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Nature of slow dynamics in a minimal model of frustration-limited domains
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We present simulation results for the dynamics of a schematic model based on the frustration-limited domain
picture of glass-forming liquids. These results are compared with approximate theoretical predictions analo-
gous to those commonly used for supercooled liquid dynamics. Although model relaxation times increase by
several orders of magnitude in a non-Arrhenius manner as a microphase separation transition is approached,
the slow relaxation is in many ways dissimilar to that of a liquid. In particular, structural relaxation is nearly
exponential in time at each wave vector, indicating that the mode-coupling effects dominating liquid relaxation
are comparatively weak within this model. Relaxation properties of the model are instead well reproduced by
the simplest dynamical extension of a static Hartree approximation. This approach is qualitatively accurate
even for temperatures at which the mode-coupling approximation predicts loss of ergodicity. These results
suggest that théhermodynamically disorderephase of such a minimal model poorly caricatures the slow
dynamics of a liquid near its glass transition.
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I. INTRODUCTION sistent with experimental data. Finally, the notion of
frustration-limited domains resonates with the picture of het-

Several microscopic scenarios have been proposed as ugtogeneous dynamics that has emerged from experiments
derlying mechanisms for dynamical arrest in supercooled liqt6—8] and simulation$14—16. While local structure within
uids [1—5]. Because this dramatic slowing down is accom-/OW-energy clusters may be effectively frozen on a molecular
panied by the onset of dynamical heterogenéty-8], a time scale, relaxatlon can be facile :'?It the strained mterfac.es
promising candidate model should account for the Spontaneb-etWeen domains. This argument is the essence of Still-

: ) : : inger’s “tear and repair” picture of shear flow in fragile lig-

ous segregation of rapidly relaxing and slowly relaxing do'uids[l?]

mains. The theory of frustration-limited domains has been Although these dynamical predictions of frustration-

developed with this condition in min®,10]. The basic units  |iitaq domain theory are suggestive, they are fundamentally
of this theory are microscopic regions of low internal €nergyihermodynamic in nature and thus indirect. In order to make
whose gpanal extent is limited by long-ranged interactions og;ch arguments precise, Groussetnal. have recently fo-
constraints. Nelson and co-workers suggested that such dgysed on the explicit dynamics of minimal models exhibiting
mains form in simple “atomic” liquids(such as metallic frustration-limited domains[18]. Specifically, they have
glass formers[11]. For small clusters of particles, icosahe- simulated stochastic dynamics of several classical spin mod-
dral arrangements are energetically preferred over closeels that pit short-ranged ferromagnetic interactions against
packed configurations representative of the crystalline statng-ranged antiferromagnetic interactions. In addition to
[12]. Itis thus argued that a supercooled atomic liquid is richconfirming super-Arrhenius relaxation for these models at
in low-energy icosahedral clusters which, for geometric realow temperatures, they have demonstrated that the “fragil-
sons, cannot extend indefinitely. In this case, frustration is &y” of the dynamics (i.e., the degree of deviation from
consequence of the vanishing curvature of Euclidean spacérrhenius form varies continuously with the relative
One can imagine that the nature of local order and source sitrength of the long-ranged frustration. Quite recently,
frustration are somewhat different for other more compli-Groussonet al. have performed dynamical mode-coupling
cated materials. calculations for the same models, but no direct comparisons

The frustration-limited domain theory has several attrac{0 their earlier simulations were maffed]. In this paper, we
tive features. By associating relaxation kinetics with the in-Perform similar calculations that are compared directly to
terfacial area of domain walls, it predicts a crossover in thepumekr:call.S|mulacti|ons. cers h | dth N
temperature dependence of structural rearrangement timFso‘jﬁ) nznba}fﬁr;t?z;e dcgyggr:w:g;?}eti\;]%lisziggglj:;ests:rgt;ﬁea?
fom Al (2 sperAThenis o, SUh  ossele o sy a0 23 I et nayss, 15

; . ", ..proliferation of metastable states that drives vitrification.

Further, the theoretical scaling exponent for the asymptoti

X ith the aid of replica mean field theory, this perspective
super-Arrhenius temperature dependence appears t0 be cQfiaqicts a scaling of fragility with frustration strength that

agrees well with the simulation results of REE8]. But like
the theory of frustration-limited domains, this analysis is
*Present address: Department of Chemistry, University of Ca"forthermodynamidn nature, re|ying on an assumed correspon-
nia at Berkeley, Berkeley, CA 94720. dence between particular subensembles of high free energy
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and genuine dynamical bottlenecks. diblock copolymer melts is more intuitiviie6—28. In this

This paper addresses the extent to which the slow relaxcase,¢ represents the local excess number density of one
ation in such simplified models truly resembles that of mo-monomer type, and describes the preferential affinity of
lecular glass-forming liquids. For this purpose we investigaténonomers for others of the same type. Because our interest
in detail thedynamicsof a model closely related to those in this model is motivated by the work in RéfL8], we will
studied in Refs[18,20]. The model and dynamical propaga- jmagine that¢ simply represents a coarse-grained, scalar
tion rules we consider, which are free of artificially quenchedspin density. Herer is a dimensionless temperature measur-

disorder and kinetic constraints, are described in Sec. II. qung the distance from an underlying critical temperature
several values of the frustration strength, we compare thﬁ/henkozo. For any physical interpretation, the wave vector

time dependence of spin correlations computed in S'mUIakoaﬁO characterizes long-ranged order of a low-temperature,

g?g;cmtsh those predicted by approximate theoretical ap'microphase separated state. The coefficentultiplying the

4 . . .
Two self-consistent dynamical equations obtained fromd’ ter_m n E_q.(l) will Iater_ be used _to order terms_ In per-
urbation series, although in calculations its numerical value

theory are discussed in Sec. lll. They correspond to resum- )
mations of an exact, infinite diagrammatic series for timeWill be of order unity. o
correlations. The first resummation, yielding exponential re- FOr wave vectors neak,, the action in Eq.(1) corre-
laxation at each wave vector, is a direct dynamical generaliSPonds to that studied by Schmalian and Wolyf#&-22
zation of Brazovskii's static result for this class of modelsand (in a hard-spin lattice versigrby Groussoret al. [18].
[23]. Calculations based on this straightforward approachn their work, frustration is explicit in competing interactions
agree remarkably well with simulation results, described inof ~ square  gradient [J|Vé(r)[?)] and  Coulomb
Sec. IV, even for temperatures approaching a thermodynam{d¢(r) ¢(r')/|[r—r'|] forms. The relative strengths of these
transition to a fully ordered state. The second resummation iiteractions determine the periodicity of the ground state,
formally analogous to the idealized mode-coupling theory ofke>(Q/J)*4, in which spin-up and spin-down domains alter-
liquids. As such, it predicts loss of ergodicity at finite tem- nate in stripes or lamellg9]. In the model defined by Eq.
perature. By contrast, we find no evidence of nonergodidl), this frustration is instead implicit in nonzekg, but has
behavior or two-step relaxation for simulated disorderedthe same physical effect. Namely, homogeneous domains are
states of this model. energetically favored at small length scales, while net mag-
Surprisingly, then, the Hartree approach is the more accuaetization is effectively constrained to vanish at larger length
rate approximation for slowly relaxing disordered states ofscales. In the context of diblock copolymers, this effective
the model system. Detailed comparison of simulation andonstraint reflects the stoichiometry imposed by polymer
theory confirms that sluggishness indeed arises from deonnectivity[26—28§.
Gennes narrowing.e., from dramatic changes in static cor-  In two dimensions and higher, the presence of nonkgro
relations, in contrast to complex dynamical mechanismsin Eqg. (1) has a subtle but profound effect on the thermody-
such as mode coupling. In this respect, the minimal modehamics of the paramagnetic state. Specifically, the large en-
we have studied does not capture important aspects of supdrepy of fluctuations neatk|=k, significantly reduces the
cooled liquid dynamics, specifically the intermediate timefree energy of the disordered phase. Within a Hartree ap-
plateau and long time stretching of dynamical correlatorsproximation, this contribution is sufficient to make the para-
Implications of this result are discussed in Sec. V, along withmagnetic state stable or metastable for all finité\s a con-
issues related to fragility and local conservation of magnetisequence, the transition to a phase with long-ranged order is
zation. In Sec. VI we conclude. first (rather than secondrder and occurs at a temperature
7,<0. This effect was first recognized by Brazovskii3]
and has been summarized lucidly by Binder and Fredrickson
Il. MODEL [28]. Its qualitative features have been subsequently con-
firmed in experiments with diblock copolymef80]. Be-
cause, in this picture, statistics of the disordered state are
dominated by fluctuations ne&p, we expect the model of
Eqg. (1) to belong to the same universality class as those of
Refs.[18,20—-22. Later, we will demonstrate that slow dy-

We consider fluctuations of a fiel@d(r) at positionr in
three dimensions, with enerd23—25

BH[(1)]= f dr[%(b(r)[TJr kgz(V2+k§)2]¢(r) ?amics of this state are dominated by the very same fluctua-
ions.
N The action in Eq(1) is not a true Hamiltonian, and thus
+ —¢4(r)}. (1)  has no intrinsic dynamics. We consider two commonly used
4! stochastic propagation rules which generate a canonical en-

semble of fluctuations consistent with E@). Attention will

Here, the energy scajeé™ ! characterizes typical fluctuations P& Primarily focused on a simple Langevin equation,
of a surrounding heat bath. The physical meaning of the field

¢ may be somewhat abstract in the context of supercooled

liquids, for example, representing the degree of a particular dp(r) __ SH[ ¢] +(r ) %)
local packing symmetry. The application of Eql) to at S¢(r) Kl
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where 7(r,t) is a random force whose statistics are Gauss- b
ian, and /_\
(n(r,t)n(r' t')Yy=2B8"18(r—r")s(t—t’). 3 U

In Eq. (3), angular brackets denote an average over all pos-
S'ble real'zat'on§ of the random force. The above quat'on of FIG. 1. Diagrams representing low-order terms in a perturbation
motion, along with the energetics of Ed) and the statistics = geyjes for the dynamics generated by ). Lines represent instan-

of Eq. (3), has been studied previously, most notably in theianeous correlations of the field at two points in space, while verti-
context of nucleation and nonequilibrium pattern formationces represent interactions.

following a rapid quench te< 7, [24,25,31,32 To the best
of our knowledge, the detailed equilibrium dynamics of the
paramagnetic phase very close to the transitia, 7= 7,)

-+l

density fluctuations in supercooled liquidd. This equation
have not until now been fully explored. contains the feedback mechanism responsible for the inter-

The dynamics generated by E@) do not conserve the ruption of.part.icle diffusion at intermedia_te_ time scales.due
field ¢(r,t) [32]. Because the slow relaxation of supercooledto constraints imposed by slowly reorganizing local environ-
liquids results in part from the conservation of hydrodynamicments(the “cage” effec.
densities, this feature of E¢R) may be somewhat troubling ~ Treating\ as a perturbation parameter, the solution to Eg.
(particularly in the context of diblock copolymers, in which (2) may be written as an infinite series of terms, each repre-
the number density is clearly conseryefor this reason, we senting a collection of field interactions and periods of free
consider a second form of dynamics that conseryést) propagation. As a resul€,(t) and its associated response
by construction. Trajectories of this dynamics are chains ofunction G,(t) = — 8dC,(t)/dt can be expanded in powers
microstates generated by a Metropolis Monte Carlo algoef A. [We focus exclusively on the portion of the phase dia-
rithm. In detail, a random displacement of the fighfr) is  gram in which dynamics are ergodic, so tia{t) andG,(t)
attempted at discrete time steps, and is accepted with proyre related by the fluctuation-dissipation theoreFigure 1
ability shows diagrammatic representations of the first two terms in
the series foIC,(t). The development of this expansion, as

Pac=min[1,exg — BAH)], (4)  well as the partial series resummations underlying our ap-

_ ) ) proximations, have been discussed thoroughly in the context
whereA’H is the change in energy produced by the displaceqf other models. We will describe physically significant high-

ment. Local conservation of the field is achieved by restrict4ights of the procedure and refer the reader to Riif8,34]
ing the choice of random displacements to those which deg, details.

not alter the local net magnetization. Further details of this A |inear equation of motion fo€,(t) results from sum-

procedure will be described in Sec. IV. Simulation resultsming only terms in the series whose diagrams have the basic
presented in that section demonstrate that the decay of sp{Bpology shown in Fig. (). In the irreducible segments of
correlations produced by Eq€2) and (4) are nearly identi-  these “tadpole” diagrams, all interactions coincide in time.
cal, within an arbitrary rescaling of time in the Monte Carlo Consequently, such a summation renormalizes only the static
chain of states. The physical meaning of this fact will beportion of the basic tadpole diagram of Figall The dynam-
discussed in Sec. V. ics predicted by this Hartree resummation scheme are iden-
tically those of a variationally optimized harmonic reference
ll. THEORY system[35]. They are thus obtained more directly by assum-
ing Gaussian statistics fap,(t). Specifically, we multiply
the Fourier transform of Eq2) by ¢_,(0) and average over
the noise history, yielding

In this section we discuss two approximations for relax-
ation of the fieldg(r,t). Specifically, we derive closed equa-
tions of motion for the correlation function

Ci(t—t")=( (D) _i(t")), ®) IC(t)

where Fourier components of the field are defined in the 9t
standard way:

= —[7+kg 2(k?—k3)?]Cy(1)

A
312, (0O b0t 9-(0).
o= [ argcrnet © | @

The first equation of motion is linear i (t) and resembles

phenomenological theories of high-temperature liquid staté&quation(7) is the first member of a complicated hierarchy
dynamics, such as the wave vector dependent viscoelastidf equations relating multipoint fluctuations to correlations
theory[33]. The second is nonlinear and has the form of theof higher order. But if we assume tha(t) is a Gaussian
idealized mode-coupling approximation to the dynamics ofrandom variable, the hierarchy closes immediately:
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acH(t) o coupling to other wave vectors, E(LO) reduces to the dy-
ot == Gy (1). (8)  namical equation exactly describing tpespin model of a
mean field spin glasavith p=4). Since forp>2 the critical
Here, the renormalized mass that appears in the expres- Properties of such models are essentiglindependent, we

sion for the structure factow'=1/Cl(0)=r,+k,%(k?  expect that near a critical point, EGLO) will exhibit a pla-
_ kg)z is determined self-consistently by teau and an eventual transition to nonergodic behd@d}.

The character of the slow dynamics resulting from the
theories underlying Eqg8) and (10) are fundamentally dif-
ferent. The dynamical Hartree thediiyq. (8)] may exhibit a
rapid slowing of dynamics as a function of inverse tempera-
tureonly if the statics, as expressed through the renormalized
Equation(9) is precisely Brazovskii's static approximation massry, are strongly temperature dependent. On the other
[23]. The relaxation described by E¢B), while simply ex-  hand, due to the nonlinearity of E(LO0), a slight change in
ponential, occurs with rates that are significantly renormalthe structure factor may result in a dramatic change in relax-
ized by the entropy of fluctuations nefdd = k. ation times. It is well known that glass-forming liquids show

More elaborate, nonlinear approximations @(t) result  |ittle change in static structure as the glass transition is ap-
from incorporating diagrams with more Complicated tOpO'O'proachec[l3]_ Thus, theories of the type gi\/en in E(@.) are
gies[19,34]. The mode-coupling approximati¢MCA) isan  pot relevant near the glass transition. In the following sec-
example, including diagrams with the “sunset” shape of Fig-tions, the predictions of Eq$8) and (10) will be compared
1(b). Summing all terms that renormalize the propagatorsyity simulations for the Coulomb-frustrated system.

(but not the verticesof the basp sunget diagram yields the ¢ yenormalized perturbation theories developed in this
MCA' B_ecause_these contributions |n\_/0Ive_ more than ON&ection are strictly valid only in the limit of weak coupling,
unique time variable, they are capable in principle of captur-

. - . i.e., for small\ or large, positiver. In our simulation work,
ing nontrivial memory effects. As shown in Rdf34], the T . g€, Posith

. ; L we fix A\=1. It is thus instructive to ask at what value of
self-consistent result of this resummation is

these theories are expected to break down. To answer this

question, we follow the arguments of Hohenberg and Swift
JCMCA(1), MCA ~MCA 2B [t ) [24]. Specifically, we compare the Hartree approximation to
a0 M Ci (t)_Tfodt the renormalized massy with corrections introduced by
mode couplingdi.e., the renormalized sunset diagnahese
corrections are comparatively small when

TH:T+%Z Cp(0). 9)
k/

X > [CPAt—t)ChAt—t)
k/’k//
CMCA(tI)
xcﬁ"f@,,k,,(t—t')]k&f. (10 |7/= 0.2, (11)

The final, nonlinear term of Eq10) explicitly couples the

dynamics of fluctuations at different wave vectors, so that th

decay of C}'“(t) is not simply exponential. The mode-

én this regime the Hartree and mode-coupling approxima-
tions are controlled, and differ only quantitatively from one

coupling estimate of the static structure fact@cA(0) another. For largelr, however, the two approximations can

MCA . . 7. differ substantially, as we will see in numerical results pre-
=1u, ", is determined by a self-consistent equation in- . . : .
. . . ,..sented in the following section. It has been noted previously
volving both the tadpole and sunset diagrams. We avoid thi . N
at the static Hartree approximation can be accurate beyond

static calculation by instead replacm@" in Eq. (10) with its strict range of validity. There is thus no guarantee that a

_1 . . . .
the exact form ofC, *(0) from numerical simulations. This range ofr exists in which the mode-coupling approximation

procedure is commonly employed in mode-coupling StUdie%igniﬁcantly improves upon an appropriately chosen har-

of supercooled liquids. monic reference system
As the microphase transition point is approached from y '

high temperature, we expect that only modes near the order-

ing wave vectorky will remain important. In this regime, a

reduced model without reference to the coupling of specific IV. SIMULATIONS

length scales should capture the qualitative behavior of Eq.

(10). Such a schematic model is similar to that studied by In order to follow the dynamics of Eq2) or Eq. (4)
Leutheusser for structural glass-forming liquif36]. [In-  numerically, it is necessary first to coarse grain the field
deed, Eq.(10) is only slightly different from that encoun- ¢(r,t) in space. This procedure yields(periodically repli-
tered in the idealized mode-coupling theory of supercooleaated finite set of dynamical variables, whose time evolution
liquids [1]. In particular, the memory kernel involves a two- may be integrated approximately over short intervals. We
point correlation function raised to the third, rather than secselect a coarse-graining lengd+27/nk,, and define new
ond, power} Restricting attention tdk| =k, and neglecting fields at lattice points; :
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(Di(t):a_SJ dre(r,t), 12
Vi

wherewv; is bounded by a cube of side lengihcentered at
r;. In the calculations described beloms=8, so that a do-
main of wavelengthm/k, comprises several “soft spins”
®;. To lowest order ina and a small time incremenit,
these renormalized fields evolve according to

[7+Ko 2(L+Ko)2]P;(t)

A —
+ 37 @ |+ 7). (13

FIG. 2. Representative equilibrium configurations of the model

system forky=0.5 and7=0 (a), 7=-0.12 (b), and 7< 7 (d). The
Here, the lattice approximation to the Laplacian operatokonfiguration depicted ifc) was obtained from the nonequilibrium
acting on a function of spaceCf(xi)=a_ZEjEnr,[f(Xj) evolution of a nearly random state quenched instantaneousty to
—f(x;)], is taken to include a sum over nearest neighbors<r,.
only (denoted by nn After coarse graining, statistics of the
random force remain Gaussian, withy(r;,ty) 7(r;.t,)) For each value ok, we consider, the relaxation of spin
=2 1(At/a%) & S correlations slows dramatically near the transition to mi-

The simulation algorithm described abofwhich is very  crophase separation. The time required for single-spin corre-

similar to those of Ref425,31]) has several advantages over lation,
the numerical approach of RdfL8], which employs “hard
spins” (d;=*1) and explicit frustration. First, spins inter- B [ dk
act only with nearest and next-nearest neighbors, providing C(H)=(®;(0)®i(t))=N f ﬁck(t)' (14)
linear scaling of computational effort with system size. Be-

cause cumbersome. techniques associated W't.h Iong-_rang%jdecay to 10% of its initial value, is plotted as a function
forces are not required, a larger set of dynamical varlablegf 7 in Fig. 3. The growth of relaxation times as ap-
may be considered. In our calculations, the periodically rep- T

licated unit cell includes 64spins arranged on a cubic lat- 8
tice. More importantly, the coarse-graining procedure allows
the dimensions of the unit cell to scale with the physically
relevant lengthk, 1 As a result, the unit cell spans several
correlation lengths, even for very small values kgf By
contrast, in the work of Ref18], the unit cell is comparable
to a single natural lamellar spacing for several of the simu-
lated stategparticularly those corresponding to fragile sys-
tems. In those cases, significant finite size effects are pos-
sible. In effect, Groussoret al. cutoff slowly relaxing 54
fluctuations at smalk rather than the rapidly relaxing fluc-
tuations at largéx that are integrated out in our approach. In
Sec. V we discuss the dynamical implications of such a cut-
off. 2
Using Eq.(13), we have computed the dynamics of sev-
eral states of the model system at temperatures above the
microphase separation transition= ). We focus on three
values ofk, (0.1, 0.5, and 1.0corresponding to a somewhat T T D R R
broader range of model parameters than was considered in 03 02 01 0 01 02 03 04
Ref.[18]. In each casey=1, so that the microscopic dynam-
ics is in principle strongly nonlinear. Representative configu- £, 3. Timet required for spin correlations to decay to 10% of
rations of the system are depicted in Fig. 2, typifying theeir initial values, as a function of scaled temperatar€ircles,
high-temperature paramagnetic pha, the disordered squares, and diamonds show numerical resultskipr 0.1, ko
phase near the microphase separation trans{ipna non- =05, andk,=1.0, respectively. Solid lines are predictions of the
equilibrium state produced by rapid quenching of a disorHartree approximation described in the text. Arrows indicate tem-
dered system to low temperatui®, and the ordered lamel- peratures at which this approximation is expected to break down for
lar phase(d). each value ok, as estimated using E¢L1).
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proachesr, is sharpest for the smallest valuelgf Indeed, (a) 40
critical fluctuations are suppressed least strongly in this case
as evidenced by the onset of sluggishness very refr
Groussonet al. have likened systems corresponding to
large and small values &, to “strong” and “fragile” glass
formers, respectively18]. For fragile cases, they have even

shown that the temperature dependenceisfwell fit by the
Vogel-Fulcher form found for supercooled liquids. Although
this functional form suggests an emerging importance of ac- % 20
tivated processes, the dramatic growth of relaxation times is ©
in fact well captured by the harmonic reference system de-
scribed in Sec. Ill. Numerical solutions of E@) (plotted as

solid lines in Fig. 3, corresponding to this Hartree approxi-
mation, are especially accurate in the most fragile cge (
=0.1). Even for the least fragile cas&y,E1), computed

rates differ from predicted values by at most a factor of 2.
Activated barrier crossing is manifestly absent on a harmonic
landscape, strongly implying that slow dynamics are driven

by static renormalization, rather than by fundamental
changes in the structure of trajectory sp4b¢ The static
structure factoiIC,(0) in fact becomes more sharply peaked (b)

in a way that mirrors the sudden growthtlnln other words,
the slowing of relaxation appears to be an example of de
Gennes narrowinf33].

The time dependence of spin correlations provides further
evidence for this interpretation. Specifically, even when re-
laxation is very slow, correlations decay nearly exponentially
at each wave vector. In Fig. 4,(t) is plotted for manyk
values for a system very near microphase separatign (
=0.5, 7=-0.1). Included wave vectors span a range from
the lowest accessible spatial frequenky=@ /L) to several
multiples ofky. In no case is relaxation detectably caged or
stretched at long times. The single-spin correlation function 2
C(t) in Eq. (14) is a superposition of alC,(t), and thus
does not decay as a single exponential. At long times, how-
ever, relaxation is dominated by the slowest modes, those
with wave vectors lying in a spherical shell witk| ~k,, and
is very nearly exponential. Since static correlations are stron-
gest for these modes, especially near the microphase separ 35 100 200
tion transition, C(t) is nonexponential only over a small t
range of the total decay.

Remarkably, spin relaxation is essentially identical for a
very different choice of microscopic propagation rules which
conserve the fieldb. In this Monte Carlo dynamics, de-
scribed in Sec. I, each trial move simultaneously dlsplaces
& at randomly chosen siteand at a sitg¢ randomly chosen
from the nearest neighbors ofThe displacement zittA(bi ,  tions with very small wave vectdtk|~0) 10. The long-lived
is exactly compensated by that jati.e., A®;=—Ad; . correlations in Fig. 4, however, are governed not by these
this way, @ is conserved at all length scales greater than omodes, but instead by fluctuations of finite wave vector
equal to the lattice spacing In general, such a constraint (|k|~kg), which couple relatively weakly to the constraint.
can influence dynamical behavior dramatically. For instanceConservation is thus of only modest importance at long times
scaling exponents for unstable domain growth in similarin the disorderedphase. These facts can lead in principle to
models depend intimately on the conservation of order padramatic finite size effects in numerical simulations. Specifi-
rameters 32]. The relaxation described above, however, iscally, the smallest periodically replicated unit must accom-
modified by the constraint only at very short times. modate fluctuations with wavelengths several tikgsOth-

The insensitivity of slow dynamics to field conservation erwise, the absence of truly long wavelength fluctuations will
in this model was anticipated by Sachdev, who noted that thgenerate spuriously strong coupling of conservation con-
corresponding constraint couples strongly only to fluctuastraints to the slowest accessible modes. As a result, artificial

I,/ GO

FIG. 4. Cy(t) and IfC,(t)/C(0)] for severalk| as a function
of Int andt, respectively, for the state,=0.5, 7=—0.1. The up-
permost curve in each panel correspondkkier k, and exhibits the
slowest decay.
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tion for structural rearrangement of mesoscopic domains
[20-22. The Hartree approximation offers a simpler expla-

nation. Fitted relaxation times followt~ 7-,]1~exp(D/r)
rather well. It is easy to show by dimensional scaling that the
renormalized mass is a function only fQ*?, yielding im-
mediatelyD ~ QY3 [29]. This slightly different scaling form
fits the results of Groussoet al. equally well[18]. For the

0.8

s 0.6 simulations of larger systems we have presented, the Hartree

> prediction appears to be superior.

é The dynamical scenario predicted by the simplified mode-

O 0.4 coupling theory of Sec. lll, on the other hand, is not borne
out in our simulations. Most significantly, we observe neither
loss of ergodicity nor two-step relaxation over the relevant
range ofr> 7. These failures of the dynamically nonlinear

0.2 approximation are evident in Fig. 6, comparing the MCA and

simulation results for the same system and thermodynamic
states considered in Fig. 5. Interestingly, the MCA predicts
trapping at values of for which the Hartree approximation
remains reasonable. The infinite series of terms incorporated
Int in the mode-coupling approximation thus adds little realism
FIG. 5. Decay of spin correlatiof(t) predicted by Hartree to the lower order descr_iption,_and _eventually leads to incor-
approximation(lines), compared with results of numerical simula- rectly anomalous behavior. This serl_es of terms must be com-
tions (symbolg for several thermodynamic states:=—0.14, Pensated to a large degree by omitted terms at each order.
r=-0.12, 7=—0.1, 7=—0.08, r=—0.06, r=—0.04, 7=—0.02,  There have been suggestions that similar cancellation occurs
7=0 (in order from top to bottom in the plptin each casek, in mode-coupling expansions of supercooled liquid dynam-
=0.5. ics[38]. In that case, however, signatures of idealized mode
coupling (i.e., two-step relaxationsurvive despite the exis-
dynamical features may appear at long times. For model enrence of omitted relaxation channels. In our model, no such
ergetics that are similar to but different from El),  signatures are evident in the rangerofie have simulated.
stretched exponential relaxation has been computed from The thermodynamic states we have so far considered lie
si_rrlulations in which system dimensions are comparable tQyc|ysively in the disordered phase of our model system,
ko~ [18]. To the extent that fluctuations nefi|=ko are  ~ . \we have confirmed this fact by computing the work to
independent of_ m(_)del details, such e_mo_m_alous dy”am'cﬁeversibly impose long-range ordére., nonzero(|®,|) at
should not survive in the thermodynamic limit. |k|=ko). Although the static Hartree approximation suggests

The persistence of exponential relaxation into the nelgh:[hat the states of lowest temperature considered for kgch

borhood of microphase separation, obtained numerlcall)(,lave global free energy minima in ordered configurations,

both for Langevin and Monte Carlo dynamics, is consisten he computed free energy of the paramagnetic state is in fact
with the dynamical Hartree approximation described in Sec P gy > Pa g
flower for each case. This quantitative failure of Brazovskii's

[ll. In fact, this simple theory also predicts with remarkable
accuracy the time scales of relaxation, even as they grow b?_ X = =
several orders of magnitude. Results for the dase0.5 are Side the strict range of validity of the approximation for 1
compared in Fig. 5 by plottingC(t)/C(0) obtained from (23,24 o
theory and simulation for several valuesof We have therefore not addressed dynamics in a narrow
The success of the harmonic reference system providd€gion of the disordered state just abowg, or when the
further evidence that “vitrification” in this model is driven thermodynamically stable state of the system possesses long-
by dramatic changes in structural order rather than novefange order. Ag approachesy, from above, relaxation be-
relaxation mechanisms. Indeed, several dynamical featur&@®mes prohibitively slow, and relevant time scales exceed
that would seem to be related to activated barrier crossinghose accessible by our simulation techniques. So while
may be well rationalized in the Hartree picture. For exampleglassy behavior is not manifest fok 7, we cannot rule out

the fragility parameter defined empirically by the existence of caging or trapping extremely close to the
microphase separation temperature. It is possible that quali-

— TkD tatively new dynamical behavior arises in this region, but it

tocex (15 . ; )

T—Tk cannot account for the dramatic slowing down we have dem

onstrated at higher temperature, which is driven by extreme
appears to scale @&~ QY2 in the simulations of Ref{18]. structural changes rather than activated processes. Further-
Here, T is a fitted Kauzmann temperature at which relax-more, the sudden onset of nontrivial behavior would be in
ation times appear to diverge. Schmalian and Wolynes havstark contrast to the more gradual onset of caging and
suggested that this scaling arises from the entropy of activastretched exponential behavior in real liquids.
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figurations were either taken from equilibrium simulations at
=-—0.12>7,, or were generated by selecting values/f
from Gaussian distributions consistent with the correlation
function C,(0). For this region of the phase diagram we
used the form ofZ,(0) predicted by the theory of Rdi39]

for the disordered state at low temperature. At —0.2
<7y, each configuration rapidly began to develop order,
with lamellar domains growing in and then aligning. The
mechanism of this coarsening, widely believed to proceed in
a self-similar manner, is distinct both from typical aging of
supercooled liquids and from nucleation and growth of crys-
talline order in a liquid following a shallow quench below
the freezing transitiorf31,40,41. While according to the
Hartree approximation the disordered state is thermodynami-
cally metastable for all finite, the disordered configurations
we have studied are dynamicallystable

C(1/C(0)

V. CONCLUSIONS

We have examined in detail a simple model that is closely
related to the frustration-limited domain theory of Kivelson
and co-workerg9], and to the uniformly frustrated “stripe-
glass” model studied by Schmalian and Wolyrj@®-232.

The disordered phase of this model system indeed displays
some hallmarks of molecular glass-forming liquids. But its
slow dynamics, driven by the same Gaussian fluctuations
that give rise to first-order microphase separation, differ
qualitatively from generic glassy behavior in several re-

0.6
S spects.
Q While relaxation times increase dramatically in these
g models in a non-Arrhenius fashion as temperature is low-

ered, we find that an optimized harmonic reference system
captures the time dependence of fluctuations semiquantita-
tively. In contrast to the vitrification of molecular liquids, the
onset of this sluggishness ii®t accompanied by significant
power law or stretched exponential decay of correlations in
time. Perhaps most importantly, we find that the slow decay
of dynamical correlations mirrors significant changes in
static structure. An idealized mode-coupling theory captures
these changes less accurately than the simpler harmonic ap-
Int proach, predicting caging and eventual trapping at tempera-
FIG. 6. Comparison of MCA(solid lineg with numerically tures yvher_e the simulated dynqmics remain _exp_onential and
simulated dynamicésymbols (a) and MCA (solid lineg with Har-  €rgodic. Since the mode-coupling theory of liquid state dy-
tree approximatior{dashed lines(b). Results are shown for ther- Namics may overestimate the location of apparent power law
modynamic states identical to those plotted in Fig. 5. According toViscosity divergences by as much as a factor of 2, the rel-
Eq. (11), contributions of mode coupling become significant aroundevance of the breakdown of the MCA in the system studied
r=-0.06 (fifth line from the top. Note that this temperature is in this work deserves further comme@2]. While for lig-
very near the critical temperature at which MCA predicts loss ofuids mode-coupling theory predicts a transition to a vitreous
ergodicity. state at temperatures where relaxation remains ergodic, there
is a robust correlation between the locations of the predicted
Analogies that have been drawn between this model sysglass transition temperature and the onset of strong caging,
tem and supercooled liquids suggest that relaxation shoulds demonstrated in molecular dynamics simulatiet8. In
become still more sluggish when disordered configurationsur simulations of Eq(1) we have probed effective tempera-
are cooled below, . There may indeed be a small range of tures below that at which the MCA predicts a divergence of
T= 7y In Which our system follows this trend. But outside the relaxation times, observing no multistep nonexponential re-
neighborhood of the transition, dynamics are qualitativelylaxation inC,(t). This point highlights important differences
different from the fluctuations observed in disordered statesoetween the dynamics generated by the simple Hamiltonian
We have investigated several examples of dynamically1) and that of real glass-forming liquids.
evolving disordered states belowy for ko=0.5. Initial con- We emphasize that our study does not address certain as-

B
'S
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pects of mode(l) and others closely related to it. Eastwood Kivelson and co-workers, such as the spherical Coulomb-
and Wolynes have constructed a Ginzburg criterion to estifrustrated Ising model. Indeed, a thorough investigation of a
mate the rounding of an underlying ideal glass transition dueange of models will be needed to understand whether frus-
to surface tension effects in systems with short-ranged intettration is a generic and fundamental cause of slow dynamics
actions[44]. It is indeed possible that behavior typical of an in supercooled liquids.

entropy crisis may exist for model parameters outside the
range of our study. Furthermore, terms that might be added
to Eq. (1) may stabilize a glassy state below the microphase
separation temperature. Possibilities include cubic nonlin- We would like to thank B. Chakraborty, G. Tarjus, and P.
earities or quenched disorder. Our results also do not concldolynes for useful discussions. D.R.R. was financially sup-
sively rule out the existence of glassy behavior in other modported by NSF. P.L.G. was supported by the MIT School of
els inspired by the frustration-limited domain concept ofScience.
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