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Using triaxial magnetic fields to create high susceptibility particle composites
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We report on the use of triaxial magnetic fields to create a variety of isotropic and anisotropic magnetic
particle/polymer composites with significantly enhanced magnetic susceptibilities. A triaxial field is a super-
position of three orthogonal ac magnetic fields, each generated by a Helmholtz coil in series resonance with a
tunable capacitor bank. Field frequencies are in the range of 150—400 Hz. Because both the field amplitudes
and frequencies can be varied, a rich variety of structures can be created. Perhaps the most unusual effects
occur when either two or three of the field components are heterodyned to give beat frequencies on the order
of 1 Hz. This leads to a striking particle dynamics that evolves into surprising structures during resin gelation.
These structures are found to have perhaps the highest susceptibility that a particle composite can have. The
susceptibility anisotropy of these composites can be controlled over a wide range by judicious adjustment of
the relative field amplitudes. These experimental data are supported by large-scale Brownian dynamics simu-
lations of the complex many-body interactions that occur in triaxial magnetic fields. These simulations show
that athermal three-dimensional field heterodyning leads to structures with a susceptibility that is as high as that
achieved with thermal annealing. Thus with coherent particle motions we can achieve magnetostatic energies
that are quite close to the ground state.
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INTRODUCTION Interactions in a triaxial field
Motivation When a random suspension of magnetically soft particles

In a recent papefl] it has been shown that uniaxial or L‘:’] etngse? tola :I?'?IX'(?'V;?:;]QS]GU; flellid,dc:clip%leﬁ_ r<;;1re mr(:iufed
biaxial (e.g., rotatingg magnetic fields can be used to create at are closely alighe € appiied lield. 1he particles
will move under the influence of the dipolar interactions with

structured magnetic particle-polymer composites with en-

hanced magnetic properties along the direction of the Strucr_uauarby particles in such a fashion as to increase their dipole

turing field. Relative to a random particle composite, themoments, fqrming complex f:hainlike structure; that “?duc‘?
susceptibility of uniaxial field-structured compositéssC’y the suspension mggnetqstatm € nergy._We call mteractlons n
is enhanced along one principal direction, and suppresse% un|aX|a! f|eld_p05|t|v_ed|po_lar mteract_lons. These .|nterac—
along the other two, and the converse holds for biaxiafIons are mvgnant to inversion of the f|¢|d, since this merely
FSC’s. In this paper it was shown through a mean-fieldnverts the sign of e.ach dipole and the |ptergct|on§ depend on
theory that the sum of the inverse magnetic susceptibilitied?® sauare of the dipole moment.nggativedipolar interac-
along three principal directions is invariant to structuring, sofion Petween two particles can in principal be created by
that enhancements must be balanced by suppressions. TH¥erting the field at only one of the dipoles, but this is
invariant was demonstrated in experiments on a variety ofmpractical, and in any case it would not be possible to cre-
composites containing carbonyl iron particles. The existenc@te negative dipole interactions between all particles with
of this invariant implies that it is not possible to organize thesuch an approach.

particles in such a way as to enhance the susceptibility of an It is possible to create a time-averagegativedipole in-

FSC along all three principal directions. teraction between particles by subjecting the suspension to a
In fact, we have recently shown through theory and simu+apidly changing biaxiale.g., rotating magnetic field in a
lation that triaxial magnetic fieldsan be used to create par- plane normal to the uniaxial field described above. The in-
ticle composites with significant susceptibility enhancementsluced dipole moments create a net average attractive inter-
in all three principal directionf2]. Triaxial FSC’s violate the action in the plane of the field, resulting in the formation of

inverse susceptibility sum rule because of large local-fielccomplex sheetlike structurg¢8]. A simple first-order calcu-
fluctuations that render a mean-field approximation inacculation[4] shows that the average interaction is just the oppo-
rate. The purpose of this paper is to demonstrate significarsite of a positive dipolar interaction, so that in a balanced
susceptibility enhancements in isotropic FSC’s experimentriaxial field, where both the uniaxial and biaxial fields are
tally, and to explore how triaxial magnetic fields can also beapplied simultaneouslyand with all three field components
used to create optimized anisotropic composites. Particle iraaving equal rms amplitudgsone might expect no interac-
teractions in triaxial magnetic fields are strange, and soméon at all. Experiments show that this is not the case, and an
discussion of this will help to motivate this paper. exact point dipole calculation shows that the negative dipolar
interactions created by a biaxial field are not exactly equal
and opposite to the positive dipolar interactions.
*On leave from Dominican University, Dept. of Natural Science, This lack of perfect symmetry between interactions in
River Forest, IL 60305. uniaxial and biaxial fields is due to the fact that the particles
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magnetize in the local field, not the bare applied field, which
can be viewed as a sum of the macroscopic field and the
microscopic field. The smooth macroscopic field is the sum
of the applied field plus the Lorentz cavity fielgrovided
demagnetizing fields due to the sample shape can be elimi-
nated. The lumpy microscopic field is due to the nearby
dipoles. Each dipole moment thus has parts due to the mac-
roscopic and microscopic fields. It can be shown that in a
balanced triaxial field the part of the moments due to the
macroscopic field leads to zero average interaction, but the
part due to the microscopic field leads to strong and complex
many-body interactions. Complex because the interaction be-
tween three contacting particles cannot even be approxi-
mately described by the sum of the pair potential. Because of
this all of the usual things one might expect of an isotropic
system with attractive interactions, such as the formation of
periodic lattices, fail to occur. Instead, particle structures
with molecularlike geometries are stable, and at equilibrium
a suspension forms a particle fod@i.

By the judicious selection of field component amplitudes
and frequencies, a rich variety of FSC’s can be formed in
triaxial magnetic fields. If all three field frequencies are
widely separated a particle gel forms, Fig(tap). If two of
the field component frequencies are sufficiently close to-
gether that the particles can follow the beat frequency, then a
striking oscillation occurs, which we call 2-d heterodyning,
that leads to the formation of a honeycomb structure, Fig. 1
(centey. If all three component frequencies are close, a com-
plex collective dynamics occurs, which we call 3-d hetero-
dyning, that leads to a particle foam, Fig.(Hottom. Het-
erodyne structures are found to have highly optimized
properties. To create structures with anisotropic magnetic
properties the rms field amplitudes can be imbalanced. In
this paper we consider both positive and negative uniaxial
biases, which lead to composites with enhanced susceptibili-
ties along one or two principal directions, respectively.

Optimizing the magnetic susceptibility also optimizes iso-
morphic properties, such as the dielectric constant and ther-
mal and electrical conductivitynot quite isomorphic, but
still optimized. Thus we believe that this new class of tri-
axial field-structured compositd6SC’9 hold great promise
as practical materials for many applicatidms.

Background

Although this is a report of the magnetic properties of
particle composites structured by triaxial fields, there have FIG. 1. Sample structures made in triaxial magnetic fields. In a
been several other studies of the magnetic properties of m&iaxial field a particle gel formstop). In 2-d heterodyning a hon-
terials structured into chains by a uniaxial field. O’Grady &ycomb structure formécentey. 3-d heterodyning leads to a par-
et al. [6] created two different ferrofluids by the thermolysis fice foam(bottom. These composites were made with large ,50-
of di-cobalt octacarbonyl in toluene, controlling the particIeN' particles to facilitate optical imaging. The incident light images
size by appropriate surfactant selection. This resulted in &€ 1 M across.
superparamagnetic particle sample of 5.0-nm particles, and a
ferromagnetic sample of 12.0-nm particles. These nanopafrozen solvent, leading to significant texture, since each par-
ticles apparently consisted of essentially single crystallindicle consists of essentially a single crystalline domain. In the
domains, so that texture could be introduced into the samplelerromagnetic particle sample a significant increase in the
by particle alignment. In the superparamagnetic sample eemanence was observed in a field-cooled sample, again due
significant increase in the susceptibility was found when thdo particle rotation along an easy axis creating significant
samples were field cooled, which oriented the particles in théexture. An analysis in terms of texture is given, but it is not
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clear if the particles formed chains, though at least the largethe field isugeq= — 3HoBo. Thus minimizing the energy of
particles certainly should have. Brugslial.[7] made plate- a dipole maximizes the susceptibility.

lets by ball milling a thin film of Metglas 2605SC. The plate-  The magnetophoretic force on a particle is in the direction
lets were oriented in a magnetic field of 0.4 T, due to theof the gradient of that component of the local field which is
relatively small demagnetizing field in the plane of the plate-parallel to the particle moment. Thus in the absence of ther-
lets, and the polymer resin was then cured. Shifts in thenal fluctuations each particle will move to increase its mo-
magnetization curves of these materials were found whictinent, enhancing the composite susceptibility. Brownian dy-
they attributed to particle alignment, though it is possiblenamics simulations of suspensions of spherical particles do
that the observed shifts were partly due to the strong loca$how a progression to the bct structure, with a concomitant
fields produced by particle chains. dnal.[8,9] have inves- increase in the susceptibilifyl2].

tigated uniaxial FSC’s of 20 and 7&m Ni particles coated The experimental situation is more complex fo_r 'Fhree rea-
with a thin layer of Ag. The conductivity of these materials SONS: particle roughness creates strong local minima, shape

in response to applied strains was the principal goal, bu?nd size polydispersity eliminate the possibility of lattice for-

some magnetization measurements were reported that ind??at'pn’. and Brownian forces are negl|g.|b.le compargd to
grawtaﬂonal forces. Because of the latter, it is not possible to

cated that these materials have isotropic magnetic propertie ) . ;
This is not what we find for uniaxial FSC’s, but perhaps theirreduce the f|elt_j o the point where dlpola_r forc_es are compa-
' rable to Brownian forces, as the suspension will simply sedi-

assSeszr_nent ]:N?]S mtendec:_ to be qu?htatl\;e. heetlik el ment. Real composites made in a uniaxial field thus exhibit
tudies of the magnetic properties of sheetlike particle ;o ched disorder. One could certainly make composites of
aggregates, such as those that form in rotating fields, ar

e . ensity-matched magnetic particles, such as polystyrene lat-
apparently limited to Fabret al.[10], who created a "Smec- fices filled with magnetite particles, but the particle suscep-

tic Ferrofluid”’—sheets of superparamagnetic maghemitg;pjjity is then too small for strong collective magnetic ef-
particles—by swelling a lamellar micelle solution of the fects to emerge. The same is true for density-matched
surfactant/cosurfactant system sodium dodecyl SU|fatef>ystemS created by Coating a nonmagnetic partide with mag-
pentanol with nanosize maghemite in cyclohexane to form aetic material. Even so, susceptibility enhancements of 2.5
lamellar microemulsion. Due to the dependence of demagnérave been achieved for uniaxial FSC's.

tizing factors on lamellar orientation, these fluid phases ori-

ent in modest field§100 G, so that the magnetic field is Triaxial fields

parallel to the lamallae. Measurements of the magnetization |n 3 triaxial magnetic field the particles will move to in-
of these phases was not reported, though one would expecicgease the composite susceptibility along all three directions,
large difference between cooled and field-cooled samples, thus maximizing the susceptibility sum. As shown in the dis-
the matrix could be frozen without upsetting the phase stacussion of heterodyning below, this is because the force on

bility of the microemulsion. each particle is a simple sum of the forces due to each field,
corresponding to the incoherent interaction of dipole mo-
Creating optimal particle composites ments. The same result could be obtained by applying con-

secutive field pulses along the y, zdirections.

In our previous paper we computed the susceptibility of a
variety of simple structures, finding that a sheet of particles,
or a bilayer, had by far the highest susceptibility s(ower
three principal directionsof any structure considered. How-
ever, athermal triaxial field simulations gave disappointing
results, because the particles tended to form a network of

Consider first the much simpler problem of optimizing the chains with only modest susceptibility enhancements. Ther-
susceptibility of a particle composite along a single directionmal simulations gave much improved results, showing the
Tao and Surj11] showed that the magnetic ground state offormation of a high susceptibility particle foam structure.
such a system occurs when the particles are packed into Enis particle foam consists of monolayer particle sheets, and
body-centered-tetragongbct) lattice, with the unique axis can be thought of as a way of embedding a sheet into three
aligned with the applied field. In this configuration it is dimensions. But this result does not lead us to a prescription
shown as follows that the composite susceptibility will befor synthesizing optimal composites, because thermal fluc-
optimized in the direction of the structuring field. In mks tuations are negligible in our system.
units the energy of an induced dipole in an applied figdlg The important finding in our previous paper is that simu-
is U=—32uom-Hgy, wherem is the dipole moment of each lations of heterodyned triaxial fields can lead to composite
particle and is proportional to the local field. The samplestructures with very high susceptibilities, even in the absence
magnetizatiorM is the dipole densityM = ¢m/v, where¢  of thermal fluctuations. This then is indeed a prescription for
is the particle volume fraction and is the dipole volume. the synthesis of real optimal composite materials. The details
The composite susceptibility is the magnetization per unibf heterodyning are given below, but the basic idea is that the
field, which, noting that the moments are parallel to the field slow beating of field components causes an oscillation be-
can be expressed §s= dpUgipoie/ Usieils Where the energy den- tween the coherent and incoherent interaction of the dipole
sity of each dipole islgi,qe=U/v and the energy density of moments induced by the three field components. This leads

The goal of this paper is to use triaxial magnetic fields to
substantially improve the susceptibility of isotropic and an-
isotropic particle composites. That this is possible with tri-
axial fields is an issue that merits some discussion.

Uniaxial fields
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to a complex periodic motion of particle sheets in the susNational Instruments installed in a Power Macintosh and are
pension. As the polymer resin gels, its viscosity divergescontrolled by a Labview program. Extremely accurate cali-
continuously, until the sheets can no longer follow the fieldbration of the capacitors is essential, and was accomplished
beats. In this stage surprising structures emerge, both ijith an Agilent 4284A LCR bridge. Driving these circuits
simulation and experiment. In particular, if all three field with an ATI model 1504 audio power amplifier with 200 W
components are heterodyned, the emergent structure closgdgr channel it is possible to create magnetic induction fields
resembles that arising from simulated annealing, indicatingis large as 500 G at frequencies up~d500 Hz in the
that this technique can mimic the effect of Brownian motion.smallest coil. Amplifier input signals are provided by a

In this paper we first describe the synthesis and charactephase-locked Multifunction Synthesizer from Agilent, model
ization of these materials, and the simulation method wes904A[13]. During operation, extremely high voltages ap-
have developed. This is followed by a discussion of heteropear across the coil and capacitors, so due regard for safety
dyning, a report on our experimental and simulation resultsmust be exercised, mostly through the use of electrical insu-
and the development of simple analytical expressions for thgation and safety interlocks.

susceptibility of the structures we observe. In some experiments one of the field components was
amplitude modulated. In practice this was the largest coil
EXPERIMENT bepause this has the lowest quality factor at any given oper-
. ating frequency. The reasonably wide resonance makes it
Sample preparation possible to drive this coil effectively with a signal that is the

A 4—7-um Ni powder from Goodfellow™ was used to Sum of two frequencies as much as a few Hz apart, causing
make all composites for magnetic susceptibility measure2mplitude modulation at the beat frequency of the two sig-
ments, with concentrations in the range of 0.1-30.0 vol opnals. Amplitude modulation should not be confused with our
The particles were suspended in a polyester réSiastin’  use of the term heterodyning, by which we refer to the beat-
Craft™ liquid polymer casting resinwithout the use of a ing of one field component against another.
dispersant. After addition of the catalyst, these suspensions
were degassed in a vacuum chamber for 3 min, and poured Magnetic measurements

into _1-cm square polystyrene cuvettes. Each cuvette was |goihermal magnetic hysteresis data were measured at

f@lled to a height of_l cm to in_sure that the (_jemagnetizingroom temperaturé295 K) for applied fields betweer 1 and
fields are the same in all directiofssf course, this is nottrué  _j 1 ysing a commercial superconducting quantum interfer-
for the anisotropic samples, but in this case it is not so iMm4n devicéSQUID) magnetometer with extended dynamic
portant either. The samples were then structured in the tri'range (200 emy. The extended range allowed the use of
axial magm_etic field until well past the gel poif25 min) and relatively large samplegtypically 4.00x 4.00x 4.00 mn?)
post-cured in an oven at 70°C fo_r at least 2 h. These samplesii, saturation moments up to 10 mAr10 emy for 30 vol

were then accurately machined into 4.00-mm cubes for susy, \jj These dimensions are much larger than the coarseness

ceptibility measurements. A cube was chosen because W e composites, assuring a representative result. At the
have developed an accurate way to correct for the demagngsayimum field of 1 T these samples were in the reversible

tizing fields for th_is shap_céb(_elovv). L approach-to-saturation regime, minimizing any history ef-
To create a uniform triaxial magnetlc.fleld. we constructediacts in the measurements. The susceptibilities reported
three nested orthogonal Helmholtz coil pairs. Although allpgyein \ere taken from the slope of the magnetization curve

th_ree fields are equivalent, it is useful in mgch that follows to4 Sarg moment for a partial hysteresis loop starting from
think of one component as the uniaxial field and the other, .5, saturation.

two as forming a biaxial field. The uniaxial field either is run
dc with a current source or is driven ac with a fixed capacitor
in series to create a series resonance at 203.7 Hz with an
impedance of=2.6 ). The biaxial field components are run ~ Because the samples were machined into cubes it was
ac and are connected to tunable, computer-controlled, seriegsecessary to correct the susceptibility data for demagnetizing
parallel capacitor banks of our own design to create seriefelds. To do this we simulated a cubic lattice of dipoles
LRC circuits with high quality factors and a resonant imped-occupying a cubical volume. A 3-d finite difference code was
ance of ~2.2 . The capacitor banks use high quality written to solve the applicable Maxwell equatioVi-B
Silicon-Controlled Rectifier capacitors from General Electric=V-{[1+ x(r)]uoH(r)}=0 iteratively, and thereby deter-
which have high current and voltage specifications and lownine the macroscopic field, for a cube of a continuum soft
stray inductance. The banks use 12 capacitors each, spannifggromagnet of relative magnetic permeability placed in
from 1 to 100 uF, and have~354 000 capacitance values an initially uniform magnetic field1]. We used a Cartesian
spanning three decades of capacitance, easily enough to cmeesh of magnetostatic potentials to represent the cube of
ate series resonance at selected coil frequencies4b#b—  permeable material and a substantially larger volume of
1500 Hz. Potter and Brumfield power relays with a 4-kV =1 space surrounding it. The mesh surfaces were set to
standoff are used to switch the capacitors and the 24-\¢onstant potential or constant electric field, as appropriate,
switching voltage is supplied through a control board basedvhich is equivalent to immersing the central cube in an in-
on 4-kV standoff optical isolation relays. These relays ardfinite 3-d lattice of its images. These boundary conditions
driven by logic pulses from a 96 channel /O board fromcaused minimal perturbation because a simple cubic lattice

Correcting for demagnetizing fields
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of identical dipoles produces zero field at a lattice site. The To compute dipole interactions exactly in the point dipole
cubic symmetry provided the additional advantage of allow-approximation one must take into account that the field that
ing the computation to be restricted to one-eighth of the totamagnetizes the dipoles is the local field, which is the applied
volume. Results were obtained for several choices of mesfield plus the field due to the other dipoles. In addition, the
coarseness and were extrapolated to an infinitely fine mesimagnetization of a single isolated particle is actually affected
A second extrapolation to zero cube sizelative to the full by the field created by its magnetizatiph7], limiting the
computational meshgave the final result for the macro- susceptibility(mks units of a spherical particle toy=33,
scopic field inside the cube. where 8= (xp— x1)/(3+ xp+2x)) in terms of the intrinsic
Because the cube is nonellipsoidal, the macroscopic fielgusceptibilitiesy, and x, of the materials of which the par-
Hmacro Within the cube is not uniform and not generally par- ticle and liquid phases are composed. For magnetic particles,
allel to the applied field, taken to be along theaxis. A B can be as large as 1; for magnetic holes, as smatt as
demagnetization factor was therefore defined by averaginghe moment of a particle of volumecan then be written in
the component of the computed macroscopic field along th&rms of the local field as
initial field, n=[Ho— (Hmacro 2)1/x{Hmacrs 2. The demag- M=3BvHieca, and the force on a dipole isF
netization factor depends og for such a nonellipsoidal = #oM-(VHisca). In @ nonheterodyned triaxial field we have
shape. The computation was repeated for a rangeaofd it ~Shown that it is only necessary to sum the force for fields
was found that the Padeapproximate n=0.27440 applied along three orthogonal axeX.
+0.147 35/f+2.5486) fit the data extremely well. The =~ The computation of the local field is a subject about
measured susceptibility,, of a cube is related to the true Which there is a certain degree of confusion in the literature
susceptibility y by x=xm/[1—N(x)xm] and the data are [14]. We use the method of Lorentmot to be confused with
corrected self-consistently by iterating this expression witHhe Lorentz approximatiopnwhich enables the errors in the
the Padéor n, convergence taking only a few iterations. As local field to be made as small as desired. We do not use
a check on the Pade, simulations were done by relaxing EWwald sums, an alternative method. Our simulation volume
cubic lattice of induced dipoles with a selected value of theS & cube with cyclic boundary conditions.
susceptibility{ 14], using the Clausius-Mossotti equatifis] The macroscopic field at each dipole is taken to be the
to relate the magnetizability per unit volume to the bulk sus-2Pplied field plus the Lorentz cavity field, which is exactly
ceptibility. Extrapolation to an infinite number of dipoles M/3 for the spherical cavity we emplagee below, with M

yielded a demagnetization factor in excellent agreement withhe sample magnetization. The demagnetizing field due to
the Pade the overall shape of the simulation volume is zero because

when we compute the field at each dipole the simulation
volume is always taken to be centered on that dipole, which
is another way of using the cyclic boundary conditions, in
We have reported athermidl,16] and therma[12] simu-  addition to particle reentry.
lation studies of structure formation in uniaxial and biaxial The microscopic field at each particle is computed by
field-structured composites, but these simulations were baseimming the dipole fieldsH,=(1/47r3)[3(m-f)f—m]
on the fixed point dipole approximatidine., magnetization from all the particles within a spherical cavity with a diam-
in the applied fielgl which would give zero interactions in a eter that in practice is not less than>1@he particle diam-
triaxial field. A new simulation was written to compute in- eter. Heref is the unit vector from the particle center of
teractions in a triaxial field. This simulation is exact in the mass. These nearby dipoles are computed with an efficient
self-consistent point dipole approximation, the primary dif- neighbors algorithm used in our previous simulations. The
ference being the consideration of the microscopic field inrsum of the microscopic field and the Lorentz cavity field is
the computation of the dipole moments. In addition, otherthe total field from all the dipoles and their images. Errors
aspects of the simulation were modified to create a robustan result from this approach if the cavity size is smaller than
stable code. the characteristic internal scale of the structure. In practice
In this Brownian dynamics simulation the particles arethis method is sufficiently precise that when we calculate the
essentially hard spheres with induced dipolar interactionssample magnetization by enlarging the spherical cavity to
Stokes friction against the solvent, and Brownian motion.include the entire simulation volume, the magnetization
The essentially hard spheres have an interaction force thahanges by=1.0%. Finally, local update is used in the cal-
increases as the sixth power of theirerlap specifically, f culation of the dipole moments because we found that global
x (1.0 —Ar)® for Ar<1.03d, whered is the particle di- update could result in oscillation instabilities.
ameter and\r is the separation distance between the centers One critical numerical issue arises because a system of
of masses of the particles. Note that “overlap” starts whensoft magnetic particles is perilously close to spontaneous
there is actually a 3% gap between the particles. The harthagnetization. We have shown above that the susceptibility
force amplitude can be chosen in a number of ways, but wef a typical soft magnetic particle is quite close to 3. A
chose it such that two particles in a balanced triaxial field ofstraightforward calculation shows that a long chain of con-
unit rms component amplitudes would have a center-of-maskacting particles will magnetize spontaneously if the particle
separation equal td. Larger agglomerates, such as a chainsusceptibility is 67(3)~5, where{(x) is the Riemann zeta
of particles, will compress somewhat, an issue to which wedunction. If the chain is slightly compressed to force the par-
will return. ticles to overlap, spontaneous magnetization will occur at a

SIMULATION METHOD
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center-of-mass separation @ffZ(3)/2]*~0.8441, at which Brownian motion
point the dipolar force is infinite. Because of the proximity of

this force dlve_rgence itis eaS|_Iy_ p035|bl_e to choose a "hard"eter N = WaBMrMoHS/kBT- In most of the thermal anneals
sphere potential that is insufficiently stiff to prevent an ag'reported here. we start with=2.67 anneal for 20 dimen-

glomeratg from coIIap;mg to a point. There are two WaYScionless time units, then linearly ramp temperatie, 1A)
around this problem. First, one can choose an extremely sti%‘

. O . : own to zero in five dimensionless time units. In some of the
hard sphere potenhal. This is a poor solution becauge .'t lea neals we start at the same temperature but linearly ramp to
to force gradients that are extremely large, necessitating un;,

. ’ . ro over 25 time units. For 10 000 patrticles this takes a little
reasonably small time steps for the particle dynamics to "€oss than 3 days on a 1-GHz Macintosh G4. Heterodyned
main stable. Second, one can simply limit the dipole force :

simulations were athermal and took 12 days to achieve 100

and dipole _f|e!d from oyerlapplng parncle; to that Wh'ch dimensionless time units. The simulation data reported here
would obtain if the particles were exactly in contact. This represent=225 days of CPU time
It )

approach eliminates black hole formation and enables th
use of a hard sphere potential that does not generate terrific
force gradients, permitting a long time step. HETERODYNING

The final simulation issue is stability. Our code is stabi- Heterodyning is an important experimental technique, and
lized by keeping track of the force gradients and limiting thejs used in our simulations, so a detailed discussion of this is
time step in proportion to the inverse gradient. In practicenecessary. In our previous paper we discussed the issue of
during a simulation cycle each particle is locally advancedparticle energiesin 2-d heterodyning but here we describe
through the entire time interval, but this time interval is sub-the particleforcesin both 2-d and 3-d heterodyning. We start
divided into smaller time steps if the program determinespy addressing the issue of dipole interactions in time-

that the force gradients are unacceptably large. This is verjependent fields. A particle of moment, is magnetized
effective in reducing execution time and allows the code topy the local field Hy=Ho+SsiHix, where H;

make 10 000 particle runs on a Macintosh G4 in a reasonable (1/47Tri3k)[3(mk' 7)) fi— My is the field at théth particle
amount of time. Subdividing the time step is especially ef-4 e to the kth dipole. The force on this dipole i,
fective because of the way in which we move the particles_ omM;- (VHioea), Which can thus be written as a sun|1 of
Typically one computes the total force on a partiGleter- contributions, F;= goM; - = VHi (M. 1;). Each contri-

acting with perhaps 5001000 neighboasid moves it. We 1, tiont,, to the force is a linear function of the moments, so
compute the interaction between each pair of particles ang

. I . 4 VB =2 .if(m;,m) where f(Am;,ym)=xyf(m;,m). To
move just that pair immediately. The advantage of doing this,yerstand Iheterodyning we need only consider the contri-
is twofold. First, the center of mass _of the system is strictly,y tion to the total force from any one pair of particles in a
preserved. Second, large force gradients only occur betweegy icie agglomerate, which should not be taken to mean that

contacting particles, so when a time step is subdivided, thgyieractions in the agglomerate can be described by summing
500-1000 interactions do not need to be recomputed. Therg pair potentiall

are typically six contacting interactions, so the time savings

is substantial. Because of these considerations the code is

remarkably stable: For example, compressing a chain of Coherence

spheres to 50% overlap gives forces that ark0"” times For simplicity we start with a rotating field in the-y

that expect_ed in the simulation. This causes no problem aﬁlane,H0=Ho[cos@t)>‘<+sin(wt)§/], and ask what the force

all, the chain simply expands back to its equilibrium length. ot interaction is when averaged over one cycle of the field.

This field is at an angleb= wt to thex axis, so the instan-

Timescale taneous field is Ho=Hg(cos¢X+singy). The self-

consistent moment of thé&th dipole is my=m,, cosp

g+my‘k sin¢, wherem, , is the moment with applied field

ealong X. The interaction force isf; ,(¢)="f(m,;cos¢X

+my;singy, m,, cos¢+my, sing), or

The magnitude of the Brownian force is set by the param-

The athermal equation of motion is obtained by balancin
the dipolar force, against the hydrodynamic drag forc
Fryaro= —6mnav, wherea is the particle radiusy is the
liquid viscosity, andv is the particle velocity. The many-
body dipolar force cannot be written in closed form, bu} is of fri( @)= fk’i(o)cos2 b+ fk'i(w/z)sinZ +[F(my;,my )
the form Fgp=a’u uoHgfwp, Where puo=4mx1077 .

Wb/(Am) is the vacuum permeability, is the relative per- +1(myi,my ) Jcosé sin . @
meability of the liquid phaseHé is the mean-square field

amplitude, andg;, is a dimensionless force. This results in a To this force add the value when the applied field is at 90° to
dimensionless equation of the fortu=Asf(r,0), where ¢, f,(¢+m/2). The cross terms cancel, with the result
the dimensionless length=r/2a and the dimensionless time fi(P)+fci(dxm/2)=1;(0)+fy;(7/2). The interaction

is s=t/7 with 7= 1277/ uoHZ. For a nonmagnetic suspend- force between a pair of dipoles in an aggregate of dipoles,
ing liquid with a viscositynq of 1 cp, this characteristic time when summed for two orthogonal fieldpplied at separate
7is 1 ms with an applied field dfi,=5.5x 10> A/m (69 Og.  times is thus independent of the angte The average inter-
The simulation data we generate are for structures that hawection force in a rotating field is a simple average of the
evolved for 100 dimensionless time units or less. forces in orthogonal fields,
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react to it. The field can then be written BElg=H{sin (o
—" incoherent +Aw/2)t]X+si(o—Aw/2)t]y} since the relative phase of
Ho the two sinusoids is no longer important. Under the condi-
w ~ tions whereAw<w the sinusoids will oscillate many times
N 7 before the “relative phase” terne=Awt changes, so that
\’<coherent over a small time interval the field can be thought ofths
// \\ =Hg[ sin(wt+ a)X+ sin(wt)y] within an arbitrary overall
e u phase.
H Tmmmw | I ([]llll]m]) Writing the phase asr=nm/4, a plot of H, versusH,
0 incoherent reveals the following sequence= 0 gives a linearfac field
dipole 1 dipole 2 at 45°;n=1 gives a clockwise elliptical field whose major
axis is at 45° to thex axis; n=2 gives a clockwise rotating

field; n=3 gives a clockwise elliptical field whose major
FIG. 2. During 2-d heterodyning there is an oscillation betweengxis is at 135°n=4 gives a linearag field at 135°;n=5
the coherent and incoherent addition of dipole interactions. Cohergives a counterclockwise elliptical field whose major axis is
ent addition occurs when the moment of dipole 1 with the fieldat 135°;n=6 gives a counterclockwise rotating field:=7
a_llong thex directic_m in_teracts Wi_th the moment of dipole 2 with the gives a counterclockwise elliptical field whose major axis is
field along they direction and vice versa. at 45°; andn=8 restarts the sequence. This is illustrated in
Fig. 3. Intermediate values of always correspond to ellip-
3 fki(0)+ 3 fyi(m/2)= 3 F(my i ,mye ) + 3 F(my;,my ), tical fields at either 45° or 135° to the axis. When this
(2 heterodyned biaxial field is combined with an orthogonal
uniaxial field at a significantly different frequency, an oscil-
so the dipoles are interactirigcoherentlywhen thex- and  lation between a triaxial field and a biaxial field occurs. This
y-field components are in quadrature phase. In other wordss apparent in the simulated structures shown in Fig. 4.

the dipole moments when the applied field is in theirec- A straightforward generalization of Edl) to arbitrary
tion do not interact with the dipole moments when the ap-field component phasing gives the contribution of the field
plied field is in they direction. produced by dipolek to the force on dipolé at the time

Compare this result to applying the field components ingiven by ¢= wt,
phase, to create an ac fiellh=Hg[ sin(wt)X+ sin(wt)y] at _ _
45° to thex axis. In this case the cross terms fii(#)="Fii(0)SIP(p+ )+ fy i (m/2)si? ¢

[F(My g,y 1) + F(My, .My ) Jcog m/a)sin( mld) () (Mg my )+ My my 0 Isin(d+ a)sing.
(4)
must be added to E@2) to obtain the correct force. This is a
coherentinteraction between dipoles, Fig. 2. In heterodyned . . _ . _
fields there is an oscillation between coherent and incohererfio obtain the average interaction during a single beat of the

interactions. “carrier” frequency o we compute the short-time average of
Eaq. (4),
2-d heterodyning
To create heterodyning in a biaxial field one adjusts the fri(@)= 3 f,i(0)+ % i (m/2)+[F(my;,my )
component frequencies to be sufficiently close that the beat
frequencyAw is slow enough for the particle suspension to +f(myi,my ) jcogfAwt). (5)
incoherent partial coherence coherent partial coherence

during heterodyning. The dipoles
l interact incoherently when the
loop is circular, and interact co-

Q\j‘\ / ’!\ Poe;eﬂgz when the loop collapses
o &= \\)4-% =y |

partial coherence coherent partial coherence incoherent

\J C/ (// FIG. 3. A sequence of Lissa-
jous loops (plots of H, vs H,)
(A
\\)
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coherent incoherent

coherent cohere

FIG. 4. Series of structures during 2-d heterodyning of a triaxial
field. The view is along the uniaxial field, i.e., normal to the het-
erodyned biaxial field. The periodic formation of sheets occurs
when the heterodyned field in they plane becomes linear. This
linear ac field combines the uniaxial field to create a pure biaxial
field, and sheets form in this field plane. During gelation this pro-
duces a honeycomb structure.

This shows that the incoherent force has added to it a coher-
ent cross term that is modulated at the heterodyning beat. In
computer simulations of heterodyning one can use a force
averaged over the carrier cycle, reducing the computation
time by an enormous amount, and eliminatiacas a vari-
able. This is correct to do when structural evolution times are
slow compared to I and fast compared to Ad. During
gelation there is a crossover where structural evolution times
are slow compared to Ak, as discussed below.

A time average of the heterodyned interaction force Eq.
(5) over a single cycle of the beat frequency recovers the
incoherent force in Eq(2). Thus if the beat is rapid com-
pared to structural organization times the evolution of struc-
ture is unaffected by the beat.

FIG. 5. Series of structures during 3-d heterodyning of a triaxial
field. Sheets form normal to the body diagonals of a c(vkite
3-d heterodyning arrow9 whose faces are normal to the cylindrical axes of the Helm-

In three dimensional heterodyning all three fields beat at goltz coils.

low frequency. It is not easy to envision the dynamically ) ) ) )
changing Lissajou loop in this case. To understand 3-d het- Three dimensional heterodyning creates a particle dynam-

erodyning it is useful to write Eq(5) in the form (dropping IS Wherein sheets appear in an apparently unpredictable
the subscriptgk) f(t) =2 f,+ %fyy+fxy coSAw,,t). In this manner normal to the four body diagonals of a cu.be whose
simplified notationf ., refers to the force between dipoles in faces are normal to the field components, especially when
a uniaxial field of amplitudeH, applied along thex axis, the be_at frequencies are related to ea_ch other by a ratio pf
wheread,,=f,, is the cross term. To obtain the general casd2rge integers. The 3-d heterodyning simulation sequence in
define the matrix, such thatF,,=f,,. Defining the sym- Fig- 5 gives some idea of the complex dynamics.

metric heterodyning matrix

Gelation

1 CogAwyyt) cogAw,,t)
In a gelling liquid the viscosity diverges to infinity at the

Q=| codAmyl) 1 coghayd) | (6) gel point. Because of this divergence, a heterodyned particle
CofAwy,t) CcogAwy,t) 1 suspension will no longer be able to couple to the beat at

some time before gelation, which has interesting and impor-

gives the compact expressior 3 (LF for the force averaged tant effects on structure. According to dynamical scaling

over the carrier frequency. One beat frequency is the sum dheory this viscosity divergence ig~ |t—tg,3||*“’3 [18]. One

the other two, so there are only two independent beat freapproach to gelation is to incorporate this result into a het-
quencies. If there is a definite phase relation between therodyning simulation. The disadvantage of having the Stokes
fields, it is simple to introduce these phases into the heteradrag diverge is poor computational efficiency—after a time

dyning matrix. Equatior(6) is the force used in our hetero- the particles essentially quit moving. It is more efficient to
dyning simulations. chirp the heterodyne frequencies, and the manner in which
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R anisotropic, the specific susceptibilities will be presented as
(Xxy! d:x2!¢), whereg is the particle volume fraction.

The susceptibilities are proportional to the energy of these
structures in the magnetic field. For a field applied along the
z axis the specific susceptibility of the composite yib¢p
=xp(Hioe- 2)/Ho. The average energy of a dipole is=
— 3 uoMo(Hiee 2), where U is the change in free energy
when a dipole is brought into the applied field and moved
P 1 into its final position in the composite. Normalizing by the
/ 7 magnitude of the energy of an isolated dipole brought into

] the uniform field,3 uomgH,, gives the dimensionless energy
U: _<H|OC' 2>/H0, andX: _3ﬁ¢i

4000

2000

M (A/m)

T

-2000 7 Isotropic samples

The goal of this paper is to demonstrate that it is possible
. to organize the particles in a suspension to improve its sus-
-4000 - ceptibility along all directions. Because the energy is related
S T R B R to the susceptibilities, structuring in a balanced triaxial field
-10000  -5000 0 5000 10000 would not occur were this not the case, because there would
H (A/m) be no magnetostatic energy gradient to drive particle mo-
tions. Experiments have shown that structuring does indeed
occur, so the remaining issue is quantitative: How great is the
increase?

FIG. 6. Magnetization loop for a 6.8-vol % Ni composite shows
a remanence of13% of the maximunM, giving a residual dipolar
interaction only 1.7% of the maximum.
this is done is really not too critical. We ran simulations for Control
100 dimensionless time units, and usédv=Awy/(1 A random particle composite containing 6.8% Ni was
—1/105) as the chirp function, with the initial beat frequen- found to have a measured specific susceptibility of 7.1. This
cies close to one reciprocal dimensionless time unit. It igs considerably higher than the prediction of Maxwell-Garnet
remarkable to us that heterodyning during gelation is so eftheory, x/¢=38/(1—B¢), which givesx/$=3.33 for 8
fective in producing particle foamlike structures that appear=1 (although this theory was developed for dielectrics, the
to be very close to minimum magnetostatic energy structuregiagnetic case is isomorphicMuch of this discrepancy is

in a triaxial magnetic field. due to the irregular shape of the Ni particles, because to a
good approximation the susceptibility of a random composite

EXPERIMENTAL RESULTS is determined by the average susceptibility of the particles of

S which it is composed, where the average particle susceptibil-

Preliminaries ity is the arithmetic average over three orthogonal directions.

Because these experiments are done in oscillating fields ftor ellipsoids composed of a high susceptibility material, the
is important that the particles do not exhibit a strongsusceptibility along any principal axis is given by the inverse
frequency-dependent susceptibility over the experimentslemagnetization factor along that axisn,}/ Averaging this
range of frequencies. Results for the Ni powder show thapver three directions gives the single-particle valygp
this is indeed the case, with an imperceptible change in the- (3)(1/n,+ 1/n,+1/n,). Demagnetization factors obey the
susceptibility from 1 to 1®Hz. It is also important that the sum rulen,+ny+n,=1, sox/¢ is minimized for a sphere,
particles exhibit very little remanent moment, since thiswith n,=%. Ellipsoids can have a much larger value 6.
could lead to magnetization lags, sample heating, and othe¥or particles with extreme aspect ratios this argument will
undesirable effects. A minor hysteresis loop at a maximunapply only if the permeability of the material of which they
field of 12<10° A/m confirms that this is indeed the case, are composed is extremely large. Additionally, it is possible
with the zero-field moment being only 13% of the moment atthat multipolar interactions play a role, but this is doubtful in
12x10° A/Im, Fig. 6. Because interactions depend on thea random sample at this concentration.
moment squared, residual interactions are only 1.7% of the
maximum at this field. These Ni particles adequately fulfill
the requirements of these experiments.

It is helpful in the following to define some conventions.  Structuring a 6.8-vol % sample with a triaxial field of
The biaxial field will be in thex-y plane and the uniaxial component frequencie$160, 203.7, 180 Hz gave x/¢
field along thez axis. The rms components of the biaxial =8.4 with rms field amplitudes of 410° A/m (50 Os,
field will always be equal. A field bias will refer to the rela- x/¢=11.0 at 8<10°® A/m, rising to x/¢$=13.0 at 12
tive magnitude of the rms value of the uniaxial field to that x 10* A/m. This latter value constitutes an 83% increase
of one component of the biaxial field, a positive bias mean-over that of the random sample. Subjecting the sample to 2-d
ing the uniaxial field is greater. When the composites aréneterodyning with a beat frequency of up to 0.4 {283.3,

Triaxial field
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203.7, 250 Hz gave values as large ag/¢=13.8 at [T
8x10° A/m, and 14.4 at 12 10°> A/m. This is more than a L g _ biaxial -
twofold enhancement in the susceptibility, which is quite sig- 20 —e— — uniaxial / _
nificant for properties such as magnetostriction, which de- I /
pend on the square of the susceptibility. 3D heterodyning I e l
(203.3, 203.7, 204.2 Hgavey/ ¢=13.8 at 8< 10* A/m and F O~ — / ;
13.9 at 1X 10> A/m. Br \E\'( ]
Samples were also run at higher volume fractions, where L 1
the specific susceptibilities are higher due to the increased / \
Lorentz cavity field. Arandom composite at 20.0 vol % gave 10 L G—n___ ]
x/$=9.7, and a sample 3-d heterodyned and amplitude L /
modulated gave/ ¢=15.2, a 57% increase. In this case the " e
rms field was & 10° A/m, the heterodyne beats were 0.1 i e ]
and 0.2 Hz, and one field component was amplitude modu- 51 / 7
lated at 1.2 Hz. At 30 Vio% a random sample gavg/¢ N S B T
=11.8, a 2-d heterodyned sample at 80° A/m gave 15.8, -40 -20 0 20 40
and a 3-d heterodyned sample at the same field gave 17.5, a bias (%)
48% increase over random. Amplitude modulation yielded a o o - o
comparable result. The benefits of using fields to structure FIG. _7. The bl_aX|aI and unlax_lal §pe0|f|c_su§cept|bllltles for 6.8-
particles diminish somewhat at higher particle volume fraC-V9| % Ni compo.sngs structu.red in plased triaxial fields. Even small
tions, but in all cases triaxial magnetic fields significantly Piases create significant anisotropies.
improve the composite susceptibility. Other properties, such
as the electrical and thermal conductivity, are increasedk 10° A/m we recall this gave an average pf¢p=14.4. A
much more and a detailed investigation of the electrical con+25% bias induces a significant anisotropy, wiji¢

/¢ (MKS)

ductivity is in progress. =(11.7,20.1) for an average of 14.5. The uniaxial suscepti-
_ _ _ bility is greater than that obtained for chains, and the biaxial
Anisotropic composites value is considerably greater. A25% bias givesy/¢

It is of some interest to use triaxial magnetic fields to=(16.6, 4.4) and an average value of 12.5, which is much
create anisotropic composites, to determine whether the sugétter than obtained in a biaxial field. The susceptibility an-
ceptibilities of such materials can exceed that of chaindSOlropy is nearly 4.
formed in a uniaxial field or sheets formed in a biaxial field. At @ reduced field of &10° A/m and a beat frequency of

Anisotropic composites can be generated by a variety of-2 Hz an isotropic 6.8 vol % sample gayé¢¢$=13.0. A
techniques. +25% bias gavey/$=(9.8, 18.7), for an average of 12.8

and a—25% bias gavél5.1, 8.0 for an average of 11.9. The
Chains and sheets negative bias consistently reduces the average susceptibility.

We have previously reported measurements of the mag-
netic properties of particle chains and sheets of Fe carbonyl
particles, but to provide an accurate comparison to the more Samples at the same particle loading were made with 3-d
complex structures generated here, we remade these compéterodyne beats of 0.4 and 0.5 Hz. With balanced rms field
ites with Ni particles. FSC's of chains were made at 6.8 volamplitudes of 1% 10> A/m we recall this gave an average of
% using rms fields of 410°, 8x10°, and 12 10° A/m.  y/¢$=13.8. A +25% bias givesy/¢=(10.3,23.1) for an
Perpendicular to the chains the susceptibilities were nearlgverage of 14.6. A-25% bias give$16.1, 3.9, for an aver-
invariant to the applied field, withy/¢=5.7, significantly —age of 12.0. The value 23.1 is the largest we would measure
below that of a random composite. Parallel to the chains thand is more than:8 that of the random sample. These biased
susceptibility increased with the applied field, giving the pro-3-d heterodyning experiments were repeated at a lower rms
gressionx/¢=14.9, 16.9, 17.2. Although the single axis field of 8x10* A/m and at beat frequencies 0.1, 0.2 Hz.
value is high, even at the highest field the specific susceptiResults were similar, but the effects reducedt+ 25% bias
bility averaged over three directions was only 9.6. giving x/¢=(10.3, 16.0) and a-25% bias giving(16.7,

Sheets at 6.8 vol % were run at the same three field an.7).
plitudes and at coil frequencies of 160 and 203.7 Hz. Normal It became apparent that even small field imbalances could
to the sheets a strong suppression was obseneb=4.3, lead to significant anisotropies in the composites. To inves-
5.0, 4.9, and in the plane of the sheets a significant enhancégate this a series of 6.8-vol % samples were made with
ment was observed, with/ $=12.0, 13.6, 14.7. Even at the biaxial rms amplitudes of 1210° A/m and biases from
highest field the average specific susceptibility is only 11.4,-40% to+40%. The heterodyne beats were 0.9 and 1.0 Hz.
well below that obtained with triaxial fields. The results in Fig. 7 show that the uniaxial susceptibility
doubles from a-10% to a+10% bias although the average
susceptibility is only slightly affected. Because of this it is

Samples at 6.8 vol % were made with a heterodyne bedlifficult to make highly isotropic samples at this low particle
of 0.4 Hz. With the rms field amplitudes balanced at 12concentration. For example, with no intentional bias the

3-d heterodyning

2-d heterodyning
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able to produce, all plotted against the internal field.

Higher loadings

At higher particle concentrations the same trends hold,
but the effects are reduced. A study of 2-d heterodyning at 20
vol % was done with a beat frequency of 0.4 Hz and at rms
fields of 12< 10° A/m. Under balanced conditions this gave
x/$=15.9. With a +25% bias the values beconi&4.5,
19.1) for an average of 16.0, and-a25% bias giveg15.7,
9.9. The average susceptibility is only 13% smaller for the
negative bias sample, and the anisotropies are considerably
smaller than those at 6.8 vol %.

3-d heterodyning with beats at 0.4, 0.5 Hz gave similar
effects at the same field amplitudes. In a balanced triaxial
field the specific susceptibility was 16.5. With+t&25% bias
the specific susceptibilities af@5.3, 19.7, averaging 16.7,
whereas a-25% bias give$16.1, 9.0. The average suscep-
tibility is 17% smaller for the negative bias case. Amplitude

15

/¢ (MKS)

o
T

il

random

uniaxial

triaxial
(+25% bias)

biaxial

triaxial
(-25% bias)

triaxial

modulation proved to have little additional effect, giving
(14.3, 18.5 for a +25% bias. At 30.0 vol % the structures
did not become appreciably anisotropic with field biases of

SSMpS +25%, though biasing experiments were tried with 2- and

FIG. 8. A comparison between the susceptibilities of 6.8-vol %_3‘d heterodyning and amplitude modulated 3-d heterodyn-
FSC’s made in uniaxial, biaxial, and triaxial fields demonstrates thén9-
advantages of using triaxial fields.
Memory effects

three principal susceptibilities can vary10% from the av- Particle sheet structures are low in magnetostatic energy
erage. L _ in a balanced triaxial field. So the issue arose as to whether
The comparison in Fig. 8 between chains, sheets, andych structures, once formed, would appreciably reorganize
various triaxial composites summarizes the improvements, 5 yiaxial field. To test this we subjected a 6.8% suspension
triaxial fields enable. The specific susceptibility can be rey, g piaxial field for 20 s, then turned on the uniaxial field.
duced to as little as 3.9 or increased to as much as 23.1. IR yms field amplitudes were 8000 A/m and field frequen-
Fig. 9 are shown the magnetization curves for a randomeg were(150, 203.7, 180 Hz The result was a composite
sample, and the lowest and highest susceptibilities we werg., significant anisotropyy/¢=(13.7, 6.8). These values
are quite close to the valué$3.6, 5.0 for sheets formed at
the same field amplitudes, indicating strong memory effects

ol _ =
30000 e ] under these effectively athermal conditions.
20000 -
R random SIMULATION RESULTS
it lowest S 4
10000 - highest . There are two principal issues that simulations can ad-
I i ] dress: the sensitivity of structure to field biasing, and the

efficacy of heterodyning in achieving a structure that mini-
mizes the magnetostatic energy and maximizes the average
] susceptibility. Before discussing these issues we will inves-
. tigate composites produced athermally.

M (A/m)

-10000

-20000 - Athermal

Athermal structures were evolved over 25 dimensionless
time units. A random composite at 10 vol % givgge
=3.4, in accord with the 3.33 prediction of Maxwell-Garnet
theory. Chains produced from a uniaxial field gixé¢
=(3.0, 8.3) and sheets giv8.1, 1.7. A triaxial field gives a

FIG. 9. Full magnetization curves for a random composite at 6.g5tructure that looks like a gel of chains wigfi¢=4.8. The
vol % are compared to FSC's that had the greatest enhancement agderage specific susceptibility of this particle gel is compa-
supression, this showing the full range of modification we were ablgable to that of the chains, but significantly lower than that of
to achieve. the sheets, 6.0. This is apparently because the particle gel

30000 [ I I—
oo | o o
- 100000 200000

-I‘IOOOOOI 0
H-nM (A/m)
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simulated annealing
© () O )

FIG. 10. A composite produced by athermal 3-d heterodyning is statistically indistinguishable from one produced by simulated anneal-
ing.

structure is trapped in a deep local minima, like a glasserodyning produces the same particle foam structure as
Simulated annealing should give improved results. simulated annealing, Fig. 10, and yields the same specific
susceptibility of 5.5. The manner in which the susceptibility
evolves is curious, Fig. 11, because of the pronounced oscil-
A 10-vol % thermal simulation in a biaxial field gives lations and the minimum at intermediate times. At early
results nearly indistinguishable from the athermal simulationtimes, when the resin viscosity is still low, the suspension
x/ $=(8.0, 1.8), and likewise for chaing.0, 8.1. In our
previous paper on triaxial fields we found that a large single 5.5
sheet is in fact a very low energy structlgd. The specific -
susceptibilities of a single infinite sheet d&7, 1.3, aver- i 1
aging 6.9, so the thermal biaxial structure is close to this I 1
bound. The simulated “chain” structure is actually composed r 1
of columns and is less anisotropic than an infinite chain, 590 ‘
where y/ $=(2.3,7.5). I ]
In a triaxial field temperature has a dramatic effect, pro-
ducing a particle foam withy/»=>5.5. This number is still
not as high as the biaxial average of 6.0, which must be dueg 4 | 4
to the existence of many local minima on the balanced tri- I |
axial field energy surface. Still, these results lend support to — .
the memory effect reported above, where the biaxial field — 1
was turned on 20 s before the uniaxial field, leaving a i 1
sheetlike structure. 4.0 7
In our experiments the Brownian forces are small com-
pared to the dipolar forces. This is unavoidable because turn
ing down the applied field to the point where Brownian
forces are comparable would quickly result in particle sedi- 55| 4
mentation. Our solution to this is to attempt to mimick the b v b 1w L L
effects of Brownian motion through heterodyning. How well 0 2 40 60 80 100
does this coherent effect actually work? reduced time

Thermal

LA S B e S S S B B R S S L S A S M

FIG. 11. The average susceptibility as a function of time for a
simulated composite produced by 3-d heterodyning during gelation.
Heterodyning proved to be effective in increasing theNote that the fluctuations diminish near the gel point, and the
composite susceptibility. Simulations indicate that 3-d hetsample becomes isotropic as the average susceptibility increases.

Heterodyning
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FIG. 12. The biaxial and uniaxial specific susceptibilities for . ; : !
10.0 vol_% cr_eated by simulated annealing in biased triaxial fields. Or “2i4om  uniaxial  triaxial  biaxial  triaxial  triaxial
A negative bias of a few percent can create an extremely large G (+25% bias) (-25% blas)
anisotropy. sample

) i FIG. 13. A comparison between the susceptibilities of simulated
dynamics consists of parallel sheets that form normal to ongg.yo| % FSC's made in uniaxial, biaxial, and triaxial fields. The

of the four body diagonals of a cube, then fragment andrends are similar to the real data in Fig. 8, but one real discrepancy
reorient normal to another body diagonal. As the resin visis the larger-than-expected values in the biaxial field, and in the
cosity increases, the sheets break into smaller fragments amdgatively biased triaxial field.

the average susceptibility actually decreases. Finally, at very

large resin viscosities these fragments start to fibrillate intding into metastable states. The simulated composites easily
some mean position, forming an isotropic particle foam thaform shegt structures with negative bias, because sheets are
is a high susceptibility, low free-energy state. We find it re-Very low in energy.
markable that such highly correlated motions achieve the

effect of thermal motions in these composites.

Unlike Brownian motion, heterodyning can be aniso- Biased 2-d heterodyning studies were conducted at 20-vol
tropic. Simulations of 2-d heterodyning result in an oriented% particles, to keep the cell size small enough to obtain good
particle foam with the cavities aligned normal to the hetero-tatistics. For comparison, at this loading a random compos-
dyning plane, Fig. 4, as in the actual structure. This structurée givesy/¢=3.8, simulated annealing of chains giv&ss,
has significant susceptibility —anisotropy, withy/ ¢ 83) sheets givg9.6, 1.9, and a triaxial_ field_gives 6.7. As
—(4.34, 8.12), and a high average susceptibility of 5.60. ExIN the 10-vol % case, 2-d heterodyning gives an average
periments give a much lower anisotropy, with/e specific susceptibility comparable to simulated annealing,

_ : - .0, but with significant anisotropy5.8, 9.3. A bias of
=(13.6, 15.9). We believe the roughness of the real partlclez_ 0 . . .
tends to lock the particles into structures that cannot fully 250/0 Teverses this amsotropﬁ&?, 4.0, and a bias of
relax to their minimum energy, even with the assistance of 25% increases the anisotropy slightly (@8, 10.0.

' Studies of biased 3-d heterodyning were conducted at 10

heterodyning. 2-d _heterodymng on the Ni suspensions in)éol %. In comparison to the unbiased specific susceptibility
leads to a well-defined honeycomb structure when a positivgg 5.4, a+25% bias gives4.6, 8.1 for an average of 5.8,
bias is introduced. and a—25% bias gives8.2, 2.1 with an average of 6.2.
These are the most extreme simulation values we obtained.
Biased triaxial field The summary of key simulation results in Fig. 13 can be
compared to the experimental summary in Fig. 8.

Biased heterodyning

A plot of the uniaxial and biaxial susceptibilities as a
function of bias is shown in Fig. 12, these results obtained by
simulated annealing. Most striking is the dramatic effect
even a small negative bias has, in qualitative agreement with |n a previous papefl] we developed a self-consistent
the experimental data in Fig. 7. The quantitative effects argreatment of the susceptibility based on a mean-field assump-
even greater than observed in the experiments, again likeljon, using the method of Lorentz. It is of interest to reexam-
due to particle roughness and the fact that Brownian motioine this treatment to understand why it is an inaccurate ap-
is negligible for the Ni particles, both of which lead to trap- proximation for triaxial composites. In the method of

DISCUSSION
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Lorentz the local field is broken into three contributions: the+ B(¢—2¢,;)(Hioe)- lgnoring the critical effect of fluctua-
applied field, the field due to the nearby dipoles in a suitablytions by averaging this expression over all of the dipoles
chosen cavity, and the cavity field. We will examine the casegives(Hy.) =Ho+ B(¢d—2¢,)(H,oc), Where as in our previ-

where the applied field is along tlzeaxis. ous papery, denotes the average for this order parameter.
The mean local field is the(H,,o)=Ho/[1—B(d—2¢,)]
Critique of mean-field theory and the susceptibility along the axis, defined byM

=x,Hgq, is obtained using/l=3 Hioe)
Recall that the field produced at a relative positidoy a Xzos ! ined using =34 ¢(Hioc)

particle of dipole moment m is H=[3(m-f)f 38¢
—m]/(4mr3). When a field is applied along theaxis, the X2~ T Bld—20)" 9
dipoles will magnetize in a complex way. A key approxima- Bl¢=2¢;)

tion we made in our previous paper Is th"’%t the off—a>_<|s COMrpe harmonic average susceptibility over three orthogonal
ponents of the dipole moments are not important in deter

=y . . 7l: _
mining the local field, so that in the self-consistent treatmenﬁlﬁgc“ozs "1< ;/Xz 0 Aﬁfo%/(rl] th’?s(b()exb?g?;‘:’)i ?ért?ﬁessg-
of the moments we seh,=m,=0. With this approximation Ut by + 4, =0. 9 P

. : S ceptibility works well for random composites, chains, and
the nearby dipole sum over a spherical cavity is AP . Lo .
sheets, it fails utterly for isotropic triaxial composites, pre-

1 P,(cosb, ;) dicting no possible increase in '_[he susceptibility beyon_d that
Hip,j =2—2 m,; T (7) expected for a random composite. In summary, assuming the
T ij induced dipoles are aligned with the applied field and
equivalent misses the triaxial effect completely.

r

and the dipole field is strictly aligned with theaxis. Here
P,(x)=(3x?—1)/2 is the second Legendre polynomial and
6,i; is the angle the line of centers between itteandjth
dipoles make to the axis. For this sum to converge, the It would be of some interest to have a simple, approxi-
cavity must be large compared to the internal structural scalmate model of the susceptibility of triaxial composites, espe-
of the composite. cially the isotropic particle gels and foams, and the oriented

Is this aligned dipole approximatiogood? For a 30-vol cellular structures. A better description derives from recog-
% random composite this incurs an acceptable7% error.  nizing that these materials consist of coherent domains.
For 30-vol % chains and sheets the error-i$.5%, which is  Within these domains Eq9) should be a good approxima-
quite good. But for a 30-vol % thermally annealed triaxial tion in principal coordinates for a chain or sheet domain
composite the error is-24.4%, making this approximation wherez axis is unique and thg, y axes are equivalent. For
unacceptable. To emphasize this point, for the random cormisotropic composites domains exist in all orientations, so for
posite xy/ ¢=4.29, for the triaxial FSC the exact value is the overall composite
much higher, 7.42, but using the aligned dipole approxima-
tion gives 5.61, so nearly all of the increase due to triaxial
structuring is missed with this approximation.

Add to the aligned dipole approximation tleguivalent
site approximationand the entire triaxial field effect is \yhere we have usegl,,= — (3) ¢, . This susceptibility has a
r_nissed. Assuming th_at there are no s_pace-depgndent Co”e_h"ﬁinimum aty,= 0, which corresponds to a random compos-
tions between the dipole moments in the cavity and theit, At 10-vol % concentration this givelsy)/ p=3.33 for a

Domains

(x)=B¢ (10)

1 N 2
1-B(¢—2¢,) 1-B(pt)

position, thenm; can be factored out to give random composite. A chainlike domain hgs~ —0.246 at
10 vol %[1], so{x)/ ¢=4.1, which can be compared to the
—(my) 5 athermal simulation value of 4.8. A sheetlike domain at 10

Haipi =308 V2% vol % has ¢,~+0.428[1], giving (x)/$=4.8, which al-
23 though smaller than the 5.5 obtained from simulation gives
where i, = -> (_) P,(cosb, ;).  (8) the correct trend. The formation of domains seems to give a
’ i ij ' qualitative description of how these materials obtain such
high isotropic susceptibilities.
As a consequence of the law of cosines the quantity The concept of domain formation can be used to relate
follows the sum ruley, ;+ ¢y ;+¢,;=0. In the equivalent one set of experimental data to another. At 10 vol % a ran-
site approximation we assume that for each siteithe are  dom sample gavéy)/¢=7.1. The average susceptibility of
to a good approximation independentjof a particle chain sample was 9.6 and for sheets this increases
The field for a spherical Lorentz cavity isl.,=3M to 11.4. Once again these values are lower than that of the
= (({my)/4ma®) ¢2, where the composite magnetization den-corresponding particle gels and foams, but the trends are
sity is M=(m)/v with v=4ma3(3¢) the volume of com- reasonable.
posite per dipole and) the particle volume fraction. To Biased triaxial samples can be viewed as being formed of
compute the local field of thgth dipole substitute the oriented sheets. For example, with a positive bias tubelike
appropriate expressions inté,.=Ho+Hca+Hgp and use  structures form. In the biaxial plane the susceptibility is then

m,) = (47a®/3) xp(Hoc to obtain  Hyej=Ho just
p i
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o0 3 5 1 1 susceptibilities that are greatly enhanced over that of random
X)=5B — — + o particle composites. This is especially true when heterodyn-
2 1=B(¢=2¢s) 1= Blo+ ) ing of the field components is employed, which manages to
mimic the effects of Brownian motion. We have also shown
that it is possible to use heterodyned triaxial fields to create
3B¢ anisotropic composites with very high susceptibilities in pre-
(x)= m ferred directions. Overall the simulations support the experi-
mental findings, though the experimental values are larger,
At 20 vol % a sheet composite giveés~ +0.393[1] which  most probably due to the reduced average demagnetization
gives{x)/ »=(4.6, 7.4). The positive biased 2-d heterodyn-field associated with the nonspherical particle shape. Some
ing result at 20 vol % ig5.8, 10.0. Other comparisons can discrepancies between the simulated and real structures re-
be made, but the important point is that heterodyned triaxiamain which are probably due to particle roughness. A simple
fields tend to make sheetlike structures and the orientation ahterpretation of these results is given in terms of the forma-
these sheets can be manipulated by applying small biaseson of randomly oriented chain and sheet-like domains.
Overall, better comparisons between the simulated triaxial
composites and chain and sheet data can be made by using
values ,~—0.301[1] for a single long chain and,~ ACKNOWLEDGMENTS
+0.69[1] for a single sheet, but the comparison is still quali-
tative.

and the uniaxial susceptibility is
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