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Diffusion of impurities in a granular gas
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Diffusion of impurities in a granular gas undergoing homogeneous cooling state is studied. The results are
obtained by solving the Boltzmann-Lorentz equation by means of the Chapman-Enskog method. In the first
order in the density gradient of impurities, the diffusion coefficieris determined as the solution of a linear
integral equation which is approximately solved by making an expansion in Sonine polynomials. In this paper,
we evaluateéD up to the second order in the Sonine expansion and get explicit expressi@hsfaarms of the
coefficients of restitution for the impurity-gas and gas-gas collisions as well as the ratios of mass and particle
sizes. To check the reliability of the Sonine polynomial solution, analytical results are compared with those
obtained from numerical solutions of the Boltzmann equation by means of the direct simulation Monte Carlo
method. In the simulations, the diffusion coefficient is measured via the mean-square displacement of impu-
rities. The comparison between theory and simulation shows in general an excellent agreement, except for the
cases in which the gas particles are much heavier and/or much larger than impurities. In these cases, the second
Sonine approximation td improves significantly the qualitative predictions made from the first Sonine
approximation. A discussion on the convergence of the Sonine polynomial expansion is also carried out.
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[. INTRODUCTION their range of validity(quasielastic limit In particular, all
these works assume energy equipartition and consequently,
The use of hydrodynamic-like-type equations to describehe partial temperature$; are made equal to the global
the macroscopic behavior of granular media under rapid flovgranular temperatur€. However, the failure of energy equi-
conditions has been widely recognized in the past few yeargartition in granular fluidg11-15 has also been confirmed
The main difference from ordinary fluids is the dissipative by computer simulationf16—22 and even observed in re-
character of collisions which leads to modifications of thecent experimentf23,24]. As a consequence, previous studies
Navier-Stokes equations. In order to gain some insight intdor granular mixtures based on a single temperature must be
the derivation of hydrodynamics from a kinetic theory pointreexamined by theories which take into account the effect of
of view, an idealized model is usually considered: a systentemperature differences on the transport coefficients. For this
composed of smooth hard spheres with inelastic collisionsieason, recently Garzand Dufty [25] have carried out a
In the low-density regime, the above issue can be addressettrivation of hydrodynamics for a granular binary mixture at
by using the Boltzmann kinetic theory conveniently modifiedlow density that accounts for nonequipartition of granular
to account for inelastic collisionid]. In this case, assuming energy. Their results provide a description of hydrodynamics
the existence of aormal solution for sufficiently long space in granular mixtures valic priori over the broadest param-
and time scales, the Chapman-Enskog metf@dcan be eter range and not limited to nearly elastic particles. On the
applied to solve the Boltzmann equation and determine thether hand, from a practical point of view, the expressions
explicit form of the transport coefficients. This objective hasfor the transport coefficients were obtained by considering
been widely covered in the case of a monocomponent gathe leading terms in a Sonine polynomial expansion of the
[3-5], where all the particles have the same mass and sizéistribution functions. In the case of the shear viscosity co-
Nevertheless, a real granular system is generally composegficient, the first Sonine predictions compare quite well with
of particles with different mass densities and sizes, whicha numerical solution of the Boltzmann equation in the uni-
leads to many interesting phenomena observed in nature afiorm shear flow stat¢26] obtained from the direct simula-
experiments such as separation or segregation. tion Monte Carlo(DSMC) method[27]. Exceptions to this
Needless to say, the determination of the transport coeffiagreement are extreme mass or size ratios and strong dissi-
cients of amulticomponengranular fluid is much more com- pation. These discrepancies could be mitigated in part if one
plicated than in the case of a monocomponent system. Seeonsiders higher-order terms in the Sonine polynomial ex-
eral attempts to get those coefficients from the Boltzmanrmpansion.
equation began some time affp-10], but the technical dif- The evaluation of the transport coefficients for a granular
ficulties for the analysis entailed approximations that limitedbinary mixture beyond the first Sonine approximation is
quite a hard task, due mainly to the coupling among the
different integral equations associated with the transport co-
*Email address: vicenteg@unex.es efficients[25]. For this reason, to make some progress into
"Email address: jmm@unex.es this problem, one needs to study some specific simple situa-
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tions. Here, we consider the special case in which one of thBons. These correlation functions were also evaluated ap-
componentgsay, for instance, specie$ it present irtracer ~ proximately considering the leading cumulant approxima-
concentration. The tracer problem is more amenable to b#on. This result coincides with the one obtained from the
treated analytically since the tracer particlespurities are ~ Chapman-Enskog method in the first Sonine approximation
enslaved to the granular gas and there are fewer parametekd3]- The expression for the diffusion coefficient obtained in
In this situation, one can assume that the granulafgesess  Ref. [32] has been also compared with results from
componentis not affected by the presence of impurities somolecular-dynamics simulatior{$4] over a wide range of
that its velocity distribution functiori, verifies the(closed ~ density and inelasticity for the particular case of self-
nonlinear Boltzmann equation. Moreover, the mole fractiondiffusion. The comparison shows that the approximate theory
of impurities is so small that one can also neglect collisiondS in good agreement with simulation data up to moderate
among tracer particles in their corresponding kinetic equadensities and degrees of inelasticity, although large discrep-
tion. As a consequence, the velocity distribution functign ancies exist at high density and large dissipation. However,
of impurities verifies the linear Boltzmann-Lorentz equation.theS€ deviations from the Enskog model are primarily due to
The goal of this paper is to determine the diffusion coef-the effect of an unstable long wavelength shear mode in the
ficient of impurities immersed in a low-density granular gasSyStém. Our work complements and extends the results ob-
undergoing the so-called homogeneous cooling gta@s).  t@ined in previous studies in two aspects: First, our
It corresponds to a homogeneous state where the temperatfr@@Pman-Enskog solution is more accurate since it incorpo-
uniformly decreases in time due to dissipation in collisions.at€s higher-order Sonine polynomials, and second, our
Diffusion of impurities in a homogeneous gas is perhaps théimulations cover a range of values of the ratios of mass and
simplest nonequilibrium problem one can think of. The dif- Particle sizes where the effect of energy nonequipartition on
fusion coefficientD is obtained by solving the Boltzmann- diffusion is in general quite importari25]. The diffusion
Lorentz equation by means of the Chapman-Enskog methdgh€nomenon in granular shear flows has also been widely
through the first order in the concentration gradient. As in thetudied by computer simulatior{85], kinetic theory[36],
elastic case, the coefficiel is expressed in terms of the and real experimengs37]. In this situation, due to the pres-
solution of a linear integral equation that can be solved byENce of shear flow, the resulting diffusion process is aniso-
making an expansion in Sonine polynomials. An importanttmplc and, thus, it must lpe described by a diffusion tensor.
simplification with respect to the case of arbitrary composi- 1he plan of the paper is as follows. In Sec. Il we describe
tion [25] is that the diffusion coefficient satisfiesciosed (€ Problem we are interested in and analyze the state of the
equation and so is not coupled to the remaining transpor@rar?war gas and impurities in the absence of d|ffl_JS|or_1._ In
coefficients. This simplifies enormously the procedure of getParticular, we show the breakdown of energy equipartition
ting the different Sonine approximations. Here, we have re@nd illustrate the dependence of the temperature ratio on the
tained up to the second Sonine approximation and have d@arameters of the problem. Section Il deals with the
terminedD in terms of the coefficients of restitution for the Chapman-Enskog method to solve the Bolizmann-Lorentz
impurity-gas and gas-gas collisions, and the parameters &duation in .the flrst_ order of the concentration gra}dlent.
the system(masses and sizesAs for the shear viscosity Some technical details of the calculations are given in Ap-
coefficient[26], kinetic theory predictions are also comparedP€ndixes B and C. In Sec. IV we present the Monte Carlo
with numerical solutions of the Boltzmann-Lorentz equationSimulation of the Boltzmann-Lorentz equation and compare
by using the DSMC method. In the simulations, the diffusionthe simulation data with the theoretical results obtained in
coefficient is computed from the mean-square displacemerif'® first and second Sonine approximations. Finally, in Sec.
of impurities once a transformation to dimensionless vari-Y We close the paper with a brief discussion on the results

ables allows one to get a stationary diffusion equation. ~ °Ptained in this paper.

Some related papers studying diffusion in a homogeneous
granular gas have bee_n published ear.lier..Thus, Br_iII!antov II. GRANULAR BINARY MIXTURE IN THE
and Pachel [28] obtained the self-diffusion coefficient HOMOGENEOUS COOLING STATE

(when impurities and gas particles are mechanically equiva-

lent particle$ from a cumulant expansion of the velocity ~ Consider a binary mixture of smooth hard spheres of
autocorrelation function, while Brest al.[29] evaluated this massesn; andm,, diameterss; and o,, and interparticle
coefficient in the first Sonine approximation by means of thecoefficients of restitution,;, @y, anda;,= az;,. Here,q;
Chapman-Enskog expansion. In the latter work, the authoris the coefficient of restitution for collisions between par-
also performed Monte Carlo simulations and found a goodicles of species andj. In the low-density regime, the dis-
agreement between theory and simulation. The dynamics dfibution functionsf;(r,v;t) (i=1,2) for the two species are
a heavy impurity particle in a gas of much lighter particlesdetermined from the set of nonlinear Boltzmann equations
has been also studied from the Fokker-Planck equ&8oh  [1]

The predictions of thigasymptoti¢ theory have also been

confirmed by Monte Carlo and molecular-dynamics simula-

tions[31]. More recently, Duftyet al.[32] applied the famil- (F+vy- V) =20 Jy[va|fi(0),f5(D)], 1)

iar methods of linear response theory to get Green-Kubo and !

Einstein representations of diffusion coefficient in terms of

the velocity and mean-square displacement correlation funowahere the Boltzmann collision operatmq[vl|fi fi]is
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R . nient to characterize energy transfer in terms of the cooling
Jiilv4lfi 1fj]:0'i2jJ' deJ' do®(o-912)(0- 912 rates associated with the partial temperatufes They are
defined as
X[ aj ?Fi(r vy O F(r,v5,1)

= fi(rve, Of(rve, )] 2 3nTiL=— f dvm; V23 vl f;]. (10)
J

Here, o= (oi+ 0})/2, o is a unit vector along their line of

centers,® is the Heaviside step function, amg,=v,—Vv,.  The total cooling rate/ can be expressed in terms of the
The primes on the velocities denote the initial val{gsv,}  partial cooling rateg; as

that lead to{vy,v,} following a binary collision:

, ERTORS - =71 T 11
V1=V~ wji(1+ aj Yoo, ¢ EI xiTidi @y
Vo=Vo+ uij(1+ ai]l)(t}-glz)t}, ©) Because of the complexity embodied in the general de-
scription of a binary mixture, here we consider the special
where wi; = m; /(m;+m;). case in which the mole fraction of one of the components

The relevant hydrodynamic fields are the number densitsay, for instance,)lis negligible &,<1). We are interested
tiesn;, the flow velocityu, and the “granular” temperature in studying the diffusion of impurities moving in a back-
T. They are defined in terms of moments of the distributionsground granular gas undergoing HCS. In the tracer limit, one
fi as expects that the state of the granular gsslven) is not
disturbed by the presence of impuritie®lute and so in all
of the following it is assumed that the gas is in its HCS. In
addition, collisions among impurities themselves can be ne-
glected versus the impurity-gas collisions. Under these con-

m, ditions, the velocity distribution functiofi, of the gas veri-
nT= sz f dv—-V2f,(v), (5) fies a (closed Boltzmann equation and the velocity
i 3 o : . " .
distribution function f; of impurities obeys a(linean
Boltzmann-Lorentz equation. Let us start by describing the
state of the system in the absence of diffusion.

ni:defi(V), puzz fdvmini(V)! (4)

where n=n;+n, is the total number densityp=m;n,
+m,n, is the total mass density is the hydrostatic pres-
sure, andv =v—u is the peculiar velocity. Furthermore, it is

convenient to introduce the kinetic temperatufegor each A. Granular gas
species, which measure their mean kinetic energies. They are As said above, the gas is in the HCS. This state corre-
defined as sponds to a homogeneous solution of the nonlinear Boltz-
mann equationf,(v,t), in which all the time dependence
E T M\ 2e occurs through the temperature of the gag$t)=T(t). In
nT,= | dv=V-f;, (6) . ) e
2 2 this case, the time derivative &% can be represented more
usefully as

so that the granular temperatufds

1 9
atfzz_szanzzié'zE/'(sz), (12
T=20 xTi, (7)
where use has been made of the balance equation for the
wherex;=n; /n is the mole fraction of specids temperature
The collision operators conserve the particle humber of
each species and the total momentum but the total energy is T 199T=-¢,, (13
not conserved:
with
f dvd;[vlfi,f;1=0, > f dvmvd;;[v]f;,f;1=0,
1,] 1 5
(8) é’zz - mj dvmzl) Jzz[fz,fz]. (14)
3nT¢= —iEj f dvmV2J;[vIf; ,f;], (9 The Boltzmann equation can be written as

where { is identified as thecooling rate due to inelastic

1 0
collisions among all species. At a kinetic level, it is conve- 2825y (VI2)=Jad 2 To]. (15)
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The second equality in Eq12) follows from dimensional

analysis which requires that the temperature dependence of 1.6
f, occurs only through the temperaturét). Consequently, 14
fo(v,t) has the form »
712
fa(v,)=npm ¥, ¥ ) Dov/vg(t),  (16) Lol
. . Fou=1/4 =172
whereuvo(t) = y2T/m, is the thermal velocity of the gas. So 0.8
far, the exact form ofb, has not been found, although a ol
good approximation for thermal velocities can be obtained 03 04 05 06 07 08 09 1.0
from an expansion in Sonine polynomials. In the leading @
order, @, is given by FIG. 1. Temperature ratig="T, /T vs the coefficient of restitu-
15 tion a= a,= ay, for u=my;/m,=2, w=0,/0,=1 (open circle
e v¥4—Bp*24+ —

e—u*z_ (17) and u=1/4, w=1/2 (filled circles. The lines are the theoretical
results and the symbols refer to the numerical results obtained from
the DSMC method.

The coefficientc, can be obtained by substituting first Eqgs.

(16) and(17) into the Boltzmann equatiofL5), multiplying  different. In other words, the impuritgquilibratesto a com-

that equation by * and then integrating over the velocity. mon HCS with different temperatures for the impurity and

When only linear terms irc, are retained, the estimated gas particles. This implies a breakdown of the energy equi-

Dy(v*)—

1+Z 7

value ofc, is [38] partition. The violation of energy equipartition in multicom-
5 ponent granular systems has been even observed in real ex-
Col )= 32(1—ay)(1-2a3%) 19 periments of vibrated mixtures in twi®3] and three[24]
2 22) —

dimensions.
As for the gas, dimensional analysis requires that the so-
Additionally, the cooling rate, can also be determined from lution to Eq.(20) is of the form
the Sonine approximatiofl?). The result i 38
PP i 138] fa(o,) = 3205 Dy ulvg(). (24

=2\2mn,0500(1— ady) (1+ 5c,). 19
{275 2020017 az))(1%3;¢7) (19 The determination of, to leading order in the Sonine ex-

Estimate(18) presents quite a good agreement with MontePansion has been analyzed elsewhere for arbitrary composi-

Carlo simulations of the Boltzmann equatif8®,40. tion [11] and only the main results are quoted here. In the
first Sonine approximation, the distributiaby, is given by

81— 17a,+30a5,(1—ay) |

B. Impurities
e v * 2'

* 312 Ci o a4 *2 15

In the absence of diffusion, impurities are also in HCS =~ Pa(v™)— 679 1+ 77| 6™ =50v™ "+

and so its velocity distribution functiofy(v,t) satisfies the (25)
Boltzmann-Lorentz equation

where=m;T/m,T is the mean-square velocity of the gas
particles relative to that of the tracer particles. The coeffi-
cientc, in Eq.(25) can be determined by substitution of Egs.
(16) and(24) into Eq.(20) and retaining all terms linear ity
The time evolution ofT y(t) is andc, for the leading polynomial approximatiori7) and
(25). Once the coefficient; is known, one can estimate the

1 0
§§15~(vf1):‘]12[f1,f2]_ (20

T oTi=— 4, (1) temperature ratioe=T, /T from the constraint;={,. The
Where solution to this equation giveg as a function of the mass
ratio u=m,;/m,, the size ratiow=0,/0, and the coeffi-
1 cients of restitutiornw,, anda4,. The explicit expressions of
{=— 3T f dvmyu2d ., f5]. (22 the partial cooling raté, and the coefficient, are displayed
1 in Appendix A.
From Egs(13) and(21) one easily gets the time evolution of ~ Except for some limiting casdglastic case and mechani-
the temperature ratig=T,/T: cally equivalent particlgsour results yieldy#1, and so the
total energy is not equally distributed between both species.
y loy=0—104. (23)  The lack of energy equipartition has dramatic consequences

in the large impurity/gas mass ratio since there is a peculiar
The fact thatf; depends on time only through(t) neces- “phase transition” for which the diffusion coefficient is nor-
sarily implies that the temperature rajomust be indepen- mal in one phase and grows without bound in the oféét.
dent on time, and so Eg23) gives the HCS condition To illustrate the violation of equipartition theorem, in Fig. 1
£1(1)= (1) =¢(t). However, although both components we plot the temperature ratio versus the coefficient of resti-
have a common cooling rate, their partial temperatures araution « for two different casesu=1/4, w=1/2, and u
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=2, w=1. For the sake of simplicity, we have taken a com-to an implicit Vx,; factor. The time derivative is also ex-

mon coefficient of restitution, i.eq@=a;,=a,. We also  panded ag;= ¥+ e+ - - ., where
include the simulation data obtained via a numerical solution
of the Boltzmann equation by means of the DSMC method d9%,=0, dOT=-T¢, (32)

[27]. It is apparent the excellent agreement found between

the theory and simulation, showing the accuracy of the ap- © v.jfb ©

proximations(17) and(25) to estimate the temperature ratio. HX= T G T=0, k=1, (32

We also observe that the temperature of the impurity is larger re

than that of the gas when the impurity is heavier than thgyith

grains of the gas. In addition, the deviations from the energy

equipartition increase as the mechanical differences between (k) )

impurities and particles of the gas increase. As we will show 117= mlf dvvfi®. (33

later, in general the effect of the temperature differences on

the diffusion coefficient is quite important. Upon deriving Eqs(31) and(32), use has been made of the
balance equation&l3) and (27) and the constraint{®=¢,

IIl. DIFFUSION COEFFICIENT =¢. Here,{{" is given by Eq.(22) with f;—f{®).

The zeroth-order approximatidiy® is the solution of Eq.
(20), whose approximate form is given by Eq24) and(25)
but taking into account now the local dependence on the
mole fractionx;. Sincef{® is isotropic, it follows that the
flux of impurities vanishes at this order, i.¢9=0, and so
dMx,=0. To first order ine, one has the kinetic equation

We want to determine the diffusion coefficient of tracer
particles immersed in a granular gas in HCS. The diffusio
process is induced by a weak concentration grad¥ex,
which is the only gradient present in the system. Under thes
conditions, the kinetic equation fdy reads

+v;- = .
(O”t V_‘]_ V)f]_ \Jlivl|flyf2] (26) ﬁgo)fg_l)—‘,—‘_]lifg.l),fz]z—(&gl)—kvlV)fg_o)
Impurities may freely exchange momentum and energy with
the particles of the granular gas, and therefore, these are not - _ (if(o)
invariants of the Boltzmann-Lorentz collision operator Xy
Jid f1,f5]. Only the number density of impurities is con-

vi-VXx;. (39

The second equality follows from the balance equati@2s

served: .
and the space dependencef {3 throughx,. The solution to
V- Eq. (34) is proportional toVx,, namely, it has the form
dny+ =0, 27
! f=A4.Vx,. (35)

where the flux of tracer particlgs is defined as The coefficientA is a function of the velocity and the hy-

drodynamic fieldsx; and T. According to Eq.(31), the time

ji=my f dwvfy(v). (28)  derivatives(®) acting on.A can be evaluated by the replace-
menta{®)— — ¢ Td; where{ is given by Eq(19). Thus, sub-
The conservation equatici27) becomes a closed hydro- stitution of Eq.(35) into Eq. (34) yields

dynamic equation fon; oncej; is expressed as a functional

of the fieldsn,; andT. Our aim is to get the mass flux in the _ _ —

first order inVx,; by applying the Chapman-Enskog method {TorA-Jid AT

[2]. The Chapman-Enskog method assumes the existence of

a normal solution in which all the space and time depen-T0 first order, the mass flux has the struct{#&]

dence off, occurs through the hydrodynamic fields. In the (1)

tracer diffusion problem, this means that Ji’=—mDVxy, (37)

9 40

ax V. (36)

fo(r,v;t)=fi[v|xs(r,t), T(H)], (290  WhereD is the diffusion coefficient. Use of E¢35) into the
definition (33) (for k=1) allows one to identify the coeffi-
where it has been assumed tHatalso adopts the normal cientD. It is given by
form (16). The Chapman-Enskog procedure generates the 1
normal solution explicitly by means of an expansion in gra- _ _j )
dients of the fields D=—3) dw-A (38)

fi=fO+efW+ 2P+ .. (30) For practical purposes, the linear integral equatidé)
can be solved by using a Sonine polynomial expansion. Our
wheree is a formal parameter measuring the nonuniformitygoal here is to determine the diffusion coefficient up to the
of the system. Given that in our problem the only inhomo-second Sonine approximation. In this case, the quamditis
geneity is in the mole fractior,, each factore corresponds approximated by
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A—fiulav+aS(v)], (39

wheref, ), is a Maxwellian distribution at the temperature
T, of the impurities, i.e.,

fiu(v)=n (ﬂ ” Xp — myw* (40
=55 ) e 2T, |’
andS;(v) is the polynomial
Sl(V):(%mlvz_ng)V- (41
The coefficientsa; anda, are defined as
_ M f dwv. A= — 2D 42
=gy, | dw-A=— o (42)
o[ avsw-a 43
a,=— vS,(v)- A.
° 15 niT3

These coefficients are determined by substitution of(B§).
into the integral equatiofB86). The details are carried out in
Appendix B. The second Sonine approximatidp2] to the
diffusion coefficient can be written as

*_% * *_% * /2 *
D[2]=D[1] (Val 4 )[Vd3 {*—=(c/2y)vi ]
(v —30)(vg—38")—vplve — ()]

=D[1]A, (44)
where the functiom’\ can be easily identified from the sec-
ond equality and[ 1] refers to the first Sonine approxima-
tion to the diffusion coefficient. Its expression is

2 Y
D)= e i (45)
Here, vo=n,05v,,
;2 3
* 2 _ 2 .
¢ . zV2m(1-a)| 1+ 32C2>’ (46)

and the quantities} , vy , v%, andv} are given in Appen-

PHYSICAL REVIEW E69, 021301 (2004
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A
1.00

0.96
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FIG. 2. Plot of the functiold=D[2]/D[1] vs the coefficient of
restitutiona for three binary mixturesia) w=1/8 andw=1/2; (b)
u=125/64 andw=>5/4; and(c) u=8 andw=2.

30u’+16p+13

Do[2]=Dg[ 1]
ol 2] =Dl ]3oﬂ2+16p,+12

(48)

Equations(47) and (48) coincide with the ones derived by
Mason[43] for a gas mixture of elastic hard spheres. More-
over, in the case of mechanically equivalent particleg (
=M,, 01=05, ay»p=a,=a), Eq.(45) reduces to the one
derived in the self-diffusion problef29].

The functionA=DJ[2]/D[1] is plotted in Fig. 2 versus
the coefficient of restitutior for three different values of
the mass ratiqe and the size ratiaw. We consider a binary
mixture where the mass density of the impurity is equal to
that of a bath particle and sp,= w®. As in the elastic case,
we see thatA clearly differs from 1 when impurities are
much lighter than the particles of the gas. This means that the
widely used first Sonine approximation is not sufficiently
accurate for this range of values of mass and diameter ratios.
On the other hand, the convergence of the Sonine polynomial
expansion improves when increasing the mass and size ra-
tios, and the first Sonine approximation is expected to be
quite close to the exact value of the diffusion coefficient.
These conclusions are qualitatively similar to those found in
the case of elastic hard-sphere mixtufé4].

To close this section, let us write the diffusion equation.
In the hydrodynamic regiméwvhere the normal solution to
the Boltzmann-Lorentz equation hojdshe diffusion coeffi-
cientD(t) depends on timenly through its dependence on
the temperaturel(t). According to Egs.(44) and (45),
D(t)eyT(t). This time dependence can be eliminated by
introducing appropriate dimensionless variables. A conve-

dix C. Expression(45) coincides with the one previously njent set of dimensionless time and space variables is given
obtained[33,32 from a Green-Kubo formula in the leading py

order in a cumulant expansion.

In generalD[1] andD[ 2] present a complex dependence
on the coefficients of restitution and the ratios of mass and
sizes. Before analyzing this dependence, it is instructive to
consider some special cases. In the elastic limif,€ a4,
=1), one hasc;=c,=0, y=1, and the firstDy[1] and
secondDg[ 2] Sonine approximations to the diffusion coe
ficient become

vo(t)
vo(t)

t
T:f dt’ vo(t’), €= r. (49
0

The dimensionless time scatds the integral of the average

i. collision frequency and thus is a measure of the average
number of collisions per gas particle in the time interval
between 0 and. The unit lengthv o(t)/vo(t) introduced in

3 Jmtm)T the second equality of Eq49) is proportional to the time-
Do[1]= 3 # (47 independent mean free path of gas particles. In terms of the
2momy above variables, the diffusion equati(®i7) becomes
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X 2
—2=D*V,, (50)

whereV§ is the Laplace operator ifi space and

vo(t)D(1)
D* = ] (52 0.5 _ 7
nw3(t) #=2 ol
0'0 PR U U R B | 1 1 1 1
While D(t)«T(t), the reduced diffusion coefficie®* is 0246 81012141618

time independent. This is closely related with the validity of . ) . .

a hydrodynamic description of the system for times large FIG. 3. Plot ofD/D[ 1] as a function of the dimensionless time
compared with the mean free time. In this context, &) 7 for #=2, @=1, anda=0.7, 0.8, and 0.9. Her&,[1] refers to
is a diffusion equation with a constant diffusion coefficient the first Sonine approximation to the elastic value of the diffusion
D*. It follows that the mean-square deviation of fhasition  coefficient.

€ of impurities after aime interval 7 is [42] , ) , )
Here,|r;(t)—r;(0)| is the distance traveled by the impurity

_ 2\ _eap* from t=0 until timet, t=0 being the beginning of the sec-
{[€(n)= €O =6D"r. 52 ond stage. In addition;, - - ) denotes the average over tRe
impurities andAt is the time step. In our simulations we

ave typically taken 10 particles of the granular gas, 5
x 10* impurities, and a time stept=3x10"*\/v,, where
6D(1) A= (\27n,0,) "1 is the mean free path for collisions among
(53) granular gas particles. The results are averaged over a num-
ber of /=5 replicas.
) ) ) ] ) o If the hydrodynamic descriptiofor normal solution in the
Equation(53) is the Einstein form, relating the diffusion co- cgontext of the Chapman-Enskog methagplies one expects
efficient to the mean-square displacement. This reIationshighat, after a transient regime in which each gas particle has

will be used later to measure the diffusion coefficient bycqiided about five times, the reduced diffusion coefficient
means of the DSMC method.

Restoring the dimensions to the average position and tim
Eqg. (52) can be rewritten as

J 2\
Sr-r()2)= ==,

D(t)  16V7m|o1p\? o
IV. COMPARISON BETWEEN THEORY AND MONTE D [1](,[) = 3 — D (55)
CARLO SIMULATIONS 0 02/) o

The adaptation of DSMC method to analyze binary granuzchijeves a time-independent plateau. This is illustrated in
lar mixtures has been described in detail in previous workgsig. 3 for a system withu=2, w=1, and three values of
(see, for instance, ReffL6]), so that here we shall only men- :4,=0.7, 0.8, and 0.9. The dimensionless time scalis
tion the aspects related to the specific problem of diffusion ofjefined in Eq.(49) and measures the average number of
impurities in a granular gas under HCS. The main differencyllisions per gas particle, which is of the same order as the
between the procedure used here and the one described dgrresponding value for impurities. We observe that after
Ref. [16] is its restriction to the tracer limitx,—0). Be-  several collisionsD/D[ 1] reaches a stationary value whose
cause of this, during our simulations collisions 1-1 are nokjme average is the simulation result for threduced diffu-
considered, and when a collision 1-2 takes place, the postigon coefficient.
collisional velocity obtained from the scattering rule is only  The steady state values BiiDy[ 1] obtained from simu-
assigned to the particle 1. According to this scheme, thgation data(which are calculated by averaging over a time
numbers of particledN; have simply a statistical meaning, periog can be compared with the theoretical predictions
and hence they can be c_hosen_arbltrarlly. S D[2]/Dy[1], Eq. (44), andD[1]/Dy[1], Eq. (45), for dif-

In the course of the simulation one can distinguish tWoferent values of the parameters of the system. As in the pre-
stages. In the first one, the systéimpurities and gas par- \jgys figures, we assume thag,= a;,= @ so that we reduce
ticles) evolves from the equilibrium initial state to the HCS. he parameter set of the problem to three quantities:
In the second stage, the system is assumed to be in the HC{%,M,w}_
and then the kinetic temperaturé€gt) and the diffusion co- Let us consider first the self-diffusion casg £ w=1).
efficient D(t) are measured. The latter is obtained from theas said above, this special situation was studied by Brey
mean-square deviation of the position of impuritiid. et al.[29] analytically (up to the first Sonine approximatipn
(53], i.e., and by computer simulations. Figure 4 shows the reduced

diffusion coefficientD (a)/Dg[ 1] as a function of the coef-
2 2 ficient of restitution« as given by the first Sonine approxi-
[(Iri(t+ A0 =ri(0)F) =(Iri(t) =ri(O)[]. mation (dashed ling the second Sonine approximation
(54) (solid line), and Monte Carlo simulationgsymbols. Al-

n;

D(U= At
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FIG. 4. Plot of the reduced self-diffusion coefficidmDy[ 1] as

; " . . . FIG. 6. Plot of the reduced diffusion coefficieBtDy[ 1] as a
a function of the coefficient of restitutionr as given by the first

Soni imatiofdashed ling th d Soni ) function of the size rati@ for «=0.7 andu=1/4. The dashed line
onine approximatiofdashed ling; the secand Sonine approxima- refers to the first Sonine approximation, the solid line corresponds

tion (solid ling), and Monte Carlo simulationgsymbol3. Here, to the second Sonine approximation while the symbols are the re-

Dg[1] refers to the first Sonine approximation to the elastic valuesults obtained from Monte Carlo simulations. Heg[ 1] refers to

of the self-dl_ffusmn coefficient. The dqtted line cc_)rres_ponds to thethe first Sonine approximation to the elastic value of the diffusion
results obtained for the second Sonine approximation when

ON&oefficient.
takesc,=c,=0.

though the agreement between the first Sonine approximas-oni”e approximations to the reduced diffusion coefficient
tion and simulation is quite good beyond the quasielasti®(¢)/Dol1]. Here, we taker; =0, and @=0.7. We find
limit (say, for instancea=0.8), discrepancies between both that, for fixedw and @, the second Sonine approximation
results increase as the value @fdecreases. This tendency D[2] differs from the first Sonine approximatid 1] as u

was also observed in the comparison made in f&g). We IS varied. For the case considered in Fig. 5, we see that

observe that the agreement between theory and simulatiddl2]>D[1] if ©=0.45 whileD[1]>D[2] otherwise. The
improves over the whole range of values @fconsidered Ccomparison with simulation data shows again that the theo-

when one takes the second Sonine approximation. For irf€tic@l predictions are improved when one considers the sec-
stance, fora=0.5 the first and second Sonine approxima-oNd Sonine approximation, showing an excellent agreement
tions to D differ by 4.7% and 1.2%, respectively, from the P€tweenD[2] and Monte Carlo simulations in the range of
value measured in the simulation. We have also included@lues ofu explored. Similar conclusions are found with
(dotted line the result obtained for the second Sonine ap-espect to the variations @ (a)/Do[1] on the size ratiay
proximation toD(@)/D[1] if the distribution functions of &t fixed values ofx anda, as shown in Fig. 6 for=0.7 and

the granular gas, and impuritiesf(l‘” at zeroth order were &= 1/4. Differences between both Sonine approximations

both approximated by Gaussians, i.e., when one formall® egpeciallyimportant for smallvalue_S(o.fIn.this region,
putsc,=c,=0 in Eq.(44). We observe that the influence of the discrepancies betwedd[2] and simulation data are

these Sonine contributions to the self-diffusion coefficient isS!'ghtly larger than the ones found before in Fig. 5 for the
negligible, except for quite large values of dissipation. mass ratio. This means that perhaps the most significant

Consider now the situation in which impurities and par_variations of the ratid[2]/D[ 1] occur when the size ratio

ticles of the gas can differ in size and mass. First, in Fig. 5 IS varied at fixedu. o
we analyze the effect of the mass ratio on the accuracy of the Finally, we explore the influence of dissipation on the two

first Sonine approximations at fixed valuesofand w. Ac-

14 cording to Fig. 2, it is apparent that the deviations /of
sk =D[2]/D[1] from unity are important for small values of
’ the mass ratio and/or the size ratio. In fact, for elastic mix-
—12 tures @=1), A=1.069 for the case{u=1/8w=1/2,
Sl while A=1.00049 for the symmetric casg.=8,0=2}.
&) This clearly shows that in the elastic case the second Sonine

approximation significantly differs from the first one for
small values ofu and w (Lorentz gas limit, while both
approximations practically coincide whenandw are much
larger than 1(Rayleigh gas limit In the former case, where
the tracer diffusion coefficient can be obtained exactly, the
first and second Sonine approximationsDiaiffer by 13%

FIG. 5. Plot of the reduced diffusion coefficiebDy[ 1] as a . " .
function of the mass ratig for =0.7 andw=1. The dashed line and 5%, respectively, from the exact value of the diffusion

refers to the first Sonine approximation, the solid line correspond§0€fficient[44]. Here, we want to analyze the influence of

to the second Sonine approximation while the symbols are the reh€ inelasticity on the trends already observed in ordinary
sults obtained from Monte Carlo simulations. Hebg[ 1] refers to  fluids. In order to assess this effect, it is convenient to reduce

the first Sonine approximation to the elastic value of the diffusionthe diffusion coefficientD(«) with respect to its elastic
coefficient. value D(1) consistently obtained in each approximation.

021301-8
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8 T T . . T third Sonine approximation to provide an accurate estimate
=8 w2 for the diffusion coefficient.
~~ 6 i ]
— V. DISCUSSION
3
4 K i In this paper we have analyzed the diffusion of impurities
in a dilute granular gas undergoing HCS. This is the simplest
2b Tl DN . example of transport in eulticomponengranular gas, since
, . . L the gas is in a homogeneous state while diffusion appears by

the presence of a weak concentration gradient, which is the
only gradient present in the system. Here, the diffusion co-
FIG. 7. Plot of the reduced diffusion coefficieb{«)/D(1) as  efficient D has been computed by combining two comple-
a function of the coefficient of restitutioa for x=8 andw=2. mentary approaches: a Chapman-Enskog solution to the
The dashed line refers to the first Sonine approximation, the soli®oltzmann-Lorentz equation and numerical solutions of the
line corresponds to the second Sonine approximation, while thgame equation by means of the DSMC method. As in the
symbols are the results obtained from Monte Carlo simulations. The|astic case, the diffusion coefficiebt is given in terms of
dotted line is the first Sonine approximation by assuming the equakhe solution of an integral equation, E(R6). A practical
ity of the partial temperatureg=T,/T=1. Here,D(1) refers to  eyajuation ofD is possible by using a Sonine polynomial
the elastic vqlue pf the diffusion coefficient consistently obtained 'nexpansion and approximate results ac limited to weak
each approximation. inelasticity. Here, we have determind in the first (one
Sonine polynomial and secondtwo Sonine polynomials
Thus,D(1)—Dy[1], Eq. (47), when one considers the first Sonine approximation as a function of the temperature and
Sonine approximation, whil® (1)—Dg[ 2], Eq.(48), when the different mechanical parameters of the system, namely,
one considers the second Sonine approximation. Simulatiotie (constank coefficients of restitution for the impurity-gas
data will be also reduced with respect to the elastic valu@nd gas-gas collisions, the masses and the particle sizes. Our
measured in the simulation. Figure 7 shoéa)/D(1) for  study complements and extends previous works on diffusion
n=8 and w=2 while Fig. 8 showsD(«)/D(1) for x  in undriven granular gases in the cases of self-diffusion
=1/8 andw=1/2. The first finding is that the conclusions [29,34 and Brownian motiorf{30,31], and provides an ex-
obtained in the elastic case on the convergence of Soninglicit expression of the coefficied® beyond the first Sonine
polynomial expansion are kept at a qualitative level forapproximation25,32,33.
granular gases: the Sonine polynomial expansion exhibits a Comparison between simulation data and theory shows
poor convergence for sufficiently small values of the masghat in general the second Sonine approximafigr2] im-
ratio u and/or the size rati@, while this convergence im- proves significantly the predictions of the first Sonine ap-
proves significantly ag. and/orw increases. As a matter of proximationD[1], especially for values of the mass rafio
fact, Fig. 7 shows that both Sonine approximations are pracand/or the size ratiao smaller than 1. For this range of
tically indistinguishable and present an excellent agreemenialues of x and w (see, for instance, Fig.)8ne should
with simulation data. This is not so in the case of Fig. 8,consider higher-order polynomial terms to get a quantitative
where only the second Sonine approximatiotexhibits a  good agreement with Monte Carlo simulations. However, the
qualitative good agreement with simulation results. As in theconvergence of the Sonine polynomial expansisee, for
elastic casg44], one perhaps would have to consider theinstance, Fig. ¥improves with increasing values pf and w
and the first Sonine correction seems to be quite close to the
exact value. These trends are quite similar to those previ-
ously found for ordinary fluid mixturef4].

1.05 N T T T T T

0.85

FIG. 8. Plot of the reduced diffusion coefficieb{ «)/D(1) as
a function of the coefficient of restitutioa for ©=1/8 and w

1

1

I

06 07 08 09
o

Apart from extreme mass or size ratios, our results show
again that the accuracy of the Sonine polynomial solution for
granular systems is similar to that for elastic collisions. Pos-
sible discrepancies between theory and simulation can be
removed by retaining higher-order Sonine corrections. On
the other hand, as in all previous studj@6,29,31,34, the
good agreement found here over quite a wide range of values
of the coefficient of restitution and mass and size ratios is an
additional evidence of the validity of the hydrodynamic de-
scription to analyze some states of granular fluids.

One of the main features of our theory is that it incorpo-

=1/2. The dashed line refers to the first Sonine approximation, théates the effect of energy nonequipartition on diffusion. This
solid line corresponds to the second Sonine approximation, whil€ffect had already been considered in some previous studies
the symbols are the results obtained from Monte Carlo simulationd.25,26,30,32,3B To assess this effect on the diffusion coef-
Here, D(1) refers to the elastic value of the diffusion coefficient ficient D, in Fig. 7 we include for comparison the result for

consistently obtained in each approximation.

D[1] with x=8 and w=2 that would be obtained if the
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mann and the Boltzmann-Lorentz equation can be directly
translated to the Enskog equation. To illustrate the influence
of the density on the predictions previously made for a dilute
gas, in Fig. 9 we ploD/D (1) as a function of the coefficient
of restitution foru=7%, w=3, and a solid volume fraction
¢$=0.2. As for a low-density gas, the second Sonine ap-
proximation clearly improves the results obtained from the
first Sonine approximation. We see that the second Sonine
approximation compares very well with simulation data, ex-
cept for quite large dissipatiorv=0.5).
FIG. 9. Plot of the reduced diffusion coefficied(a)/D(1) as In summary, there is growing theoretical support for the
validity of hydrodynamic transport processes in granular flu-

a function of the coefficient of restitutioar for u=1/4, w=1/2, ds. H . ded i |ati -
and ¢=0.2. The dashed line refers to the first Sonine approxima-I s. However, some care Is needed In translating properties

tion, the solid line corresponds to the second Sonine approximatiorp,f nor_mal fluids to those_WIth '”e'aSt'P _CO"'S'OnS' As seen
while the symbols are the results obtained from Monte Carlo simul€re, in the case of the diffusion coefficient, the mass trans-

lations. HereD(1) refers to the elastic value of the diffusion coef- POrt is strongly influenced by dissipation and this depen-

D/D(1)

ficient consistently obtained in each approximation. dence may be of some relevance in sedimentation problems,
for example.

differences in the partial temperatures were neglected (

=T). Clearly, inclusion of this effect makes a significant ACKNOWLEDGMENTS

difference over the whole range of dissipation considered K ledae th il f the Ministerio d
(for instance, the actual value ¢fis y=2.35 for«=0.8). We acknowledge the partial support of the Ministerio de

The results derived here are restricted to the Iow-densitg'enCla y Tecnolog (Spain through Grant No. BFM2001-
regime, small gradient in the concentration gradient, and to 3/ 18 (V.G.) and Grant No. ESP2003-02853.M.M.).
system in the HCS. The HCS is known to be unstable under

long wavelength perturbations or fluctuatidd®], with the APPENDIX A: EXPLICIT EXPRESSIONS OF ¢; AND ¢,
critical wavelength\ =2\ n/2{, wherey is the shear vis-
cosity of the granular gas. Thus, our expression for the dif
fusion coefficient is only meaningful if the time for instabil- were obtained in Ref.11] for arbitrary values ok,. Here
ity is longer than the few collision times required to reach theWe will display both expressions in the tracer Iim'@—>0.,
hydrodynamic regim_e.At low density this is clearly the Case rhe cooling ratez; is defined by Eq(22). By using the
even at strong dissipation, as demonstrated by both Mont@ading Sonine approximatiorid7) and(25) and neglecting

Carlo and molecular-dynamlcs simulatiop9]. With re- nonlinear terms irc, andc,, ¢, can be written a§l1]
spect to the extension to dense gases, the Enskog equation

provides a useful generalization of the Boltzmann equation {1=N10tN11C1+ N qoCo, (A1)
to higher densities for a gas of hard spheres. Applied to the

diffusion of impurities in a granular fluid in the HCS, the where

only difference between the Boltzmann equati¢hs) and 8 L\ 102

(26) and their corresp_ondlng Enskog cqunterparts is the pres- N1o= —\/;nszizvo#n(—) (1+ ayy)

ence of the factorg,, in Eq. (15) and 4, in EqQ. (26), which 3 0

are the configurational pair correlation functions for the

In this appendix, we will quote the expressions of the
partial cooling rateZ; and the coefficient;. These results

fluid-fluid and impurity-fluid pairs at contact, respectively. A x| 1— '“_21(1+a12)(1+ o), (A2)
good approximation for these functions is provided by the 2
extended Carnahan-Starling fof#6] 1 , (14 )2
1 7\11:1—2\/;"120'1200#217(1"‘ 1))
1- Ed)
Xzzzm, (56) X[2(3+46)=3uxn(l+ap)(1+6)], (AI)
1 -3/2
1 3 ¢ o 1 ¢ [oq\? Np=— 1—2\/;7120'%200,“«21( P ) (1+ag)
e B e avre Bt IR <1/
¢ (1-¢)2 012 2 (1—¢)3\ 012

where ¢=(7/6)n,o3 is the solid volume fraction. Accord-
ing to Egs.(56) and (57), the correlation functions have the
same density dependence only when the size ratio is equal to
1. Given that the fluid is in a homogenous state, it follows 8 ( mf J £ 0) )

dvo*fy/— —

Here, 6=m;T/m,T;=u/y with u=m,/m, and y=T,/T.
The coefficientc, is defined by

that x,, and y,, are uniform. Thus, it is evident that, when 01:1—5
properly scaled, the solutions obtained here for the Boltz-

(A5)
4n,T?
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This coefficient is detemined by substitution of E¢fs7) and
(25) into the Boltzmann-Lorentz equatid20), multiplying
that equation by*, and integrating over the velocity. When
only linear terms irc; andc, are retained, the result is found
to be[11]

15 uf,
2 92

51(1"' =040+ Q1€+ Q4C,,  (AB)

where

( ) 1/2

Q0= 2\mn,03woud (1+a)[—2(6+50)

+ paa(1+ gp) (14 60)(14+50) — 8uby(1+ agp)?

X (14 0)2+ 2u3,(1+ a12)3(1+ 6)°%], (A7)

J

(1 0) 52
Q11:? nZO'iZUO/U“%Z/U“Zl—

X[ —2(90+ 2319+ 1846°+ 406°)
+ 3011+ a10) (1+ 6)(70+ 1176+ 446°)
—24u5\(1+ 1) X(1+ 0)%(5+40)

+30u31(1+ a1p)*(1+6)%], (A8)

( 1+ 0) 5/2

\m (1+a)[2(2+56)

2 2
9122?%0'1200#12#21

+3up(1+ @) (1+ 0)(2+560) — 24u3,(1+ aq,)?

X (14 0)%+30ud(1+ a10)3(1+ 6)°]. (A9)

The final expression of; is obtained by substitution of Eq.
(A1) into Eq.(A6) and neglecting nonlinear terms @3 and
C,. The result is

2
Aot A1Cot 1_5:“122‘92(910+ 04,C5)

= . (A10)

1 2,5

Mot Mt gm0 Q4
Once the coefficient; is given in terms ofy and the

parameters of the mixture, the temperature ratican be

explicitly obtained by numerically solving the condition for
equal cooling rates:

Mot A€+ N 1Co= {5, (A11)
where(, is given by Eq.(19).
APPENDIX B: FIRST AND SECOND
SONINE APPROXIMATIONS

In this appendix we determine the coefficieatsanda,

in the first and second Sonine approximation. Substitution ofere, {* ={/vq, vi=

Eqg. (39) into the integral equatiof36) gives

PHYSICAL REVIEW E69, 021301 (2004

—{Tar(arfymv+asfiuS)—agdid fiuv,fs]

)
— a1 fimS,fol=— a_xlfl V. (B1)

Next, we multiply Eq.(B1) by m;v and integrate over the
velocity. The result is

(—§T(9T+ Va)n1T1a1+ anlVbazz _nle. (BZ)
Here, =, is given by Eq.(19) and we have introduced the
quantities

va= (B3)

my
~3n 1T1f dvv-Jiffymv,fal,

vp=— (B4)

_y [ avv-aud fauss.fo).

From dimensional analysi¥;a;~T'? so the temperature

derivative can be performed in E(B2) and the result is

(va— (B5)

wherex;=ny/n,. If only the first Sonine correction is re-
tained(which meansa,—0), the solution to Eq(B5) is

1 -1
st vpar=—x;°,

ay[l]=- (B6)

Here, a;[1] denotes the first Sonine approximation ag.
Equation(B6) leads to the expressidd5) for the diffusion
coefficient D[ 1] when the second equality in E¢g42) is
considered.

To close the problem, one multiplies E@®2) by S;(v)
and integrates over the velocity. Following identical math-
ematical steps as those made before, one gets

1 ¢
a2=__

2 X1, (B7)

(ve—{TyHag+

3
w—ié

where ¢, is given by Eq.(A10) and we have taken into
account thaf3a,~T%2 Moreover, we have introduced the
quantities

2ml

Ve=— desl Jad Fimvifal,

(B8)

2
TS l'|'3

T avsiadfsitl @9

In reduced units and by using matrix notation, E@b) and
(B7) can be rewritten as

I ( )— ( 1) (810
-y v i ci2y)

valvg, v =vplTrg, vi=Tv/v,
and v = vy/ vy with vo=n,o3v,. Further,al =x,vqa; and

ay

a;
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a> =x,Tvpa,. The solution to Eq(B10) provides the ex- already determined in Ref25] for arbitrary composition.
plicit expression of the second Sonine approximatgi2] For the sake of completeness, we display now their explicit

to al: expressions in the tracer limitx{—0). In reduced units,
they are given by
* _ 1 ok * 3 * _(cq/2 V*
a’{[z:l:ai[l] (Va 2§ )[Vd3 2§ ( 1 7) b] . \/_ 1. 1+ 6 1/ 1_2 0 2
(v3 = 30) (W5 =30%) = v w5 = (£*19)] ol 22| (1 v 55 16\1+6) |
(B11) (CY
Equation (B11) yields directly the expressiof¥4) for the 4 12| o1 3\ 12
second Sonine approximatid@ 2]. *
pp @[ 2] v =1E W/m( ) (1+aw)| 55| A (C2
APPENDIX C: EVALUATION OF THE COLLISION 32
INTEGRALS * 0 1+o
d:—\/—le (1+a12) 179 |\ A5 A
In this appendix we evaluate the quantities, v,, v., (C3

and v, defined by the collision integralB3), (B4), (B8),
and(B9), respectively. Three of thenv, v, andvy, were  where

Ac=5(1+28)+ uo(1+ O)[5(1— arp) — 2(Ta,— 1) BO 1]+ 18820 1+ 2u5,(2a%,— Ba,+4) 61 (1+ 6)?

—5071(1+6)+ 16( {39 (1t ar)[4po(1+ arp) =51+ 0Quad 7 ppi(1+ aqp) —5]

+ potl —5(9+ 7 agp) + por(38+ 62a1,+ 24a,) 1) — 15+ 54u3,— 20u21(3+ ayp) + 2u5,(40+ 19+ 6aiy)
+ 21 pp1(61+ 7y~ 20) 13, (C4
1+6\? ) )
=2u5)| ——| (202~ Ba1p+4)(8+560)— w1+ 0)[2B60 2(8+560)(Tar,—11)+260 (29 1,— 37)— 25(1— ay,)]
+18320—2(8+5a)+2ﬂa‘1(25+660)+50—1(6+110)—5(1+ 6)0~%(6+56)
C
+ 1—2(1+ 0) " 2{156% tp1( 1+ a1)[ Apor( 1+ a1p) — 5]+ 2(45+ 540u2 7+ 1621 a1o— 36) + 4u3,(134+ 5y o+ 6a2,)

— A1 148+ ppy(Tao— 263 1)+ 02(— 30— pupq( 267+ 21701 p) + 145,17+ 291+ 1202,
+ 10014 7 poa( 1+ @) = 51)+ 6(— 315+ 270u,~ 21595515+ 57) + u3,( 440+ 3261+ 156a7))
+2p1d =2+ pon(T g+ 277)])} (C5)

In the above expressiong= w1,— w16, andc, andZ* are
given by Eqs(18) and(46), respectively.

It only remains to evaluate,,, which is defined by the
collision integral (B4). To simplify the integral, a useful andg=v;—v, is the relative velocity. Use of E4C6) in Eq.

Vi=V;— us(1+ag)(o-g)a, (C7

identity for an arbitrary functior(v,) is given by (B4) gives
dvih(vy)Jifvylfy,f5] m
f Vbzz_la'izlizl(l"' alz)f dVlJ' dvogfym(ve)fa(vy)
6 nT, ’
:‘Tizf dvlf defl(V1)fz(V2)f do®(o-g)(o-9) X[S,(v4)-g]. (C8)
X[h(v])—h(vy)], (C6)

Substitution of the distribution functiof, from Egs. (16)
with and(17) gives
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@

X(0vF2—3)(g* -vY), (C9

wherev* =v/v, and g* =g/vy. The integrals appearing in
Eqg. (C9) can be evaluated by the change of variables

PHYSICAL REVIEW E59, 021301 (2004

X=Vi —V5, y=6vi+Vv3, (C10
with the Jacobian (% ) 3. The integrals can be easily per-
formed and the final expression for the dimensionless quan-

tity vg =vp/Trg is

2 012 2 _
V§=§\/;M12( , (1+app)[63%(1+6)] 2

o

2

X . (C1D)

3
1+EC2(1+9
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