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Phase-field model of island growth in epitaxy

Yan-Mei Yu and Bang-Gui Liu
Institute of Physics & Center of Condensed Matter Physics, Chinese Academy of Science, P. O. Box 603, 100080 Beijing

People’s Republic of China
~Received 31 August 2003; published 23 February 2004!

Nucleation and growth of islands in epitaxy is simulated using a continuum phase-field model. In addition
to local density of adatoms, a local phase-field variable, varying in the real space, is introduced to describe the
epitaxial islands. Evolution of this phase field is determined by a time-dependent Ginzburg-Landau-like equa-
tion coupled to a diffusive transport equation of adatoms. When applied to nucleation and growth of islands in
the submonolayer regime, this model reproduces both the scaling laws of island density and experimental size
and spatial distributions of islands. For island growth in the multilayer regime, this phase-field model repro-
duces mound structures consistent with experimental images concerned. Accurate coarsening and roughening
exponents of the mounds are obtained in this model. Compared with atomic models and mean-field models,
this model can provide a fine visualized morphology of islands at large space and time scales of practical
engineering interests.
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I. INTRODUCTION

Modeling and simulation of the island growth in epitax
provide an effective tool to understand and manipulate e
taxial processes. Atomic models, such as kinetic Mo
Carlo ~KMC! simulation, allow easy implementation of
wide range of atomistic kinetic processes, and is there
valuable in understanding microscopic mechanisms du
epitaxial growth. However, it is not computationally efficie
enough to describe growth on a large scale and, especial
macroscopic scales. On the other hand, analytic mean-
models, such as rate equation, can describe the island gr
of various sizes, but cannot contain any local spatial inf
mation. Therefore, it is an important task to develop a n
approach that can simulate the island growth at the la
time and space scales of practical engineering interests,
at the same time contain enough local spatial informatio

As is well known, epitaxial growth is based on motion
island boundaries, such as creation, aggregation, and co
cence, which is analogical in principle with the growth
steps on crystal surfaces. The well known Burton-Cabre
Frank ~BCF! model of step kinetics@1# can be extended to
the island growth by treating island boundaries as steps
this way, the movement of island boundaries is described
a diffusionlike equation of the density of adatoms subjec
appropriate boundary conditions which reflect the relev
microscopic details of atomic processes on edges of the
lands. The continuum formulation can make the simulat
of the island growth extend to a larger spatial scale~even up
to micrometers! and temporal scale~hours!, but direct nu-
merical resolution is hindered by the need to track explic
all moving boundaries. The difficulty can be partly overcom
by front tracking techniques. A level-set method was d
signed to use this technique to simulate the island grow
but was limited to the submonolayer regime or layer-by-la
growth because of its difficulty in treating numerical impl
mentation and complex boundary conditions@2,3#.

The phase-field method is a popular front tracking te
nique that is applied widely to a general category of fr
1063-651X/2004/69~2!/021601~6!/$22.50 69 0216
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boundary problems known as Stefan problems, such as
lidification @4#, solid-solid phase transitions@5#, Ostwald rip-
ening@6#, and nucleation@7#. Based on the Ginzburg-Landa
theory of phase transitions, the phase-field method form
lates the free boundary problem as a set of partial differen
equations~PDEs! of physically relevant variables such a
phase fields, concentration, density, magnetization,
Boundary conditions are incorporated implicitly to the
equations so that tracking boundaries is avoided. At the s
time, the dependence of computational results on model
rameters has been greatly reduced by thethin-interface
analysis@8#. Hence, the phase-field method is a good te
nique as a general approach to epitaxial growth. Liu a
Metiu @9# developed a phase-field model for collective m
tions of a train of straight steps on a crystal surface. Kar
and Plappy@10# employed a phase-field model to the spir
surface growth. However, there have been no reports on
plying the phase-field method to simulate nucleation a
growth of islands, especially large three-dimensional islan
in epitaxy.

In this paper, we shall propose a phase-field model
nucleation and growth of islands in epitaxy. In this mod
new islands nucleate spontaneously and grow at the exp
of adatoms deposited randomly. By using a local phase-fi
variableF to describe different epitaxial layers of island
the nucleation and subsequent growth of islands are for
lated as a time-dependent Ginzburg-Landau-like equa
coupled to a diffusive transport equation of adatoms. By e
ploying the model for real epitaxial systems, we obtain t
experimental size and spatial distributions of islands and
scaling law of the island density as a function of the ratio
the diffusion and deposition rate in the submonolayer
gime. Then, through considering the asymmetric diffus
rate of adatoms on both sides of boundaries of islands,
reproduce the multilayer mounding of the metal growth s
tems. These simulations provide fine visualized images
the island morphologies in the submonolayer regime as w
as the multilayer regime at a scale of about 100 nm. A
matter of fact, this continuum model makes the phase-fi
©2004 The American Physical Society01-1
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simulation of the island growth in principle capable of co
ering arbitrarily large time and length scales. Moreover,
concise PDE formulation provides a natural framework
incorporate some important factors in epitaxy, especia
those difficult to deal with in KMC models, such as the stra
fields that occur in the presence of lattice mismatch.

In the following section we shall present our phase-fi
model in detail. In Sec. III we simulate island growth in th
submonolayer regime. In Sec. IV, we apply the phase-fi
model to the growth of multilayer islands and reproduce
formation and growth of mounding structures of the me
growth systems. Finally, we conclude the paper with a su
mary in Sec. V.

II. PHASE-FIELD MODEL OF EPITAXIAL GROWTH

In this scheme stable islands are described by continu
variablesF, rather than lattices as in atomic models. W
take the values ofF to be 0,1,2,3, . . . to represent in se-
quence the substrate, the first monolayer, the second m
layer, and so on. The sharp steps of islands used in ato
models are replaced by spatial transition zones across w
F varies smoothly from one integer value to another. We c
these transition zones phase-field transition zones~PFTZ!.
After being deposited on terraces, adatoms diffuse later
with a rateD, which produces a continuum field of loca
adatom density. We define the diffusion rate asD
5a2n exp(2Ed /kBT), where T is the temperature,kB is
Boltzmann constant,a is the lattice constant of the physic
substrates and will be taken as 1 for convenience in the
lowing, n is the attempt frequency, andEd is the energy
barrier of diffusion. The evolution ofF depends on the loca
adatom densityu.

The nucleation and growth of islands is formulated as
following differential equations:

]F

]t
52

1

t

dH

dF
~1!

5
1

t
@W2¹2F22 sin 2pF2lu~2 cos 2pF22!#

1lnu2, ~2!

]u

]t
5“•D“u2

]F

]t
1d~r 2r 8!d~ t2t8!. ~3!

Equation~1! is derived from the time-dependent Ginzbur
Landau equation constructed according to the global con
vation law.H is the free energy functional defined by

H5E dVF1

2
W2~¹F!21 f ~F,u!G . ~4!

The free energy densityf is defined by

f ~F,u!52
1

p
cos~2pF!1luS 1

p
sin~2pF!22F D , ~5!
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in order to makeH reach degenerate minimums atF
50,1,2,3, . . . . TheparametersW, t, andl are basic phase
field parameters to be determined.W represents the thicknes
of PFTZ,t the characteristic time of attachment of adato
at boundaries of islands, andl a dimensionless coupling
constant.

By using thethin-interface analysiswe derive the expres
sions

d05a1

W

l
, ~6!

b5
a1

l

t

W F12a2l
W2

DtG , ~7!

which relates the phase-field parameters to the dimension
capillarity lengthd0 and the kinetic coefficientb, both of
which are measurable characteristics of the system. The
mensionless capillarity lengthd0 describes the deviation o
the local equilibrium concentration at a curved step from t
at a straight step. We know

d05
a2ceqg

kBT
, ~8!

whereceq is the equilibrium concentration at a straight st
andg is the step stiffness.b reflects the interface kinetic in
terms ofb51/m, wherem is the attachment kinetic coeffi
cient of adatoms at edges of islands. The constantsa1 anda2
equal to 0.36 and 0.51, respectively. Here, we assumb
50, which corresponds to fast attachment of atoms
boundaries of islands. Rearranging Eqs.~6! and ~7!, we ob-
tain the following equations:

l5
a1W

d0
~9!

and

t5
a1a2W3

d0D
. ~10!

In the following we shall takeW as input parameter, the
determinel andt according to Eqs.~9! and ~10!.

The spatial distribution of adatoms is governed by Eq.~3!.
The term“•D“u describes the lateral diffusion of adatom
on the terraces. Edge diffusion is neglected for simplific
tion, without losing main physics. The term]F/]t represents
consumption of active adatoms due to nucleation and gro
of islands. The third term on the left of Eq.~3! represents the
random deposition of atoms. Whenevert5t8, atoms are de-
posited at the point ofr 5r 8 with r 8 being determined ran
domly, and the adatom densityu at this point is set to be 1
Heret851/(Fl 2), whereF is the deposition rate andl is the
number of the spatial grid nodes in thex ~or y) direction. The
random deposition of adatoms brings a sharp peak of lo
adatom density, which is reflected by the termlnu2 in the
phase-field equation so that the random deposition of at
triggers the spontaneous nucleation of islands. The in
1-2
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PHASE-FIELD MODEL OF ISLAND GROWTH IN EPITAXY PHYSICAL REVIEW E69, 021601 ~2004!
nuclei are not stable, which may grow up or decay depend
on the environment around themselves. The exponen
comes from the assumption that the critical size of an isl
is 1. Here we introduce a parameterln to describe the nucle
ation rate of islands.

Adatoms on a terrace cannot climb up to upper terrac
while adatoms can go down to the lower terrace by overco
ing a Schwoebel barrierEs . In order to imitate the up-down
asymmetry of adatom motion, we modify the diffusion coe
ficient D in PFTZ regions of island boundaries. It is iden
fied by nonzerou“Fu in the PFTZ regions. Furthermore
according to the sign of¹2F, we divide a PFTZ region into
two different parts. We changeD into zero in the positive
¹2F part in order to inhibit the terrace-climbing motion o
adatoms. In contrast, in the negative¹2F part, we modifyD
into D exp(2Es/kBT) in order to imitate the effect of the
Schwoebel barrierEs on the downward motion of adatom
With the nonconstant adatom diffusion, the phase-fi
model cannot be reduced exactly to the classical sh
interface boundary conditions of the BCF model@11#. How-
ever, this is ignorable for achieving qualitative simulati
results provided that the interface thickness is small.

Equations~2! and ~3! are discretized in a square doma
of sizelDx, whereDx is defined as the spacing of the spat
grids, by using the second-order finite differential method
uniform Cartesian grids, and by using the first-order fin
differential approximation in the time domain. In addition
the restriction thatDt,(Dx)2/5D, the value of time stepDt
is also kept small enough to ensure the variation ofF is less
than 1 in a time step. The Neumann boundary condition
used in all directions.

III. APPLIED TO REAL GROWTH OF
SUBMONOLAYER ISLANDS

In this section, we simulate the nucleation and growth
islands at the initial stage, or in the submonolayer regime,
different temperatures ranging from 293 to 529 K but a fix
flux of 0.01 monolayer per second~ML/s!. We chooseEd
50.45 eV andy51012, typical values for the metal growth
systems such as Fe/Fe~001!. In the phase-field simulations
the growth velocity of islands is related toW. As W de-
creases, the growth velocity of islands increases and tend
be convergent. In practice, one must repeat computat
with smaller and smallerW until the results become indepen
dent of W. Hence,W is generally chosen far less than th
characteristic length of a system. In epitaxy, the characte
tic length is the island separationL. Considering thatL varies
from several tens to several hundreds ofa as the temperature
increases from 293 to 529 K, we chooseW52210a, which
is reasonably small compared withL for the qualitative simu-
lation.

The value of the phase-field parametert is related toW as
well as system characteristics. The valueb50 is always
assumed in the following. Assuming further thatceq and g
remain constant in the whole temperature range of 293–
K, we obtain
02160
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t;a
W3T

D
, ~11!

according to which the values oft at other temperatures ca
be calculated by choosingt50.5 atT5529 K.

The value ofln should be determined in terms of th
nucleation rate of islands under a certain epitaxy conditi
With the case of the critical island size being set to be 1,
rate of the island nucleation is given by (d/dt)N;Du2 ac-
cording to the classical theory of the island nucleation. A
sociating with the classical theory of the island nucleatio
we guess thatln must be related toD, even though there is
no formulation to explicitly connectln to D. Therefore, we
adjust reiteratively the value ofln for differentD at different
temperatures and finally succeed in matching the simula
results to the scanning-tunneling-microscopy~STM! mea-
surements provided in Ref.@12#. In principle, as a paramete
characterizing the nucleation capability,ln has no relation-
ship with the interface thickness and discretization. Howev
the interface thickness and discretization may influence
island nucleation just as they do the island growth in
numerical computation. We find that even with the sa
value ofln , the initial nuclei produced by the termlnu2 are
easier to survive and more islands are formed by using
large interface thickness and coarse discretization than
using small interface thickness and fine discretization. In
phase-field simulations, we choose reasonably smallW and
Dx to reduce the dependence of the simulated results
these numerical issues. The input parameters used in
simulations are summarized in Table I.

Figure 1 shows the simulated images obtained with
phase-field method. There are fewer but larger islands as
temperature increases. The morphology of these islands
consistent with the STM images of Fe/Fe~001! @12,13#. The
values ofln are plotted in the left part of Fig. 2. It is clea
that ln varies withD according toln;D0.88. Using these
values ofln , we have successfully matched the simulat
images to the STM ones. In the right part of Fig. 2, shown
a logarithmic plot of the density of islands versusD/F, with
T varying from 293 K to 529 K,F being fixed, anda corre-
sponding to 0.28 nm. It can be derived that the density
islands is proportional toD/F to the power of about

TABLE I. The parameters used in the phase-field simulatio
temperatureT ~K!, diffusion coefficientD ~units of a2/s), the two
phase-field parametersW ~units of a) andt ~s!, the two simulation
parametersDx ~units of a) and Dt ~s!, and the number of spatia
grid nodesl.

T D W t Dx Dt l

293 2.153104 2 4.60 1 1025 350
333 1.413105 3 2.70 1.5 1026 230
381 9.793105 4 1.06 2 1026 180
403 2.163106 4 0.50 2 1026 180
433 5.763106 6 0.68 3 1026 200
483 1.833107 8 1.12 4 1026 150
529 4.723107 10 0.50 5 231027 100
1-3
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20.34. As is well known, for isotropic diffusion the tota
density of islands,N, in the low-coverage limit, varies a
@12#

N;S D

F D 2x

exp@xEd /kBT#, ~12!

FIG. 1. The simulated images of islands on 3503350a2 with the
coverage of 0.07 monolayers~ML ! and the flux of 0.01 ML/s at
different substrate temperatures.~a! 293 K, ~b! 333 K, ~c! 381 K,
~d! 403 K, ~e! 433 K, and~f! 529 K, respectively. The phase-fiel
and simulation parameters are the same as those in Table I.

FIG. 2. The nucleation parameterln vs the diffusion coefficient
D ~left part! and theD/F dependence of the density of islands~right
part! obtained from phase-field simulations. All the parameters
the same as those in Fig. 1. The lines are the linear fits to the d
02160
where x5 i /( i 12). The experimental data@12,13# for Fe/
Fe~001! has provedi 51 and x51/3 in the temperature
range of 293–529 K. Our resultx50.34 is in agreemen
with the experimental result.

IV. APPLIED TO REAL GROWTH OF
MULTILAYER ISLANDS

The competition of growth and nucleation in th
multilayer regime brings forth more multiplex morphologie
In ideal layer-by-layer growth the second-layer islan
nucleate after the first layer completes. However, new sta
islands ~daughter islands! may nucleate on top of existing
uncompleted islands~parent islands!. The phenomenon is
caused by the Schwoebel barrier, which resists the downw
diffusion of adatoms. As a result, there appears the pyram
like mound morphology. The mound morphology is ofte
found in metal homoepitaxial systems with large Schwoe
barriers@14# and in metal systems even with low Schwoeb
barriers but at low temperatures@15–21#. As deposition pro-
ceeds, the mounds tend to coarsen and roughen, as ch
terized byL5un and w5um, respectively, whereL is the
mound separation andw is the roughness of the epitaxia
surface.

In this section, we simulate the metal growth systems
the multilayer regime. Our strategy is to modifyD on both
sides of the boundaries of the islands so as to take into
count the up-down asymmetry of the motion of adatoms. T
downward diffusion reduced by the Schwoebel barrierEs
drives the growth into the multilayer morphology. In th
way, we get the phase-field images of mounds for differ
deposition fluxes as shown in Fig. 3. The parametersEs and
D are set to be 0.06 eV and 800a2/s, respectively, which
correspond to the island growth of metal systems with i
mediate Schwoebel barriers at low temperature. The mou
become larger with the height increasing from 2 to 5 atom
layers as the deposition flux decreases. The highest lay
located at the tops of the mounds, and the lowest layers
connected, forming channels at the bases. The mound m
phologies as shown in Fig. 3 resemble those that have b
observed in some typical metal systems, for examp
Fe~001! @15# and Ag~100! @16#. Figure 4 presents the snap
shots of the epitaxial growth in the simulation forF
50.02 ML/s at different coverages, which reveals coars
ing and roughening of the mounds.

In order to characterize the mounding behavior, we exa
ined the height-height correlation function of the morph
ogy, H(r ), i.e., the mean-square height difference for tw
points of the substrate versus their lateral separationr. In
terms ofH(r ), we get the roughnessw of the epitaxial is-
lands, A^H(0)H(0)&, and the mound separationL52r c ,
where r c is the position of the first zero crossing o
^H(r )H(0)&. The results are plotted in Figs. 5 and 6. T
inset in Fig. 5 showsH(r ) versusr for F50.02 ML/s.

As for coarsening of the mounds, the experimental data
the coarsening exponentn in the low temperature regimes i
about 0.1660.04 for Fe~001! at 293 K @15#, 0.2060.02 for
Ag~100! at 190–260 K@17#, and 0.25–0.50 for Cu~100! at
160–200 K@18#. A continuum model without capillarity pre
dicts n;1/6 @15#, whereas the theoretical works@19,20# in-

e
ta.
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cluding capillary-induced mound coalescence predictn
50.25. These experimental and theoretical results indic
that capillarity induces coalescence of mounds, driv
mounds to coarsen faster than they do in the case of zer

FIG. 3. The simulated morphology of 3003300a2 at u56
monolayers~ML !, for ~a! F50.001 ML/s, ~b! F50.01 ML/s, ~c!
F50.02 ML/s, and~d! F50.05 ML/s by usingW52 and t51.
The diffusion barrier is 0.45 eV and the temperature is 250 K. T
absolute heights of the highest islands in~a!, ~b!, ~c!, and~d! are 12,
9, 9, and 7 atomic layers~AL !, respectively, but their relative
heights with respect to the deepest valleys are 7, 5, 4, and 2
respectively.

FIG. 4. The simulated morphology of 3003300a2 for different
coverages: 15, 30, 45, and 60 monolayers~ML ! ~upper-left to
lower-right panel! with F50.02 ML/s by usingW52 and t51.
The diffusion barrier is 0.45 eV and the temperature is 250 K. T
absolute heights of the highest islands are 18, 33, 52, and 68 at
layers~AL !, respectively, but their relative heights with respect
the deepest valleys are 7, 8, 10, and 11 AL, respectively.
02160
te
g
or

weak capillarity. Our phase-field model is based on the B
model including capillarity, hence coalescence induced
capillarity is an apparent feature in our simulations, as sho
in Fig. 4. The linear fit in Fig. 5 indicates that the mounds
our simulation grow with a coarsening exponent of 0.
60.05, being larger than those for Fe~001! and Ag ~100!,
where no substantial coalescence of mounds occurs, but
sistent with the theoretical prediction including capillar
induced mound coalescence.

The roughening exponentm varies with the specific sys
tems in a larger range than the coarsening exponent doe
was shown experimentally thatm is about 0.18 for Fe~001!
@21#, 0.40 for Ag~100! @16#, and 0.25–0.50 for Cu~100! @18#.
The theoretical prediction is thatm5n50.25 @19#. In our
simulations,m50.3060.01 as indicated in Fig. 6, which i

e

L,

e
ic

FIG. 5. The simulated results for average mound separatioL
~units of a) vs coverageu @units of monolayer~ML !# for flux F of
0.001, 0.01, 0.02, and 0.05 ML/s~top to bottom!. Other parameters
are the same as those in Figs. 3 and 4. Inset: The height-he
correlation functionH ~units of a) as a function of lateral distanc
r ~units of a) at F50.02 ML/s.

FIG. 6. The simulated results for roughnessw vs coverageu
@units of monolayer~ML !# for fluxes of 0.001, 0.01, 0.02, and 0.0
ML/s ~top to bottom!. Other parameters are the same as those
Figs. 3 and 4.
1-5
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reasonable compared with the above experimental and t
retical data. As is generally observed,m is a little larger than
n in our simulations, indicating roughening is more rap
than coarsening during the development of mounds. Furt
more, the obtainedm andn is close to a quarter for differen
fluxes ranging from 0.001 to 0.05 ML/s, indicating that t
deposition flux has no effective influence on the coarsen
and roughening of mounds.

V. CONCLUSION

In summary, we have proposed a phase-field metho
model the epitaxial growth of adatom islands. By using
model, we obtain the experimental local size and shape
islands and the well known scaling law of the island dens
N;D/F2x with x50.34, in the submonolayer regime. B
modifying diffusion coefficientD around the step regions
we reproduce the mounding structure with the coarsen
exponent of 0.2560.05 and roughening exponent of 0.3
60.01 in the multilayer regime for the metal growth sy
tems. The simulations in this paper are conducted on
R

e

.
e
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.
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e
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length scales of about 100 nm and time scales of several
to thousands of seconds. With optimized parameters,
phase-field simulation can reach much larger scales. Th
fore, the phase-field model is a good approach advantag
over atomic models and analytic mean-field models
simulating the adatom island growth in epitaxy on a lar
scale of practical engineering interests. Moreover, the c
cise formulation and easy numerical resolution makes it e
to incorporate into the phase-field model various relev
information from atomic models. It is also easy to couple t
phase field with other physical fields so that some hyb
models that can deal with more complex epitaxial proces
will be constructed.
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