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Diffusion of impurities in a granular gas
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Diffusion of impurities in a granular gas undergoing homogeneous cooling state is studied. The results are
obtained by solving the Boltzmann-Lorentz equation by means of the Chapman-Enskog method. In the first
order in the density gradient of impurities, the diffusion coefficientD is determined as the solution of a linear
integral equation which is approximately solved by making an expansion in Sonine polynomials. In this paper,
we evaluateD up to the second order in the Sonine expansion and get explicit expressions forD in terms of the
coefficients of restitution for the impurity-gas and gas-gas collisions as well as the ratios of mass and particle
sizes. To check the reliability of the Sonine polynomial solution, analytical results are compared with those
obtained from numerical solutions of the Boltzmann equation by means of the direct simulation Monte Carlo
method. In the simulations, the diffusion coefficient is measured via the mean-square displacement of impu-
rities. The comparison between theory and simulation shows in general an excellent agreement, except for the
cases in which the gas particles are much heavier and/or much larger than impurities. In these cases, the second
Sonine approximation toD improves significantly the qualitative predictions made from the first Sonine
approximation. A discussion on the convergence of the Sonine polynomial expansion is also carried out.
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I. INTRODUCTION

The use of hydrodynamic-like-type equations to descr
the macroscopic behavior of granular media under rapid fl
conditions has been widely recognized in the past few ye
The main difference from ordinary fluids is the dissipati
character of collisions which leads to modifications of t
Navier-Stokes equations. In order to gain some insight i
the derivation of hydrodynamics from a kinetic theory po
of view, an idealized model is usually considered: a syst
composed of smooth hard spheres with inelastic collisio
In the low-density regime, the above issue can be addre
by using the Boltzmann kinetic theory conveniently modifi
to account for inelastic collisions@1#. In this case, assumin
the existence of anormalsolution for sufficiently long space
and time scales, the Chapman-Enskog method@2# can be
applied to solve the Boltzmann equation and determine
explicit form of the transport coefficients. This objective h
been widely covered in the case of a monocomponent
@3–5#, where all the particles have the same mass and s
Nevertheless, a real granular system is generally compo
of particles with different mass densities and sizes, wh
leads to many interesting phenomena observed in nature
experiments such as separation or segregation.

Needless to say, the determination of the transport co
cients of amulticomponentgranular fluid is much more com
plicated than in the case of a monocomponent system. S
eral attempts to get those coefficients from the Boltzma
equation began some time ago@6–10#, but the technical dif-
ficulties for the analysis entailed approximations that limit
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their range of validity~quasielastic limit!. In particular, all
these works assume energy equipartition and conseque
the partial temperaturesTi are made equal to the globa
granular temperatureT. However, the failure of energy equ
partition in granular fluids@11–15# has also been confirme
by computer simulations@16–22# and even observed in re
cent experiments@23,24#. As a consequence, previous studi
for granular mixtures based on a single temperature mus
reexamined by theories which take into account the effec
temperature differences on the transport coefficients. For
reason, recently Garzo´ and Dufty @25# have carried out a
derivation of hydrodynamics for a granular binary mixture
low density that accounts for nonequipartition of granu
energy. Their results provide a description of hydrodynam
in granular mixtures valida priori over the broadest param
eter range and not limited to nearly elastic particles. On
other hand, from a practical point of view, the expressio
for the transport coefficients were obtained by consider
the leading terms in a Sonine polynomial expansion of
distribution functions. In the case of the shear viscosity
efficient, the first Sonine predictions compare quite well w
a numerical solution of the Boltzmann equation in the u
form shear flow state@26# obtained from the direct simula
tion Monte Carlo~DSMC! method@27#. Exceptions to this
agreement are extreme mass or size ratios and strong d
pation. These discrepancies could be mitigated in part if
considers higher-order terms in the Sonine polynomial
pansion.

The evaluation of the transport coefficients for a granu
binary mixture beyond the first Sonine approximation
quite a hard task, due mainly to the coupling among
different integral equations associated with the transport
efficients@25#. For this reason, to make some progress i
this problem, one needs to study some specific simple si
©2004 The American Physical Society01-1
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tions. Here, we consider the special case in which one of
components~say, for instance, species 1! is present intracer
concentration. The tracer problem is more amenable to
treated analytically since the tracer particles~impurities! are
enslaved to the granular gas and there are fewer parame
In this situation, one can assume that the granular gas~excess
component! is not affected by the presence of impurities
that its velocity distribution functionf 2 verifies the~closed!
nonlinear Boltzmann equation. Moreover, the mole fract
of impurities is so small that one can also neglect collisio
among tracer particles in their corresponding kinetic eq
tion. As a consequence, the velocity distribution functionf 1
of impurities verifies the linear Boltzmann-Lorentz equatio

The goal of this paper is to determine the diffusion co
ficient of impurities immersed in a low-density granular g
undergoing the so-called homogeneous cooling state~HCS!.
It corresponds to a homogeneous state where the temper
uniformly decreases in time due to dissipation in collisio
Diffusion of impurities in a homogeneous gas is perhaps
simplest nonequilibrium problem one can think of. The d
fusion coefficientD is obtained by solving the Boltzmann
Lorentz equation by means of the Chapman-Enskog me
through the first order in the concentration gradient. As in
elastic case, the coefficientD is expressed in terms of th
solution of a linear integral equation that can be solved
making an expansion in Sonine polynomials. An importa
simplification with respect to the case of arbitrary compo
tion @25# is that the diffusion coefficient satisfies aclosed
equation and so is not coupled to the remaining trans
coefficients. This simplifies enormously the procedure of g
ting the different Sonine approximations. Here, we have
tained up to the second Sonine approximation and have
terminedD in terms of the coefficients of restitution for th
impurity-gas and gas-gas collisions, and the parameter
the system~masses and sizes!. As for the shear viscosity
coefficient@26#, kinetic theory predictions are also compar
with numerical solutions of the Boltzmann-Lorentz equati
by using the DSMC method. In the simulations, the diffusi
coefficient is computed from the mean-square displacem
of impurities once a transformation to dimensionless va
ables allows one to get a stationary diffusion equation.

Some related papers studying diffusion in a homogene
granular gas have been published earlier. Thus, Brillian
and Po¨schel @28# obtained the self-diffusion coefficien
~when impurities and gas particles are mechanically equ
lent particles! from a cumulant expansion of the veloci
autocorrelation function, while Breyet al. @29# evaluated this
coefficient in the first Sonine approximation by means of
Chapman-Enskog expansion. In the latter work, the auth
also performed Monte Carlo simulations and found a go
agreement between theory and simulation. The dynamic
a heavy impurity particle in a gas of much lighter particl
has been also studied from the Fokker-Planck equation@30#.
The predictions of this~asymptotic! theory have also bee
confirmed by Monte Carlo and molecular-dynamics simu
tions @31#. More recently, Duftyet al. @32# applied the famil-
iar methods of linear response theory to get Green-Kubo
Einstein representations of diffusion coefficient in terms
the velocity and mean-square displacement correlation fu
02130
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tions. These correlation functions were also evaluated
proximately considering the leading cumulant approxim
tion. This result coincides with the one obtained from t
Chapman-Enskog method in the first Sonine approxima
@33#. The expression for the diffusion coefficient obtained
Ref. @32# has been also compared with results fro
molecular-dynamics simulations@34# over a wide range of
density and inelasticity for the particular case of se
diffusion. The comparison shows that the approximate the
is in good agreement with simulation data up to moder
densities and degrees of inelasticity, although large disc
ancies exist at high density and large dissipation. Howe
these deviations from the Enskog model are primarily due
the effect of an unstable long wavelength shear mode in
system. Our work complements and extends the results
tained in previous studies in two aspects: First, o
Chapman-Enskog solution is more accurate since it incor
rates higher-order Sonine polynomials, and second,
simulations cover a range of values of the ratios of mass
particle sizes where the effect of energy nonequipartition
diffusion is in general quite important@25#. The diffusion
phenomenon in granular shear flows has also been wi
studied by computer simulations@35#, kinetic theory@36#,
and real experiments@37#. In this situation, due to the pres
ence of shear flow, the resulting diffusion process is ani
tropic and, thus, it must be described by a diffusion tens

The plan of the paper is as follows. In Sec. II we descr
the problem we are interested in and analyze the state o
granular gas and impurities in the absence of diffusion.
particular, we show the breakdown of energy equipartit
and illustrate the dependence of the temperature ratio on
parameters of the problem. Section III deals with t
Chapman-Enskog method to solve the Boltzmann-Lore
equation in the first order of the concentration gradie
Some technical details of the calculations are given in A
pendixes B and C. In Sec. IV we present the Monte Ca
simulation of the Boltzmann-Lorentz equation and comp
the simulation data with the theoretical results obtained
the first and second Sonine approximations. Finally, in S
V we close the paper with a brief discussion on the res
obtained in this paper.

II. GRANULAR BINARY MIXTURE IN THE
HOMOGENEOUS COOLING STATE

Consider a binary mixture of smooth hard spheres
massesm1 and m2, diameterss1 and s2, and interparticle
coefficients of restitutiona11, a22, anda125a21. Here,a i j
is the coefficient of restitution for collisions between pa
ticles of speciesi and j. In the low-density regime, the dis
tribution functionsf i(r ,v;t) ( i 51,2) for the two species are
determined from the set of nonlinear Boltzmann equatio
@1#

~] t1v1•“ ! f i5(
j

Ji j @v1u f i~ t !, f j~ t !#, ~1!

where the Boltzmann collision operatorJi j @v1u f i , f j # is
1-2
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Ji j @v1u f i , f j #5s i j
2 E dv2E dŝQ~ŝ•g12!~ŝ•g12!

3@a i j
22f i~r ,v18 ,t ! f j~r ,v28 ,t !

2 f i~r ,v1 ,t ! f j~r ,v2 ,t !#. ~2!

Here,s i j 5(s i1s j )/2, ŝ is a unit vector along their line o
centers,Q is the Heaviside step function, andg125v12v2.
The primes on the velocities denote the initial values$v18 ,v28%
that lead to$v1 ,v2% following a binary collision:

v185v12m j i ~11a i j
21!~ŝ•g12!ŝ,

v285v21m i j ~11a i j
21!~ŝ•g12!ŝ, ~3!

wherem i j 5mi /(mi1mj ).
The relevant hydrodynamic fields are the number de

ties ni , the flow velocityu, and the ‘‘granular’’ temperature
T. They are defined in terms of moments of the distributio
f i as

ni5E dvf i~v!, ru5(
i
E dvmivf i~v!, ~4!

nT5p5(
i
E dv

mi

3
V2f i~v!, ~5!

where n5n11n2 is the total number density,r5m1n1
1m2n2 is the total mass density,p is the hydrostatic pres
sure, andV5v2u is the peculiar velocity. Furthermore, it i
convenient to introduce the kinetic temperaturesTi for each
species, which measure their mean kinetic energies. They
defined as

3

2
niTi5E dv

mi

2
V2f i , ~6!

so that the granular temperatureT is

T5(
i

xiTi , ~7!

wherexi5ni /n is the mole fraction of speciesi.
The collision operators conserve the particle number

each species and the total momentum but the total energ
not conserved:

E dvJi j @vu f i , f j #50, (
i , j

E dvmivJi j @vu f i , f j #50,

~8!

3nTz52(
i , j

E dvmiV
2Ji j @vu f i , f j #, ~9!

where z is identified as thecooling rate due to inelastic
collisions among all species. At a kinetic level, it is conv
02130
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nient to characterize energy transfer in terms of the coo
rates associated with the partial temperaturesTi . They are
defined as

3niTiz i52(
j
E dvmiV

2Ji j @vu f i , f j #. ~10!

The total cooling ratez can be expressed in terms of th
partial cooling ratesz i as

z5T21(
i

xiTiz i . ~11!

Because of the complexity embodied in the general
scription of a binary mixture, here we consider the spec
case in which the mole fraction of one of the compone
~say, for instance, 1! is negligible (x1!1). We are interested
in studying the diffusion of impurities moving in a back
ground granular gas undergoing HCS. In the tracer limit, o
expects that the state of the granular gas~solvent! is not
disturbed by the presence of impurities~solute! and so in all
of the following it is assumed that the gas is in its HCS.
addition, collisions among impurities themselves can be
glected versus the impurity-gas collisions. Under these c
ditions, the velocity distribution functionf 2 of the gas veri-
fies a ~closed! Boltzmann equation and the velocit
distribution function f 1 of impurities obeys a~linear!
Boltzmann-Lorentz equation. Let us start by describing
state of the system in the absence of diffusion.

A. Granular gas

As said above, the gas is in the HCS. This state co
sponds to a homogeneous solution of the nonlinear Bo
mann equation,f 2(v,t), in which all the time dependenc
occurs through the temperature of the gasT2(t).T(t). In
this case, the time derivative off 2 can be represented mor
usefully as

] t f 252z2T]Tf 25
1

2
z2

]

]v
•~vf 2!, ~12!

where use has been made of the balance equation for
temperature

T21] tT52z2 , ~13!

with

z252
1

3n2TE dvm2v2J22@ f 2 , f 2#. ~14!

The Boltzmann equation can be written as

1

2
z2

]

]v
•~vf 2!5J22@ f 2 , f 2#. ~15!
1-3
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V. GARZÓ AND J. M. MONTANERO PHYSICAL REVIEW E69, 021301 ~2004!
The second equality in Eq.~12! follows from dimensional
analysis which requires that the temperature dependenc
f 2 occurs only through the temperatureT(t). Consequently,
f 2(v,t) has the form

f 2~v,t !5n2p23/2v0
23/2~ t !F2„v/v0~ t !…, ~16!

wherev0(t)5A2T/m2 is the thermal velocity of the gas. S
far, the exact form ofF2 has not been found, although
good approximation for thermal velocities can be obtain
from an expansion in Sonine polynomials. In the lead
order,F2 is given by

F2~v* !→F11
c2

4 S v* 425v* 21
15

4 D Ge2v* 2
. ~17!

The coefficientc2 can be obtained by substituting first Eq
~16! and ~17! into the Boltzmann equation~15!, multiplying
that equation byv4 and then integrating over the velocit
When only linear terms inc2 are retained, the estimate
value ofc2 is @38#

c2~a22!5
32~12a22!~122a22

2 !

81217a22130a22
2 ~12a22!

. ~18!

Additionally, the cooling ratez2 can also be determined from
the Sonine approximation~17!. The result is@38#

z25 2
3 A2pn2s2

2v0~12a22
2 !~11 3

32 c2!. ~19!

Estimate~18! presents quite a good agreement with Mon
Carlo simulations of the Boltzmann equation@39,40#.

B. Impurities

In the absence of diffusion, impurities are also in HC
and so its velocity distribution functionf 1(v,t) satisfies the
Boltzmann-Lorentz equation

1

2
z1

]

]v
•~vf 1!5J12@ f 1 , f 2#. ~20!

The time evolution ofT1(t) is

T1
21] tT152z1 , ~21!

where

z152
1

3n1T1
E dvm1v2J12@ f 1 , f 2#. ~22!

From Eqs.~13! and~21! one easily gets the time evolution o
the temperature ratiog[T1 /T:

g21] tg5z22z1 . ~23!

The fact thatf 1 depends on time only throughT(t) neces-
sarily implies that the temperature ratiog must be indepen-
dent on time, and so Eq.~23! gives the HCS condition
z1(t)5z2(t)5z(t). However, although both componen
have a common cooling rate, their partial temperatures
02130
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different. In other words, the impurityequilibratesto a com-
mon HCS with different temperatures for the impurity a
gas particles. This implies a breakdown of the energy eq
partition. The violation of energy equipartition in multicom
ponent granular systems has been even observed in rea
periments of vibrated mixtures in two@23# and three@24#
dimensions.

As for the gas, dimensional analysis requires that the
lution to Eq.~20! is of the form

f 1~v,t !5n1p23/2v0
23/2~ t !F1„v/v0~ t !…. ~24!

The determination off 1 to leading order in the Sonine ex
pansion has been analyzed elsewhere for arbitrary comp
tion @11# and only the main results are quoted here. In
first Sonine approximation, the distributionF1 is given by

F1~v* !→u3/2F11
c1

4 S u2v* 425uv* 21
15

4 D Ge2uv* 2
,

~25!

whereu5m1T/m2T1 is the mean-square velocity of the ga
particles relative to that of the tracer particles. The coe
cientc1 in Eq. ~25! can be determined by substitution of Eq
~16! and~24! into Eq.~20! and retaining all terms linear inc1
and c2 for the leading polynomial approximations~17! and
~25!. Once the coefficientc1 is known, one can estimate th
temperature ratiog[T1 /T from the constraintz15z2. The
solution to this equation givesg as a function of the mas
ratio m[m1 /m2, the size ratiov[s1 /s2 and the coeffi-
cients of restitutiona22 anda12. The explicit expressions o
the partial cooling ratez1 and the coefficientc1 are displayed
in Appendix A.

Except for some limiting cases~elastic case and mechan
cally equivalent particles!, our results yieldgÞ1, and so the
total energy is not equally distributed between both spec
The lack of energy equipartition has dramatic consequen
in the large impurity/gas mass ratio since there is a pecu
‘‘phase transition’’ for which the diffusion coefficient is nor
mal in one phase and grows without bound in the other@41#.
To illustrate the violation of equipartition theorem, in Fig.
we plot the temperature ratio versus the coefficient of re
tution a for two different cases:m51/4, v51/2, andm

FIG. 1. Temperature ratiog5T1 /T vs the coefficient of restitu-
tion a[a125a22 for m[m1 /m252, v[s1 /s251 ~open circles!
and m51/4, v51/2 ~filled circles!. The lines are the theoretica
results and the symbols refer to the numerical results obtained f
the DSMC method.
1-4
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DIFFUSION OF IMPURITIES IN A GRANULAR GAS PHYSICAL REVIEW E69, 021301 ~2004!
52, v51. For the sake of simplicity, we have taken a co
mon coefficient of restitution, i.e.,a[a125a22. We also
include the simulation data obtained via a numerical solut
of the Boltzmann equation by means of the DSMC meth
@27#. It is apparent the excellent agreement found betw
the theory and simulation, showing the accuracy of the
proximations~17! and~25! to estimate the temperature rati
We also observe that the temperature of the impurity is lar
than that of the gas when the impurity is heavier than
grains of the gas. In addition, the deviations from the ene
equipartition increase as the mechanical differences betw
impurities and particles of the gas increase. As we will sh
later, in general the effect of the temperature differences
the diffusion coefficient is quite important.

III. DIFFUSION COEFFICIENT

We want to determine the diffusion coefficient of trac
particles immersed in a granular gas in HCS. The diffus
process is induced by a weak concentration gradient“x1,
which is the only gradient present in the system. Under th
conditions, the kinetic equation forf 1 reads

~] t1v1•“ ! f 15J12@v1u f 1 , f 2#. ~26!

Impurities may freely exchange momentum and energy w
the particles of the granular gas, and therefore, these are
invariants of the Boltzmann-Lorentz collision operat
J12@ f 1 , f 2#. Only the number density of impurities is con
served:

] tn11
“• j1

m1
50, ~27!

where the flux of tracer particlesj1 is defined as

j15m1E dvvf 1~v!. ~28!

The conservation equation~27! becomes a closed hydro
dynamic equation forn1 oncej1 is expressed as a function
of the fieldsn1 andT. Our aim is to get the mass flux in th
first order in“x1 by applying the Chapman-Enskog meth
@2#. The Chapman-Enskog method assumes the existenc
a normal solution in which all the space and time depe
dence off 1 occurs through the hydrodynamic fields. In th
tracer diffusion problem, this means that

f 1~r ,v;t !5 f 1@vux1~r ,t !,T~ t !#, ~29!

where it has been assumed thatf 2 also adopts the norma
form ~16!. The Chapman-Enskog procedure generates
normal solution explicitly by means of an expansion in g
dients of the fields

f 15 f 1
(0)1e f 1

(1)1e2f 1
(2)1•••, ~30!

wheree is a formal parameter measuring the nonuniform
of the system. Given that in our problem the only inhom
geneity is in the mole fractionx1, each factore corresponds
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to an implicit ¹x1 factor. The time derivative is also ex
panded as] t5] t

(0)1e] t
(1)1•••, where

] t
(0)x150, ] t

(0)T52Tz, ~31!

] t
(k)x152

“• j1
(k21)

m1n2
, ] t

(k)T50, k>1, ~32!

with

j1
(k)5m1E dvvf 1

(k) . ~33!

Upon deriving Eqs.~31! and~32!, use has been made of th
balance equations~13! and ~27! and the constraintz1

(0)5z2

5z. Here,z1
(0) is given by Eq.~22! with f 1→ f 1

(0) .
The zeroth-order approximationf 1

(0) is the solution of Eq.
~20!, whose approximate form is given by Eqs.~24! and~25!
but taking into account now the local dependence on
mole fractionx1. Since f 1

(0) is isotropic, it follows that the
flux of impurities vanishes at this order, i.e.,j1

(0)50, and so
] t

(1)x150. To first order ine, one has the kinetic equation

] t
(0)f 1

(1)1J12@ f 1
(1) , f 2#52~] t

(1)1v1•“ ! f 1
(0)

52S ]

]x1
f 1

(0)D v1•“x1 . ~34!

The second equality follows from the balance equations~32!
and the space dependence off 1

(0) throughx1. The solution to
Eq. ~34! is proportional to“x1, namely, it has the form

f 1
(1)5A•“x1 . ~35!

The coefficientA is a function of the velocity and the hy
drodynamic fieldsx1 andT. According to Eq.~31!, the time
derivative] t

(0) acting onA can be evaluated by the replac
ment] t

(0)→2zT]T wherez is given by Eq.~19!. Thus, sub-
stitution of Eq.~35! into Eq. ~34! yields

2zT]TA2J12@A, f 2#52S ]

]x1
f 1

(0)D v. ~36!

To first order, the mass flux has the structure@42#

j1
(1)52m1D“x1 , ~37!

whereD is the diffusion coefficient. Use of Eq.~35! into the
definition ~33! ~for k51) allows one to identify the coeffi-
cient D. It is given by

D52
1

3E dvv•A. ~38!

For practical purposes, the linear integral equation~36!
can be solved by using a Sonine polynomial expansion.
goal here is to determine the diffusion coefficient up to t
second Sonine approximation. In this case, the quantityA is
approximated by
1-5
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A→ f 1,M@a1v1a2S1~v!#, ~39!

where f 1,M is a Maxwellian distribution at the temperatu
T1 of the impurities, i.e.,

f 1,M~v!5n1S m1

2pT1
D 3/2

expS 2
m1v2

2T1
D , ~40!

andS1(v) is the polynomial

S1~v!5~ 1
2 m1v22 5

2 T1!v. ~41!

The coefficientsa1 anda2 are defined as

a15
m1

3n1T1
E dvv•A52

m1D

n1T1
, ~42!

a25
2

15

m1

n1T1
3E dvS1~v!•A. ~43!

These coefficients are determined by substitution of Eq.~39!
into the integral equation~36!. The details are carried out i
Appendix B. The second Sonine approximationD@2# to the
diffusion coefficient can be written as

D@2#5D@1#
~na* 2 1

2 z* !@nd* 2 3
2 z* 2~c1/2g!nb* #

~na* 2 1
2 z* !~nd* 2 3

2 z* !2nb* @nc* 2~z* /g!#

[D@1#L, ~44!

where the functionL can be easily identified from the se
ond equality andD@1# refers to the first Sonine approxima
tion to the diffusion coefficient. Its expression is

D@1#5
n2T

m1n0

g

na* 2 1
2 z*

. ~45!

Here,n05n2s2
2v0,

z* 5
z

n0
5

2

3
A2p~12a22

2 !S 11
3

32
c2D , ~46!

and the quantitiesna* , nb* , nc* , andnd* are given in Appen-
dix C. Expression~45! coincides with the one previousl
obtained@33,32# from a Green-Kubo formula in the leadin
order in a cumulant expansion.

In general,D@1# andD@2# present a complex dependen
on the coefficients of restitution and the ratios of mass
sizes. Before analyzing this dependence, it is instructive
consider some special cases. In the elastic limit (a225a12
51), one hasc15c250, g51, and the firstD0@1# and
secondD0@2# Sonine approximations to the diffusion coe
ficient become

D0@1#5
3

8

A~m11m2!T

A2ps12
2 m1

, ~47!
02130
d
to

D0@2#5D0@1#
30m2116m113

30m2116m112
. ~48!

Equations~47! and ~48! coincide with the ones derived b
Mason@43# for a gas mixture of elastic hard spheres. Mor
over, in the case of mechanically equivalent particles (m1
5m2 , s15s2 , a225a125a), Eq. ~45! reduces to the one
derived in the self-diffusion problem@29#.

The functionL[D@2#/D@1# is plotted in Fig. 2 versus
the coefficient of restitutiona for three different values of
the mass ratiom and the size ratiov. We consider a binary
mixture where the mass density of the impurity is equal
that of a bath particle and so,m5v3. As in the elastic case
we see thatL clearly differs from 1 when impurities are
much lighter than the particles of the gas. This means that
widely used first Sonine approximation is not sufficien
accurate for this range of values of mass and diameter ra
On the other hand, the convergence of the Sonine polynom
expansion improves when increasing the mass and size
tios, and the first Sonine approximation is expected to
quite close to the exact value of the diffusion coefficie
These conclusions are qualitatively similar to those found
the case of elastic hard-sphere mixtures@44#.

To close this section, let us write the diffusion equatio
In the hydrodynamic regime~where the normal solution to
the Boltzmann-Lorentz equation holds!, the diffusion coeffi-
cient D(t) depends on timeonly through its dependence o
the temperatureT(t). According to Eqs.~44! and ~45!,
D(t)}AT(t). This time dependence can be eliminated
introducing appropriate dimensionless variables. A con
nient set of dimensionless time and space variables is g
by

t5E
0

t

dt8 n0~ t8!, ,5
n0~ t !

v0~ t !
r . ~49!

The dimensionless time scalet is the integral of the averag
collision frequency and thus is a measure of the aver
number of collisions per gas particle in the time interv
between 0 andt. The unit lengthv0(t)/n0(t) introduced in
the second equality of Eq.~49! is proportional to the time-
independent mean free path of gas particles. In terms of
above variables, the diffusion equation~27! becomes

FIG. 2. Plot of the functionL[D@2#/D@1# vs the coefficient of
restitutiona for three binary mixtures:~a! m51/8 andv51/2; ~b!
m5125/64 andv55/4; and~c! m58 andv52.
1-6
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DIFFUSION OF IMPURITIES IN A GRANULAR GAS PHYSICAL REVIEW E69, 021301 ~2004!
]x1

]t
5D* ¹,

2x1 , ~50!

where¹,
2 is the Laplace operator in, space and

D* 5
n0~ t !D~ t !

n2v0
2~ t !

. ~51!

While D(t)}AT(t), the reduced diffusion coefficientD* is
time independent. This is closely related with the validity
a hydrodynamic description of the system for times la
compared with the mean free time. In this context, Eq.~50!
is a diffusion equation with a constant diffusion coefficie
D* . It follows that the mean-square deviation of theposition
, of impurities after atime interval t is @42#

^u,~t!2,~0!u2&56D* t. ~52!

Restoring the dimensions to the average position and ti
Eq. ~52! can be rewritten as

]

]t
^ur ~ t !2r ~0!u2&5

6D~ t !

n2
. ~53!

Equation~53! is the Einstein form, relating the diffusion co
efficient to the mean-square displacement. This relations
will be used later to measure the diffusion coefficient
means of the DSMC method.

IV. COMPARISON BETWEEN THEORY AND MONTE
CARLO SIMULATIONS

The adaptation of DSMC method to analyze binary gra
lar mixtures has been described in detail in previous wo
~see, for instance, Ref.@16#!, so that here we shall only men
tion the aspects related to the specific problem of diffusion
impurities in a granular gas under HCS. The main differen
between the procedure used here and the one describ
Ref. @16# is its restriction to the tracer limit (x1→0). Be-
cause of this, during our simulations collisions 1-1 are
considered, and when a collision 1-2 takes place, the p
collisional velocity obtained from the scattering rule is on
assigned to the particle 1. According to this scheme,
numbers of particlesNi have simply a statistical meaning
and hence they can be chosen arbitrarily.

In the course of the simulation one can distinguish t
stages. In the first one, the system~impurities and gas par
ticles! evolves from the equilibrium initial state to the HCS
In the second stage, the system is assumed to be in the H
and then the kinetic temperaturesTi(t) and the diffusion co-
efficient D(t) are measured. The latter is obtained from t
mean-square deviation of the position of impurities@Eq.
~53!#, i.e.,

D~ t !5
n2

6Dt
@^ur i~ t1Dt !2r i~0!u2&2^ur i~ t !2r i~0!u2&#.

~54!
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Here,ur i(t)2r i(0)u is the distance traveled by the impurityi
from t50 until time t, t50 being the beginning of the sec
ond stage. In addition,^•••& denotes the average over theN1
impurities andDt is the time step. In our simulations w
have typically taken 105 particles of the granular gas,
3104 impurities, and a time stepDt5331024l/v0, where
l5(A2pn2s2)21 is the mean free path for collisions amon
granular gas particles. The results are averaged over a n
ber of N55 replicas.

If the hydrodynamic description~or normal solution in the
context of the Chapman-Enskog method! applies one expects
that, after a transient regime in which each gas particle
collided about five times, the reduced diffusion coefficien

D~ t !

D0@1#~ t !
5

16Ap

3 S s12

s2
D 2 m12

Am21

D* ~55!

achieves a time-independent plateau. This is illustrated
Fig. 3 for a system withm52, v51, and three values o
a:a50.7, 0.8, and 0.9. The dimensionless time scalet is
defined in Eq.~49! and measures the average number
collisions per gas particle, which is of the same order as
corresponding value for impurities. We observe that af
several collisions,D/D0@1# reaches a stationary value who
time average is the simulation result for the~reduced! diffu-
sion coefficient.

The steady state values ofD/D0@1# obtained from simu-
lation data~which are calculated by averaging over a tim
period! can be compared with the theoretical predictio
D@2#/D0@1#, Eq. ~44!, andD@1#/D0@1#, Eq. ~45!, for dif-
ferent values of the parameters of the system. As in the
vious figures, we assume thata225a12[a so that we reduce
the parameter set of the problem to three quantit
$a,m,v%.

Let us consider first the self-diffusion case (m5v51).
As said above, this special situation was studied by B
et al. @29# analytically~up to the first Sonine approximation!
and by computer simulations. Figure 4 shows the redu
diffusion coefficientD(a)/D0@1# as a function of the coef-
ficient of restitutiona as given by the first Sonine approx
mation ~dashed line!, the second Sonine approximatio
~solid line!, and Monte Carlo simulations~symbols!. Al-

FIG. 3. Plot ofD/D0@1# as a function of the dimensionless tim
t for m52, v51, anda50.7, 0.8, and 0.9. Here,D0@1# refers to
the first Sonine approximation to the elastic value of the diffus
coefficient.
1-7
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V. GARZÓ AND J. M. MONTANERO PHYSICAL REVIEW E69, 021301 ~2004!
though the agreement between the first Sonine approx
tion and simulation is quite good beyond the quasiela
limit ~say, for instance,a>0.8), discrepancies between bo
results increase as the value ofa decreases. This tendenc
was also observed in the comparison made in Ref.@29#. We
observe that the agreement between theory and simula
improves over the whole range of values ofa considered
when one takes the second Sonine approximation. For
stance, fora50.5 the first and second Sonine approxim
tions to D differ by 4.7% and 1.2%, respectively, from th
value measured in the simulation. We have also inclu
~dotted line! the result obtained for the second Sonine a
proximation toD(a)/D0@1# if the distribution functions of
the granular gasf 2 and impuritiesf 1

(0) at zeroth order were
both approximated by Gaussians, i.e., when one form
putsc15c250 in Eq. ~44!. We observe that the influence o
these Sonine contributions to the self-diffusion coefficien
negligible, except for quite large values of dissipation.

Consider now the situation in which impurities and pa
ticles of the gas can differ in size and mass. First, in Fig
we analyze the effect of the mass ratio on the accuracy of

FIG. 4. Plot of the reduced self-diffusion coefficientD/D0@1# as
a function of the coefficient of restitutiona as given by the first
Sonine approximation~dashed line!, the second Sonine approxima
tion ~solid line!, and Monte Carlo simulations~symbols!. Here,
D0@1# refers to the first Sonine approximation to the elastic va
of the self-diffusion coefficient. The dotted line corresponds to
results obtained for the second Sonine approximation when
takesc15c250.

FIG. 5. Plot of the reduced diffusion coefficientD/D0@1# as a
function of the mass ratiom for a50.7 andv51. The dashed line
refers to the first Sonine approximation, the solid line correspo
to the second Sonine approximation while the symbols are the
sults obtained from Monte Carlo simulations. Here,D0@1# refers to
the first Sonine approximation to the elastic value of the diffus
coefficient.
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Sonine approximations to the reduced diffusion coeffici
D(a)/D0@1#. Here, we takes15s2 and a50.7. We find
that, for fixedv and a, the second Sonine approximatio
D@2# differs from the first Sonine approximationD@1# asm
is varied. For the case considered in Fig. 5, we see
D@2#.D@1# if m&0.45 whileD@1#.D@2# otherwise. The
comparison with simulation data shows again that the th
retical predictions are improved when one considers the
ond Sonine approximation, showing an excellent agreem
betweenD@2# and Monte Carlo simulations in the range
values ofm explored. Similar conclusions are found wit
respect to the variations ofD(a)/D0@1# on the size ratiov
at fixed values ofm anda, as shown in Fig. 6 fora50.7 and
m51/4. Differences between both Sonine approximatio
are especially important for small values ofv. In this region,
the discrepancies betweenD@2# and simulation data are
slightly larger than the ones found before in Fig. 5 for t
mass ratio. This means that perhaps the most signific
variations of the ratioD@2#/D@1# occur when the size ratio
v is varied at fixedm.

Finally, we explore the influence of dissipation on the tw
first Sonine approximations at fixed values ofm andv. Ac-
cording to Fig. 2, it is apparent that the deviations ofL
[D@2#/D@1# from unity are important for small values o
the mass ratio and/or the size ratio. In fact, for elastic m
tures (a51), L.1.069 for the case$m51/8,v51/2%,
while L.1.000 49 for the symmetric case$m58,v52%.
This clearly shows that in the elastic case the second So
approximation significantly differs from the first one fo
small values ofm and v ~Lorentz gas limit!, while both
approximations practically coincide whenm andv are much
larger than 1~Rayleigh gas limit!. In the former case, where
the tracer diffusion coefficient can be obtained exactly,
first and second Sonine approximations toD differ by 13%
and 5%, respectively, from the exact value of the diffusi
coefficient @44#. Here, we want to analyze the influence
the inelasticity on the trends already observed in ordin
fluids. In order to assess this effect, it is convenient to red
the diffusion coefficientD(a) with respect to its elastic
value D(1) consistently obtained in each approximatio

e
e
ne

s
e-

n

FIG. 6. Plot of the reduced diffusion coefficientD/D0@1# as a
function of the size ratiov for a50.7 andm51/4. The dashed line
refers to the first Sonine approximation, the solid line correspo
to the second Sonine approximation while the symbols are the
sults obtained from Monte Carlo simulations. Here,D0@1# refers to
the first Sonine approximation to the elastic value of the diffus
coefficient.
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DIFFUSION OF IMPURITIES IN A GRANULAR GAS PHYSICAL REVIEW E69, 021301 ~2004!
Thus,D(1)→D0@1#, Eq. ~47!, when one considers the firs
Sonine approximation, whileD(1)→D0@2#, Eq. ~48!, when
one considers the second Sonine approximation. Simula
data will be also reduced with respect to the elastic va
measured in the simulation. Figure 7 showsD(a)/D(1) for
m58 and v52 while Fig. 8 showsD(a)/D(1) for m
51/8 andv51/2. The first finding is that the conclusion
obtained in the elastic case on the convergence of So
polynomial expansion are kept at a qualitative level
granular gases: the Sonine polynomial expansion exhibi
poor convergence for sufficiently small values of the m
ratio m and/or the size ratiov, while this convergence im
proves significantly asm and/orv increases. As a matter o
fact, Fig. 7 shows that both Sonine approximations are p
tically indistinguishable and present an excellent agreem
with simulation data. This is not so in the case of Fig.
where only the second Sonine approximation toD exhibits a
qualitative good agreement with simulation results. As in
elastic case@44#, one perhaps would have to consider t

FIG. 7. Plot of the reduced diffusion coefficientD(a)/D(1) as
a function of the coefficient of restitutiona for m58 andv52.
The dashed line refers to the first Sonine approximation, the s
line corresponds to the second Sonine approximation, while
symbols are the results obtained from Monte Carlo simulations.
dotted line is the first Sonine approximation by assuming the eq
ity of the partial temperaturesg5T1 /T51. Here,D(1) refers to
the elastic value of the diffusion coefficient consistently obtained
each approximation.

FIG. 8. Plot of the reduced diffusion coefficientD(a)/D(1) as
a function of the coefficient of restitutiona for m51/8 and v
51/2. The dashed line refers to the first Sonine approximation,
solid line corresponds to the second Sonine approximation, w
the symbols are the results obtained from Monte Carlo simulatio
Here, D(1) refers to the elastic value of the diffusion coefficie
consistently obtained in each approximation.
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third Sonine approximation to provide an accurate estim
for the diffusion coefficient.

V. DISCUSSION

In this paper we have analyzed the diffusion of impuriti
in a dilute granular gas undergoing HCS. This is the simp
example of transport in amulticomponentgranular gas, since
the gas is in a homogeneous state while diffusion appear
the presence of a weak concentration gradient, which is
only gradient present in the system. Here, the diffusion
efficient D has been computed by combining two comp
mentary approaches: a Chapman-Enskog solution to
Boltzmann-Lorentz equation and numerical solutions of
same equation by means of the DSMC method. As in
elastic case, the diffusion coefficientD is given in terms of
the solution of an integral equation, Eq.~36!. A practical
evaluation ofD is possible by using a Sonine polynomi
expansion and approximate results arenot limited to weak
inelasticity. Here, we have determinedD in the first ~one
Sonine polynomial! and second~two Sonine polynomials!
Sonine approximation as a function of the temperature
the different mechanical parameters of the system, nam
the ~constant! coefficients of restitution for the impurity-ga
and gas-gas collisions, the masses and the particle sizes
study complements and extends previous works on diffus
in undriven granular gases in the cases of self-diffus
@29,34# and Brownian motion@30,31#, and provides an ex-
plicit expression of the coefficientD beyond the first Sonine
approximation@25,32,33#.

Comparison between simulation data and theory sho
that in general the second Sonine approximationD@2# im-
proves significantly the predictions of the first Sonine a
proximationD@1#, especially for values of the mass ratiom
and/or the size ratiov smaller than 1. For this range o
values ofm and v ~see, for instance, Fig. 8! one should
consider higher-order polynomial terms to get a quantitat
good agreement with Monte Carlo simulations. However,
convergence of the Sonine polynomial expansion~see, for
instance, Fig. 7! improves with increasing values ofm andv
and the first Sonine correction seems to be quite close to
exact value. These trends are quite similar to those pr
ously found for ordinary fluid mixtures@44#.

Apart from extreme mass or size ratios, our results sh
again that the accuracy of the Sonine polynomial solution
granular systems is similar to that for elastic collisions. P
sible discrepancies between theory and simulation can
removed by retaining higher-order Sonine corrections.
the other hand, as in all previous studies@26,29,31,34#, the
good agreement found here over quite a wide range of va
of the coefficient of restitution and mass and size ratios is
additional evidence of the validity of the hydrodynamic d
scription to analyze some states of granular fluids.

One of the main features of our theory is that it incorp
rates the effect of energy nonequipartition on diffusion. T
effect had already been considered in some previous stu
@25,26,30,32,33#. To assess this effect on the diffusion coe
ficient D, in Fig. 7 we include for comparison the result fo
D@1# with m58 and v52 that would be obtained if the
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V. GARZÓ AND J. M. MONTANERO PHYSICAL REVIEW E69, 021301 ~2004!
differences in the partial temperatures were neglectedT1
5T). Clearly, inclusion of this effect makes a significa
difference over the whole range of dissipation conside
~for instance, the actual value ofg is g.2.35 fora50.8).

The results derived here are restricted to the low-den
regime, small gradient in the concentration gradient, and
system in the HCS. The HCS is known to be unstable un
long wavelength perturbations or fluctuations@45#, with the
critical wavelengthlc52pAh/2z, whereh is the shear vis-
cosity of the granular gas. Thus, our expression for the
fusion coefficient is only meaningful if the time for instabi
ity is longer than the few collision times required to reach
hydrodynamic regime. At low density this is clearly the ca
even at strong dissipation, as demonstrated by both Mo
Carlo and molecular-dynamics simulations@29#. With re-
spect to the extension to dense gases, the Enskog equ
provides a useful generalization of the Boltzmann equa
to higher densities for a gas of hard spheres. Applied to
diffusion of impurities in a granular fluid in the HCS, th
only difference between the Boltzmann equations~15! and
~26! and their corresponding Enskog counterparts is the p
ence of the factorsx22 in Eq. ~15! andx12 in Eq. ~26!, which
are the configurational pair correlation functions for t
fluid-fluid and impurity-fluid pairs at contact, respectively.
good approximation for these functions is provided by
extended Carnahan-Starling form@46#

x225

12
1

2
f

~12f!3
, ~56!

x125
1

12f
1

3

2

f

~12f!2

s1

s12
1

1

2

f2

~12f!3 S s1

s12
D 2

, ~57!

wheref5(p/6)n2s2
3 is the solid volume fraction. Accord

ing to Eqs.~56! and ~57!, the correlation functions have th
same density dependence only when the size ratio is equ
1. Given that the fluid is in a homogenous state, it follo
that x22 andx12 are uniform. Thus, it is evident that, whe
properly scaled, the solutions obtained here for the Bo

FIG. 9. Plot of the reduced diffusion coefficientD(a)/D(1) as
a function of the coefficient of restitutiona for m51/4, v51/2,
andf50.2. The dashed line refers to the first Sonine approxim
tion, the solid line corresponds to the second Sonine approxima
while the symbols are the results obtained from Monte Carlo sim
lations. Here,D(1) refers to the elastic value of the diffusion coe
ficient consistently obtained in each approximation.
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mann and the Boltzmann-Lorentz equation can be dire
translated to the Enskog equation. To illustrate the influe
of the density on the predictions previously made for a dil
gas, in Fig. 9 we plotD/D(1) as a function of the coefficien
of restitution form5 1

4 , v5 1
2 , and a solid volume fraction

f50.2. As for a low-density gas, the second Sonine
proximation clearly improves the results obtained from t
first Sonine approximation. We see that the second Son
approximation compares very well with simulation data, e
cept for quite large dissipation (a.0.5).

In summary, there is growing theoretical support for t
validity of hydrodynamic transport processes in granular fl
ids. However, some care is needed in translating prope
of normal fluids to those with inelastic collisions. As se
here, in the case of the diffusion coefficient, the mass tra
port is strongly influenced by dissipation and this depe
dence may be of some relevance in sedimentation proble
for example.
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APPENDIX A: EXPLICIT EXPRESSIONS OF z1 AND c1

In this appendix, we will quote the expressions of t
partial cooling ratez1 and the coefficientc1. These results
were obtained in Ref.@11# for arbitrary values ofx1. Here,
we will display both expressions in the tracer limitx1→0.
The cooling ratez1 is defined by Eq.~22!. By using the
leading Sonine approximations~17! and ~25! and neglecting
nonlinear terms inc1 andc2 , z1 can be written as@11#

z15l101l11c11l12c2 , ~A1!

where

l105
8

3
Apn2s12

2 v0m21S 11u

u D 1/2

~11a12!

3F12
m21

2
~11a12!~11u!G , ~A2!

l115
1

12
Apn2s12

2 v0m21

~11u!23/2

u1/2
~11a12!

3@2~314u!23m21~11a12!~11u!#, ~A3!

l1252
1

12
Apn2s12

2 v0m21S 11u

u D 23/2

~11a12!

3@213m21~11a12!~11u!#. ~A4!

Here,u5m1T/m2T15m/g with m[m1 /m2 andg[T1 /T.
The coefficientc1 is defined by

c15
8

15S m1
2

4n1T1
2E dvv4f 1

(0)2
15

4 D . ~A5!

-
n,
-
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DIFFUSION OF IMPURITIES IN A GRANULAR GAS PHYSICAL REVIEW E69, 021301 ~2004!
This coefficient is detemined by substitution of Eqs.~17! and
~25! into the Boltzmann-Lorentz equation~20!, multiplying
that equation byv4, and integrating over the velocity. Whe
only linear terms inc1 andc2 are retained, the result is foun
to be @11#

2
15

2

m12
2

u2
z1S 11

c1

2 D5V101V11c11V12c2 , ~A6!

where

V1052Apn2s12
2 v0m12

2 m21

~11u!21/2

u5/2
~11a12!@22~615u!

1m21~11a12!~11u!~1415u!28m21
2 ~11a12!

2

3~11u!212m21
3 ~11a12!

3~11u!3#, ~A7!

V115
Ap

8
n2s12

2 v0m12
2 m21

~11u!25/2

u5/2
~11a12!

3@22~901231u1184u2140u3!

13m21~11a12!~11u!~701117u144u2!

224m21
2 ~11a12!

2~11u!2~514u!

130m21
3 ~11a12!

3~11u!3#, ~A8!

V125
Ap

8
n2s12

2 v0m12
2 m21

~11u!25/2

u1/2
~11a12!@2~215u!

13m21~11a12!~11u!~215u!224m21
2 ~11a12!

2

3~11u!2130m21
3 ~11a12!

3~11u!3#. ~A9!

The final expression ofc1 is obtained by substitution of Eq
~A1! into Eq. ~A6! and neglecting nonlinear terms inc1 and
c2. The result is

c152

l101l12c21
2

15
m12

22u2~V101V12c2!

1

2
l101l111

2

15
m12

22u2V11

. ~A10!

Once the coefficientc1 is given in terms ofg and the
parameters of the mixture, the temperature ratiog can be
explicitly obtained by numerically solving the condition fo
equal cooling rates:

l101l11c11l12c25z2 , ~A11!

wherez2 is given by Eq.~19!.

APPENDIX B: FIRST AND SECOND
SONINE APPROXIMATIONS

In this appendix we determine the coefficientsa1 anda2
in the first and second Sonine approximation. Substitution
Eq. ~39! into the integral equation~36! gives
02130
f

2zT]T~a1f 1,Mv1a2f 1,MS1!2a1J12@ f 1,Mv, f 2#

2a2J12@ f 1,MS1 , f 2#52S ]

]x1
f 1

(0)D v. ~B1!

Next, we multiply Eq.~B1! by m1v and integrate over the
velocity. The result is

~2zT]T1na!n1T1a11n1T1nba252n2T1 . ~B2!

Here,z5z2 is given by Eq.~19! and we have introduced th
quantities

na52
m1

3n1T1
E dv v•J12@ f 1,Mv, f 2#, ~B3!

nb52
m1

3n1T1
E dv v•J12@ f 1,MS1 , f 2#. ~B4!

From dimensional analysisT1a1;T1/2 so the temperature
derivative can be performed in Eq.~B2! and the result is

~na2 1
2 z!a11nba252x1

21 , ~B5!

wherex15n1 /n2. If only the first Sonine correction is re
tained~which meansa2→0), the solution to Eq.~B5! is

a1@1#52
x1

21

na2 1
2 z

. ~B6!

Here, a1@1# denotes the first Sonine approximation toa1.
Equation~B6! leads to the expression~45! for the diffusion
coefficient D@1# when the second equality in Eq.~42! is
considered.

To close the problem, one multiplies Eq.~B2! by S1(v)
and integrates over the velocity. Following identical ma
ematical steps as those made before, one gets

~nc2zT1
21!a11S nd2

3

2
z Da252

1

2

c1

x1T1
, ~B7!

where c1 is given by Eq.~A10! and we have taken into
account thatT1

3a2;T3/2. Moreover, we have introduced th
quantities

nc52
2

15

m1

n1T1
3E dv S1•J12@ f 1,Mv, f 2#, ~B8!

nd52
2

15

m1

n1T1
3E dv S1•J12@ f 1,MS1 , f 2#. ~B9!

In reduced units and by using matrix notation, Eqs.~B5! and
~B7! can be rewritten as

S na* 2 1
2 z* nb*

nc* 2z* /g nd* 2 3
2 z*

D S a1*

a2*
D 52S 1

c1/2g D . ~B10!

Here, z* 5z/n0 , na* 5na /n0 , nb* 5nb /Tn0 , nc* 5Tnc /n0,
andnd* 5nd /n0 with n05n2s2

2v0. Further,a1* 5x1n0a1 and
1-11
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a2* 5x1Tn0a2. The solution to Eq.~B10! provides the ex-
plicit expression of the second Sonine approximationa1* @2#
to a1* :

a1* @2#5a1* @1#
~na* 2 1

2 z* !@nd* 2 3
2 z* 2~c1/2g!nb* #

~na* 2 1
2 z* !~nd* 2 3

2 z* !2nb* @nc* 2~z* /g!#
.

~B11!

Equation ~B11! yields directly the expression~44! for the
second Sonine approximationD@2#.

APPENDIX C: EVALUATION OF THE COLLISION
INTEGRALS

In this appendix we evaluate the quantitiesna , nb , nc ,
and nd defined by the collision integrals~B3!, ~B4!, ~B8!,
and~B9!, respectively. Three of them,na , nc , andnd , were
l

02130
already determined in Ref.@25# for arbitrary composition.
For the sake of completeness, we display now their exp
expressions in the tracer limit (x1→0). In reduced units,
they are given by

na* 5
4

3
Apm21S s12

s2
D 2

~11a12!S 11u

u D 1/2F12
c2

16S u

11u D 2G ,
~C1!

nc* 5
4

15
Ap

m21
2

m12
S s12

s2
D 2

~11a12!S u3

11u D 1/2

Ac , ~C2!

nd* 5
2

15
Apm21S s12

s2
D 2

~11a12!S u

11u D 3/2S Ad25
11u

u
AcD ,

~C3!

where
Ac55~112b!1m21~11u!@5~12a12!22~7a12211!bu21#118b2u2112m21
2 ~2a12

2 23a1214!u21~11u!2

25u21~11u!1
c2

16

u

~11u!2
$3u2m21~11a12!@4m21~11a12!25#1u„2m12@7m21~11a12!25#

1m21@25~917a12!1m21~38162a12124a12
2 !#…215154m12

2 220m21~31a12!12m21
2 ~40119a1216a12

2 !

12m12@m21~6117a12220!#%, ~C4!

Ad52m21
2 S 11u

u D 2

~2a12
2 23a1214!~815u!2m21~11u!@2bu22~815u!~7a12211!12u21~29a12237!225~12a12!#

118b2u22~815u!12bu21~25166u!15u21~6111u!25~11u!u22~615u!

1
c2

16
~11u!22$15u3m21~11a12!@4m21~11a12!25#12„451540m12

2 116m21~a12236!14m21
2 ~13415a1216a12

2 !

24m12@1481m21~7a122263!#…1u2
„2302m21~2671217a12!114m21

2 ~17129a12112a12
2 !

110m12@7m21~11a12!25#…1u„23151270m12
2 22m21~55a12157!1m21

2 ~4401326a121156a12
2 !

12m12@221m21~7a121277!#…%. ~C5!
In the above expressions,b5m122m21u, andc2 andz* are
given by Eqs.~18! and ~46!, respectively.

It only remains to evaluatenb , which is defined by the
collision integral ~B4!. To simplify the integral, a usefu
identity for an arbitrary functionh(v1) is given by

E dv1h~v1!J12@v1u f 1 , f 2#

5s12
2 E dv1E dv2f 1~v1! f 2~v2!E dŝQ~ŝ•g!~ ŝ•g!

3@h~v19!2h~v1!#, ~C6!

with
v195v12m21~11a12!~ ŝ•g!ŝ, ~C7!

andg5v12v2 is the relative velocity. Use of Eq.~C6! in Eq.
~B4! gives

nb5
p

6

m1

n1T1
s12

2 m21~11a12!E dv1E dv2g f1,M~v1! f 2~v2!

3@S1~v1!•g#. ~C8!

Substitution of the distribution functionf 2 from Eqs. ~16!
and ~17! gives
1-12
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nb5
Tn0

3p2
m12S s12

s2
D 2

~11a12!u
3/2E dv1*

3E dv2* e2uv1*
2
2v2*

2
g* F11

c2

4 S v* 425v* 21
15

4 D G
3~uv1*

22 5
2 !~g* •v1* !, ~C9!

where v* 5v/v0 and g* 5g/v0. The integrals appearing in
Eq. ~C9! can be evaluated by the change of variables
f
e,

. E

s

.

i,
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x5v1* 2v2* , y5uv1* 1v2* , ~C10!

with the Jacobian (11u)23. The integrals can be easily pe
formed and the final expression for the dimensionless qu
tity nb* 5nb /Tn0 is

nb* 5
2

3
Apm12S s12

s2
D 2

~11a12!@u3~11u!#21/2

3F11
3

16
c2S u

11u D 2G . ~C11!
-

.
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