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Phase-field model of island growth in epitaxy
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Nucleation and growth of islands in epitaxy is simulated using a continuum phase-field model. In addition
to local density of adatoms, a local phase-field variable, varying in the real space, is introduced to describe the
epitaxial islands. Evolution of this phase field is determined by a time-dependent Ginzburg-Landau-like equa-
tion coupled to a diffusive transport equation of adatoms. When applied to nucleation and growth of islands in
the submonolayer regime, this model reproduces both the scaling laws of island density and experimental size
and spatial distributions of islands. For island growth in the multilayer regime, this phase-field model repro-
duces mound structures consistent with experimental images concerned. Accurate coarsening and roughening
exponents of the mounds are obtained in this model. Compared with atomic models and mean-field models,
this model can provide a fine visualized morphology of islands at large space and time scales of practical
engineering interests.
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[. INTRODUCTION boundary problems known as Stefan problems, such as so-
lidification [4], solid-solid phase transitioni§], Ostwald rip-

Modeling and simulation of the island growth in epitaxy ening[6], and nucleatiofi7]. Based on the Ginzburg-Landau
provide an effective tool to understand and manipulate epitheory of phase transitions, the phase-field method formu-
taxial processes. Atomic models, such as kinetic Montdates the free boundary problem as a set of partial differential
Carlo (KMC) simulation, allow easy implementation of a equations(PDE9 of physically relevant variables such as
wide range of atomistic kinetic processes, and is thereforphase fields, concentration, density, magnetization, etc.
valuable in understanding microscopic mechanisms duringgoundary conditions are incorporated implicitly to these
epitaxial growth. However, it is not computationally efficient equations so that tracking boundaries is avoided. At the same
enough to describe growth on a large scale and, especially, ime, the dependence of computational results on model pa-
macroscopic scales. On the other hand, analytic mean-fielhmeters has been greatly reduced by thm-interface
models, such as rate equation, can describe the island growémalysis[8]. Hence, the phase-field method is a good tech-
of various sizes, but cannot contain any local spatial infornique as a general approach to epitaxial growth. Liu and
mation. Therefore, it is an important task to develop a newMetiu [9] developed a phase-field model for collective mo-
approach that can simulate the island growth at the largeiions of a train of straight steps on a crystal surface. Karma
time and space scales of practical engineering interests, amhd Plappy{10] employed a phase-field model to the spiral
at the same time contain enough local spatial information. surface growth. However, there have been no reports on ap-

As is well known, epitaxial growth is based on motion of plying the phase-field method to simulate nucleation and
island boundaries, such as creation, aggregation, and coalegrowth of islands, especially large three-dimensional islands,
cence, which is analogical in principle with the growth of in epitaxy.
steps on crystal surfaces. The well known Burton-Cabrera- In this paper, we shall propose a phase-field model for
Frank (BCF) model of step kinetic$1l] can be extended to nucleation and growth of islands in epitaxy. In this model,
the island growth by treating island boundaries as steps. Inew islands nucleate spontaneously and grow at the expense
this way, the movement of island boundaries is described bpf adatoms deposited randomly. By using a local phase-field
a diffusionlike equation of the density of adatoms subject tovariable ® to describe different epitaxial layers of islands,
appropriate boundary conditions which reflect the relevanthe nucleation and subsequent growth of islands are formu-
microscopic details of atomic processes on edges of the idated as a time-dependent Ginzburg-Landau-like equation
lands. The continuum formulation can make the simulationcoupled to a diffusive transport equation of adatoms. By em-
of the island growth extend to a larger spatial sdakeen up  ploying the model for real epitaxial systems, we obtain the
to micrometers and temporal scaléhour9, but direct nu- experimental size and spatial distributions of islands and the
merical resolution is hindered by the need to track explicitlyscaling law of the island density as a function of the ratio of
all moving boundaries. The difficulty can be partly overcomethe diffusion and deposition rate in the submonolayer re-
by front tracking techniques. A level-set method was de-gime. Then, through considering the asymmetric diffusion
signed to use this technique to simulate the island growthrate of adatoms on both sides of boundaries of islands, we
but was limited to the submonolayer regime or layer-by-layereproduce the multilayer mounding of the metal growth sys-
growth because of its difficulty in treating numerical imple- tems. These simulations provide fine visualized images of
mentation and complex boundary conditid@s3]. the island morphologies in the submonolayer regime as well

The phase-field method is a popular front tracking tech-as the multilayer regime at a scale of about 100 nm. As a
nique that is applied widely to a general category of freematter of fact, this continuum model makes the phase-field
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simulation of the island growth in principle capable of cov-in order to makeH reach degenerate minimums &t
ering arbitrarily large time and length scales. Moreover, the=0,1,2,3 ... . Theparameter®V, r, and\ are basic phase-
concise PDE formulation provides a natural framework tofield parameters to be determin&tl.represents the thickness
incorporate some important factors in epitaxy, especiallyof PFTZ, 7 the characteristic time of attachment of adatoms
those difficult to deal with in KMC models, such as the strainat boundaries of islands, and a dimensionless coupling
fields that occur in the presence of lattice mismatch. constant.

In the following section we shall present our phase-field By using thethin-interface analysisve derive the expres-
model in detail. In Sec. lll we simulate island growth in the sions
submonolayer regime. In Sec. IV, we apply the phase-field
model to the growth of multilayer islands and reproduce the

formation and growth of mounding structures of the metal dO:alf' (6)
growth systems. Finally, we conclude the paper with a sum-
mary in Sec. V. a, T W2

= w3 gy @

Il. PHASE-FIELD MODEL OF EPITAXIAL GROWTH
_ ) . . which relates the phase-field parameters to the dimensionless
In this scheme stable islands are described by continuurgaijiarity lengthd, and the kinetic coefficiens, both of
variables®, rather than lattices as in atomic models. Weyhich are measurable characteristics of the system. The di-
take the values of> to be 0,1,2,3... torepresent in Se- mensjonless capillarity lengtt, describes the deviation of

quence the substrate, the first monolayer, the second mongye |ocal equilibrium concentration at a curved step from that
layer, and so on. The sharp steps of islands used in atomig straight step. We know

models are replaced by spatial transition zones across which

& varies smoothly from one integer value to another. We call aZCqu

these transition zones phase-field transition zofR¥sT2). dfﬁ, (8
After being deposited on terraces, adatoms diffuse laterally B

with a rate D, which produces a continuum field of local \yherec,, is the equilibrium concentration at a straight step
adaztom density. We define the diffusion rate &  ang.y is the step stiffnesss reflects the interface kinetic in
=a‘vexp(-Eqy/ksT), where T is the temperatureks is  terms of 3= 1/u, wherep is the attachment kinetic coeffi-

Boltzmann constang is the lattice constant of the physical ¢jent of adatoms at edges of islands. The cons@nenda,
substrates and will be taken as 1 for convenience in the foléqua| to 0.36 and 0.51, respectively. Here, we assyime

lowing, v is the attempt frequency, arlfl is the energy  _q which corresponds to fast attachment of atoms to
barrier of diffusion. The evolution ob depends on the local poyndaries of islands. Rearranging E(®.and (7), we ob-

adatom densityl. _ _ tain the following equations:
The nucleation and growth of islands is formulated as the
following differential equations: W
My ®
Jb 1 6H . 0
T W and
W3
1 _ g 122 (10)
=;[WV ®—-2sin27d—Au(2 cos2rd—-2)] dD
+ U2, (2) In the following we shall také/V as input parameter, then

determine\ and r according to Egs(9) and(10).
au o The spatial distribution of adatoms is governed by 6.
St =V DVu— —-+a(r—r)s(t-t). (3)  The termV-DVu describes the lateral diffusion of adatoms
on the terraces. Edge diffusion is neglected for simplifica-
tion, without losing main physics. The ter#®/Jt represents
?_onsumption of active adatoms due to nucleation and growth
of islands. The third term on the left of E(B) represents the
random deposition of atoms. Whenevert’, atoms are de-
posited at the point of=r" with r’ being determined ran-
] (4) domly, and the adatom densityat this point is set to be 1.
Heret’ = 1/(F1?), whereF is the deposition rate ards the
o . number of the spatial grid nodes in tké€or y) direction. The
The free energy densitlyis defined by random deposition of adatoms brings a sharp peak of local
1 adatom density, which is reflected by the texgu? in the
o _ phase-field equation so that the random deposition of atoms
Wsm(ZTrCI)) 2(1))’ ® triggers the spontaneous nucleation of islands. The initial

Equation(1) is derived from the time-dependent Ginzburg-
Landau equation constructed according to the global conse
vation law.H is the free energy functional defined by

1
H=JdV

SWAV®)4 (@)

1
f(d,u)=-— ;COS{ZW@)-I—)\U

021601-2



PHASE-FIELD MODEL OF ISLAND GROWTH IN EPITAXY PHYSICAL REVIEW E59, 021601 (2004

nuclei are not stable, which may grow up or decay depending TABLE I. The parameters used in the phase-field simulations:

on the environment around themselves. The exponent mperaturel (K), diffusion coefficientD (units ofa’/s), the two

comes from the assumption that the critical size of an islanghase-field parameteW (units ofa) andr (s), the two simulation

is 1. Here we introduce a parameleyto describe the nucle- pqrameters&x (units ofa) and At (s), and the number of spatial

ation rate of islands. grid nodes.
Adatoms on a terrace cannot climb up to upper terraces, T

. D w T AX At I
while adatoms can go down to the lower terrace by overcom-
ing a Schwoebel barrigg,. In order to imitate the up-down 293  2.15<10* 2 4.60 1 10° 350
asymmetry of adatom motion, we modify the diffusion coef- 333  1.41x10° 3 270 15 10° 230
ficient D in PFTZ regions of island boundaries. It is identi- 381 9.7 10° 4 1.06 2 10°6 180
fied by nonzeroV®| in the PFTZ regions. Furthermore, 403  2.16&10° 4 050 2 10° 180
according to the sign o¥?®, we divide a PFTZ region into 433 5.76<10° 6 0.68 3 10° 200
two different parts. We changb into zero in the positve 483  1.8% 10’ 8 1.12 4 10° 150
V2® part in order to inhibit the terrace-climbing motion of 529 47210 10 050 5 107 100
adatoms. In contrast, in the negatiVé® part, we modifyD
into D exp(—Es/kgT) in order to imitate the effect of the
Schwoebel barrieE on the downward motion of adatoms. WeT
With the nonconstant adatom diffusion, the phase-field TmeTp (11)

model cannot be reduced exactly to the classical sharp-

interface boundary conditions of the BCF mofiel]. How-  according to which the values afat other temperatures can

ever, this is ignorable for achieving qualitative simulationpe calculated by choosing=0.5 atT=529 K.

results provided that the interface thickness is small. The value of\,, should be determined in terms of the
Equations(2) and (3) are discretized in a square domain nucleation rate of islands under a certain epitaxy condition.

of sizel Ax, whereAx is defined as the spacing of the spatial With the case of the critical island size being set to be 1, the

grids, by using the second-order finite differential method orrate of the island nucleation is given bg/@t)N~Du? ac-

uniform Cartesian grids, and by using the first-order finitecording to the classical theory of the island nucleation. As-

differential approximation in the time domain. In addition to sociating with the classical theory of the island nucleation,

the restriction thatt<(Ax)2/5D, the value of time stept ~ we guess thak, must be related t®, even though there is

is also kept small enough to ensure the variatiodb less o formulation to explicitly conneck, to D. Therefore, we

than 1 in a time step. The Neumann boundary condition i&djust reiteratively the value af,, for differentD at different
used in all directions. temperatures and finally succeed in matching the simulated

results to the scanning-tunneling-microscof§TM) mea-
surements provided in Ref12]. In principle, as a parameter
characterizing the nucleation capability, has no relation-
ship with the interface thickness and discretization. However,
the interface thickness and discretization may influence the
In this section, we simulate the nucleation and growth ofisland nucleation just as they do the island growth in the
islands at the initial stage, or in the submonolayer regime, fonumerical computation. We find that even with the same
different temperatures ranging from 293 to 529 K but a fixedvalue of\,, the initial nuclei produced by the terku? are
flux of 0.01 monolayer per secondiL/s). We chooseE;  easier to survive and more islands are formed by using the
=0.45 eV andv= 10", typical values for the metal growth large interface thickness and coarse discretization than by
systems such as FefP81). In the phase-field simulations, using small interface thickness and fine discretization. In the
the growth velocity of islands is related #. As W de-  phase-field simulations, we choose reasonably skvedind
creases, the growth velocity of islands increases and tends tox to reduce the dependence of the simulated results on
be convergent. In practice, one must repeat computatiorthese numerical issues. The input parameters used in the
with smaller and smalleW until the results become indepen- simulations are summarized in Table 1.
dent of W. Hence,W is generally chosen far less than the Figure 1 shows the simulated images obtained with the
characteristic length of a system. In epitaxy, the characterisphase-field method. There are fewer but larger islands as the
tic length is the island separatidn Considering thak varies  temperature increases. The morphology of these islands are
from several tens to several hundredsi@fs the temperature consistent with the STM images of Fe(B81) [12,13. The
increases from 293 to 529 K, we chodék=2—10a, which ~ values of\,, are plotted in the left part of Fig. 2. It is clear
is reasonably small compared witHor the qualitative simu-  that \, varies withD according tox ,~D%#. Using these
lation. values of\,, we have successfully matched the simulated
The value of the phase-field parameteds related toVas  images to the STM ones. In the right part of Fig. 2, shown is
well as system characteristics. The val@e=0 is always a logarithmic plot of the density of islands verdDsF, with
assumed in the following. Assuming further tlat, andy T varying from 293 K to 529 KF- being fixed, anch corre-
remain constant in the whole temperature range of 293-528ponding to 0.28 nm. It can be derived that the density of
K, we obtain islands is proportional toD/F to the power of about

Ill. APPLIED TO REAL GROWTH OF
SUBMONOLAYER ISLANDS
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where y=i/(i+2). The experimental datdl2,13 for Fe/
Fe(001) has provedi=1 and y=1/3 in the temperature
range of 293-529 K. Our resuf=0.34 is in agreement
with the experimental result.

IV. APPLIED TO REAL GROWTH OF
MULTILAYER ISLANDS

The competition of growth and nucleation in the
multilayer regime brings forth more multiplex morphologies.
In ideal layer-by-layer growth the second-layer islands
nucleate after the first layer completes. However, new stable
islands (daughter islangsmay nucleate on top of existing
uncompleted islandgparent islands The phenomenon is
caused by the Schwoebel barrier, which resists the downward
diffusion of adatoms. As a result, there appears the pyramid-
like mound morphology. The mound morphology is often
found in metal homoepitaxial systems with large Schwoebel
barriers[14] and in metal systems even with low Schwoebel
barriers but at low temperaturgg5—21]. As deposition pro-
ceeds, the mounds tend to coarsen and roughen, as charac-
terized byL= 6" andw= 6", respectively, wherd is the
mound separation and is the roughness of the epitaxial
surface.

In this section, we simulate the metal growth systems in
the multilayer regime. Our strategy is to modiy on both
sides of the boundaries of the islands so as to take into ac-
count the up-down asymmetry of the motion of adatoms. The
downward diffusion reduced by the Schwoebel barigr
drives the growth into the multilayer morphology. In this
way, we get the phase-field images of mounds for different
deposition fluxes as shown in Fig. 3. The paramefgrand
D are set to be 0.06 eV and 8&s, respectively, which
correspond to the island growth of metal systems with im-
mediate Schwoebel barriers at low temperature. The mounds
become larger with the height increasing from 2 to 5 atomic
layers as the deposition flux decreases. The highest layer is
located at the tops of the mounds, and the lowest layers are
connected, forming channels at the bases. The mound mor-
phologies as shown in Fig. 3 resemble those that have been
observed in some typical metal systems, for example,
Fe(001) [15] and AJ100) [16]. Figure 4 presents the snap-
107 I 10° o shots of the epitaxial growth in the simulation fdf
s =0.02 ML/s at different coverages, which reveals coarsen-
‘ .~ ing and roughening of the mounds.
10°4 . AN In order to characterize the mounding behavior, we exam-
L4 \‘~.\ ined the height-height correlation function of the morphol-

FIG. 1. The simulated images of islands on 3550a? with the
coverage of 0.07 monolayef®IL) and the flux of 0.01 ML/s at
different substrate temperaturda) 293 K, (b) 333 K, (c) 381 K,
(d) 403 K, (e) 433 K, and(f) 529 K, respectively. The phase-field
and simulation parameters are the same as those in Table I.

—0.34. As is well known, for isotropic diffusion the total
density of islandsN, in the low-coverage limit, varies as
[12]

D\ X
N~(E) ex] xEq/ksT], (12)

107+

104

10°

10°

10° 10" 10

10’

10* 10° 10"

ogy, H(r), i.e., the mean-square height difference for two
points of the substrate versus their lateral separatioim
terms ofH(r), we get the roughness of the epitaxial is-
lands, yV(H(0)H(0)), and the mound separatidn=2r,
where r. is the position of the first zero crossing of
(H(r)H(0)). The results are plotted in Figs. 5 and 6. The
inset in Fig. 5 shows$1(r) versusr for F=0.02 ML/s.

As for coarsening of the mounds, the experimental data of
the coarsening exponentin the low temperature regimes is
FIG. 2. The nucleation paramete, vs the diffusion coefficient ~about 0.16-0.04 for F€001) at 293 K[15], 0.20=0.02 for
D (left part and theD/F dependence of the density of islardght ~ Ag(100) at 190-260 K[17], and 0.25-0.50 for Qa00) at
parh obtained from phase-field simulations. All the parameters arel60—200 K[18]. A continuum model without capillarity pre-
the same as those in Fig. 1. The lines are the linear fits to the datalicts n~1/6 [15], whereas the theoretical work$9,2Q in-

DY DIF

021601-4



PHASE-FIELD MODEL OF ISLAND GROWTH IN EPITAXY PHYSICAL REVIEW E59, 021601 (2004

100 —————
] J,-—"—‘ /—/‘.__
e o
YT ]
25 : :
10 20{ |5
3 ] 15f { ]
S | 11
H |
0.5{% 1 ]
0.0] ‘\/\N/
14 -0.5 T T E
] 0 50 100 150]
. ]
1 10 100

o

FIG. 5. The simulated results for average mound separation
(units ofa) vs coverage [units of monolayefML)] for flux F of
0.001, 0.01, 0.02, and 0.05 ML{®p to bottom. Other parameters

are the same as those in Figs. 3 and 4. Inset: The height-height
monolayers(ML), for (a) F=0.001 ML/s, (b) F=0.01 ML/s, (c) correlation functiorH (units ofa) as a function of lateral distance

F=0.02 ML/s, and(d) F=0.05 ML/s by using?=2 and7=1.  r (units ofa) at F=0.02 ML/s.
The diffusion barrier is 0.45 eV and the temperature is 250 K. The
absolute heights of the highest island€a) (b), (c), and(d) are 12,  weak capillarity. Our phase-field model is based on the BCF
9, 9, and 7 atomic layersAL), respectively, but their relative model including capillarity, hence coalescence induced by
heights with respect to the deepest valleys are 7, 5, 4, and 2 Algapillarity is an apparent feature in our simulations, as shown

respectively. in Fig. 4. The linear fit in Fig. 5 indicates that the mounds in

our simulation grow with a coarsening exponent of 0.25
cluding capillary-induced mound coalescence predict +0.05, being larger than those for F@01) and Ag (100,

=0.25. These experimental and theoretical results indicatezhere no substantial coalescence of mounds occurs, but con-
that capillarity induces coalescence of mounds, drivingsistent with the theoretical prediction including capillary-
mounds to coarsen faster than they do in the case of zero @anduced mound coalescence.

The roughening exponemh varies with the specific sys-
tems in a larger range than the coarsening exponent does. It
was shown experimentally that is about 0.18 for F®01)

[21], 0.40 for Ag100) [16], and 0.25-0.50 for Ga0O) [18].
The theoretical prediction is thah=n=0.25[19]. In our
simulations,m=0.30+0.01 as indicated in Fig. 6, which is

FIG. 3. The simulated morphology of 38(00a® at =6

FIG. 4. The simulated morphology of 38(00a? for different 1 10 100

coverages: 15, 30, 45, and 60 monolayék4l ) (upper-left to P’

lower-right panel with F=0.02 ML/s by usingW=2 andr=1.

The diffusion barrier is 0.45 eV and the temperature is 250 K. The FIG. 6. The simulated results for roughnessvs coveraged
absolute heights of the highest islands are 18, 33, 52, and 68 atomjianits of monolayeXML )] for fluxes of 0.001, 0.01, 0.02, and 0.05

layers (AL ), respectively, but their relative heights with respect to ML/s (top to botton). Other parameters are the same as those in
the deepest valleys are 7, 8, 10, and 11 AL, respectively. Figs. 3 and 4.
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reasonable compared with the above experimental and thetength scales of about 100 nm and time scales of several tens
retical data. As is generally observedjs a little larger than to thousands of seconds. With optimized parameters, the
n in our simulations, indicating roughening is more rapid phase-field simulation can reach much larger scales. There-
than coarsening during the development of mounds. Furthefere, the phase-field model is a good approach advantageous
more, the obtaineth andn is close to a quarter for different over atomic models and analytic mean-field models for
fluxes ranging from 0.001 to 0.05 ML/s, indicating that the simulating the adatom island growth in epitaxy on a large
deposition flux has no effective influence on the coarseningcale of practical engineering interests. Moreover, the con-

and roughening of mounds. cise formulation and easy numerical resolution makes it easy
to incorporate into the phase-field model various relevant
V. CONCLUSION information from atomic models. It is also easy to couple the

phase field with other physical fields so that some hybrid

In summary, we have proposed a phase-field method tgogels that can deal with more complex epitaxial processes
model the epitaxial growth of adatom islands. By using they|| pe constructed.

model, we obtain the experimental local size and shape of
islands and the well known scaling law of the island density,
N~D/F~X with x=0.34, in the submonolayer regime. By
modifying diffusion coefficientD around the step regions, This work was supported by the Chinese Department of
we reproduce the mounding structure with the coarseningcience and Technology under the National Basic Research
exponent of 0.2%0.05 and roughening exponent of 0.30 Projects(Project No. G1999064509and by the Nature Sci-
+0.01 in the multilayer regime for the metal growth sys-ence Foundation of ChingGrant Nos. 60021403 and
tems. The simulations in this paper are conducted on th@0134030.
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