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Optically bound microscopic particles in one dimension
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Counterpropagating light fields have the ability to create self-organized one-dimensional optically bound
arrays of microscopic particles, where the light fields adapt to the particle locations and vice versa. We develop
a theoretical model to describe this situation and show good agreement with recent experimenthyiata
Rev. Lett.89, 128301(2002] for two and three patrticles, if the scattering force is assumed to dominate the
axial trapping of the particles. The extension of these ideas to two- and three-dimensional optically bound
states is also discussed.
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[. INTRODUCTION in an experiment making use of a dual beam fiber {rg.
In this latter paper a theory was developed that examined

The ability of light to influence the kinetic motion of mi- particles of approximately the same size as the laser wave-
croscopic and atomic matter has had a profound impact ifength involved. In this paper we develop a numerical model
the last three decades. The optical manipulation of mattethat allows us to simulate the equilibrium positions of two
was first seriously studied by Ashkin and co-workers in theand three particles in a counterpropagating beam geometry,
1970s[1-3)], and led ultimately to the demonstration of the where the particle sizes are larger than the laser wavelength,
Sing|e beam gradient force trg[p.]' referred to as 0ptica| and fall outside the upper bound of the limits discussed in
tweezers, where the gradient of an optical field can induc&€ll]. The model can readily be extended to look at larger
dielectric particles of higher refractive index than their sur-arrays of systems. We discuss the role of the scattering and
rounding medium to be trapped in three dimensions in théefraction of |Ight in the creation of arrays. In the next sec-
light field maxima[4]. Much of Ashkin's early work cen- tion we describe the numerical model we use for our studies
tered not on gradient forces, but on the use of radiation preind derive predictions for the separation of two and three
sure to trap particlefl], and a dual beam radiation pressurespheres of various sizes. We then compare this with both
trap was demonstrated in which a single particle was conPrevious and current experiments.
fined. This work ultimately contributed to the development
of the magneto-optical trap for neutral atofas.

Recently we observed one-dimensiomaitays of silica
spheres trapped in a dual beam radiation pressure[@iap Our model comprises two monochromatic laser fields of
These arrays had an unusual property in that the particlefsequencyw counterpropagating along theaxis which in-
that formed the array were regularly spaced from each otheteract with a system oN transparent dielectric spheres of
The particles were redistributing the incident light field, massm, refractive indexng, and radiusR, with centers at
which in turn redistributed the particle spacings, aIIowingpositions{rj-(t)}, j=1,2,...N, and which are immersed in
them to reside in equilibrium positions. This effect, known asa host medium of refractive index,. The electric field is
“optically bound matter” was first realized in a slightly dif- written as
ferent context via a mechanism different from ours some
years agd7,8] using a single laser beam and was explained a
as the interaction of the coherently induced dipole moments  E(F,t)= ~[ (&, (F)e**+E_(Fe e ®trcc], (1)
of microscopic spheres in an optical field creating bound 2
matter.

In the context of our study, optically bound matter is of whereé is the unit polarization vector of the field,.(r) are
interest as it relates to the way in which particles interacthe slowly varying electric field amplitudes of the right or
with the light field in extended optical lattices, which may forward propagating {) and left or backward propagating
prove useful for the understanding of three-dimensional trap¢—) fields, andk=n,w/c is the wave vector of the field in
ping of colloidal particle§9]. Indeed optically bound matter the host medium. The incident fields are assumed to be col-
may provide an attractive method for the creation of sucHimated Gaussians at longitudinal coordinares—L/2 for
lattices, which is not possible using interference patternsthe forward field andz=L/2 for the backward field,

Bound matter may also serve as a test bed for studies of
atomic or ionic analogs to our microscopic systgtf]. __ _ _
Subsequent to our report, a similar observation was made Er(xyz=-Li)=E-(xy.2=L12)
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wherer?=x?+y?, w, is the initial Gaussian spot size, and di;

Py is the input power in each beam. It is assumed that all the Yar o~ 'Egrad,ﬁ‘ Ifscati;j ) Ifgrad,j ==VjU(r, ...\,
spheres are contained between the beam waists within the (6)
lengthL>R.

Consider first that the dielectric spheres are in a fixed .
configuration at time specified by the centefg;(t)}. Then ~ whereV; signifies a gradient with respect €9, andF,q
the dielectric spheres provide a spatially inhomogeneous reand ﬁscam are the gradient and the scattering forces experi-
fractive index distribution which can be written in the form enced by thg"" sphere, for the latter of which we shall give
\ an expression below.
5 ) s o oo Carrying through simulations for a three-dimensional
n (r):nh+(ns_nh)_§l O(R—=[=r;(D), (3 (3D) system with modeling of the electromagnetic propaga-
. tion in the presence of many spheres poses a formidable
whered(R—|F—F;(t)|) is the Heaviside step function, which challenge, so here we take advantage of the symmetry of the
is unity within the sphere of radiug centered or=r;(t) system to reduce t_he calculfatlor) involved. First, for the cy-
and zero outside, and is the refractive index of the lindrically symmetric Gaussian input beams used here we
spheres. Then, following standard approadi&s, the coun- assume that the combination of the dipole interaction poten-

terpropagating fields evolve according to the paraxial wavéidl and associated gradient force, and the scattering force
supplies a strong enough transverse confining potential that

equations
d the sphere motion remains directed along thaxis. This
9E i [n2(F)—n2] means that the positions of the sphere centers are located
+ a; :ﬂvfgiﬂko on n E., (4)  along thez axis, j(t)=2z(t), and that the gradient and
h

scattering forces are also directed along theaxis lfj
=2F;. Second, we assume that the sphere distribution along
the z axis is symmetric around=0, the beam foci being at

describing beam diffraction. Thus, a given configuration ofZ= *L/2. This means, for example, that for one sphere the
9 : -ag g center is located at=0, for two spheres the centers are

the dielectric spheres modifies the flelﬁl§(r) n a way i Il?cated az=*+D/2, D being the sphere separation distance,
can be calculated from the above field equations. We remar
nd for three spheres the centers are=a0,+~D. For three

that even though the spheres move, and hence so does tﬁrefewer spheres the symmetric configuration of spheres is
refractive-index distribution, the fields will always be adia- b y 9 P

batically slaved to the instantaneous sphere configuration. captured by the sphere spacingand we shall consider this

To proceed, we need equations of motion for how theSase here. For more than three spheres the situation becomes

sphere centeréf;(t)} move in reaction to the fields. The more complicated and we confine our discussion to the sim-

time-averaged dipole interaction energl}, relative to that plest cases of two and three spheres,
9 pole . ; ’ S With the above approximations in mind the equations of
for a homogeneous dielectric medium of refractive indgx

between the counterpropagating fields and the system cr)?otmn for the sphere centers become
spheres is given by

along with the boundary conditions in Eq), wherek,
=w/c and V2 =%/ dx?+ 9%/ 9y? is the transverse Laplacian

dz

) ) L yd—tj=Fgrad,j+Fscam, j=1,2,...N. 7)
U(Fq, ... ,rN)=f dVeo[n“(F)—n;]{E?)
€ N At this point it is advantageous to consider the case of two
=— Zo(nﬁ—nﬁ)z f dveé spheresN=2, to illustrate how calculations are performed.
=1 For a given distanc® between the spheres we calculate the
X (R—|F— Fj(t)|)[|6+(F)|2+|£_(F)|2], counterpropagating fields betwees[O,L] using the beam

propagation method. From the fields we can numerically cal-
) culate the dipole interaction energy(D) for a given sphere
o ) ) separation, and the resulting axiatdirected gradient force
where the angu_lar brackets signify a time average which deg thenF g,,4(D) = — 9U/dD. Thus, by calculating the coun-
stroys fast-varying components a2 The most important terpropagating fields for a variety of sphere separations we
concept is that the dipole interaction potential depends on thgan numerically calculate the gradient force which acts on
spatial configuration of the spher€gry, ... Fy) since the  ihe relative coordinate of the two spheres. For our system we

counterpropagating fields themselves depend on the spheggpsroximate the scattering ford@3] along the positivez
distribution via the paraxial wave equatio@s. This form of  ,yis for thej ™ sphere as

the dipole interaction potenti@b) shows explicitly that we
pick up a contribution from each sphere labejedlia its

interaction with the local intensity. Assuming overdamped [ Nn o R €oNKC 2
motion of the spheres in the host medium with viscous "scatti™| ¢'J| 2 fo 2mrdr 2 1€+ (x.y.2z))|
damping coefficienty, the equation of motion for the sphere

centers becomes —|E-(xy, )|, ®
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with o the scattering cross section. This formula is motivated *
by the generic relatioffr g; 5= N Pscatt/C for unidirectional \
propagation, with the scattered poweg. = olg, andlg LN 1
the incident intensity. The integral yields the difference in ¢ .
power between the two counterpropagating beams integrate x| *o 4
over the sphere cross section, and when this is divided by the D
sphere cross-sectional aredR® we get the averaged inten- & ,| N i
sity difference over the spheres. For the case of two sphere® g
we calculate the scattering forée (D), evaluated at the
position of the sphere at=D/2, and for a variety of sphere
spacingd. A similar procedure can readily be applied to the
case of three spheres.

The theory described above has some limitations that we g
now discuss. First, we assume that the spheres are trapped « [ el
axis by a combination of the scattering and/or dipole forces
acting transverse to the propagation axis. For this to be pos % 100 0 a0 160 T80 200
sible we require that the sphere diameter be less than the Beam waist separation (um)

laser dbeam (.jlzlimeterV\?O}D. Ir:]gr;t]hermltjre, we f}ave as- | FIG. 1. Sphere separation as a function of beam waist separation
sumed paraxial propagation which neglects any large a“g for two 2.3 um spheres. The rate of change of sphere separation is

or packscattering of the Iaser fields. However, when !ight Sseen to drop off as the waist separation increases. The fit to a pa-
incident on a sphere of diametér there is an associated |aho5 is to aid the eye, rather than to suggest a quantitative rela-

wave vector uncertaintAKD=2m, and whenAK=2k  {ionship.
backscattering can occur, as it is within the uncertainty that

an incident wave of wave vectéralong a given direction is  nm neodymium-doped yttrium aluminum garr&td:YAG)
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converted into—k. This yields the conditiorD>\/2n,,  |aser where the beam waists were 4® and we used 2.3
with A the free-space wavelength, to avoid backscattering,m diameter spheres. The particles were viewed by looking
and so that our paraxial assumptions are obeyed. at the scattered light orthogonal to the laser beam propaga-

Our goal is to examine the axial gradient and scatteringjon direction viewed on a charge-coupled device camera
forces for an array of two and three spheres and compargith an attached microscope objecti&20, numerical ap-
with the experimental results. However, the scattering crosgriyre 0.4, Newpoyt
section for our spheres, which incorporates all sources of Tq compare our theory with experimental results, we need
scattering in a phenomenological manner, cannot be calCyp concentrate on a small number of parameters, the sphere
lated with any certainty. Our approach, therefore, will be tosjze, the beam waist, the refractive index of the spheres, and
calculate the equilibrium sphere separatiofD) =0 for the  the beam waist separation. We know the particle sizes and
gradient and scattering forces separately, which does not dgan make a good estimate as to their refractive index; further,
pend on the value of the cross section, and compare thge can measure the beam waist to a high degree of accuracy.
calculated sphere separations with the experimental valueshe only problematic factor is the beam waist separation.
By comparing the theoretical predictions with the experimentpye to experimental constraints, this is quite difficult to mea-
for N=2,3, we can determine the dominant source of thesyre. We estimate the waist separation by filling the cuvette
axial force acting on the spheres. with a high density particle solution and looking at the scat-
tered light from the sample. The high density of particles
allows us to map out the intensity pattern of the two beams
and hence make an estimate as to the waist separation. This

To compare our theory with experiment we use data fromis, however, an inaccurate method and leaves us with an
our previous worK6] and also recreate that experiment, buterror of more than 100%. We therefore use our model to help
using a different laser wavelength and particle sphere sizais fix the beam waist separation on a single result and then
The previously reported experimef6] makes use of a examine the behavior of the model when varying other pa-
continuous-wave 780 nm Ti:sapphire laser, which is split intorameters. The error in the beam waist separation is not as
two beams with approximately equal pow2b mW) in each  extreme as it first sounds however. Modeling the system for
arm. Each of the beams is focused down to a spot with @ range of beam waist separations from &% to 200 um
3.5um beam waist and then passed, counterpropagatingesults in a predicted range of sphere separations as shown in
through a cuvette with dimensions of 5 it mmx20 mm.  Fig. 1 for 2.3 um diameter spheres. We see that although
The beam waists were separated by a finite amount, which isitially the beam waist separation difference makes a rea-
discussed further below. Uniform silica spheres with, a8  sonable difference to the predicted sphere separation the re-
diameter(Bangs Laboratories, Indn a water solution were gion that we believe we are working iny 180 um waist
placed in the cuvette, and the interaction of the beams witlseparation, is relatively flat. Therefore, even if we do have a
the sample caused one-dimensional arrays of particles to Harge error in this value, the predicted result does not vary
formed. The refractive index of the spheres is approximatelgignificantly. This increases our confidence that we have the
1.43. We also carried out a similar experiment using a 1064orrect beam waist separation with a higher uncertainty than

I1l. EXPERIMENT
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FIG. 2. Scattering force on two 2,8m diameter silica spheres FIG. 4. Gradient force on two 2.2m diameter silica spheres

with the beam waists 180m apart.wy=3.5 um andA=1064 nm.  with the beam waists 18Am apart.wy=3.5 um andA=1064 nm.

assumption being valid, as the theory gives a good prediction
Bf our experimental observations. Our experimental result is
57 um, but we estimate our model value falls within the
standard deviation of our experimental measurements.

our experimental measurements of this parameter suggest
We begin by examining the case of the Z& diameter
spheres.

A. 2.3 pm diameter spheres B. 3 um diameter spheres

We consider the case for chains of both two and three The data for 3um spheres obtained at a different wave-
spheres. For two spheres we measure a sphere separationayfgth from the 2.3um data(A=780 nm) also fit well with
34 um, for a beam waisi,=4.3 um at a laser wavelength our theory. For two spheres, with the beam waists 450
A=1064 nm. Using a beam waist separation of 180 our ~ apart, we predict a sphere separation ofu# (Fig. 6) while
model predicts an equilibrium in the scattering force of 34our experiment predicts a distance of 4. Using the same
um, as is shown in Fig. 2. The intensity in tke-z plane for ~ parameters for the three-sphere case, we predict a sphere
this configuration is shown in Fig. 3. We see no such equiseparation of 3zm (Fig. 7), while our experiment shows a
librium in the gradient force, shown in Fig. 4, and concludeseparation of 3um. Again, as we predict equilibrium posi-
that the scattering force is the dominant factor in this in-tions with the scattering force component, but not with the
stance. Using the same parameters for the three-sphere cag@dient force component, we conclude that the scattering
gives us a sphere separation prediction ofs68, as shown force is the dominant factor in determining the final sphere
in Fig. 5. Again this dominates over the gradient force, thisseparations.

0.3 T .

0.2r ]

0.1F 1

Lateral Distance (um)
Scattering force on spheres (arbitary units)

25 30 35 40
80 -60 -40 -20 0 20 40 60 80 Distance D between outer spheres (um)
Propagation Distance (um) ) ) -
FIG. 5. Scattering force on three 2.3n diameter silica spheres
FIG. 3. (Color onling Intensity plot in thex-z plane for the case  with the beam waists 18Am apart.wy=3.5 um and\=1064 nm.
of two 2.3 um diameter silica spheres with the beam waists 480  The plot shows the separation between two of the three spheres, and

apart.wg=3.5 um andA=1064 nm. the scattering forces are symmetric about the center sphere.
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ration distances|&80 um, say, any change in this param-
0.14 1 eter leads to a sharp change in the sphere separation distance,
whereas at the waist separation distances we work at the
change in sphere separation distance is far more gentle, and
0.1r 1 hence gives rise to less uncertainty over exact fits between
008k | theory and experiment. The other main parameter is sphere
’ size, which has an appreciable effect on the predicted sphere
separation. The incident power on the spheres does not make
0.04l l much of a difference and is more of a scaling factor in the
forces involved rather than a direct modifier in the model.
Predicted sphere separation is also sensitive to the refractive-
0 index difference between the spheres and the surrounding
medium, so it is important that the spheres’ refractive index
is well known.
~0.04; = m s % It _should also_ be ppssible to create two_-dimensional and
Distance D between outer spheres (um) possibly three-dimensional arrays from optically bound mat-
ter. The extension to two dimensions is relatively simple to
FIG. 6. Scattering force on two @m diameter silica spheres envisage with the use of multiple pairs of counterpropagating
with the beam waists 150m apart.wo=4.3 um andA=780 nm.  |3ser beams. In three dimensions the formation of such opti-
cally bound arrays may circumvent some of the problems
associated with loading of three-dimensional optical lattices

Our model accurately predicts separations for the cases 6f)- It is often assumed that the creation of an optical lattice
two and three spheres, at certain sizes. However, we ald¥ia multibeam interference, spwill allow the simple, un-
performed experiments using Am diameter spheres and ambiguous trapping of particles in all the lattice sites,
could not find any agreement between experiment an@pereby making an extended three-dimensional array of par-
theory. Since our model uses a paraxial approximation, thécles. Such arrays may be useful for crystal template forma-
assumption is that in these smaller size regimes the moddPn [9] and in studies of crystallization procesdds,15.
breaks down. This in contrast to the work detailed14], Howevgr, crystal formation in thls manner is not particularly
which works in size regimes closer to the laser wavelength "obust in that as the array is filled the particles perturb the
and begins to break down in the larger size regimbs ( Propagating I|ght f|elld.such t'hat they prevent fthe trap sites
>2)\), whereD is the sphere diameter. below them being efficiently filled. Arrays of optically bound

We also note that the beam separation distance becom8tter do not suffer from such problems, as they are orga-

less critical as it becomes larger. For small beam waist sepdlZed as a result of the perturbation of the propagating fields.
Further, the fact that the particles are bound together pro-

Scattering force on spheres (arbitary units)
o
o
(2]

-0.021

IV. DISCUSSION AND CONCLUSIONS

0412 : : , : vides more realistic opportunities for studying crystal and
colloidal behavior than in unbound optically generated ar-
2 o1r 1 rays, such as those produced holographicl#,16,17.
> We have developed a model by which the propagation of
£ O3 counterpropagating laser beams moving past an array of
& o6l | silica spheres may be examined. Analysis of the resulting
8 forces on the spheres allows us to predict the separation of
2 ool ~ the spheres that constitute the array. We have compared this
g model with experimental results for different beam param-
g 002 1 eters (wavelength, waist separation, waist diamgtand
2 found the results to be in good agreement with our observa-
= 4 tions. The model, however does not, work with sphere sizes
g oozl | much less than approximately twice the laser wavelength.
@ Our model is readily extendable to a larger number of
-0.04 - ” = 5 20 spheres _and will be of great use i_n the study of such one- and
higher-dimensional arrays of optically bound matter.
Distance D between outer spheres (um)
FIG. 7. Scattering force on three @n diameter silica spheres ACKNOWLEDGMENTS

with the beam waists 15Qm apart.wg=4.3 um andA=780 nm. . .
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