0.5L). The thinness of the diffusion
boundary layer in our calculations gives rise to a limiti
current that is much larger than encountered in physical
tems, but the mechanism is the same.

Table III displays the kinetic parameters of the phase fi
model and typical values of the corresponding physi
quantities. If physical values are used for some kinetic
rameters, then the computation time is too long, so the va
used for our numeric simulations are also listed.
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VI. NUMERICAL RESULTS AND DISCUSSION

Our purpose is to show consistency of behavior w
sharp interface models of electrochemical systems so
future 2D and 3D computations treating more complex p
nomena can be performed with confidence. In this sect
we examine the behavior of our model in the bulk phas
explore the current-overpotential behavior, and demonst
the electrodeposition of alloys at high applied currents.

The interfacial region of a representative steady-state
lution, with i 52100 A/m2, is displayed in Fig. 3. The phas
field j, concentrationsCj , charge densityr, and electrostatic
potentialf are plotted against the samex axis. The velocity
of the moving frame is indicated with a marker on thej
curve atj50.5. To highlight the location of the interface
g(j) is mapped onto the background in gray. We can see
the concentrations deviate from their bulk values in a reg
FIG. 3. Interface profiles for steady state electrodeposition withi 52102 A/m2. The concentration profiles forN1 andA2 are almost
coincident on this scale.g(j) is mapped onto the background in gray to indicate the location of the phase field interface.
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TABLE IV. Partial fluxes in the bulk electrolyte fori 52100 A/m2 ~electrodeposition!. “f56.87
31024 V/m.

j C j ~mol/m3! “Cj ~mol/m4! Jj
D ~mol m22 s21! j j

f ~mol m22 s21! j j
total ~mol m22 s21!

e2 1.0031022 21.653103 1.6531026 0 1.6531026

M 1 1.003101 1.033106 21.0331023 0 21.0331023

N1 5.003104 21.033106 5.1831024 21.3431026 5.1631024

A2 5.003104 8.283102 5.1731024
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of approximately the same thickness as the phase field t
sition. As a result, the charged ‘‘double layer’’ is confined
this same region. The surface of the electrode has excesse2,
whereas the surface of the electrolyte is an essent
charge-neutralNA salt with a dilute concentration ofMA. All
of the species exceptM 1 are excluded from the region o
intermediatej, giving rise to a layer ofM 1 that has neither
e2 nor A2 to balance the charge. This charge distributi
gives rise to the potential step of approximately 0.12 V b
tween the two phases, which is the expected Nernst pote
of an electrolyte withCM1

b
510 mol/m3.

A. Fluxes

The relative contributions of the flux due to diffusionJj
D

~dependent on all the“Ci) and the flux due to electromigra
tion Jj

f ~proportional to“f! can be distinguished using Eq
~17!. For i 52100 A/m2, the partial fluxes in the bulk elec
trolyte are listed in Table IV and those in the bulk electro
are listed in Table V. As the designated reference species
flux of A2 always adjusts such that the sum of the fluxes
the substitutional species is zero. In both phases, the con
tration gradients ofM 1 andN1 are approximately equal an
opposite in sign to maintain charge neutrality~the concentra-
tion gradients ofA2 ande2 are small!. The diffusive fluxes
of M 1 andN1 arenot equal and opposite in sign. The ‘‘off
diagonal’’ term for theN1 flux in the electrode and for both
the M 1 and N1 fluxes in the electrolyte contribute signifi
cantly.

Because we consider a supported electrolyte~the total ion
density is high!, “f is small and electromigration does n
contribute significantly to the current in the electrolyte. Bo
the magnitude and gradient ofCe2 are small in the electro
lyte, such thate2 do not carry any significant current in th
electrolyte. The current due to theN1 flux is canceled by
that due to theA2 flux, such that essentially all of the curre
in the electrolyte is carried by the diffusion ofM 1. In the
electrode, the partial fluxes of the substitutional compone
are numerically zero. The concentration gradient ofe2 is
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small in the electrode, giving a small diffusive flux. The bu
of the current in the electrode is carried by electromigrat
of e2, consistent with Ohm’s law. These observations t
the current in the electrolyte is carried by diffusion ofM 1

and the current in the electrode is carried by the electro
gration of e2 are consistent with the approximations w
made for the bulk phases in Sec. V B; i.e., bulk behavior
obtained at a distance of 0.5 nm from the interface.

B. Diffusion layer

In Fig. 4 we plot the profile ofM 1 in the electrolyte,
showing the depletion due to electrodeposition and the
richment due to electrodissolution. At the highest current
Fig. 4~a!, we can see thatCM1 near the surface of the elec
trode is depleted practically to zero, giving rise to the lim
ing current behavior of Sec. II. The diffusion layer thickne
dD50.456L, calculated in Sec. V C, is indicated for com
parison. Over the range of applied currents examined,
enrichment ofM 1 during electrodissolution is not similarly
constrained.

C. Current-overpotential relationship

In Sec. V C, we found that the relationship between c
rent i and overpotentialh in our calculations is satisfied b
the linear relationship~5! when i andh are small. Now we
plot i versush over a larger range of applied currents in Fi
5 as open squares. Equation~3! considers only the electroac
tive species, so the filled circles in Fig. 5 show the curr
carried by the electroactive cationi M1. The relationship be-
tweeni M1 andh is not linear. At large, negative values ofh,
we observe a limiting current, whereas for large positive v
ues ofh, no such limiting current is observed andi M1 ap-
pears exponentially dependent onh. We fit Eq. ~3! to the
calculated values ofi M1 and we find thati 05(3.8060.08)
3106 A/m2, i lim5(22.1560.06)3106 A/m2, andn50.777
60.002. These values ofi 0 and i lim are within 5% of the
values found in the linear analysis of Sec. V C. Becausei 0 is
of the same order asi lim in our calculations, we do not ob
TABLE V. Partial fluxes in the bulk electrode fori 52100 A/m2 ~electrodeposition!. “f50.133 V/m.

j C j ~mol/m3! “Cj ~mol/m4! Jj
D ~mol m22 s21! j j

f ~mol m22 s21! j j
total ~mol m22 s21!

e2 1.003105 4.973102 24.9731027 1.0331023 1.0331023

M 1 1.003105 25.933105 1.8531027 0 1.8531027

N1 2.0431022 5.933105 1.2431027 0 1.2431027

A2 2.1031026 1.883102 23.1031027
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FIG. 4. Concentration ofM 1 as a function of position in the electrolyte for different total~a! electrodeposition and~b! electrodissolution
currents. The concentration at the interface exhibits a Nernstian shift in concentration with overpotential as the current is chan
diffusion boundary layer is clearly linear over the small simulation domain.g(j) is mapped onto the background in gray to indicate
location of the phase field interface. The dashed vertical line indicates the thickness of the diffusion boundary layerdD calculated in Sec.
V C. The concentration gradient ati 52107 A/m2 gives rise to theM 1 limiting current ofi lim'223106 A/m2; the majority of the current
is carried by other species.
n
n

m
tin

ted
ical
serve an obvious ‘‘Tafel slope’’ during electrodepositio
Nonetheless, the transition between low current a
diffusion-limited current cannot be fit except by the full for
of Eq. ~3!. From these results, we see that despite postula
02160
.
d

g

a linear evolution equation for the phase field@Eq. ~7!#, we
obtain the nonlinear current-overpotential behavior predic
by sharp-interface theories and observed in electrochem
experiments.
es
FIG. 5. Magnitude of the currenti as a function of the overpotentialh, plotted on~a! linear and~b! log-linear scales. The open squar
indicate the total current and the circles indicate the partial current ofM 1. The solid line is a plot of the current-overpotential equation~3!
for i 053.803106 A/m2, i lim522.153106 A/m2, andn50.777. The dashed line is a plot of the linear current-overpotential equation~5! for
the same parameters. The dotted box indicates the points that contribute to Fig. 2.
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The transfer coefficientn characterizes the symmetry o
the energy barrier between the electrode and electro
phases. A value ofn50.5 would mean the energy barrier
symmetric and that a given change in potential would ca
the barrier to electrodeposition to change by the same m
nitude as the barrier to electrodissolution. Our obser
value of n50.78 indicates that the barrier to electrodepo
tion is more sensitive to changes in potential than is
barrier to electrodissolution. Although we do not know t
functional relationship betweenn and the parameters of th
phase field model, we can surmise that it is related to
heightWj and shapeg(j) of the interfacial energy barriers
This will be investigated in the future.

Since the exchange current is equal to the balanced an
and cathodic current passed at equilibrium, it can be sho
that @8,9#

i 0[k0FC0
`~12n!CR

`n . ~31!

CO
` is the concentration of the oxidized electroactive spec

in the bulk electrolyte, which isCM1
b

510 mol/m3 in our
notation.CR

` is the concentration of the reduced electroact

species in the bulk electrode, which isCM1
a '1/V̄s in our

notation. The only terms we cannot directly identify in o
phase field model are the dimensionless transfer coefficien
and the rate constantk0 . Noting that we foundi 0}M j in
Sec. V C, from a dimensional analysis, one may expect

k0}M jg. ~32!

The surface free energy found in our paper on the equ
rium electrochemical interface@1# is

g5E
2`

`

@kj~j8!22e~f8!2#dx. ~33!

From numerical calculations on the system in this pa
wheni 50, we obtain a value ofg50.46 J/m2. If we assume
that k0 in Eq. ~32! is not just proportional to but equal t
M jg and substitute this value of the surface free energy
Eq. ~29! into Eq. ~31!, we obtainn'0.73. If we assume
instead that the surface free energy is that found in mode
single component solidification@14#

g5AkjW

18V̄s

50.38 J/m2, ~34!

we find thatn'0.75. In either case, this value ofn is very
close to that obtained by comparing our results to the sh
interface equation~3!, and is not strongly sensitive to th
choice ofg. Although n is usually assumed to be 1/2 whe
no other information is available, it can take on any va
between 0 and 1 for an ion transfer reaction@10#.

D. Alloy electrodeposition

We examine electrodeposition of alloys by increasing
applied current by five orders of magnitude fro
2102 A/m2 to 2107 A/m2, starting from the steady stat
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result of Fig. 3. The fields in the vicinity of the interface a
displayed at four different times in Fig. 6. We have adde
small concentration inset to each frame to highlight the
havior of M 1 in the electrolyte and a bar of color that re
resents the overall composition of the system. The ini
potential drop across the interface ofDf50.118 V is within
2 mV of the Nernst potential forCM1

b
510 mol/m3. At 10 ns

after the step in current,CM1 has depleted at the interface
approximately half its bulk value andN1 has begun to ac-
cumulate at the electrode surface. At 200 ns,CM1 has de-
pleted essentially to zero at the electrode surface, giving
to the limiting current ofM 1 through the electrolyte. This
M 1 current of approximately22.13106 A/m2 is not ad-
equate to meet the applied current of2107 A/m2. The sur-
face of the electrode becomes covered with a layer very
in N1 and an alloy ofM and N begins to deposit on the
electrode. By 750 ns, the interfacial structure establishe
200 ns is essentially unchanged and the original, pureM
electrode has been completely swept from view, replaced
a MN alloy.

In Fig. 7, we plot the steady-state concentration ofN1 in
the electrode as a function ofh. For small overpotentials, up
to h'20.17 V, the electrode is essentially pureM. At large
magnitudes ofh, the fraction ofN grows in an apparently
linear fashion.

E. Interface structure

The concentration and charge distributions at the interf
are sensitive to the electrodeposition conditions at all ov
potentials or applied currents, but can be seen clearly in
6. At i 52102 A/m2, CM1, CN1, andCA2 in the electrolyte
remain very close to their bulk values, all the way into t
interfacial region. The charge distribution consists of a dip
on the electrode side, with very small net negative char
and a corresponding positive charge on the electrolyte. Ai
52107 A/m2, CM1 is depleted nearly to zero at the inte
face andN1 displaces essentially all of theA2 at the inter-
face. The density ofe2 at the surface of the electrode
much larger than at the lower current and the charge dis
bution has shifted to a predominantly negative charge on
electrode and a positive charge on the electrolyte. Th
changes in the charge distribution are directly tied to
change in overpotential, through Eq.~11!.

VII. CONCLUSIONS

Previously@1#, we developed a phase field model of th
electrochemical interface. We performed numerical calcu
tions on a model system like an aqueous electrolyte, in wh
the majority species in the electrolyte had no charge.
demonstrated that, even with a simple ideal solution therm
dynamic description, our model exhibited charged dou
layer behavior, an ‘‘electrocapillary’’ relationship betwee
surface free energy and electrostatic potential differe
across the interface, and differential capacitance curves
are strongly reminiscent of experimental measurements.

In this paper, we have applied the same phase field mo
to electrodeposition and electrodissolution conditions.
4-10



-

PHASE FIELD MODELING OF . . . . II. . . . PHYSICAL REVIEW E 69, 021604 ~2004!
FIG. 6. ~Color! Progress of alloy electrodeposition upon step fromi 52102 A/m2 to i 52107 A/m2. g(j) is mapped onto the back
ground in gray to indicate the location of the phase field interface.
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have performed numerical calculations on a model sys
like a molten salt, with four species which all carry charg
We have shown the following:

~1! The relationship between the parameters of the ph
field model and the physical parameters of an electroche
cal system.

~2! Our model electrode carries current by electromig
tion of electrons and that our model electrolyte carries c
rent by diffusion of cations.

~3! The diffusion field in the electrolyte is essentially lin
ear and that limiting current behavior results.

~4! Despite making linear postulates for the tim
dependent governing equations, the current-overpotentia

FIG. 7. ConcentrationCN1 of N1 in the deposited electrode a
a function of overpotentialh.
d
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lationship is nonlinear and agrees very well with the clas
sharp-interface relationship~‘‘Butler-Volmer’’ with mass
transport effects!.

~5! Currents in excess of the limiting current for the mo
noble species result in the deposition of alloys.

~6! There are changes in the double layer structure w
current.

As discussed in Ref.@1#, the need to resolve the charg
distribution in close proximity to the interface limits the siz
of the domain and the time spans we can model. Poss
adaptive mesh techniques and implicit solution methods
enable us to examine larger domains and longer times. No
theless, our work here demonstrates that the phase field
proach, using a very simple set of assumptions, can re
duce the rich behaviors of existing electrochemical theo
and permit exploration of the relationship between dou
layer structure and interfacial kinetics.
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