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Time correlation functions of hard sphere and soft sphere fluids
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We explore the transition between soft particle fluids of increasing steepness to the hard sphere limit. We
analyze the analytic forms of the time correlation functions used in determining transport coefficients in
Green-Kubo formulas for fluids composed of patrticles interacting through a repulsiveotential. We focus
on the steeply repulsive—c limit where the potential tends to the hard sphere interaction. [)i¥o}. Phys.

100 2331(2002] developed a theoretical framework that can be used to characterize the transition from a
steeply repulsive continuous potential toward the hard sphere potential for the shear stress time correlation
function. This function was shown to consist of a rapidly decaying contributidrich is singular in the
steeply repulsive limjtand a slowly decaying nonsingular part which can be reasonably well represented by
Enskog’s prediction on times of order and in excess of the mean collision time. We extend this treatment to the
bulk viscosity and thermal conductivity. We focus on the bulk viscogtgssurgcorrelation function as it is
purely singular for hard spheres, and has no kinetic or cross term contributions in this limit. There is no
relaxation of this correlation function on the mean collision or Enskog time scale for hard spheres. We show
that it is not possible to represent the steeply repulsive behavior of this funetidirely in terms of a sech
function, i.e.,Cg(t) =sech@,t/7,), wherea, is a numerical factort is time, andr, is a relaxation time
proportional ton~ 1. An additional singular function, which we cal(t), is required to obtain the correct
short-time behavior o€g(t) and the Enskog value for the bulk viscosity. With this additional function, the
value ofa,, in then—oo limit is a,= 2 which is consistent with the second moment of the time expansion of
the time correlation function. We compute this function for lamgend extrapolate it ta— o, determining one
possible analytic form. The shear stress correlation function also gjres2 in the hard sphere limit for the
singular part when the sech andfunctions are used. This function has a nonsingular component, even in the
hard sphere limit. We explore various forms for the crossover functigii,)) introduced by Dufty, which
weights the limiting singular and nonsingular contributionsQg(t) particularly at intermediate times. The
qualitative behavior for the heat flux time correlation functimised to obtain the thermal conductivitis

much the same as the shear case.Wtg derived by several self-consistent extrapolations appears, within the
simulation statistics, to be the same for the bulk and shear viscosity, and for the thermal conductivity cases.
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I. INTRODUCTION P _, 147+ §2_§3 o
. . . . T
The hard sphere fluid composed of particles interacting P (1-9

with the hard sphere potential,
whereP is the pressure of a pure hard sphere fluid or the
osmotic pressure of a colloidal “hard sphere” liquid of such
] rso particles,p=N/V, the number density dil spheres in vol-
$(=1, @  ar g . |
, r>o, umeV; and B=1/kgT with kg Boltzmann’s constant and
the temperature. i§(r) is the radial distribution functiof?]
thenZ can be written in terms of its value at contact,
has proved an invaluable reference fluid for the structural,
thermodynamic, and dynamical properties of molecular and 2703
even colloidal liquids. Its popularity lies in its simplicity, Z=1+
which makes expressions for the structural and thermody- 3
namic properties often more analytically tractable. The ther-
modynamic properties of the hard sphere system can be desereg(o*) is the value ofg(r) at contacty =", where
rived often with excellent accuracy at equilibrium fluid o* =0+ & for §>0 andd—0. The packing fraction of hard
densities using the Carnahan-Starling equation of $fdte  spheres is’= mpo°/6. Then from Eqs(2) and(3) we have,

g(c)=1+4{g(c"), 3

1y
(1-0)°%
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For simplicity of notation we well replace™ by o hence- Il. THEORY

forth. Consider a collective property transport coefficigntep-
However, we note that the hard sphere potential is discon- property P RITED

tinuous and nondifferentiable, and strictly speaking no rea([jeset_nt_ltng_rer:theczar bulklgrbsh?ar V'TC?S”}:’h.Or the tthtermal con-
system can interact with a potential having this form. A con- uctivity. The oreen-gubo formula Tor this quantity 1
sequence of the form of Eql) is that the time correlation oo

functions and hence the transport coefficiefsing the X:Af (B(s+1)B(s))4dt, (6)
Green-Kubo formula$2]) are at least, in part, singular, as 0

discussed recently by Dulfty for the case of the shear viscogyqrg. .. s is a time correlation function averaged over a
ity [3]. AIthough the Green-Ku_bQGK) formulas are_ofter! sampli<ng ti>meswhich is also the simulation time in practice.
used to obtain transport coefficients from appropriate timer, o propertyB would be the shear stress for the shear vis-
correlation functions in molecular dynamics, the impU|Sivecosity P(t)—(P) for the bulk viscosity[ P(t) is the instan-
nature of the hard sphere potential and the resulting Singl{éneohs pressure af) is the average pressirer the heat
larity in some of the time correlation functions causes theﬂux for the thermal conductivity. The constahtis a simple

;’;Ia[ar])m::g ;%gznds'fﬂc:rl; qu'TaFggmggtt ::t';erﬁgj eAlt%eéf nction of numerical prefactors and basic constants such as
LAl qu ISP v e volume of the systemV(), the temperaturd, and Bolt-

to _obtam the shear and t.)u”( viscosity, and thermal ConducFmann’s constarkg . It is convenient to define a normalized
tivity for hard spheres. This approach has been more recentt)[/ . :
. . . me correlation function

discussed by Erpenbedk], and applied to continuous po-

tential system$6]. o o C(t)=(B(s+1)B(8))s/(B%(S))s, (7)
One can observe the onset of this singularity in a progres-

sively systematic way by carrying out molecular dynamicswhich has the useful property in the present context that

simulations on a fluid with particles interacting via a continu-C(0)= 1. Substitution of Eq(7) in Eq. (6) gives

ous repulsive potential that can be forced to approach the

hard sphere interaction by adjustment of one of its disposable —c JWC(t)dt ®)
parameters. For example, for a potential of the form X 0 '
where
¢(r)=e(alr)", 5
C..=A(B?. 9)

wheree and o set the energy and length scales of the inter-£or the shear stress correlation functi®,=G.. [9], the
particle interaction, as— this potential tends to the hard infinite frequency shear rigidity modulus, for the pressure
sphere potential of Ed1). In a series of publications, some ¢orrelation function,C..=K..—K,, the difference between
of the statistical mechanical foundations of the time correlatne infinite frequency and zero frequency bulk moddi].
tion functions of this fluid in the steeply repulsive limit have For the heat flux correlation functiorC.,=M.,, the so-
been establishel—11]. The shear viscosity was considered cg|led “thermal modulus” which was derived in R&fLO].
first[7,8], and then the bulk viscosif®]. This treatment was Equation(8) gives y=C..7 where r=[2C(t)dt is a relax-

extended to the heat flux autocorrelation functiGr(t)  ation time, which is of the form proposed by Maxwell for the
which gives the the_zrmal cond_uctlylty in a Green-Kubo for- gpaar viscosity of gasel2]. For the collective quantity
mu_la [10]. '_I'he main conclusion is that the effects of the properties that we deal with her€(t) can be decomposed
stiffness” (i.e., the value of herg on the short-time part of jn5 5 separate function derived entirely from the interaction

the time correlation functions can be accounted for by gstential, another which is purely kinetic, and another that is
renormalization” of the actual time by multiplication by the 3 iy of kinetic and interaction parts. We refer to these con-

exponent which measures the stiffness of the potential. Weyiptions to the correlation function, and the derived trans-
have shown that all of these many-particle correlation func-port coefficient, asc, kk, andkc.

tions scale well according tot up to timesnt~1 at least, In the steeply repulsive limit we follow Dufty3] and
and that they are, in part, singular®t0 in the infiniten  genarate the time correlation functi€®(t) into a rapidly
(the hard sphepdimit. Certain propertiegsuch as the pres- decaying partC,(t) which is a strong function oh and

sure and transport coeﬁiciemtare hardly_ distinggishable C,(t) which is more slowly decaying and relatively weakly
from those of hard spheres if the repulsion or stifiness pagengitive tan, if at all. Dufty made an important contribution
rametern exceeds about 72. While other properties such a

. P " - OfS] in writing for the shear stress correlation function,
the potential energy, infinite frequency elastic moduli, an

the associated “viscoelastic” relaxatiofess characterized by C(t)=C4(t)+ Cy(t)=sectiayt/7,) + Cp(t).  (10)

the time correlation functionsre highly stiffness dependent.

Therefore, as the hard sphere limit is singular for some ofC4(t) is singular because in the—o limit, its unnormal-
these properties, it is important to establish how this limit isized form diverges in height as a Diracfunction. The non-
approached. We focus here on the time correlation functionsingular partC,(t) is such that in then—co limit and again
used in the Green-Kubo formulas to calculate the transpominnormalized, it tends to a constant function. We already
coefficients. know from these previous studies that in the steeply repul-

021202-2



TIME CORRELATION FUNCTIONS OF HARD SPHER. . . PHYSICAL REVIEW E 69, 021202 (2004
sive limit the relaxation timer, for these functions is-n~* The bulk (“compressional’) modulusK., [9] can be simi-
andC,(t) decays on the mean collisidinskog relaxation larly obtained from

time, respectively, for the three transport coefficidimts11]. c oo 2

The analytic form forC,(t) is not known exactly but a sech _emp (7 3 ,

function has been shown to represent these correlation func- Ko §pkBT_ 9 fo drg(nri(r¢”—24"), (18
tions quite well[9,10] and has the necessary property in

giving the exact second frequency moment of the expansiowhere ¢"=d?¢/dr?, which for the inverse power potential
provided thata,= 2. In the steeply repulsive limit we can gives the exact result

replaceC,(t) at long times by the Enskog prediction for any 5 .

nonsingular parCg(t) divided byC.,. [Note thatC,(0) is Ko —3pkgT=3(n+3)(P—pkgT), (19)
finite.] These requirements in the various limits suggest & hich is approximatel
plausible generic form fo€(t), PP y

X(t/7, . KeT ,» (17 ¢n/2)
C(t)=secha,t/,) + (C: )CE(t), (11) K. 3pkBT— 7T(n+3) ffa G A=z . (20

where X(x) is a “crossover” function with the properties [N the steeply repulsive limit{..>K, so we can state that
thatX—0 for x<1 andX— 1 for x>1, and Dufty proposed K-—Ko is approximately proportional ta in this case as
wel

2 \2 The heat conduction “modulus¥., for the heat flux cor-
X(x)= 5 (120  relation function and thermal conductivifyl0] can be ob-
1+x tained from
TheC., for the bulk and shear viscosity and thermal conduc- 5 ,_ kgTmd

® 2
S|

tivity all diverge as can in the steeply repulsive limitsee ~ Mx— ﬁpkBT_ m 39T
below). For the infinite frequency elastic shear modutis

[13], 20
92 d which for the inverse power potential gives
— P * _ (rA
G.=pkeT+ - | dra(ng-rée), (19 I U, o
= 2mPtel T2 m T
where¢’=d¢/dr. The infinite frequency shear modulus for _
this soft potential is obtained by substituting E§) in Eq. ~ Which is approximately
(13), giving the exact relation
,. 12 KET , (1—¢ul2)
G..— pkaT=1(n—3)(P—pkgT), (14) M= o PKeT= T =D Sl = s @
H H

where the pressure is given by the virial expression Therefore we note thadl., , G.., andK., are singular in the

om " hard sphergi.e., n—) limit. The formula proposed by
P—pkgT= _pZJ r2g(r)(—re¢’)dr. (15) Barker and Henderson for the effective hard sphere diameter
3 0 oy, Which is based on free energy arguments, was used in

o . . our previous publicationgl5]:
In the largen limit we can write down an approximate yet

accurate expression f@., by “replacing” the real soft-core o
fluid by an equivalent hard sphere fluid with an effective ‘THEL {1—exd—B¢(r)]}dr. (24
hard sphere diametery [14]. In the steeply repulsive limit

(P—pkgT) in Eq. (14) can then be accurately approximated \we can use Eq24) to define an effective hard sphere diam-
by that of hard spheresP(—pkgT), using the Carnahan- eter and hence a corresponding packing fraction. Simulations
Starling hard sphere equation of stétd. The result is carried out with various values can then be carried out at
the same effective hard sphere packing fractjor., ¢
=(m/6)Na3/V].

It can be seen from Eq$6), (7), and(11) that there is in
general the possibility of singular and nonsingular contribu-
where gHEWNUa/GV is an effective hard sphere packing tions to the transport coefficients in the hard sphere limit. In

24 kgT 1-¢4/2
PH—pkBTI—i » (1=4nl2)

_ 16
T ood T (1= ¢n)? (10

fraction. Substituting Eq(16) in Eq. (14) gives the most general case, the transport coefficient has contribu-
tions from a purely kinetic part kk’ ), a purely collisional
24kgT  (1—4l2) part (“cc’), and a cross tern“ kc’) as discussed in Ref.
G..— pkgT= g(n— 3)— —sgﬁ —_— (17) [16]. We now consider each hard sphere transport coefficient
T oy (1-2w) and discuss the various contributions to the time correlation
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function used in the Green-Kubo formula, indicating whether The Enskog formula for the thermal conductivity of the

they are singular or nonsingular. pure hard sphere fluidy, is [16]
- b 3 2 32
A. Shear viscosity - P “(7_ —1)2
Mg 71 (1+5(Z 1) + 2577(2 1) } (33

The unnormalized shear stress time correlation function

of the hard sphere fluid consists of a singular tsrwhich is  where the value of the thermal conductivity in the limit of
entirelycc in origin, and a nonsingular paut which has the  zero density)o, from kinetic theory, is given by
kk, kc, and the remainder of thec part. The nonsingular

part of the time correlation functio@4(t) is [16] 75 (kBT)l’2

CYt)=GLexp —t/7g), (25) 640"\ M™
where The singular component of the thermal conductivifyis
r__ 2 2 64
G..=pkgT[1+5(Z—-1)]%, (26) )\S/)\0=7—5p0'3(2—1), (35)

and rs=57/24(Z—1) in hard sphere reduced units. The . s
Enskog formula for the viscosity of the pure hard sphereand the nonsingular pakt™ is
fluid, 7s, is[16] pb

)\u/)\O:_Z_ 1

3 2
1+ g(Z-l)) . (36)

T
7s Uo—ﬂ

1 2 zZ-1 8 Z-1)?|, 2

+§(—) +ﬁ(—) , (27)
C. Bulk viscosity

whereb=27¢4/3 is the second virial coefficient of the hard The bulk viscosity of the hard sphere fluid is quite differ-

sphere fluid,Z is the compressibility factor defined in Eq. gnt from the previous two transport coefficients in only hav-
(2), and 7, is the value of the shear viscosity in the limit of ing acc term and being entirely singular

zero density. From kinetic theory,

5 (mieT| 12 n8! mo=5po*(Z-1), (37)
m
770=1.016@ T) , (28)  where 7, is defined in Eq(28). The associated time corre-

lation functionCg(t) is singular which makes this function a

L . . . “prototype” function and the most appropriate starting point
which is independent of density. The first term in the squar%IO anal};pze the " potential fluids ir?rihepsteeply rep%lgive

brackets in Eq(27) is the nonsingular pafcoming from the .
nonsingular part of the shear stress autocorrelation fur)ctionreg'on'
and the second term is the singular part. In other words the ) o
singular component of the viscositg is D. Singular contribution

In the limit of n—c we have for the various infinite fre-

32 uency moduli, from Eq(17),
7y mo=5gpo*(Z-1). (29 Y o)

n
The Green-Kubo integral of Eq25) yields the nonsingular Ge(n)—pksT5 (2—1), (38)

part of the shear viscositysg,
from Eq. (20),

2
y pb 2 )
=——1+=(Z-1)]| . 30 n
M=z g1+ 5e ) 30 Ko (M) =Ko(n) —K..(n)— pkeT5 (Z=1), (39
B. Thermal conductivity and from Eq.(23)
The thermal conductivity follows the same trend as the Kon
shear viscosity. The nonsingular part of the heat flux relax- Mw(n)ﬂpkBTzi(z_l)_ (40)
ation function is m
CY(t)=M_Lexp —t/7), (31)  We can assume that the singular part of the time correlation
function C3(t) for each of the three transport coefficients
where is represented by CS(t)=sech@,t/7,) where 7,
=ou(m/kgT)¥?n. A representation of the Diraé function
M_L/kg=3pkgT[1+2(Z—1)]% (32 is 8,(t)=(a,/7r,)sech@,t/,) for n—c« andt>0. In the
hard sphere limia, tends to a constant valua,say. Then,
and r,=5/7/16(Z— 1) in hard sphere reduced units. using the Green-Kubo formula,
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ks

A =Gu(n) 5" (41
T\ == 5
0.81
K..(n) = 42
78(N)=K.(n) 5, (42) ol
and Om
0.4r
AS(N)=M..(n) =" 43
(M=M..(n) - (43
0.2f
in the hard sphere limit. Substitution of Eq88)—(40) in
Egs. (41)—(43), respectively, gives analytic expressions for 0

these transport coefficients in the hard sphere limit. These
can be compared with the Enskog singular contributions to
the transport coefficients, ER9) for the shear viscosity, Eq. FIG. 1. The normalized bulk time correlation functions for
(37) for the bulk viscosity, and Eq35) for the thermal con- steeply repulsive potential, SRP, w$ for differentn at the state
ductivity. Previous molecular dynamicdD) simulations point, {;=0.3 andT* =1. In the inset the same functions are plot-
have shown that Enskog theory is essentially exact for alled vs logg). [In this and subsequent figures, [9gfloge(t).] The
these transport coefficients up to a packing fraction of at leagtnit of time,t, is o-Jm/ € whereo ande are taken from Eq(5), and
ca. 0.3(see, e.g., Ref17]). In each case, agreement betweenthe unit of mass is the mass of the partioie

the two expressions for each transport coefficient requires . . . .
thata= 7324 most appropriate function to start our analysis. In Fig. 2 we

show these normalized correlation functions plotted on a
Il SIMULATION DETAIL linear-log scale. This figure shows that at intermediate times
- SIMU o S the bulk correlation function decay is close to exponential,

We have carried out molecular dynamics simulations or@nd converges to a limiting form in the steeply repulsive
the inverse power potential fluids to explore the nature of thdimit. We note that for cant>3 the data on the figure start to
convergence of the time correlation functions for the®  deviate from linearity[i.e., from an exponential form for
fluids to then— < hard Sphere limit. Equ|||br|um MD simu- CB(t)] There are several characteristics of this function. At
lations were carried out &gT/e=1 on the potential of Eq. Short time it must decay as-ibt?, whereb is a constant
(5) with n=36-1152 in increasing multiples of 2 oN  involving only basic quantities, as is necessary for all time
=500 particle systems each for typically (5—16Q)c° time correlation functions de_rlved from continuous p_otent_lals
steps ranging from 0.005 to 0.0008@n/€)Y2 for n=36 [191. It glecays monotonlcglly and in the |ntermed|§\te time
and 1152, respectively. The packing fractiong per|od,_|t has an exponenual form, wh.enr.e time scaling is
(= wNa?/6V) were chosen so that the computations were?"so evident. A functional form that satisfies these conditions
carried out at the same effective hard sphere packing fractiot®
{u=mpo} /6 using the Barker-Henderson formula, E24),
for these effective hard sphere diameters. Neighbor lists were
implemented to reduce computer time, with an interactionyherea, is a parameter which is a function afand tem-

cutoff r; in each case based on the energy critedn:)  peratureand possibly densily In the previous papers in this
=0/ where 9=10"*, which givesr /o= (eB/6)'". In

nt

Cg(t)=secha,t/7,), (44)

presenting the results of these simulations, the unit of length 0
is o from Eq. (5), the unit of energy is from Eq. (5), and
the unit of mass is the mass of the partioieTherefore time <l ¢.=0.3
o H
tisin oym/e. _
m
O
IV. RESULTS h
= n N
In Fig. 1 we show the pressufer “bulk” ) normalized N
correlation function€g(t) for a range oh plotted amt and 1214
log(t) (insed. This figure shows that these correlation func- - - 288
tions scale well a:it with increasingn, towards a limiting 4r ZEEB :
function. As discussed in Sec. Il, the pressure correlation
function is the most basic, as in the hard sphere limit it only

has acc component, which is also purely singular. For the ! 2 ¢ 3 4 5
range ofn considered thekk and kc contributions to the n

pressure time correlation function and bulk viscosity are sig- FIG. 2. Plot as Fig. 1 but Idgs(t)] instead ofCg(t) vs nt is
nificantly smaller than thec component, and sGg(t) isthe  plotted.
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—sech(annt)

Cg

0 0.005 0.01 0.015

1/n

0.01

nt

n

FIG. 3. The difference betwedDg(t) and sechd,nt) vs nt for
various values of the parametey,. The solid curves from top to
bottom are for the decreasira, values, as given in the plot. The
data are fon=1152 and the effective hard sphere packing fraction
{y=0.3.

—sech(a_nt)

72 (1.439)
- 144 (1.418)
--- 576 (1.400)
—0.01F = 1152 (1.396) -

series[7-9,10,11, t/7, was written asx=+T*nt* where 0 = e ¢

t*=(e/mo?)Y% andT* =kgT/e. In this paper we will make
the nt scaling more prominent by replacingwith nt since FIG. 4. () The upper graph shows the values of the parameter
here we hav@™* =1 in all the simulation data presentdth a, vs 1h estimated for differenn from the condition that the time
fact, ther ~" potential has the useful scaling feature that aintegral over thew(t)=Cg(t) —sech@,nt) is zero(methodAin the
computation carried out fof* #1 can be mapped onto a text). The open and closed circles represent the datégfer0.3 and
corresponding™* =1 state[18].) There is noa, value, even {y=0.2, respectively. The solid lines are second-order polynomial
for very largen, for which Eq.(44) applies at”a” timés fits to the data and the arrow indicates a suggested valagiofthe

Fiqure 3 s,hows the dii"ference betweedg(t) énd n—co limit. (b) The lower graph shows faf,;=0.3 and four dif-
sechga nt) versusnt for a set of values of the pa?amem{ ferent n values, the “perturbation” function w(t)=Cg(t)

n, i —sech@,nt) using thea, from the top figure.

The solid curves from top to bottom are for decreasing aant) g " P19
values, shown in the figure. The data arerfer1152 and the
effective hard sphere packing fractign=0.3, although the
trends are the same for other and ¢y values. The
sech@,nt) functional form has been proposed in the previ-
ous papers in this series for the short-time decay of the col
lective property time correlation functidisee, e.g., Ref9])

Cg

we search for the value @, such that the integral of the
function tends to zerétypically the integral was<0.0005).
This criterion incidentally would allow us to obtaing di-
rectly from the sech function.

Figure 4a) shows the values of the parameggr versus
1/n estimated for differenn using the constraint that the

but only with the specific valua,=+2, the exact reSUItTc;ntegraI over theCg(t)—sech@,ni) is zero. The open and

based on a time expansion of the correlation function. . - —
account for this deficiency, we express the bulk autocorrela(-zloSed _C|rcles represent the data fyr=0.3 andgH—O.Z_, ,
tion function of ther " fluids as the sum of two functions respectively. The solid lines are second-order polynomial fits

to the data and the arrow indicates a limitiftard sphere

Ca(t) =sectia,nt) +w(a,nt), (45  extrapolated value. Method gives, within simulation uncer-

tainty, the limiting value ofa,— 7*%4 numerically forn

where the sech component is the dominant partvagdn be  —o0, which is Dufty’s predictior{ 3] for the shear stress time
considered as a perturbation or correction term. This addicorrelation function. If we follow Dufty’s approach for the
tional term combined with the sech term gives us the necegressure correlation function, by assuming that the singular
sary flexibility to satisfy the key requirements f@p(t). part (here the only paytis represented by “sech,” then from
Although there are many possible “decompositions” of thethe Green-Kubo formula wenusthave a,= 7>%/4 to give
Cg(t) function, we consider Eq(45) to be a reasonable the Enskog value for the bulk viscosity, from E@7), as
match to the simulation data. The sech function is presumdiscussed in Sec. Il.

ably not unigue and so the analytic formwfwill depend on Figure 4b) gives for{y=0.3 and four different values of
the choice of the functional form of this main component ofn, the “perturbation” function w(t) =Cg(t) —sech@,nt),
the singular part. using thea,, values from the upper graph. In method A the

The form of thew function needs to be chosen using aintegration should be performed in the time interval0
reasonable criterion. We consider two possibilities. The first,—oc. In practice we have simulation data covering a finite
which we refer to as metho#l, minimizes the integral of the time interval. The simulation data fort>5 were subject to
function w(a,nt) =Cg(t) —sechg,nt). In practical terms, increasing statistical uncertainty and so the upper time limit
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(e.g.,nt<2), Cg(t) is almost independent af. Also for
largernt a more regular convergence trend to this limit is
apparent. Figure (8 shows that metho® gives a limiting
value of a, in the n—< limit that is statistically indistin-
guishable fromy2, the exact result obtained from an expan-
sion of the time correlation functiof®]. Figure 3b) also
shows that the initial part ofv(t) is quite close to zero,
which means tha€Cg can be very well representddt least
Y o o5 for small values oit) by the sech function. Thus, the ex-
1/n pansion sech,nt)=1—(a,nt)?/2+0O((nt)*) can be fitted
at shortnt to the computey(t) to obtaina,. We refer to
this as the “parabolic” or ‘D" approach. We find that th&
andD procedures both lead numerically to the correct value
for a, (=+2) in the hard sphere limit. They also give sta-
tistically the same dependence af [and thereforew(t)]
with 1/n and density, particularly for largen (e.g., n
>144). For smallen values there are differences between
these two approaches which could be due to the finite value
” T S of the upper limit ofnt in the integral and limitations in the
| = pres 188 o numerical accuracy of the fitting procedure used in Ehe
0 2 n r approach. Also thev(t) function is not perfectly flafi.e.,
nt zerg at short timege.g.,nt<<0.1). The parabolic approach
has the advantage that it is simpler to implement and does
not have the problem of establishing an upper time limit for
the integral. As it leads to similar results to tiwdunction of

Sl CH =045

1.43r

141
0

o
=]
Pt

—sech(annt)

o

w =CB

FIG. 5. Plot as for Fig. 4 but here the values of the are
estimated from the condition that the integral ovEEg(t)
—sech@,nt)| is a minimum(methodB in the tex}. The data in the o .
upperg%;pf)(!el) are for four packing fractions. The solid lines drawn criterion B we have used t.h® method to obtain the,
through the data for each packing fraction are to guide the eye anB"’lr"’lmeter for subsequent figures. .
the arrow indicates the expected hard sphere limit. The lower graph N Dufty’s method we only need the integral G(t) to
(b) gives the “perturbation” function(t) = Cg(t) — secha,nt) us-  dive the Enskog result for the bulk viscosity and it is as-
ing thean from the top figure. sumed thaCB(t) =SeCh€lnnt) which means that, as the in-
tegral Cg gives the Enskog value for the bulk viscosigy,
must have the valuer®?/4 (see Sec. )l This also emerges
naturally from criterionA in which the integral ofn(t) is set
to zero, so that as the integral G is the integral of the sech
function plus the integral of the function, then we must

avea,= w44 in this case als¢as we found in Fig. % The
limitation of the Dufty approximation is that the resulting
short-time dependence &(t) is incorrect, as we require
thata,= 2 rather thanr®%4.

We found that thew data can be fitted well by thg/
?unction which is the sum of twd'-distribution functions,

of the integralt,, had to be chosen carefully. The fitted solid
lines changed only a little using upper valuestgf5,6,7,
and 8. The data shown in Fig(a used a maximumt value

of 6 in the integral. The main conclusions are unaffected b
the specific choice of the cutoff in the integral, in that the
value ofa, with 1/n tends towardsr®%4 in the hard sphere
limit, as expected from Duft{3]. Also, the approximation of
sech@,nt) for Cz becomes less satisfactory with increasing
n as rather large positive and negative deviations from zer
in w are necessary to obtain a zero value for the intdges
Fig. 4(b)]. _

We explored another criterion, called methBd which W)= Wi (x) +Wo(x), (46)
was to minimize the integral of the absolute value of
|w(t)|=|Cg(t) —sech@,nt)|. The advantage of this ap-
proach over method is that we were more likely to get a W, (X) = A x3texp( — m;xkt), (47)
better fit to actual form o€g(t), rather than just its integral
which we have seen leads to quite large positive and negativgnd
values for the difference betweebg(t) and sechd,nt).

Figure 5 shows the same quantities as given in Fig. 4 but W,(x) = A,x%2exp —m,xK2). (48
with the values of,, determined by this method. The data in

the upper graph are for four packing fractions. The solidWe will useWg to denote théV function for the case of the
lines drawn through the data for each packing fraction ardulk viscosity time correlation functiotVg , is the analytic
now just to guide the eye, and the arrow indicates the exfit to w for a particular value oh. A fit to the simulation data
pected hard sphere limit based on a short-time expansion efsing Eqs(46)—(48) was made by minimizing the integral of
the correlation function. Figure(B) shows the difference |Wg n(t)—wg(t)| until its value was<10 *. This gives
functionCg(t) — sech@,nt) using thea,, from the top graph. eight parameteré;,a;,m;,k;,A,,a,,m,, andk, of Wg ..
Criterion B is better thanA in that for short scaled times Figure 6 shows these fitted functions for the=576 and

where
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- _ . bulk KC,n=72
.=.— bulk KC, n=144
— bulk KC, n=288
_ _. shear GC, n=72

_ shear GC_ n=144
___ shear GC_ n=288

B
B
B
S
S
S

2
log(t)
0 2 4 (li 8 10
nt ! - bulk Cyn=72
FIG. 6. Afit to the simulation data to Eqé46)—(48) by mini- o} oo e |
mizing the integral of Wg ,(t) —wg(t)| which yields the eight pa- T chear C:n=72
rametersA,,a;,m¢,ky,A,,a,,m,, andk,. On the scale of the fig- 0.6/ - shear Cgn=144 -
ure the MD data are hardly distinguishable from the fits to at least — shear Cn=288
nt=5-6. In the figure also the two componem4 and W, are 04t
plotted as dashed lines. For the paramet@ss,a;, my, ki, A,,
a,, my,, andk, in Egs.(47) and (48), we have—0.0244, 3.5864, 02k C_.H=0-2 (b)
1.7852, 1.4890, 0.0045, 4.2378, 1.3888, 0.9738 respectively for e
=576, and —0.0230, 3.7553, 1.9467, 1.3752, 0.0041, 4.4904, ok i s :
1.5110, 0.9700 fon=1156. Using the data fan=576 and 1152 -4 -2 6

and assuming linearity we calculated the limitig , function in
then— oo limit, which is given as the boldest solid line in the figure.
This function has the parameter®$.0221, 4.3447, 2.1588, 1.3383,
0.0036, 5.1865, 1.8565, 0.9380, respectively.

FIG. 7. The bulk and shear time correlation function for"
fluids with n=72,144, and 288 af,;=0.2. The upper grapka)
shows these functions vs lday(In the lower graphb) the same

. data are shown as functions normalized to unity at zero time, and
1152 cases. On the scale of the figure the MD data practiy,,, plotted vs logt). y

cally lie on the fits fornt up to 5—6. The values for these

eight constants in each case are given in the figure captiojmylation data become statistically more unreliable in the
Wy(x) are the dashed lines with the minimum, aW§(x)  range 5<nt<6, it is difficult to make any firm statements
are the dashed lines with the maximum. We see from the,o 1 the analytic form of any limiting “tail” in thewg

simulation data shown in Fig. 5 that at least for larg# s fynction. Of course, any tail presentivy need not have the
reasonable to assume that a linear expansionnincah be exp(—mzx'g) analytic form. Figure 6 also shows that fot

u;ed to extrapola_tWB'n(t) to the limit n—oc limit [i.e., to >4 we havewg=W,. A plot of thewg, function on a linear-
glve_WB,m(_t)]._Usm_g the da_ta _fpn:576 and _1152 and as- log scale shows a near linear behavior fae>4. One can
suming th's. linearity, the I'm'tmng’f] fur_1ct|o_n was ob- also observe thdk, is close to 1(in fact calculations per-
tained and is shown as th? bolde§t line in Fig. 6. These fiformed with k,=1 fixed gave a fit that was almost as good
parameters are also given in the figure caption. as wherk, was a free variab)e Thus, an exponential decay

In the limit n—z the constana,=y2 (see Fig. 5and it he form expt-myX) at long times is quite possible. The
Cg(t) therefore tends to seclignt) +Ws .(nt). We know )¢ of W,=0.0176 for the particular set of datg, for n

from Enskog theory the value of the integral©f, and we  _ 576 and 1152 at,=0.3 is very close to the exact value
can calculate the integral of the sech function to determing 5177, For thet,,=0.2 data, a value of 0.0162 was ob-
the integral of the perturbation termvg. The integral of  tained. Nevertheless, the limiting function was always very
Wg .. which we call W, has the value (22/7—w/2)/\2  close to that in Fig. 6, and the deviations from the exact
=0.0177. Thus, we have an additional condition that allows,gjye of 0.0177 we think are mainly produced by the less
us to check(and justify our linear extrapolation in bl As  accurate tail data font>4. We would add that, of course,
J5[x?exp(=mxX)]dx=T((a+ 1)/k)/k/m@* D then, the fitting procedure is not unique, and other analytical forms
for the W , functions are possiblgperhaps with fewer free
parameters and so we assume that the coefficients
A4, ... K, have no physical meaning.
We now consider the shear stress correlation function
+ AT ((8p+ 1)1k )k /mS2 %2=0,0176, (49)  C(t). The unnormalized bulk and shear time correlation
functions for various values afi are given in Fig. 7. The
using the parameters given in the caption to Fig. 6, andipper figure(a) shows the functions versus lag(or the
which is very close to the exact val,=0.0177. As our packing fraction,;=0.2. We denote the quantit@.. [see

W, = fo Wi .dx=A T ((a;+1)/ky)/k, /mi "Dk
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1.43 T ™ 0.09

£, =03

— Cg- sech(a nt)
- - - Enskog/G

0.051

0.031

1.33
0

0.01 0.02 0.03 ~0.01
1/n 0

FIG. 8. The parametea, vs 1h estimated from the short-time
expansion orD approach applied to th€4(t). The solid lines
drawn through the data for each packing fraction are to guide th
eye and the arrow indicates the analytically exact rd@llt

FIG. 9. The normalized shear stress time correlation function
gfter subtraction of the main singular part ms (solid ling). For
eachn, thea, value shown in Fig. 8 was applied. The dashed line
represents the Enskog function divided by the shear modilus
Eqg. (9)] by K andG for the bulk and shear functions, respec- (=G..).
tively. The lower figure shows the same data, but normalized
so thatCg(0)=Cg4(0)=1, and now plotted versus lagj. X(nt)

This form of plotting emphasizes the singular part of the Cs(t)=secha,nt) +wg,(t)+ C—CS,E(t). (50
decay in the correlation function. Notice in Fig(ay the *

gradual appearance of a shoulderGg(t) at intermediate .
times with increasing), which is most prominent in the The X function in Eqg.(50) controls the crossover from the

—288 data of the figure. The soft system with increasingiMe scale characterizing the collision to the Enskog time
potential stiffnesgi.e., n) is tending to the hard sphere fluid. scale, which is of order the mean time between collisions.
The nonsingular part of the decay should follow closely theWe now have two unknown functionss () and X(nt),
Enskog formula for the hard sphere shear stress correlatiofhich require additional information or assumptions, as we
function, given in Eq.(25). Figure 7b) illustrates that the Cannot separat€s in a unique way into these two compo-
behavior of the singular part & is very similar to that of Nents. We can assume a general form forXtfanction, with
the Cg. Thus, it is reasonable to assume that the singulaf Single disposable parameter function. We can impose the
part of theCg can be well represented by the sezfi(t) c;ondmor, thatlthe limit of the integral ov'ew.(t) has to go
function, as proposed by Dufty. The parametercan be linearly (inn™ ") towards_ the Ensko¢HS) Ilrr_ut. Dufty pro-
determined from the short-time part 6% as forCg, using P0Sed a number of requirements 520(“) that it must be even
the D approach for example. This is a key point as it allowsin time, vanish up through ordert“, and approach unity at
us to subtract off thémain) singular part. At long times and 10ng times. Even if we assume the same general form for the
for largen we expectCg(nt) —sech@,nt) to be quite close Ws function as forwg, (i.e., tpr distribution fun_ct|on$we
to the nonsingular part as given by Enskog thedy. (25)] still have to choose an _qnalyth form for tfunction. Apart .
divided byG... In Fig. 8 we show the parametay, versus from the_ge_r_leral conditions given by Dufty, we can require
1/n estimated from the short-tim@ expansion approach. In thz_it the I|m_|t|ng form of the singular part of the shear corre-
the hard sphere limit we see that— 2, the analytically lation fgnchon should be the. same as that of the bulk auto-
correct resul{9]. Figure 9 focuses on the part of the stressCOTelation function. In the limin—c, we must havea,
relaxation that is dominated by the nonsingular component. V2 for both functions. For large thews(n) functions are
The figure shows the normalized shear stress time correlatiodPected to converge linearly in ri/towards theWs..
function, after subtraction of the main singular part, com-=Wg,= limit, which we now know reasonably well in the
pared with the Enskog prediction. For eatthe correspond- bulk case. Therefore the time integral wfs should be
ing value ofa, from Fig. 8 was used in the sech subtraction0-0177, and an acceptable analytical form for ¥hfanction
procedure. The dashed line represents the Enskog functidh one that gives this limiting behavior. This assumption then
divided by the shear modulu3.., which is seen to follow allows us to say something more about ¥&inction. Three
the simulation data very well. pIaUSible choices for theX function are Xl(X):XZ/(A
From our treatment of th€g data we know that the sin- +X°), where A is a parameter,X,(x) =[x*/(1+x?)]?,
gular part is not exactly represented by the saghf) func-  Which is Dufty's proposal of Eq(12), and
tion, but requires an additional terwi(t). To distinguish the
w(t) functions in the bulk and shear cases, we refer to them X3(X) =[x%/(A+x%)]?, (53)
as wg and wg, respectively. Therefore we think that the
shear function is not best represented by @d) but by the  which is a generalization of Dufty’s function with one dis-
more general formulation, posable parameter. Therefore we have, in the latter case,
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x 107

x10°

FIG. 10. The top figure showd ;= [dtWs_.(t)—0.0177 and
A,=[dt|Ws..(t) —Wg ..(t)| plotted as a function of thA param-
eter given in Eq(51). Ws_.. was obtained from linear extrapolation
of Ws 576 andWsg 115, together with theX; crossover function given
in Eg. (51). In (b) the results folWs , obtained with theX; are
shown(this is analogous to Fig.)6

Wsn(t) =Cg(t) —sectta,nt) = X3(nt)Cs e(t)/ G,
(52)

whereCsg(t) is given in Eq.(25). For convenience we de-
fine
A(t):X3(nt)CS’E(t)/Gw (53)

The quantities A;=[gdtWs.(t)—0.0177 and A,
= [dt|Ws..(t) —Wg ..(t)| are plotted in Fig. 1@&) as a func-
tion of the parameteA. Ws.. was obtained from linear ex-
trapolation inn~ ! of Wss7¢(t) andWs 1;5{t) determined in
conjunction with theX; function. The calculations are for 11
values of the parameté. The same form of the fitting func-
tion was used as in the case of the bulk function, i.e.,
Egs. (46)—(48). There are minima in these two difference
functions in the range 14A< 1.6, which indicates that the
particular function X3(x) =[x%/(1.5+x?)]? satisfies these
limiting conditions very well. The performance ¥ andX;
(with 1<A<2) was not as good. In Fig. 1) the results for
W, obtained withX3(x) =[x?/(1.5+x?)]? are shown(this
is analogous to Fig.)6

The assumption that, in the limit— oo, the singular parts
of Cg are the same as that 6§ is open to debate. Exactly in
the limit n=< (i.e., hard sphere limitwe have a5 function
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FIG. 11. Decomposition of the shear time correlation function
into singular and nonsingular components, all vs hdg{s shown
for each value oh. Key: (a) The normalizedC((t) function with
n=72,288,576, and 1152 for the packing fractifyy=0.3. (b) The
main or singular part, seca{nt). (c) The nonsingular or Enskog-
limiting part, defined in Eq.(53), A(t). (d) The “perturbation”
singular partwg(t) defined in Eq(52). In the calculations,, taken
from Fig. 8 are used. Th¥; function with A=1.5 was used.

In contrast, theX function could have a physical basis, with
a unique functional form, as it weights the singular and En-
skog contributions as a function of time. Thus, g ana-
lytic form, with the valueA= 1.5, might not only be a useful
empirical function to describ€g, but indicate something
more fundamental. As for the bulk time correlation function
we also obtain the integral oiVs..=0.0177, which is the
exact value[see the black dot for; in Fig. 10 at A
=1.5].

The results of our decomposition @f(t) are presented
for the shear case in Fig. 11 using data taken from simula-
tions carried out at a packing fraction &§f=0.3. This figure
shows the various components of the shear time correlation
function versus logft) for four values ofn, ranging from 72
to 1152. Figure 1) gives the “total” normalizedCg func-
tion, which illustrates the very goodt scaling, at least at
short times (t). Figure 11b) shows the main or singular
part, sechd,nt), with thea,, values given in Fig. 8. It can be
seen that the four curves are essentially indistinguishable on
this scale. In Fig. 1(t) the nonsingular or Enskog-like part,
A(t), defined in Eq(53), is shown for the four data sets. In
Fig. 11(d) the perturbation singular pantg(t) defined in Eq.
(52) is shown for each value af[see Fig. 11a) for the key.
Thew(t) functions in the hard sphere limit for the shear and
bulk cases are statistically indistinguishable, as seen in Fig.
12 and we might therefore expect that both shear and bulk
w(t) converge to the same functional form.

The trends for the heat flux time correlation functidys
are similar to theCg. Figure 13 shows the unnormaliz€d
versus log(t) for different n values at the packing fraction

for the singular part, which has many possible representas,=0.3. There is a convergence with increasimgf the

tions, not just the sech form. Even for finitehere are many

simulation data at long times to the Enskog nonsingular

possible representations consistent with the simulation datéunction given in Eq(31) (see also the upper graph of Fig. 7
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nt FIG. 14. The parametex, vs 1h estimated from thé® fitting

. approach forC;. The solid lines drawn through the data for each
FIG. 12. Acompa_lrlson_betweeNB,x(t), Ws.«(1), andW..(t) packing fraction are to guide the eye. Tkg function with A
for the packing fractior?,;=0.3. T .
=1.5 was applied.

for the comparable shear stress relaxation cdseFig. 14

. . ingular part. The former dominates at short times,0, and
we show the parameter, versus Iih, estimated using thB

hf . King fracti Aaai the latter tends to the Enskog solution, and is the main part,
approach for various packing fractions. Again we see alaat at long(mean collision times. Dufty represented the singular
appears to converge tg2 as for the bulk and shear time art as sectg,nt), wherea, is a disposable parameter amd

correlation functions. Figure 15 showg the'dec'omposition Ols the exponent or stiffness parameter in the soft sphere po-
Cy into the same components as @¢ given in Fig. 11. The  tentia| A time-dependeniX function was introduced to
behavior is much the same. The heat flux time correlationyejgnt the analytic functions for these two extremes at all
functionsC(t) can also be fitted to the general scheme ofiimes put especially in the crossover period between where
Eq. (50), and we again find that witiX;, A=1.5is the the singular and nonsingular terms each dominate. This
optimum case, although the agreement is not as good. It caossover period is centered around approximately the dura-

be seen in Fig. 12 thatir ..=wp,. tion of a binary “collision.”
This approach has been extended here. We have consid-
V. CONCLUSIONS ered the time correlation functions used in the Green-Kubo

) formulas for the bulk viscosity and thermal conductivity. The
Dufty made a formal analysis of the shear stress autocof i yiscosity is expressed in terms of the pressure time cor-

relation function in the transition region between the steeplyq|ation function. which is entirely singular in the hard
repulsive soft sphere fluid and the hard sphere fi8idThis  — gppare jimit, and therefore provides a useful prototype case
function, Dufty showed, consists in the hard sphere limit of &, explore the singularity at=0.

singular part, with the singularity at time=0, and a nons- Many of the simulations were carried out densities where

the Enskog theory gives an accurate result for the transport
15

— 36
-T2 1 1
-~ 288
-~ 576 0.8 = 08 b
— 1152 c:q
ol — Enskog | [ 0.6 8 0.6
© 04 = 04
OB 0.2 & 02
0 0
= -4 -4 6
5k
0.15
0.1
0 L <
log(t) 0.05
FIG. 13. The unnormalized heat flux time correlation function 9
C+(t) vs logt) for various n values at the packing fractiotiy
=0.3. The approach towards the Enskog function with increasing
is clearly visible(see also the top graph of Fig). M in the figure FIG. 15. As for Fig. 11, except the heat flux correlation function
stands forM ., . C+(t) is analyzed.
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coefficient. The sech function used by Dufty to represent th@ver such a tail in the velocity autocorrelation function, and
singularity is unable to reproduce the Enskog bulk viscosityhence the self-diffusion coefficient, cannot exat least in

and produce the correct short-time decay behavior for anythe thermodynamic limjt[20,21). On the basis of the same
given value ofa,,. The first condition is met ifi,= 7244,  conjecture, as the long-time behavior of the complete shear
but this value does not satisfy the second condition. A comstress or heat flux autocorrelation function does not differ
bination of the sech and a perturbation functie(t) is suf-  qualitatively from the kinetic part, the same conclusion
ficiently versatile to satfisfy these two requirements. Thismight be reached for viscosity and thermal conductivity.
function has the limit thaw(t)—0 for t—0 andt—=. We  Thus hydrodynamics in the conventional sense does not exist
compared various procedures to obtain the optimum value qf, 2p. The situation is still far from clear, however, with a
a, in this more general formulation. In the most satisfactorygpagar viscosity actually being measurable in 2D nonequilib-
approach, we show that the simulation data are consistepi,, MD studies at finite shear raf@2,23 (see also Ref.
with a,— 2 in the hard spheren{—c° limit), which is the  [24] for a corresponding 3D simulationTherefore we are
result necessary to have the correct initial decay of the pregg|yctant to make any definitive statements about the feasi-
sure correlation function. This limit appears to be indepenbimy of extending the present treatment to 2D. We cannot

dent of density. A possible analytic form fav(t) is sug-  even be sure that the sech function will play the same role in
gested which fits the simulation derived correlation functionsyp a5 in 3D, for example.

very well for the steep soft potentials and in the hard sphere
limit, and satisfies a number of self-consistency require-

ments.
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