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Time correlation functions of hard sphere and soft sphere fluids
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We explore the transition between soft particle fluids of increasing steepness to the hard sphere limit. We
analyze the analytic forms of the time correlation functions used in determining transport coefficients in
Green-Kubo formulas for fluids composed of particles interacting through a repulsiver 2n potential. We focus
on the steeply repulsiven→` limit where the potential tends to the hard sphere interaction. Dufty@Mol. Phys.
100, 2331 ~2002!# developed a theoretical framework that can be used to characterize the transition from a
steeply repulsive continuous potential toward the hard sphere potential for the shear stress time correlation
function. This function was shown to consist of a rapidly decaying contribution~which is singular in the
steeply repulsive limit! and a slowly decaying nonsingular part which can be reasonably well represented by
Enskog’s prediction on times of order and in excess of the mean collision time. We extend this treatment to the
bulk viscosity and thermal conductivity. We focus on the bulk viscosity~pressure! correlation function as it is
purely singular for hard spheres, and has no kinetic or cross term contributions in this limit. There is no
relaxation of this correlation function on the mean collision or Enskog time scale for hard spheres. We show
that it is not possible to represent the steeply repulsive behavior of this functionentirely in terms of a sech
function, i.e.,CB(t)5sech(ant/tn), wherean is a numerical factor,t is time, andtn is a relaxation time
proportional ton21. An additional singular function, which we callw(t), is required to obtain the correct
short-time behavior ofCB(t) and the Enskog value for the bulk viscosity. With this additional function, the
value ofan in then→` limit is an5A2 which is consistent with the second moment of the time expansion of
the time correlation function. We compute this function for largen and extrapolate it ton→`, determining one
possible analytic form. The shear stress correlation function also givesan5A2 in the hard sphere limit for the
singular part when the sech andw functions are used. This function has a nonsingular component, even in the
hard sphere limit. We explore various forms for the crossover functionX(t/tn) introduced by Dufty, which
weights the limiting singular and nonsingular contributions toCS(t) particularly at intermediate times. The
qualitative behavior for the heat flux time correlation function~used to obtain the thermal conductivity! is
much the same as the shear case. Thew(t) derived by several self-consistent extrapolations appears, within the
simulation statistics, to be the same for the bulk and shear viscosity, and for the thermal conductivity cases.
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I. INTRODUCTION

The hard sphere fluid composed of particles interact
with the hard sphere potential,

f~r !5H `, r<s

0, r .s,
~1!

has proved an invaluable reference fluid for the structu
thermodynamic, and dynamical properties of molecular a
even colloidal liquids. Its popularity lies in its simplicity
which makes expressions for the structural and thermo
namic properties often more analytically tractable. The th
modynamic properties of the hard sphere system can be
rived often with excellent accuracy at equilibrium flu
densities using the Carnahan-Starling equation of state@1#,
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whereP is the pressure of a pure hard sphere fluid or
osmotic pressure of a colloidal ‘‘hard sphere’’ liquid of suc
particles,r5N/V, the number density ofN spheres in vol-
ume V; and b51/kBT with kB Boltzmann’s constant andT
the temperature. Ifg(r ) is the radial distribution function@2#
thenZ can be written in terms of its value at contact,

Z511
2ps3r

3
g~s1!5114zg~s1!, ~3!

whereg(s1) is the value ofg(r ) at contact,r 5s1, where
s15s1d for d.0 andd→0. The packing fraction of hard
spheres isz5prs3/6. Then from Eqs.~2! and~3! we have,

g~s1!5
12z/2

~12z!3
. ~4!
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For simplicity of notation we well replaces1 by s hence-
forth.

However, we note that the hard sphere potential is disc
tinuous and nondifferentiable, and strictly speaking no r
system can interact with a potential having this form. A co
sequence of the form of Eq.~1! is that the time correlation
functions and hence the transport coefficients~using the
Green-Kubo formulas@2#! are at least, in part, singular, a
discussed recently by Dufty for the case of the shear visc
ity @3#. Although the Green-Kubo~GK! formulas are often
used to obtain transport coefficients from appropriate ti
correlation functions in molecular dynamics, the impulsi
nature of the hard sphere potential and the resulting sin
larity in some of the time correlation functions causes
GK approach to be difficult to implement directly. Alde
et al. @4# used a mean square displacement alternative to
to obtain the shear and bulk viscosity, and thermal cond
tivity for hard spheres. This approach has been more rece
discussed by Erpenbeck@5#, and applied to continuous po
tential systems@6#.

One can observe the onset of this singularity in a prog
sively systematic way by carrying out molecular dynam
simulations on a fluid with particles interacting via a contin
ous repulsive potential that can be forced to approach
hard sphere interaction by adjustment of one of its dispos
parameters. For example, for a potential of the form

f~r !5e~s/r !n, ~5!

wheree ands set the energy and length scales of the int
particle interaction, asn→` this potential tends to the har
sphere potential of Eq.~1!. In a series of publications, som
of the statistical mechanical foundations of the time corre
tion functions of this fluid in the steeply repulsive limit hav
been established@7–11#. The shear viscosity was considere
first @7,8#, and then the bulk viscosity@9#. This treatment was
extended to the heat flux autocorrelation functionCT(t)
which gives the thermal conductivity in a Green-Kubo fo
mula @10#. The main conclusion is that the effects of th
‘‘stiffness’’ ~i.e., the value ofn here! on the short-time part o
the time correlation functions can be accounted for by
‘‘renormalization’’ of the actual time by multiplication by th
exponentn which measures the stiffness of the potential. W
have shown that all of these many-particle correlation fu
tions scale well according tont up to timesnt;1 at least,
and that they are, in part, singular att50 in the infiniten
~the hard sphere! limit. Certain properties~such as the pres
sure and transport coefficients! are hardly distinguishable
from those of hard spheres if the repulsion or stiffness
rametern exceeds about 72. While other properties such
the potential energy, infinite frequency elastic moduli, a
the associated ‘‘viscoelastic’’ relaxations~as characterized by
the time correlation functions! are highly stiffness dependen
Therefore, as the hard sphere limit is singular for some
these properties, it is important to establish how this limi
approached. We focus here on the time correlation functi
used in the Green-Kubo formulas to calculate the trans
coefficients.
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II. THEORY

Consider a collective property transport coefficientx rep-
resenting either bulk or shear viscosity, or the thermal c
ductivity. The Green-Kubo formula for this quantity is

x5AE
0

`

^B~s1t !B~s!&sdt, ~6!

where^•••&s is a time correlation function averaged over
sampling times which is also the simulation time in practice
The propertyB would be the shear stress for the shear v
cosity, P(t)2^P& for the bulk viscosity@P(t) is the instan-
taneous pressure and^P& is the average pressure#, or the heat
flux for the thermal conductivity. The constantA is a simple
function of numerical prefactors and basic constants suc
the volume of the system (V), the temperatureT, and Bolt-
zmann’s constantkB . It is convenient to define a normalize
time correlation function

C~ t !5^B~s1t !B~s!&s /^B2~s!&s , ~7!

which has the useful property in the present context t
C(0)51. Substitution of Eq.~7! in Eq. ~6! gives

x5C`E
0

`

C~ t !dt, ~8!

where

C`5A^B2&. ~9!

For the shear stress correlation function,C`[G` @9#, the
infinite frequency shear rigidity modulus, for the pressu
correlation function,C`[K`2K0, the difference between
the infinite frequency and zero frequency bulk moduli@9#.
For the heat flux correlation function,C`[M` , the so-
called ‘‘thermal modulus’’ which was derived in Ref.@10#.
Equation~8! gives x5C`t wheret5*0

`C(t)dt is a relax-
ation time, which is of the form proposed by Maxwell for th
shear viscosity of gases@12#. For the collective quantity
properties that we deal with here,C(t) can be decompose
into a separate function derived entirely from the interact
potential, another which is purely kinetic, and another tha
a mix of kinetic and interaction parts. We refer to these co
tributions to the correlation function, and the derived tran
port coefficient, ascc, kk, andkc.

In the steeply repulsive limit we follow Dufty@3# and
separate the time correlation functionC(t) into a rapidly
decaying partC1(t) which is a strong function ofn and
C2(t) which is more slowly decaying and relatively weak
sensitive ton, if at all. Dufty made an important contributio
@3# in writing for the shear stress correlation function,

C~ t !5C1~ t !1C2~ t !.sech~ant/tn!1C2~ t !. ~10!

C1(t) is singular because in then→` limit, its unnormal-
ized form diverges in height as a Diracd function. The non-
singular partC2(t) is such that in then→` limit and again
unnormalized, it tends to a constant function. We alrea
know from these previous studies that in the steeply rep
2-2
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sive limit the relaxation timetn for these functions is;n21

andC2(t) decays on the mean collision~Enskog relaxation!
time, respectively, for the three transport coefficients@7–11#.
The analytic form forC1(t) is not known exactly but a sec
function has been shown to represent these correlation f
tions quite well @9,10# and has the necessary property
giving the exact second frequency moment of the expan
provided thatan5A2. In the steeply repulsive limit we ca
replaceC2(t) at long times by the Enskog prediction for an
nonsingular partCE(t) divided byC` . @Note thatC2(0) is
finite.# These requirements in the various limits sugges
plausible generic form forC(t),

C~ t !.sech~ant/tn!1
X~ t/tn!

C`
CE~ t !, ~11!

where X(x) is a ‘‘crossover’’ function with the propertie
thatX→0 for x!1 andX→1 for x@1, and Dufty proposed

X~x!5S x2

11x2D 2

. ~12!

TheC` for the bulk and shear viscosity and thermal cond
tivity all diverge as ca.n in the steeply repulsive limit~see
below!. For the infinite frequency elastic shear modulusG`

@13#,

G`5rkBT1
2pr2

15 E
0

`

drg~r !
d

dr
~r 4f8!, ~13!

wheref8[df/dr. The infinite frequency shear modulus fo
this soft potential is obtained by substituting Eq.~5! in Eq.
~13!, giving the exact relation

G`2rkBT5 1
5 ~n23!~P2rkBT!, ~14!

where the pressureP is given by the virial expression

P2rkBT5
2p

3
r2E

0

`

r 2g~r !~2rf8!dr. ~15!

In the largen limit we can write down an approximate ye
accurate expression forG` by ‘‘replacing’’ the real soft-core
fluid by an equivalent hard sphere fluid with an effecti
hard sphere diametersH @14#. In the steeply repulsive limit
(P2rkBT) in Eq. ~14! can then be accurately approximat
by that of hard spheres, (PH2rkBT), using the Carnahan
Starling hard sphere equation of state@1#. The result is

PH2rkBT5
24

p

kBT

sH
3

zH
2 ~12zH/2!

~12zH!3
, ~16!

where zH[pNsH
3 /6V is an effective hard sphere packin

fraction. Substituting Eq.~16! in Eq. ~14! gives

G`2rkBT.
1

5
~n23!

24

p

kBT

sH
3

zH
2 ~12zH/2!

~12zH!3
. ~17!
02120
c-

n

a

-

The bulk ~‘‘compressional’’! modulusK` @9# can be simi-
larly obtained from

K`2
5

3
rkBT5

2pr2

9 E
0

`

drg~r !r 3~rf922f8!, ~18!

wheref9[d2f/dr2, which for the inverse power potentia
gives the exact result

K`2 5
3 rkBT5 1

3 ~n13!~P2rkBT!, ~19!

which is approximately

K`2
5

3
rkBT.

8

p
~n13!

kBT

sH
3

zH
2 ~12zH/2!

~12zH!3
. ~20!

In the steeply repulsive limit,K`@K0 so we can state tha
K`2K0 is approximately proportional ton in this case as
well.

The heat conduction ‘‘modulus’’M` for the heat flux cor-
relation function and thermal conductivity@10# can be ob-
tained from

M`2
5

2m
rkB

2T5
kBT

m

p

3

]

]T Fr2E
0

`

drg~r !r 4S f91
2

r
f8D G ,

~21!

which for the inverse power potential gives

M`2
5

2m
rkB

2T5
1

2
~n21!

kBT

m

]~P2rkBT!

]T
, ~22!

which is approximately

M`2
5

2m
rkB

2T.
12

pm
~n21!

kB
2T

sH
3

zH
2 ~12zH/2!

~12zH!3
. ~23!

Therefore we note thatM` , G` , andK` are singular in the
hard sphere~i.e., n→`) limit. The formula proposed by
Barker and Henderson for the effective hard sphere diam
sH , which is based on free energy arguments, was use
our previous publications@15#:

sH[E
0

`

$12exp@2bf~r !#%dr. ~24!

We can use Eq.~24! to define an effective hard sphere diam
eter and hence a corresponding packing fraction. Simulat
carried out with variousn values can then be carried out
the same effective hard sphere packing fraction@i.e., zH

[(p/6)NsH
3 /V].

It can be seen from Eqs.~6!, ~7!, and~11! that there is in
general the possibility of singular and nonsingular contrib
tions to the transport coefficients in the hard sphere limit.
the most general case, the transport coefficient has contr
tions from a purely kinetic part~‘‘ kk’’ !, a purely collisional
part ~‘‘ cc’’ !, and a cross term~‘‘ kc’’ ! as discussed in Ref
@16#. We now consider each hard sphere transport coeffic
and discuss the various contributions to the time correla
2-3
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function used in the Green-Kubo formula, indicating wheth
they are singular or nonsingular.

A. Shear viscosity

The unnormalized shear stress time correlation func
of the hard sphere fluid consists of a singular terms, which is
entirelycc in origin, and a nonsingular partu, which has the
kk, kc, and the remainder of thecc part. The nonsingular
part of the time correlation functionCS

u(t) is @16#

CS
u~ t !5G8̀ exp~2t/tS!, ~25!

where

G8̀ 5rkBT@11 2
5 ~Z21!#2, ~26!

and tS55Ap/24(Z21) in hard sphere reduced units. Th
Enskog formula for the viscosity of the pure hard sph
fluid, hs , is @16#

hS /h05
rb

Z21 F S 11
2

5
~Z21! D 2

1
48

25p
~Z21!2G , ~27!

whereb52ps3/3 is the second virial coefficient of the har
sphere fluid,Z is the compressibility factor defined in Eq
~2!, andh0 is the value of the shear viscosity in the limit o
zero density. From kinetic theory,

h051.016
5

16s2 S mkBT

p D 1/2

, ~28!

which is independent of density. The first term in the squ
brackets in Eq.~27! is the nonsingular part~coming from the
nonsingular part of the shear stress autocorrelation funct!
and the second term is the singular part. In other words
singular component of the viscosityhS

s is

hS
s/h05

32

25
rs3~Z21!. ~29!

The Green-Kubo integral of Eq.~25! yields the nonsingular
part of the shear viscosityhS

u ,

hS
u/h05

rb

Z21S 11
2

5
~Z21! D 2

. ~30!

B. Thermal conductivity

The thermal conductivity follows the same trend as
shear viscosity. The nonsingular part of the heat flux rel
ation function is

CT
u~ t !5M 8̀ exp~2t/tl!, ~31!

where

M 8̀ /kB5 5
3 rkBT@11 3

5 ~Z21!#2, ~32!

andtl55Ap/16(Z21) in hard sphere reduced units.
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The Enskog formula for the thermal conductivity of th
pure hard sphere fluid,l, is @16#

l/l05
rb

Z21 F S 11
3

5
~Z21! D 2

1
32

25p
~Z21!2G , ~33!

where the value of the thermal conductivity in the limit
zero density,l0, from kinetic theory, is given by

l0 /kB51.025 13
75

64s2 S kBT

mp D 1/2

. ~34!

The singular component of the thermal conductivityls is

ls/l05
64

75
rs3~Z21!, ~35!

and the nonsingular partlu is

lu/l05
rb

Z21S 11
3

5
~Z21! D 2

. ~36!

C. Bulk viscosity

The bulk viscosity of the hard sphere fluid is quite diffe
ent from the previous two transport coefficients in only ha
ing a cc term and being entirely singular,

hB /h05 32
15 rs3~Z21!, ~37!

whereh0 is defined in Eq.~28!. The associated time corre
lation functionCB(t) is singular which makes this function
‘‘prototype’’ function and the most appropriate starting poi
to analyze ther 2n potential fluids in the steeply repulsiv
region.

D. Singular contribution

In the limit of n→` we have for the various infinite fre
quency moduli, from Eq.~17!,

G`~n!→rkBT
n

5
~Z21!, ~38!

from Eq. ~20!,

K`~n!2K0~n!→K`~n!→rkBT
n

3
~Z21!, ~39!

and from Eq.~23!

M`~n!→rkBT
kBn

2m
~Z21!. ~40!

We can assume that the singular part of the time correla
function Cs(t) for each of the three transport coefficien
is represented by Cs(t)5sech(ant/tn) where tn
5sH(m/kBT)1/2/n. A representation of the Diracd function
is dn(t)5(an /ptn)sech(ant/tn) for n→` and t.0. In the
hard sphere limitan tends to a constant value,a say. Then,
using the Green-Kubo formula,
2-4
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hS
s~n!.G`~n!

ptn

2a
, ~41!

hB~n!.K`~n!
ptn

2a
, ~42!

and

ls~n!.M`~n!
ptn

2a
~43!

in the hard sphere limit. Substitution of Eqs.~38!–~40! in
Eqs. ~41!–~43!, respectively, gives analytic expressions f
these transport coefficients in the hard sphere limit. Th
can be compared with the Enskog singular contributions
the transport coefficients, Eq.~29! for the shear viscosity, Eq
~37! for the bulk viscosity, and Eq.~35! for the thermal con-
ductivity. Previous molecular dynamics~MD! simulations
have shown that Enskog theory is essentially exact for
these transport coefficients up to a packing fraction of at le
ca. 0.3~see, e.g., Ref.@17#!. In each case, agreement betwe
the two expressions for each transport coefficient requ
that a5p3/2/4.

III. SIMULATION DETAILS

We have carried out molecular dynamics simulations
the inverse power potential fluids to explore the nature of
convergence of the time correlation functions for ther 2n

fluids to then→` hard sphere limit. Equilibrium MD simu-
lations were carried out atkBT/e51 on the potential of Eq.
~5! with n536–1152 in increasing multiples of 2 onN
5500 particle systems each for typically (5 –100)3106 time
steps ranging from 0.005 to 0.000 08s(m/e)1/2 for n536
and 1152, respectively. The packing fractionsz
(5pNs3/6V) were chosen so that the computations w
carried out at the same effective hard sphere packing frac
zH5prsH

3 /6 using the Barker-Henderson formula, Eq.~24!,
for these effective hard sphere diameters. Neighbor lists w
implemented to reduce computer time, with an interact
cutoff r c in each case based on the energy criterionf(r c)
5u/b where u51024, which gives r c /s5(eb/u)1/n. In
presenting the results of these simulations, the unit of len
is s from Eq. ~5!, the unit of energy ise from Eq. ~5!, and
the unit of mass is the mass of the particlem. Therefore time
t is in sAm/e.

IV. RESULTS

In Fig. 1 we show the pressure~or ‘‘bulk’’ ! normalized
correlation functionsCB(t) for a range ofn plotted asnt and
log(t) ~inset!. This figure shows that these correlation fun
tions scale well asnt with increasingn, towards a limiting
function. As discussed in Sec. II, the pressure correla
function is the most basic, as in the hard sphere limit it o
has acc component, which is also purely singular. For t
range ofn considered thekk and kc contributions to the
pressure time correlation function and bulk viscosity are s
nificantly smaller than thecc component, and soCB(t) is the
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most appropriate function to start our analysis. In Fig. 2
show these normalized correlation functions plotted on
linear-log scale. This figure shows that at intermediate tim
the bulk correlation function decay is close to exponent
and converges to a limiting form in the steeply repulsi
limit. We note that for ca.nt.3 the data on the figure start t
deviate from linearity@i.e., from an exponential form for
CB(t)]. There are several characteristics of this function.
short time it must decay as 12bt2, whereb is a constant
involving only basic quantities, as is necessary for all tim
correlation functions derived from continuous potentia
@19#. It decays monotonically and in the intermediate tim
period, it has an exponential form, wherent time scaling is
also evident. A functional form that satisfies these conditio
is

CB~ t !.sech~ant/tn!, ~44!

wherean is a parameter which is a function ofn and tem-
perature~and possibly density!. In the previous papers in thi

FIG. 1. The normalized bulk time correlation functions f
steeply repulsive potential, SRP, vsnt for different n at the state
point, zH50.3 andT* 51. In the inset the same functions are plo
ted vs log(t). @In this and subsequent figures, log(t)[loge(t).# The
unit of time,t, is sAm/e wheres ande are taken from Eq.~5!, and
the unit of mass is the mass of the particlem.

FIG. 2. Plot as Fig. 1 but log@CB(t)# instead ofCB(t) vs nt is
plotted.
2-5
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series@7–9,10,11#, t/tn was written asx5AT* nt* where
t* [(e/ms2)1/2t andT* [kBT/e. In this paper we will make
the nt scaling more prominent by replacingx with nt since
here we haveT* 51 in all the simulation data presented.~In
fact, ther 2n potential has the useful scaling feature tha
computation carried out forT* Þ1 can be mapped onto
correspondingT* 51 state@18#.! There is noan value, even
for very largen, for which Eq.~44! applies at all times.

Figure 3 shows the difference betweenCB(t) and
sech(annt) versusnt for a set of values of the parameteran .
The solid curves from top to bottom are for decreasingan
values, shown in the figure. The data are forn51152 and the
effective hard sphere packing fractionzH50.3, although the
trends are the same for othern and zH values. The
sech(annt) functional form has been proposed in the pre
ous papers in this series for the short-time decay of the
lective property time correlation function~see, e.g., Ref.@9#!
but only with the specific valuean5A2, the exact result
based on a time expansion of the correlation function.
account for this deficiency, we express the bulk autocorr
tion function of ther 2n fluids as the sum of two functions

CB~ t !5sech~annt!1w~annt!, ~45!

where the sech component is the dominant part andw can be
considered as a perturbation or correction term. This a
tional term combined with the sech term gives us the nec
sary flexibility to satisfy the key requirements forCB(t).
Although there are many possible ‘‘decompositions’’ of t
CB(t) function, we consider Eq.~45! to be a reasonable
match to the simulation data. The sech function is presu
ably not unique and so the analytic form ofw will depend on
the choice of the functional form of this main component
the singular part.

The form of thew function needs to be chosen using
reasonable criterion. We consider two possibilities. The fi
which we refer to as methodA, minimizes the integral of the
function w(annt)5CB(t)2sech(annt). In practical terms,

FIG. 3. The difference betweenCB(t) and sech(annt) vs nt for
various values of the parameteran . The solid curves from top to
bottom are for the decreasingan values, as given in the plot. Th
data are forn51152 and the effective hard sphere packing fract
zH50.3.
02120
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t,

we search for the value ofan such that the integral of thew
function tends to zero~typically the integral was,0.0005).
This criterion incidentally would allow us to obtainhB di-
rectly from the sech function.

Figure 4~a! shows the values of the parameteran versus
1/n estimated for differentn using the constraint that th
integral over theCB(t)2sech(annt) is zero. The open and
closed circles represent the data forzH50.3 andzH50.2,
respectively. The solid lines are second-order polynomial
to the data and the arrow indicates a limiting~hard sphere!
extrapolated value. MethodA gives, within simulation uncer-
tainty, the limiting value ofan→p3/2/4 numerically forn
→`, which is Dufty’s prediction@3# for the shear stress tim
correlation function. If we follow Dufty’s approach for th
pressure correlation function, by assuming that the sing
part ~here the only part! is represented by ‘‘sech,’’ then from
the Green-Kubo formula wemust have an5p3/2/4 to give
the Enskog value for the bulk viscosity, from Eq.~37!, as
discussed in Sec. II.

Figure 4~b! gives forzH50.3 and four different values o
n, the ‘‘perturbation’’ function w(t)5CB(t)2sech(annt),
using thean values from the upper graph. In method A th
integration should be performed in the time intervalt50
→`. In practice we have simulation data covering a fin
time interval. The simulation data fornt.5 were subject to
increasing statistical uncertainty and so the upper time li

FIG. 4. ~a! The upper graph shows the values of the parame
an vs 1/n estimated for differentn from the condition that the time
integral over thew(t)5CB(t)2sech(annt) is zero~methodA in the
text!. The open and closed circles represent the data forzH50.3 and
zH50.2, respectively. The solid lines are second-order polynom
fits to the data and the arrow indicates a suggested value ofan in the
n→` limit. ~b! The lower graph shows forzH50.3 and four dif-
ferent n values, the ‘‘perturbation’’ function w(t)5CB(t)
2sech(annt) using thean from the top figure.
2-6



lid

b
he

ng
e

o
-
a
l
ti

b
in
li
ar
e
n

s

is

n-

-

lue
a-

en
lue

h
oes
for

s-
-

g

f

n
a

rap

TIME CORRELATION FUNCTIONS OF HARD SPHERE . . . PHYSICAL REVIEW E 69, 021202 ~2004!
of the integral,tu , had to be chosen carefully. The fitted so
lines changed only a little using upper values oftu55,6,7,
and 8. The data shown in Fig. 4~a! used a maximumnt value
of 6 in the integral. The main conclusions are unaffected
the specific choice of the cutoff in the integral, in that t
value ofan with 1/n tends towardsp3/2/4 in the hard sphere
limit, as expected from Dufty@3#. Also, the approximation of
sech(annt) for CB becomes less satisfactory with increasi
n as rather large positive and negative deviations from z
in w are necessary to obtain a zero value for the integral@see
Fig. 4~b!#.

We explored another criterion, called methodB, which
was to minimize the integral of the absolute value
uw(t)u5uCB(t)2sech(annt)u. The advantage of this ap
proach over methodA is that we were more likely to get
better fit to actual form ofCB(t), rather than just its integra
which we have seen leads to quite large positive and nega
values for the difference betweenCB(t) and sech(annt).
Figure 5 shows the same quantities as given in Fig. 4
with the values ofan determined by this method. The data
the upper graph are for four packing fractions. The so
lines drawn through the data for each packing fraction
now just to guide the eye, and the arrow indicates the
pected hard sphere limit based on a short-time expansio
the correlation function. Figure 5~b! shows the difference
functionCB(t)2sech(annt) using thean from the top graph.
Criterion B is better thanA in that for short scaled time

FIG. 5. Plot as for Fig. 4 but here the values of thean are
estimated from the condition that the integral overuCB(t)
2sech(annt)u is a minimum~methodB in the text!. The data in the
upper graph~a! are for four packing fractions. The solid lines draw
through the data for each packing fraction are to guide the eye
the arrow indicates the expected hard sphere limit. The lower g
~b! gives the ‘‘perturbation’’ functionw(t)5CB(t)2sech(annt) us-
ing thean from the top figure.
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~e.g., nt,2), CB(t) is almost independent ofn. Also for
larger nt a more regular convergence trend to this limit
apparent. Figure 5~a! shows that methodB gives a limiting
value of an in the n→` limit that is statistically indistin-
guishable fromA2, the exact result obtained from an expa
sion of the time correlation function@9#. Figure 5~b! also
shows that the initial part ofw(t) is quite close to zero,
which means thatCB can be very well represented~at least
for small values ofnt) by the sech function. Thus, the ex
pansion sech(annt)512(annt)2/21O„(nt)4

… can be fitted
at shortnt to the computedCB(t) to obtainan . We refer to
this as the ‘‘parabolic’’ or ‘‘D ’’ approach. We find that theB
andD procedures both lead numerically to the correct va
for an (5A2) in the hard sphere limit. They also give st
tistically the same dependence ofan @and thereforew(t)]
with 1/n and density, particularly for largern ~e.g., n
.144). For smallern values there are differences betwe
these two approaches which could be due to the finite va
of the upper limit ofnt in the integral and limitations in the
numerical accuracy of the fitting procedure used in theD
approach. Also thew(t) function is not perfectly flat~i.e.,
zero! at short times~e.g.,nt,0.1). The parabolic approac
has the advantage that it is simpler to implement and d
not have the problem of establishing an upper time limit
the integral. As it leads to similar results to thew function of
criterion B we have used theD method to obtain thean
parameter for subsequent figures.

In Dufty’s method we only need the integral ofCB(t) to
give the Enskog result for the bulk viscosity and it is a
sumed thatCB(t)5sech(annt) which means that, as the in
tegral CB gives the Enskog value for the bulk viscosity,an
must have the valuep3/2/4 ~see Sec. II!. This also emerges
naturally from criterionA in which the integral ofw(t) is set
to zero, so that as the integral ofCB is the integral of the sech
function plus the integral of thew function, then we must
havean5p3/2/4 in this case also~as we found in Fig. 4!. The
limitation of the Dufty approximation is that the resultin
short-time dependence ofCB(t) is incorrect, as we require
that an5A2 rather thanp3/2/4.

We found that thew data can be fitted well by theW
function which is the sum of twoG-distribution functions,

W~x!5W1~x!1W2~x!, ~46!

where

W1~x!5A1xa1exp~2m1xk1!, ~47!

and

W2~x!5A2xa2exp~2m2xk2!. ~48!

We will useWB to denote theW function for the case of the
bulk viscosity time correlation function.WB,n is the analytic
fit to w for a particular value ofn. A fit to the simulation data
using Eqs.~46!–~48! was made by minimizing the integral o
uWB,n(t)2wB(t)u until its value was,1024. This gives
eight parametersA1 ,a1 ,m1 ,k1 ,A2 ,a2 ,m2, andk2 of WB,n .
Figure 6 shows these fitted functions for then5576 and

nd
h
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1152 cases. On the scale of the figure the MD data pra
cally lie on the fits fornt up to 5–6. The values for thes
eight constants in each case are given in the figure cap
W1(x) are the dashed lines with the minimum, andW2(x)
are the dashed lines with the maximum. We see from
simulation data shown in Fig. 5 that at least for largen it is
reasonable to assume that a linear expansion in 1/n can be
used to extrapolateWB,n(t) to the limit n→` limit @i.e., to
give WB,`(t)]. Using the data forn5576 and 1152 and as
suming this linearity, the limitingWB,n function was ob-
tained and is shown as the boldest line in Fig. 6. These
parameters are also given in the figure caption.

In the limit n→` the constantan5A2 ~see Fig. 5! and
CB(t) therefore tends to sech(A2nt)1WB,`(nt). We know
from Enskog theory the value of the integral ofCB , and we
can calculate the integral of the sech function to determ
the integral of the perturbation termwB . The integral of
WB,` which we call WI has the value (2A2/p2p/2)/A2
.0.0177. Thus, we have an additional condition that allo
us to check~and justify! our linear extrapolation in 1/n. As
*0

`@xaexp(2mxk)#dx5G„(a11)/k…/k/m(a11)/k then,

WI5E
0

`

WB,`dx5A1G„~a111!/k1…/k1 /m1
(a111)/k1

1A2G„~a211!/k2…/k2 /m2
(a211)/k250.0176, ~49!

using the parameters given in the caption to Fig. 6, a
which is very close to the exact valueWI50.0177. As our

FIG. 6. A fit to the simulation data to Eqs.~46!–~48! by mini-
mizing the integral ofuWB,n(t)2wB(t)u which yields the eight pa-
rametersA1 ,a1 ,m1 ,k1 ,A2 ,a2 ,m2, andk2. On the scale of the fig-
ure the MD data are hardly distinguishable from the fits to at le
nt55 –6. In the figure also the two componentsW1 and W2 are
plotted as dashed lines. For the parameters,A1 , a1 , m1 , k1 , A2 ,
a2 , m2, andk2 in Eqs. ~47! and ~48!, we have20.0244, 3.5864,
1.7852, 1.4890, 0.0045, 4.2378, 1.3888, 0.9738 respectively fn
5576, and 20.0230, 3.7553, 1.9467, 1.3752, 0.0041, 4.49
1.5110, 0.9700 forn51156. Using the data forn5576 and 1152
and assuming linearity we calculated the limitingWB,n function in
then→` limit, which is given as the boldest solid line in the figur
This function has the parameters20.0221, 4.3447, 2.1588, 1.3383
0.0036, 5.1865, 1.8565, 0.9380, respectively.
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simulation data become statistically more unreliable in
range 5,nt,6, it is difficult to make any firm statement
about the analytic form of any limiting ‘‘tail’’ in thewB
function. Of course, any tail present inwB need not have the
exp(2m2x2

k) analytic form. Figure 6 also shows that fornt
.4 we havewB.W2. A plot of thewB function on a linear-
log scale shows a near linear behavior fornt.4. One can
also observe thatk2 is close to 1~in fact calculations per-
formed withk251 fixed gave a fit that was almost as goo
as whenk2 was a free variable!. Thus, an exponential deca
of the form exp(2m2x) at long times is quite possible. Th
value of WI50.0176 for the particular set of dataan for n
5576 and 1152 atzH50.3 is very close to the exact valu
0.0177. For thezH50.2 data, a value of 0.0162 was ob
tained. Nevertheless, the limiting function was always ve
close to that in Fig. 6, and the deviations from the ex
value of 0.0177 we think are mainly produced by the le
accurate tail data fornt.4. We would add that, of course
the fitting procedure is not unique, and other analytical for
for the WB,n functions are possible~perhaps with fewer free
parameters! and so we assume that the coefficien
A1 , . . . ,k2 have no physical meaning.

We now consider the shear stress correlation funct
CS(t). The unnormalized bulk and shear time correlati
functions for various values ofn are given in Fig. 7. The
upper figure~a! shows the functions versus log(t) for the
packing fractionzH50.2. We denote the quantityC` @see

st

,

FIG. 7. The bulk and shear time correlation function forr 2n

fluids with n572,144, and 288 atzH50.2. The upper graph~a!
shows these functions vs log(t). In the lower graph~b! the same
data are shown as functions normalized to unity at zero time,
now plotted vs log(nt).
2-8
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TIME CORRELATION FUNCTIONS OF HARD SPHERE . . . PHYSICAL REVIEW E 69, 021202 ~2004!
Eq. ~9!# by K andG for the bulk and shear functions, respe
tively. The lower figure shows the same data, but normali
so thatCB(0)5CS(0)51, and now plotted versus log(nt).
This form of plotting emphasizes the singular part of t
decay in the correlation function. Notice in Fig. 7~a! the
gradual appearance of a shoulder inCS(t) at intermediate
times with increasingn, which is most prominent in then
5288 data of the figure. The soft system with increas
potential stiffness~i.e., n) is tending to the hard sphere fluid
The nonsingular part of the decay should follow closely
Enskog formula for the hard sphere shear stress correla
function, given in Eq.~25!. Figure 7~b! illustrates that the
behavior of the singular part ofCS is very similar to that of
the CB . Thus, it is reasonable to assume that the sing
part of theCS can be well represented by the sech(annt)
function, as proposed by Dufty. The parameteran can be
determined from the short-time part ofCS as forCB , using
the D approach for example. This is a key point as it allo
us to subtract off the~main! singular part. At long times and
for largen we expectCS(nt)2sech(annt) to be quite close
to the nonsingular part as given by Enskog theory@Eq. ~25!#
divided byG` . In Fig. 8 we show the parameteran versus
1/n estimated from the short-timeD expansion approach. In
the hard sphere limit we see thatan→A2, the analytically
correct result@9#. Figure 9 focuses on the part of the stre
relaxation that is dominated by the nonsingular compon
The figure shows the normalized shear stress time correla
function, after subtraction of the main singular part, co
pared with the Enskog prediction. For eachn the correspond-
ing value ofan from Fig. 8 was used in the sech subtracti
procedure. The dashed line represents the Enskog func
divided by the shear modulusG` , which is seen to follow
the simulation data very well.

From our treatment of theCB data we know that the sin
gular part is not exactly represented by the sech(annt) func-
tion, but requires an additional termw(t). To distinguish the
w(t) functions in the bulk and shear cases, we refer to th
as wB and wS , respectively. Therefore we think that th
shear function is not best represented by Eq.~11! but by the
more general formulation,

FIG. 8. The parameteran vs 1/n estimated from the short-time
expansion orD approach applied to theCS(t). The solid lines
drawn through the data for each packing fraction are to guide
eye and the arrow indicates the analytically exact result@9#.
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CS~ t !5sech~annt!1wS,n~ t !1
X~nt!

C`
CS,E~ t !. ~50!

The X function in Eq.~50! controls the crossover from th
time scale characterizing the collision to the Enskog ti
scale, which is of order the mean time between collisio
We now have two unknown functionswS,n(t) and X(nt),
which require additional information or assumptions, as
cannot separateCS in a unique way into these two compo
nents. We can assume a general form for theX function, with
a single disposable parameter function. We can impose
condition that the limit of the integral overw(t) has to go
linearly ~in n21) towards the Enskog~HS! limit. Dufty pro-
posed a number of requirements forX(t) that it must be even
in time, vanish up through order;t2, and approach unity a
long times. Even if we assume the same general form for
wS function as forwB , ~i.e., twoG distribution functions! we
still have to choose an analytic form for theX function. Apart
from the general conditions given by Dufty, we can requ
that the limiting form of the singular part of the shear corr
lation function should be the same as that of the bulk au
correlation function. In the limitn→`, we must havean

→A2 for both functions. For largen thewS(n) functions are
expected to converge linearly in 1/n towards theWS,`
5WB,` limit, which we now know reasonably well in the
bulk case. Therefore the time integral ofwS should be
0.0177, and an acceptable analytical form for theX function
is one that gives this limiting behavior. This assumption th
allows us to say something more about theX function. Three
plausible choices for theX function are X1(x)5x2/(A
1x2), where A is a parameter,X2(x)5@x2/(11x2)#2,
which is Dufty’s proposal of Eq.~12!, and

X3~x!5@x2/~A1x2!#2, ~51!

which is a generalization of Dufty’s function with one dis
posable parameter. Therefore we have, in the latter case

e

FIG. 9. The normalized shear stress time correlation funct
after subtraction of the main singular part vsnt ~solid line!. For
eachn, thean value shown in Fig. 8 was applied. The dashed li
represents the Enskog function divided by the shear modulusG
([G`).
2-9



-

-

1
-

e

nt

a

h
n-

l

n

la-

tion

r

on
t,
n

nd
Fig.
ulk

lar
7

n

on

-
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wS,n~ t !5CS~ t !2sech~annt!2X3~nt!CS,E~ t !/G` ,
~52!

whereCS,E(t) is given in Eq.~25!. For convenience we de
fine

D~ t !5X3~nt!CS,E~ t !/G` . ~53!

The quantities D15*0
`dtWS,`(t)20.0177 and D2

5*dtuWS,`(t)2WB,`(t)u are plotted in Fig. 10~a! as a func-
tion of the parameterA. WS,` was obtained from linear ex
trapolation inn21 of WS,576(t) andWS,1152(t) determined in
conjunction with theX3 function. The calculations are for 1
values of the parameterA. The same form of the fitting func
tion was used as in the case of the bulkwB function, i.e.,
Eqs. ~46!–~48!. There are minima in these two differenc
functions in the range 1.4,A,1.6, which indicates that the
particular function X3(x)5@x2/(1.51x2)#2 satisfies these
limiting conditions very well. The performance ofX2 andX1
~with 1,A,2) was not as good. In Fig. 10~b! the results for
WS,n obtained withX3(x)5@x2/(1.51x2)#2 are shown~this
is analogous to Fig. 6!.

The assumption that, in the limitn→`, the singular parts
of CS are the same as that ofCB is open to debate. Exactly in
the limit n5` ~i.e., hard sphere limit! we have ad function
for the singular part, which has many possible represe
tions, not just the sech form. Even for finiten there are many
possible representations consistent with the simulation d

FIG. 10. The top figure showsD15*dtWS,`(t)20.0177 and
D25*dtuWS,`(t)2WB,`(t)u plotted as a function of theA param-
eter given in Eq.~51!. WS,` was obtained from linear extrapolatio
of WS,576 andWS,1152 together with theX3 crossover function given
in Eq. ~51!. In ~b! the results forWS,n obtained with theX3 are
shown~this is analogous to Fig. 6!.
02120
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In contrast, theX function could have a physical basis, wit
a unique functional form, as it weights the singular and E
skog contributions as a function of time. Thus, theX3 ana-
lytic form, with the valueA51.5, might not only be a usefu
empirical function to describeCS , but indicate something
more fundamental. As for the bulk time correlation functio
we also obtain the integral ofWS,`50.0177, which is the
exact value@see the black dot forD1 in Fig. 10~a! at A
51.5].

The results of our decomposition ofCS(t) are presented
for the shear case in Fig. 11 using data taken from simu
tions carried out at a packing fraction ofzH50.3. This figure
shows the various components of the shear time correla
function versus log(nt) for four values ofn, ranging from 72
to 1152. Figure 11~a! gives the ‘‘total’’ normalizedCS func-
tion, which illustrates the very goodnt scaling, at least at
short times (nt). Figure 11~b! shows the main or singula
part, sech(annt), with thean values given in Fig. 8. It can be
seen that the four curves are essentially indistinguishable
this scale. In Fig. 11~c! the nonsingular or Enskog-like par
D(t), defined in Eq.~53!, is shown for the four data sets. I
Fig. 11~d! the perturbation singular partwS(t) defined in Eq.
~52! is shown for each value ofn @see Fig. 11~a! for the key#.
Thew(t) functions in the hard sphere limit for the shear a
bulk cases are statistically indistinguishable, as seen in
12 and we might therefore expect that both shear and b
w(t) converge to the same functional form.

The trends for the heat flux time correlation functionsCT
are similar to theCS . Figure 13 shows the unnormalizedCT
versus loge(t) for different n values at the packing fraction
zH50.3. There is a convergence with increasingn of the
simulation data at long times to the Enskog nonsingu
function given in Eq.~31! ~see also the upper graph of Fig.

FIG. 11. Decomposition of the shear time correlation functi
into singular and nonsingular components, all vs log(nt) is shown
for each value ofn. Key: ~a! The normalizedCs(t) function with
n572,288,576, and 1152 for the packing fractionzH50.3. ~b! The
main or singular part, sech(annt). ~c! The nonsingular or Enskog
limiting part, defined in Eq.~53!, D(t). ~d! The ‘‘perturbation’’
singular partws(t) defined in Eq.~52!. In the calculationsan taken
from Fig. 8 are used. TheX3 function with A51.5 was used.
2-10
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TIME CORRELATION FUNCTIONS OF HARD SPHERE . . . PHYSICAL REVIEW E 69, 021202 ~2004!
for the comparable shear stress relaxation case!. In Fig. 14
we show the parameteran versus 1/n, estimated using theD
approach for various packing fractions. Again we see thaan

appears to converge toA2 as for the bulk and shear tim
correlation functions. Figure 15 shows the decomposition
CT into the same components as forCS given in Fig. 11. The
behavior is much the same. The heat flux time correlat
functionsCT(t) can also be fitted to the general scheme
Eq. ~50!, and we again find that withX3 , A51.5 is the
optimum case, although the agreement is not as good. It
be seen in Fig. 12 thatwT,`.wB,` .

V. CONCLUSIONS

Dufty made a formal analysis of the shear stress auto
relation function in the transition region between the stee
repulsive soft sphere fluid and the hard sphere fluid@3#. This
function, Dufty showed, consists in the hard sphere limit o
singular part, with the singularity at timet50, and a nons-

FIG. 12. A comparison betweenWB,`(t), WS,`(t), andWT,`(t)
for the packing fractionzH50.3.

FIG. 13. The unnormalized heat flux time correlation functi
CT(t) vs log(t) for various n values at the packing fractionzH

50.3. The approach towards the Enskog function with increasinn
is clearly visible~see also the top graph of Fig. 7!. M in the figure
stands forM` .
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ingular part. The former dominates at short times,t→0, and
the latter tends to the Enskog solution, and is the main p
at long~mean collision! times. Dufty represented the singula
part as sech(annt), wherean is a disposable parameter andn
is the exponent or stiffness parameter in the soft sphere
tential. A time-dependentX function was introduced to
weight the analytic functions for these two extremes at
times but especially in the crossover period between wh
the singular and nonsingular terms each dominate. T
crossover period is centered around approximately the d
tion of a binary ‘‘collision.’’

This approach has been extended here. We have con
ered the time correlation functions used in the Green-Ku
formulas for the bulk viscosity and thermal conductivity. Th
bulk viscosity is expressed in terms of the pressure time c
relation function, which is entirely singular in the har
sphere limit, and therefore provides a useful prototype c
to explore the singularity att50.

Many of the simulations were carried out densities wh
the Enskog theory gives an accurate result for the trans

FIG. 14. The parameteran vs 1/n estimated from theD fitting
approach forCT . The solid lines drawn through the data for ea
packing fraction are to guide the eye. TheX3 function with A
51.5 was applied.

FIG. 15. As for Fig. 11, except the heat flux correlation functi
CT(t) is analyzed.
2-11
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A. C. BRAŃKA AND D. M. HEYES PHYSICAL REVIEW E 69, 021202 ~2004!
coefficient. The sech function used by Dufty to represent
singularity is unable to reproduce the Enskog bulk viscos
and produce the correct short-time decay behavior for a
given value ofan . The first condition is met ifan5p3/2/4,
but this value does not satisfy the second condition. A co
bination of the sech and a perturbation functionw(t) is suf-
ficiently versatile to satisfy these two requirements. T
function has the limit thatw(t)→0 for t→0 andt→`. We
compared various procedures to obtain the optimum valu
an in this more general formulation. In the most satisfacto
approach, we show that the simulation data are consis
with an→A2 in the hard sphere (n→` limit !, which is the
result necessary to have the correct initial decay of the p
sure correlation function. This limit appears to be indep
dent of density. A possible analytic form forw(t) is sug-
gested which fits the simulation derived correlation functio
very well for the steep soft potentials and in the hard sph
limit, and satisfies a number of self-consistency requ
ments.

We performed a similar analysis of the shear stress
heat flux correlation functions. We show that thew(t) func-
tion appears to be the same as the bulk case in the
sphere limit. We also suggest an improved analytic form
the X(t) crossover function in these two cases.

The treatment presented here has been for spheres.
might ask if it can be adapted for two dimensions~2D!? In
2D, the issue of transport is still an equivocal subject beca
of the predicted existence of long time;t21 tails in the
velocity and purely kinetic part of the time correlation fun
tions for collective properties. Therefore, in 2D the integ
ys
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over such a tail in the velocity autocorrelation function, a
hence the self-diffusion coefficient, cannot exist~at least in
the thermodynamic limit! @20,21#. On the basis of the sam
conjecture, as the long-time behavior of the complete sh
stress or heat flux autocorrelation function does not dif
qualitatively from the kinetic part, the same conclusi
might be reached for viscosity and thermal conductivi
Thus hydrodynamics in the conventional sense does not e
in 2D. The situation is still far from clear, however, with
shear viscosity actually being measurable in 2D nonequi
rium MD studies at finite shear rate@22,23# ~see also Ref.
@24# for a corresponding 3D simulation!. Therefore we are
reluctant to make any definitive statements about the fe
bility of extending the present treatment to 2D. We cann
even be sure that the sech function will play the same rol
2D as in 3D, for example.
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