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Nature of slow dynamics in a minimal model of frustration-limited domains
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We present simulation results for the dynamics of a schematic model based on the frustration-limited domain
picture of glass-forming liquids. These results are compared with approximate theoretical predictions analo-
gous to those commonly used for supercooled liquid dynamics. Although model relaxation times increase by
several orders of magnitude in a non-Arrhenius manner as a microphase separation transition is approached,
the slow relaxation is in many ways dissimilar to that of a liquid. In particular, structural relaxation is nearly
exponential in time at each wave vector, indicating that the mode-coupling effects dominating liquid relaxation
are comparatively weak within this model. Relaxation properties of the model are instead well reproduced by
the simplest dynamical extension of a static Hartree approximation. This approach is qualitatively accurate
even for temperatures at which the mode-coupling approximation predicts loss of ergodicity. These results
suggest that thethermodynamically disorderedphase of such a minimal model poorly caricatures the slow
dynamics of a liquid near its glass transition.
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I. INTRODUCTION

Several microscopic scenarios have been proposed a
derlying mechanisms for dynamical arrest in supercooled
uids @1–5#. Because this dramatic slowing down is acco
panied by the onset of dynamical heterogeneity@6–8#, a
promising candidate model should account for the sponta
ous segregation of rapidly relaxing and slowly relaxing d
mains. The theory of frustration-limited domains has be
developed with this condition in mind@9,10#. The basic units
of this theory are microscopic regions of low internal ener
whose spatial extent is limited by long-ranged interactions
constraints. Nelson and co-workers suggested that such
mains form in simple ‘‘atomic’’ liquids~such as metallic
glass formers! @11#. For small clusters of particles, icosah
dral arrangements are energetically preferred over clo
packed configurations representative of the crystalline s
@12#. It is thus argued that a supercooled atomic liquid is r
in low-energy icosahedral clusters which, for geometric r
sons, cannot extend indefinitely. In this case, frustration
consequence of the vanishing curvature of Euclidean sp
One can imagine that the nature of local order and sourc
frustration are somewhat different for other more comp
cated materials.

The frustration-limited domain theory has several attr
tive features. By associating relaxation kinetics with the
terfacial area of domain walls, it predicts a crossover in
temperature dependence of structural rearrangement t
from Arrhenius to a super-Arrhenius form. Such a crosso
is prominent in experiments with fragile glass formers@13#.
Further, the theoretical scaling exponent for the asympt
super-Arrhenius temperature dependence appears to be

*Present address: Department of Chemistry, University of Cali
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sistent with experimental data. Finally, the notion
frustration-limited domains resonates with the picture of h
erogeneous dynamics that has emerged from experim
@6–8# and simulations@14–16#. While local structure within
low-energy clusters may be effectively frozen on a molecu
time scale, relaxation can be facile at the strained interfa
between domains. This argument is the essence of S
inger’s ‘‘tear and repair’’ picture of shear flow in fragile liq
uids @17#.

Although these dynamical predictions of frustratio
limited domain theory are suggestive, they are fundament
thermodynamic in nature and thus indirect. In order to ma
such arguments precise, Groussonet al. have recently fo-
cused on the explicit dynamics of minimal models exhibiti
frustration-limited domains@18#. Specifically, they have
simulated stochastic dynamics of several classical spin m
els that pit short-ranged ferromagnetic interactions aga
long-ranged antiferromagnetic interactions. In addition
confirming super-Arrhenius relaxation for these models
low temperatures, they have demonstrated that the ‘‘fra
ity’’ of the dynamics ~i.e., the degree of deviation from
Arrhenius form! varies continuously with the relative
strength of the long-ranged frustration. Quite recen
Groussonet al. have performed dynamical mode-couplin
calculations for the same models, but no direct comparis
to their earlier simulations were made@19#. In this paper, we
perform similar calculations that are compared directly
numerical simulations.

Schmalian and co-workers have also argued that suc
Coulomb-frustrated ferromagnet should display essential
tures of glassy dynamics@20–22#. In their analysis, it is a
proliferation of metastable states that drives vitrificatio
With the aid of replica mean field theory, this perspecti
predicts a scaling of fragility with frustration strength th
agrees well with the simulation results of Ref.@18#. But like
the theory of frustration-limited domains, this analysis
thermodynamicin nature, relying on an assumed correspo
dence between particular subensembles of high free en

r-
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and genuine dynamical bottlenecks.
This paper addresses the extent to which the slow re

ation in such simplified models truly resembles that of m
lecular glass-forming liquids. For this purpose we investig
in detail thedynamicsof a model closely related to thos
studied in Refs.@18,20#. The model and dynamical propag
tion rules we consider, which are free of artificially quench
disorder and kinetic constraints, are described in Sec. II.
several values of the frustration strength, we compare
time dependence of spin correlations computed in sim
tions with those predicted by approximate theoretical
proaches.

Two self-consistent dynamical equations obtained fr
theory are discussed in Sec. III. They correspond to res
mations of an exact, infinite diagrammatic series for tim
correlations. The first resummation, yielding exponential
laxation at each wave vector, is a direct dynamical gener
zation of Brazovskii’s static result for this class of mode
@23#. Calculations based on this straightforward approa
agree remarkably well with simulation results, described
Sec. IV, even for temperatures approaching a thermodyna
transition to a fully ordered state. The second resummatio
formally analogous to the idealized mode-coupling theory
liquids. As such, it predicts loss of ergodicity at finite tem
perature. By contrast, we find no evidence of nonergo
behavior or two-step relaxation for simulated disorde
states of this model.

Surprisingly, then, the Hartree approach is the more ac
rate approximation for slowly relaxing disordered states
the model system. Detailed comparison of simulation a
theory confirms that sluggishness indeed arises from
Gennes narrowing~i.e., from dramatic changes in static co
relations!, in contrast to complex dynamical mechanism
such as mode coupling. In this respect, the minimal mo
we have studied does not capture important aspects of su
cooled liquid dynamics, specifically the intermediate tim
plateau and long time stretching of dynamical correlato
Implications of this result are discussed in Sec. V, along w
issues related to fragility and local conservation of magn
zation. In Sec. VI we conclude.

II. MODEL

We consider fluctuations of a fieldf(r ) at positionr in
three dimensions, with energy@23–25#

bH@f~r !#5E dr F1

2
f~r !@t1k0

22~¹21k0
2!2#f~r !

1
l

4!
f4~r !G . ~1!

Here, the energy scaleb21 characterizes typical fluctuation
of a surrounding heat bath. The physical meaning of the fi
f may be somewhat abstract in the context of supercoo
liquids, for example, representing the degree of a partic
local packing symmetry. The application of Eq.~1! to
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diblock copolymer melts is more intuitive@26–28#. In this
case,f represents the local excess number density of
monomer type, andt describes the preferential affinity o
monomers for others of the same type. Because our inte
in this model is motivated by the work in Ref.@18#, we will
imagine thatf simply represents a coarse-grained, sca
spin density. Here,t is a dimensionless temperature meas
ing the distance from an underlying critical temperatu
whenk050. For any physical interpretation, the wave vec
k0Þ0 characterizes long-ranged order of a low-temperatu
microphase separated state. The coefficientl multiplying the
f4 term in Eq.~1! will later be used to order terms in pe
turbation series, although in calculations its numerical va
will be of order unity.

For wave vectors neark0, the action in Eq.~1! corre-
sponds to that studied by Schmalian and Wolynes@20–22#
and ~in a hard-spin lattice version! by Groussonet al. @18#.
In their work, frustration is explicit in competing interaction
of square gradient @Ju¹f(r )u2# and Coulomb
@Qf(r )f(r 8)/ur2r 8u# forms. The relative strengths of thes
interactions determine the periodicity of the ground sta
k0}(Q/J)1/4, in which spin-up and spin-down domains alte
nate in stripes or lamellae@29#. In the model defined by Eq
~1!, this frustration is instead implicit in nonzerok0, but has
the same physical effect. Namely, homogeneous domains
energetically favored at small length scales, while net m
netization is effectively constrained to vanish at larger len
scales. In the context of diblock copolymers, this effect
constraint reflects the stoichiometry imposed by polym
connectivity@26–28#.

In two dimensions and higher, the presence of nonzerok0
in Eq. ~1! has a subtle but profound effect on the thermod
namics of the paramagnetic state. Specifically, the large
tropy of fluctuations nearuku5k0 significantly reduces the
free energy of the disordered phase. Within a Hartree
proximation, this contribution is sufficient to make the par
magnetic state stable or metastable for all finitet. As a con-
sequence, the transition to a phase with long-ranged ord
first ~rather than second! order and occurs at a temperatu
t tr,0. This effect was first recognized by Brazovskii@23#
and has been summarized lucidly by Binder and Fredrick
@28#. Its qualitative features have been subsequently c
firmed in experiments with diblock copolymers@30#. Be-
cause, in this picture, statistics of the disordered state
dominated by fluctuations neark0, we expect the model o
Eq. ~1! to belong to the same universality class as those
Refs. @18,20–22#. Later, we will demonstrate that slow dy
namics of this state are dominated by the very same fluc
tions.

The action in Eq.~1! is not a true Hamiltonian, and thu
has no intrinsic dynamics. We consider two commonly us
stochastic propagation rules which generate a canonical
semble of fluctuations consistent with Eq.~1!. Attention will
be primarily focused on a simple Langevin equation,

]f~r !

]t
52

dH@f#

df~r !
1h~r ,t !, ~2!
1-2
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whereh(r ,t) is a random force whose statistics are Gau
ian, and

^h~r ,t !h~r 8,t8!&52b21d~r2r 8!d~ t2t8!. ~3!

In Eq. ~3!, angular brackets denote an average over all p
sible realizations of the random force. The above equatio
motion, along with the energetics of Eq.~1! and the statistics
of Eq. ~3!, has been studied previously, most notably in
context of nucleation and nonequilibrium pattern formati
following a rapid quench tot,t tr @24,25,31,32#. To the best
of our knowledge, the detailed equilibrium dynamics of t
paramagnetic phase very close to the transition~i.e., t*t tr)
have not until now been fully explored.

The dynamics generated by Eq.~2! do not conserve the
field f(r ,t) @32#. Because the slow relaxation of supercool
liquids results in part from the conservation of hydrodynam
densities, this feature of Eq.~2! may be somewhat troubling
~particularly in the context of diblock copolymers, in whic
the number density is clearly conserved!. For this reason, we
consider a second form of dynamics that conservesf(r ,t)
by construction. Trajectories of this dynamics are chains
microstates generated by a Metropolis Monte Carlo al
rithm. In detail, a random displacement of the fieldf(r ) is
attempted at discrete time steps, and is accepted with p
ability

Pacc5min@1,exp~2bDH!#, ~4!

whereDH is the change in energy produced by the displa
ment. Local conservation of the field is achieved by restr
ing the choice of random displacements to those which
not alter the local net magnetization. Further details of t
procedure will be described in Sec. IV. Simulation resu
presented in that section demonstrate that the decay of
correlations produced by Eqs.~2! and ~4! are nearly identi-
cal, within an arbitrary rescaling of time in the Monte Car
chain of states. The physical meaning of this fact will
discussed in Sec. V.

III. THEORY

In this section we discuss two approximations for rela
ation of the fieldf(r ,t). Specifically, we derive closed equa
tions of motion for the correlation function

Ck~ t2t8!5^fk~ t !f2k~ t8!&, ~5!

where Fourier components of the field are defined in
standard way:

fk~ t !5E drf~r ,t !eik•r. ~6!

The first equation of motion is linear infk(t) and resembles
phenomenological theories of high-temperature liquid s
dynamics, such as the wave vector dependent viscoel
theory@33#. The second is nonlinear and has the form of
idealized mode-coupling approximation to the dynamics
02150
-

s-
of

e

c

f
-

b-

-
t-
o
s
s
in

-

e

te
tic
e
f

density fluctuations in supercooled liquids@1#. This equation
contains the feedback mechanism responsible for the in
ruption of particle diffusion at intermediate time scales d
to constraints imposed by slowly reorganizing local enviro
ments~the ‘‘cage’’ effect!.

Treatingl as a perturbation parameter, the solution to E
~2! may be written as an infinite series of terms, each rep
senting a collection of field interactions and periods of fr
propagation. As a result,Ck(t) and its associated respons
function Gk(t)52bdCk(t)/dt can be expanded in power
of l. @We focus exclusively on the portion of the phase d
gram in which dynamics are ergodic, so thatCk(t) andGk(t)
are related by the fluctuation-dissipation theorem.# Figure 1
shows diagrammatic representations of the first two term
the series forCk(t). The development of this expansion,
well as the partial series resummations underlying our
proximations, have been discussed thoroughly in the con
of other models. We will describe physically significant hig
lights of the procedure and refer the reader to Refs.@19,34#
for details.

A linear equation of motion forCk(t) results from sum-
ming only terms in the series whose diagrams have the b
topology shown in Fig. 1~a!. In the irreducible segments o
these ‘‘tadpole’’ diagrams, all interactions coincide in tim
Consequently, such a summation renormalizes only the s
portion of the basic tadpole diagram of Fig. 1~a!. The dynam-
ics predicted by this Hartree resummation scheme are id
tically those of a variationally optimized harmonic referen
system@35#. They are thus obtained more directly by assu
ing Gaussian statistics forfk(t). Specifically, we multiply
the Fourier transform of Eq.~2! by f2k(0) and average ove
the noise history, yielding

]Ck~ t !

]t
52@t1k0

22~k22k0
2!2#Ck~ t !

1
l

3! (k8,k9
^fk8~ t !fk8~ t !fk2k82k9~ t !f2k~0!&.

~7!

Equation~7! is the first member of a complicated hierarch
of equations relating multipoint fluctuations to correlatio
of higher order. But if we assume thatfk(t) is a Gaussian
random variable, the hierarchy closes immediate

FIG. 1. Diagrams representing low-order terms in a perturba
series for the dynamics generated by Eq.~2!. Lines represent instan
taneous correlations of the field at two points in space, while ve
ces represent interactions.
1-3
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]Ck
H~ t !

]t
52mk

HCk
H~ t !. ~8!

Here, the renormalized masstH that appears in the expres
sion for the structure factormk

H51/Ck
H(0)5tH1k0

22(k2

2k0
2)2 is determined self-consistently by

tH5t1
l

2 (
k8

Ck8
H

~0!. ~9!

Equation~9! is precisely Brazovskii’s static approximatio
@23#. The relaxation described by Eq.~8!, while simply ex-
ponential, occurs with rates that are significantly renorm
ized by the entropy of fluctuations nearuku5k0.

More elaborate, nonlinear approximations forCk(t) result
from incorporating diagrams with more complicated topo
gies@19,34#. The mode-coupling approximation~MCA! is an
example, including diagrams with the ‘‘sunset’’ shape of F
1~b!. Summing all terms that renormalize the propagat
~but not the vertices! of the basic sunset diagram yields th
MCA. Because these contributions involve more than o
unique time variable, they are capable in principle of cap
ing nontrivial memory effects. As shown in Ref.@34#, the
self-consistent result of this resummation is

]CMCA~ t !k

]t
52mk

MCACk
MCA~ t !2

l2b

6 E
0

t

dt8

3 (
k8,k9

@Ck8
MCA

~ t2t8!Ck9
MCA

~ t2t8!

3Ck2k82k9
MCA

~ t2t8!#
]Ck

MCA~ t8!

]t8
. ~10!

The final, nonlinear term of Eq.~10! explicitly couples the
dynamics of fluctuations at different wave vectors, so that
decay of Ck

MCA(t) is not simply exponential. The mode
coupling estimate of the static structure factor,Ck

MCA(0)
51/mk

MCA , is determined by a self-consistent equation
volving both the tadpole and sunset diagrams. We avoid
static calculation by instead replacingmk

MCA in Eq. ~10! with
the exact form ofCk

21(0) from numerical simulations. This
procedure is commonly employed in mode-coupling stud
of supercooled liquids.

As the microphase transition point is approached fr
high temperature, we expect that only modes near the or
ing wave vectork0 will remain important. In this regime, a
reduced model without reference to the coupling of spec
length scales should capture the qualitative behavior of
~10!. Such a schematic model is similar to that studied
Leutheusser for structural glass-forming liquids@36#. @In-
deed, Eq.~10! is only slightly different from that encoun
tered in the idealized mode-coupling theory of supercoo
liquids @1#. In particular, the memory kernel involves a tw
point correlation function raised to the third, rather than s
ond, power.# Restricting attention touku5k0, and neglecting
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coupling to other wave vectors, Eq.~10! reduces to the dy-
namical equation exactly describing thep-spin model of a
mean field spin glass~with p54). Since forp.2 the critical
properties of such models are essentiallyp independent, we
expect that near a critical point, Eq.~10! will exhibit a pla-
teau and an eventual transition to nonergodic behavior@37#.

The character of the slow dynamics resulting from t
theories underlying Eqs.~8! and ~10! are fundamentally dif-
ferent. The dynamical Hartree theory@Eq. ~8!# may exhibit a
rapid slowing of dynamics as a function of inverse tempe
tureonly if the statics, as expressed through the renormali
masstH , are strongly temperature dependent. On the ot
hand, due to the nonlinearity of Eq.~10!, a slight change in
the structure factor may result in a dramatic change in re
ation times. It is well known that glass-forming liquids sho
little change in static structure as the glass transition is
proached@13#. Thus, theories of the type given in Eq.~8! are
not relevant near the glass transition. In the following s
tions, the predictions of Eqs.~8! and ~10! will be compared
with simulations for the Coulomb-frustrated system.

The renormalized perturbation theories developed in
section are strictly valid only in the limit of weak coupling
i.e., for smalll or large, positivet. In our simulation work,
we fix l51. It is thus instructive to ask at what value oft
these theories are expected to break down. To answer
question, we follow the arguments of Hohenberg and Sw
@24#. Specifically, we compare the Hartree approximation
the renormalized masstH with corrections introduced by
mode coupling~i.e., the renormalized sunset diagram!. These
corrections are comparatively small when

utu&0.2k0
7/5. ~11!

In this regime the Hartree and mode-coupling approxim
tions are controlled, and differ only quantitatively from on
another. For largerutu, however, the two approximations ca
differ substantially, as we will see in numerical results p
sented in the following section. It has been noted previou
that the static Hartree approximation can be accurate bey
its strict range of validity. There is thus no guarantee tha
range oft exists in which the mode-coupling approximatio
significantly improves upon an appropriately chosen h
monic reference system.

IV. SIMULATIONS

In order to follow the dynamics of Eq.~2! or Eq. ~4!
numerically, it is necessary first to coarse grain the fi
f(r ,t) in space. This procedure yields a~periodically repli-
cated! finite set of dynamical variables, whose time evoluti
may be integrated approximately over short intervals.
select a coarse-graining lengtha52p/nk0, and define new
fields at lattice pointsr i :
1-4
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F i~ t !5a23E
v i

drf~r ,t !, ~12!

wherev i is bounded by a cube of side lengtha centered at
r i . In the calculations described below,n58, so that a do-
main of wavelengthp/k0 comprises several ‘‘soft spins
F i . To lowest order ina and a small time incrementDt,
these renormalized fields evolve according to

F i~ t1Dt !5F i~ t !2DtF @t1k0
22~L1k0!2#F i~ t !

1
l

3!
F i

3~ t !G1h̄ i~ t !. ~13!

Here, the lattice approximation to the Laplacian opera
acting on a function of space,Lf (xi)5a22( j Pnn@ f (xj )
2 f (xi)#, is taken to include a sum over nearest neighb
only ~denoted by nn!. After coarse graining, statistics of th
random force remain Gaussian, witĥh̄(r i ,tm)h̄(r j ,tn)&
52b21(Dt/a3)d i j dmn .

The simulation algorithm described above~which is very
similar to those of Refs.@25,31#! has several advantages ov
the numerical approach of Ref.@18#, which employs ‘‘hard
spins’’ (F i561) and explicit frustration. First, spins inte
act only with nearest and next-nearest neighbors, provid
linear scaling of computational effort with system size. B
cause cumbersome techniques associated with long-ra
forces are not required, a larger set of dynamical variab
may be considered. In our calculations, the periodically r
licated unit cell includes 643 spins arranged on a cubic la
tice. More importantly, the coarse-graining procedure allo
the dimensions of the unit cell to scale with the physica
relevant lengthk0

21. As a result, the unit cell spans sever
correlation lengths, even for very small values ofk0. By
contrast, in the work of Ref.@18#, the unit cell is comparable
to a single natural lamellar spacing for several of the sim
lated states~particularly those corresponding to fragile sy
tems!. In those cases, significant finite size effects are p
sible. In effect, Groussonet al. cutoff slowly relaxing
fluctuations at smallk rather than the rapidly relaxing fluc
tuations at largek that are integrated out in our approach.
Sec. V we discuss the dynamical implications of such a c
off.

Using Eq.~13!, we have computed the dynamics of se
eral states of the model system at temperatures above
microphase separation transition (t*t tr). We focus on three
values ofk0 ~0.1, 0.5, and 1.0! corresponding to a somewha
broader range of model parameters than was considere
Ref. @18#. In each case,l51, so that the microscopic dynam
ics is in principle strongly nonlinear. Representative config
rations of the system are depicted in Fig. 2, typifying t
high-temperature paramagnetic phase~a!, the disordered
phase near the microphase separation transition~b!, a non-
equilibrium state produced by rapid quenching of a dis
dered system to low temperature~c!, and the ordered lamel
lar phase~d!.
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For each value ofk0 we consider, the relaxation of spi
correlations slows dramatically near the transition to m
crophase separation. The time required for single-spin co
lation,

C~ t ![^F i~0!F i~ t !&5N21E dk

8p3
Ck~ t !, ~14!

to decay to 10% of its initial value,t̄ , is plotted as a function
of t in Fig. 3. The growth of relaxation times ast ap-

FIG. 2. Representative equilibrium configurations of the mo
system fork050.5 andt50 ~a!, t520.12 ~b!, andt,t tr ~d!. The
configuration depicted in~c! was obtained from the nonequilibrium
evolution of a nearly random state quenched instantaneouslyt
,t tr .

FIG. 3. Time t̄ required for spin correlations to decay to 10%
their initial values, as a function of scaled temperaturet. Circles,
squares, and diamonds show numerical results fork050.1, k0

50.5, andk051.0, respectively. Solid lines are predictions of th
Hartree approximation described in the text. Arrows indicate te
peratures at which this approximation is expected to break down
each value ofk0, as estimated using Eq.~11!.
1-5
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proachest tr is sharpest for the smallest value ofk0. Indeed,
critical fluctuations are suppressed least strongly in this c
as evidenced by the onset of sluggishness very neart50.

Groussonet al. have likened systems corresponding
large and small values ofk0 to ‘‘strong’’ and ‘‘fragile’’ glass
formers, respectively@18#. For fragile cases, they have eve

shown that the temperature dependence oft̄ is well fit by the
Vogel-Fulcher form found for supercooled liquids. Althoug
this functional form suggests an emerging importance of
tivated processes, the dramatic growth of relaxation time
in fact well captured by the harmonic reference system
scribed in Sec. III. Numerical solutions of Eq.~9! ~plotted as
solid lines in Fig. 3!, corresponding to this Hartree approx
mation, are especially accurate in the most fragile casek0
50.1). Even for the least fragile case (k051), computed
rates differ from predicted values by at most a factor of
Activated barrier crossing is manifestly absent on a harmo
landscape, strongly implying that slow dynamics are driv
by static renormalization, rather than by fundamen
changes in the structure of trajectory space@5#. The static
structure factorCk(0) in fact becomes more sharply peak
in a way that mirrors the sudden growth int̄ . In other words,
the slowing of relaxation appears to be an example of
Gennes narrowing@33#.

The time dependence of spin correlations provides furt
evidence for this interpretation. Specifically, even when
laxation is very slow, correlations decay nearly exponentia
at each wave vector. In Fig. 4,Ck(t) is plotted for manyk
values for a system very near microphase separationk0
50.5, t520.1!. Included wave vectors span a range fro
the lowest accessible spatial frequency (k52p/L) to several
multiples ofk0. In no case is relaxation detectably caged
stretched at long times. The single-spin correlation funct
C(t) in Eq. ~14! is a superposition of allCk(t), and thus
does not decay as a single exponential. At long times, h
ever, relaxation is dominated by the slowest modes, th
with wave vectors lying in a spherical shell withuku'k0, and
is very nearly exponential. Since static correlations are str
gest for these modes, especially near the microphase se
tion transition, C(t) is nonexponential only over a sma
range of the total decay.

Remarkably, spin relaxation is essentially identical fo
very different choice of microscopic propagation rules wh
conserve the fieldF. In this Monte Carlo dynamics, de
scribed in Sec. II, each trial move simultaneously displa
F at randomly chosen sitei and at a sitej randomly chosen
from the nearest neighbors ofi. The displacement ati, DF i ,
is exactly compensated by that atj, i.e., DF j52DF i . In
this way,F is conserved at all length scales greater than
equal to the lattice spacinga. In general, such a constrain
can influence dynamical behavior dramatically. For instan
scaling exponents for unstable domain growth in sim
models depend intimately on the conservation of order
rameters@32#. The relaxation described above, however,
modified by the constraint only at very short times.

The insensitivity of slow dynamics to field conservatio
in this model was anticipated by Sachdev, who noted that
corresponding constraint couples strongly only to fluct
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tions with very small wave vector~uku'0! 10. The long-lived
correlations in Fig. 4, however, are governed not by th
modes, but instead by fluctuations of finite wave vec
(uku'k0), which couple relatively weakly to the constrain
Conservation is thus of only modest importance at long tim
in the disorderedphase. These facts can lead in principle
dramatic finite size effects in numerical simulations. Spec
cally, the smallest periodically replicated unit must acco
modate fluctuations with wavelengths several timesk0. Oth-
erwise, the absence of truly long wavelength fluctuations w
generate spuriously strong coupling of conservation c
straints to the slowest accessible modes. As a result, artifi

FIG. 4. Ck(t) and ln@Ck(t)/Ck(0)# for severaluku as a function
of ln t and t, respectively, for the statek050.5, t520.1. The up-
permost curve in each panel corresponds touku5k0 and exhibits the
slowest decay.
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NATURE OF SLOW DYNAMICS IN A MINIMAL MODE L . . . PHYSICAL REVIEW E 69, 021501 ~2004!
dynamical features may appear at long times. For model
ergetics that are similar to but different from Eq.~1!,
stretched exponential relaxation has been computed f
simulations in which system dimensions are comparable
k0

21 @18#. To the extent that fluctuations nearuku5k0 are
independent of model details, such anomalous dynam
should not survive in the thermodynamic limit.

The persistence of exponential relaxation into the nei
borhood of microphase separation, obtained numeric
both for Langevin and Monte Carlo dynamics, is consist
with the dynamical Hartree approximation described in S
III. In fact, this simple theory also predicts with remarkab
accuracy the time scales of relaxation, even as they grow
several orders of magnitude. Results for the casek050.5 are
compared in Fig. 5 by plottingC(t)/C(0) obtained from
theory and simulation for several values oft.

The success of the harmonic reference system prov
further evidence that ‘‘vitrification’’ in this model is driven
by dramatic changes in structural order rather than no
relaxation mechanisms. Indeed, several dynamical feat
that would seem to be related to activated barrier cross
may be well rationalized in the Hartree picture. For examp
the fragility parameter defined empirically by

t̄}expS TKD

T2TK
D ~15!

appears to scale asD;Q1/2 in the simulations of Ref.@18#.
Here,TK is a fitted Kauzmann temperature at which rela
ation times appear to diverge. Schmalian and Wolynes h
suggested that this scaling arises from the entropy of act

FIG. 5. Decay of spin correlationC(t) predicted by Hartree
approximation~lines!, compared with results of numerical simula
tions ~symbols! for several thermodynamic states:t520.14,
t520.12, t520.1, t520.08, t520.06, t520.04, t520.02,
t50 ~in order from top to bottom in the plot!. In each case,k0

50.5.
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tion for structural rearrangement of mesoscopic doma
@20–22#. The Hartree approximation offers a simpler exp

nation. Fitted relaxation times followt̄;tH
21;exp(D/t)

rather well. It is easy to show by dimensional scaling that
renormalized mass is a function only oft/Q1/3, yielding im-
mediatelyD;Q1/3 @29#. This slightly different scaling form
fits the results of Groussonet al. equally well @18#. For the
simulations of larger systems we have presented, the Ha
prediction appears to be superior.

The dynamical scenario predicted by the simplified mo
coupling theory of Sec. III, on the other hand, is not bor
out in our simulations. Most significantly, we observe neith
loss of ergodicity nor two-step relaxation over the releva
range oft.t tr . These failures of the dynamically nonlinea
approximation are evident in Fig. 6, comparing the MCA a
simulation results for the same system and thermodyna
states considered in Fig. 5. Interestingly, the MCA predi
trapping at values oft for which the Hartree approximation
remains reasonable. The infinite series of terms incorpora
in the mode-coupling approximation thus adds little reali
to the lower order description, and eventually leads to inc
rectly anomalous behavior. This series of terms must be c
pensated to a large degree by omitted terms at each o
There have been suggestions that similar cancellation oc
in mode-coupling expansions of supercooled liquid dyna
ics @38#. In that case, however, signatures of idealized mo
coupling ~i.e., two-step relaxation! survive despite the exis
tence of omitted relaxation channels. In our model, no s
signatures are evident in the range oft we have simulated.

The thermodynamic states we have so far considered
exclusively in the disordered phase of our model systemt
.t tr . We have confirmed this fact by computing the work
reversibly impose long-range order~i.e., nonzerô uFku& at
uku5k0). Although the static Hartree approximation sugge
that the states of lowest temperature considered for eack0

have global free energy minima in ordered configuratio
the computed free energy of the paramagnetic state is in
lower for each case. This quantitative failure of Brazovsk
approximation is not surprising, as the relevant states lie o
side the strict range of validity of the approximation forl51
@23,24#.

We have therefore not addressed dynamics in a nar
region of the disordered state just abovet tr , or when the
thermodynamically stable state of the system possesses
range order. Ast approachest tr from above, relaxation be
comes prohibitively slow, and relevant time scales exce
those accessible by our simulation techniques. So w
glassy behavior is not manifest fort*t tr , we cannot rule out
the existence of caging or trapping extremely close to
microphase separation temperature. It is possible that qu
tatively new dynamical behavior arises in this region, bu
cannot account for the dramatic slowing down we have de
onstrated at higher temperature, which is driven by extre
structural changes rather than activated processes. Fur
more, the sudden onset of nontrivial behavior would be
stark contrast to the more gradual onset of caging
stretched exponential behavior in real liquids.
1-7
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P. L. GEISSLER AND D. R. REICHMAN PHYSICAL REVIEW E69, 021501 ~2004!
Analogies that have been drawn between this model
tem and supercooled liquids suggest that relaxation sh
become still more sluggish when disordered configurati
are cooled belowt tr . There may indeed be a small range
t&t tr in which our system follows this trend. But outside th
neighborhood of the transition, dynamics are qualitativ
different from the fluctuations observed in disordered sta
We have investigated several examples of dynamic
evolving disordered states belowt tr for k050.5. Initial con-

FIG. 6. Comparison of MCA~solid lines! with numerically
simulated dynamics~symbols! ~a! and MCA~solid lines! with Har-
tree approximation~dashed lines! ~b!. Results are shown for ther
modynamic states identical to those plotted in Fig. 5. According
Eq. ~11!, contributions of mode coupling become significant arou
t.20.06 ~fifth line from the top!. Note that this temperature i
very near the critical temperature at which MCA predicts loss
ergodicity.
02150
s-
ld
s

f

y
s.
ly

figurations were either taken from equilibrium simulations
t520.12.t tr , or were generated by selecting values offk
from Gaussian distributions consistent with the correlat
function Ck(0). For this region of the phase diagram w
used the form ofCk(0) predicted by the theory of Ref.@39#
for the disordered state at low temperature. Att520.2
,t tr , each configuration rapidly began to develop ord
with lamellar domains growing in and then aligning. Th
mechanism of this coarsening, widely believed to proceed
a self-similar manner, is distinct both from typical aging
supercooled liquids and from nucleation and growth of cr
talline order in a liquid following a shallow quench belo
the freezing transition@31,40,41#. While according to the
Hartree approximation the disordered state is thermodyna
cally metastable for all finitet, the disordered configuration
we have studied are dynamicallyunstable.

V. CONCLUSIONS

We have examined in detail a simple model that is clos
related to the frustration-limited domain theory of Kivelso
and co-workers@9#, and to the uniformly frustrated ‘‘stripe
glass’’ model studied by Schmalian and Wolynes@20–22#.
The disordered phase of this model system indeed disp
some hallmarks of molecular glass-forming liquids. But
slow dynamics, driven by the same Gaussian fluctuati
that give rise to first-order microphase separation, dif
qualitatively from generic glassy behavior in several
spects.

While relaxation times increase dramatically in the
models in a non-Arrhenius fashion as temperature is lo
ered, we find that an optimized harmonic reference sys
captures the time dependence of fluctuations semiquan
tively. In contrast to the vitrification of molecular liquids, th
onset of this sluggishness isnot accompanied by significan
power law or stretched exponential decay of correlations
time. Perhaps most importantly, we find that the slow de
of dynamical correlations mirrors significant changes
static structure. An idealized mode-coupling theory captu
these changes less accurately than the simpler harmonic
proach, predicting caging and eventual trapping at temp
tures where the simulated dynamics remain exponential
ergodic. Since the mode-coupling theory of liquid state d
namics may overestimate the location of apparent power
viscosity divergences by as much as a factor of 2, the
evance of the breakdown of the MCA in the system stud
in this work deserves further comment@42#. While for liq-
uids mode-coupling theory predicts a transition to a vitreo
state at temperatures where relaxation remains ergodic, t
is a robust correlation between the locations of the predic
glass transition temperature and the onset of strong cag
as demonstrated in molecular dynamics simulations@43#. In
our simulations of Eq.~1! we have probed effective tempera
tures below that at which the MCA predicts a divergence
relaxation times, observing no multistep nonexponential
laxation inCk(t). This point highlights important difference
between the dynamics generated by the simple Hamilton
~1! and that of real glass-forming liquids.

We emphasize that our study does not address certain
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pects of model~1! and others closely related to it. Eastwoo
and Wolynes have constructed a Ginzburg criterion to e
mate the rounding of an underlying ideal glass transition
to surface tension effects in systems with short-ranged in
actions@44#. It is indeed possible that behavior typical of a
entropy crisis may exist for model parameters outside
range of our study. Furthermore, terms that might be ad
to Eq. ~1! may stabilize a glassy state below the microph
separation temperature. Possibilities include cubic non
earities or quenched disorder. Our results also do not con
sively rule out the existence of glassy behavior in other m
els inspired by the frustration-limited domain concept
,
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Kivelson and co-workers, such as the spherical Coulom
frustrated Ising model. Indeed, a thorough investigation o
range of models will be needed to understand whether f
tration is a generic and fundamental cause of slow dynam
in supercooled liquids.
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