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Langevin equation for the extended Rayleigh model with an asymmetric bath
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In this paper a one-dimensional model of two infinite gases separated by a movable heavy piston is consid-
ered. The nonlinear Langevin equation for the motion of the piston is derived from first principles for the case
when the thermodynamic parameters and/or the molecular masses of gas particles on the left and right sides of
the piston are different. Microscopic expressions involving time correlation functions of the force between bath
particles and the piston are obtained for all parameters appearing in the nonlinear Langevin equation. It is
demonstrated that the equation has stationary solutions corresponding to directional fluctuation-induced drift in
the absence of systematic forces. In the case of ideal gases interacting with the piston via a quadratic repulsive
potential, the model is exactly solvable and explicit expressions for the kinetic coefficients in the nonlinear
Langevin equation are derived. The transient solution of the nonlinear Langevin equation is analyzed pertur-
batively and it is demonstrated that previously obtained results for systems with the hard-wall interaction are
recovered.
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I. INTRODUCTION

The Brownian motion of a massive piston in a cylind
filled with an ideal gas is one of the oldest models of no
equilibrium statistical physics. In its simplest version, bo
the piston~of massM ) and the gas molecules~of massm)
are confined to move in one dimension along the symm
axis of the cylinder. The piston is assumed to be adiabati
the sense that its heat conductivity is negligible so that th
is no transfer of heat between the two compartments of
cylinder as long as the piston is held fixed. This simp
model has served as a useful test of new schemes and
proximations for several generations of physicists~see Ref.
@1# for references!. In most treatments it is assumed that t
bath particles interact with the piston via the hard-wall p
tential, i.e., piston-molecule collisions are considered to
instantaneous. In this model the piston interacts with b
particles through a sequence of binary collisions and the p
sibility of simultaneous interaction of the piston with mo
than one molecule is neglected. This approximation is va
as long as one is interested in the asymptotic long time
havior of the system which is apparently insensitive to
tails of the interactions between the bath particles and
piston. On the other hand, the motion of the system on s
to intermediate time scales is clearly influenced by the na
of bath particle-piston interactions, and one has to take
account the finite range of the potential and effects of mu
particle collisions. It is known that many-particle collision
are an important factor in liquidlike systems, essentially
fecting the shape of the velocity correlation function, es
cially when a repulsive part of potential is relatively ‘‘soft
@2#. In such systems, a given particle interacts simu
neously with a relatively heavy swarm of other particles
its vicinity, leading to an enhancement of caging effects
comparison to systems with a short-ranged potential. A
result, the velocity autocorrelation function has a more p
nounced negative part corresponding to an anticorrelatio
the velocity induced by a particle rebounding of its neig
bors. Multiparticle collisions may also be important f
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tagged particle motion in a dilute gaslike medium provid
the tagged particle~or ‘‘piston’’ in the present case! is large
enough that the average numberN of gas molecules in the
interaction shell around the particle is larger than 1. Althou
in this case the qualitative form of correlation functions do
not depend onN, the softness of the potential essentia
influences the short-time behavior of the system leading
the nonexponential initial decay of time correlation functio
@3#.

Another reason why one may wish to go beyond the
proximation of hard-wall interaction is methodological. It
often problematic to directly apply general analytical tec
niques involving differential operators for systems with
singular potential. Even if one expects multiple collisions
be unimportant, it is often convenient to model interactio
via a short-ranged potential of rangel i and subsequently ana
lyze results in the hard-wall limitl i→0.

In an earlier paper@1#, a microscopic derivation of the
nonlinear Langevin equation was presented for a system
sisting of a massive piston interacting with bath particles
an arbitrary repulsive potential. We use the term ‘‘nonlinea
to refer to the Langevin equation with not only the line
dissipative term~Stokes damping! but also dissipative terms
of higher orders in particle’s momentum. In Ref.@1# all gen-
eralized kinetic coefficients appearing in the nonline
Langevin equation were expressed in terms of time corr
tion functions involving the interaction force between t
piston and the bath particles and its derivatives. For so
systems, such as an ideal gas interacting with the pis
through a repulsive quadratic potential, the microscopic
pressions for all the kinetic coefficients can be calcula
analytically. For this reason, simple models, such as the id
gas-piston system, provide a convenient means of stud
many subtle points of Brownian motion theory, such as
role and form of nonlinear damping, relative importance
non-Markovian effects, and convergence properties of sm
parameter expansions.

In Ref. @1# the dynamics of the piston in a homogeneo
bath was examined. The purpose of this paper is to ext
©2004 The American Physical Society12-1
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the analysis in Ref.@1# to the case of an asymmetric bath
which the parameters characterizing the bath to the left
to the right of the piston are different. This model has
ceived a recent renewal of interest after it was discove
that the system may exhibit nontrivial transient and stati
ary behavior when there is an initial asymmetry in the th
modynamics properties of the gases to the left and to
right of the piston@4#. Among other interesting points, it wa
found that the piston undergoes a noise-induced directio
movement in the absence of macroscopic forces, a chara
istic of motion in molecular motors and stochastic ratche
In the limit of an infinitely long cylinder, Piasecki and Gru
ber@5# found a stationary solution of the equations of moti
of the piston corresponding to the drift of the piston in t
direction of the compartment with higher temperature ev
when the pressure on the left and the right of the piston
the same. This result has been later confirmed by nume
simulations@6#. This fluctuation-induced motion is an effe
of the first order in a small mass-ratio parameterl, defined
as l5Am/M . It does not follow from the conventiona
Langevin equation with linear dissipation, and appears o
when nonlinear damping terms, which are of higher order
l, are taken into account.

In this paper the projection-operator method applied
Mazur and Oppenheim@7# to the theory of Brownian motion
is adapted to the case of the asymmetric bath. We shall
sider a slightly more general model of the asymmetric b
than that analyzed by Gruber and Piasecki in that not o
temperatures but also the masses of the bath particles in
left and right compartment may differ. For such a system,
Langevin equation, including nonlinear dissipative terms
third order inl, is derived from first principles. The resul
ing equation is general, holds for arbitrary interactions
tween the piston and the bath particles, and is not restri
to the ideal gas bath. The kinetic coefficients appearing in
nonlinear Langevin equation are expressed as integral
time correlation functions of the force between the pis
and bath particles. For a bath of ideal gas particles inter
ing with the piston via the parabolic repulsive potential, t
correlation functions can be computed in closed analyt
form. For this model, an explicit expression describing rel
ation of the momentum of the massive piston is obtain
The analysis based on the Langevin equation is much m
simple than that involving the language of distribution fun
tions adopted in other papers on the subject. The perturba
and stationary solutions are analyzed and demonstrated
consistent with the results of Gruber and Piasecki obtai
for a model of instantaneous binary collisions.

II. AN EXACT EQUATION OF MOTION
FOR THE PISTON

The system consists of a piston of massM and cross-
sectional areaS confined to move in one dimension~chosen
to be along thex axis! in a cylinder of total lengthL. It is
assumed that the piston is initially at positionX near the
center of the cylinder, taken to be the origin, with the le
most and right-most ends of the cylinder at positions2L/2
andL/2, respectively. The left and right compartments of t
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cylinder are filled with bath molecules of densitynl andnr ,
temperatureTl and Tr , and massml and mr , and move in
one dimension along thex axis. We assume the bath mo
ecules are confined to their respective compartments by h
wall interactions with the immobile ends of the cylinder, a
interact with the piston through a short-ranged, repulsive
tential. The Hamiltonian of the piston-bath system can
written in the form

H5
P2

2M
1H0~X!, ~1!

where X and P are the coordinate and the moment of t
piston, andH0(X) is the Hamiltonian of the bath in the pres
ence of the piston constrained at positionX. H0(X) can be
decomposed into the sum of two parts,H0(X)5H0

l (X)
1H0

r (X), corresponding to the Hamiltonian for the ba
molecules on the left and right of the piston,

H0
a~X!5(

i 51

Na H pi
2

2ma
1U~X2xi !J . ~2!

For simplicity of notation, above and throughout this pap
the super- or subscript indexa5$ l ,r % is used to label dy-
namical variables in the left and right compartments of
cylinder. In the above equationNa and ma are the number
and the mass of particle in a respective compartment.

In the following, we restrict our analysis to the case wh
differences in the thermodynamic parameters of the bath
the left and right compartments of the cylinder are sm
Furthermore, the molecular massesml and mr are assumed
to be of the same order of magnitude and much less than
mass of the pistonM. Under these conditions, one migh
anticipate that the directional contribution to the moment
of the piston is small, and on average is of orderP
;AMkBTp, where the effective temperatureTp of the piston
is of the same order of magnitude as the left and right te
peraturesTl and Tr . In the subsequent analysis, we sho
that this intuition is correct, and an explicit expression forTp
will be presented.

It is convenient to express the equations of motion of
piston-bath system in scaled coordinates. To this end,
introduce the small parameterl5Am/M , wherem is an ar-
bitrary mass of the same order of magnitude asml andmr .
One may reasonably expect that the scaled momentum o
piston P* 5lP will typically be of the same order of mag
nitude as the momentum of a bath molecule. The param
l therefore serves as a quantitative measure of the time s
separation between the slow evolution of the massive pis
and the fast evolution of the light bath molecules. As in t
case of Brownian motion@7#, it will be useful as an expan
sion parameter to simplify the physics of the system@8#.

In terms of the scaled piston’s momentumP* 5lP, the
Hamiltonian readsH5P

*
2 /2m1H0. The corresponding

Liouville operatorL, which governs the evolution of an a
bitrary dynamical variable via the equationA(t)5eLtA @A
[A(0) throughout the text#, can be written in the form
2-2
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L5L01lL1 , L05L 0
l 1L 0

r . ~3!

Here the Liouville operatorsL 0
a ,

L 0
a5(

i
S pi

ma

]

]xi
1Fi

]

]pi
D , ~4!

describe dynamics of the bath molecules in the left and r
compartments of the cylinder in the presence of the pis
held fixed at positionX, where the forceFi acting on a mol-
ecule i is Fi52]U(X2xi)/]xi . The Liouville operatorL1
is defined by

L15
P*
m

]

]X
1F

]

]P*
, ~5!

whereF52( i]U(X2xi)/]X is the total force exerted on
the piston by the bath molecules.

Our task is to express the equation of motion of the sca
momentum of the piston,dP* (t)/dt5lF(t), in the form of
a Langevin equation in which the instantaneous forceF(t)
acting on the piston at timet is decomposed into ‘‘dissipa
tive’’ and ‘‘random’’ parts. To accomplish this goal, we de
fine the projection operatorsPl , Pr , andP, which act on an
arbitrary dynamical variableA according to the rules

PaA5^A&a5E dVaraA, ~6!

PA5PlPrA5^A&5E dV lr lE dV rr rA, ~7!

whereVa5$xi
a ,pi

a% are the phase points for the bath mo
ecules in the left and right compartments of the cylind
ra5Za

21exp$2baH0
a(X)% are the corresponding canonic

distributions for the bath molecules in the presence of
piston fixed at coordinateX, ba5(kBTa)21, and kB is the
Boltzmann constant. Note that the projection operatorP ef-
fectively averages over initial conditions of the bath at
fixed position of the piston. Using the operator identity

e(A1B)t5eAt1E
0

t

dteA(t2t)Be(A1B)t, ~8!

with A5L andB52PL, one obtains the following decom
position for the force on the pistonF(t)5eLtF:

F~ t !5F†~ t !1E
0

t

dteL(t2t)PLF†~t!, ~9!

whereF†(t)5eQLtF andQ512P.
The structurePLF†(t) in Eq. ~9! can be further simpli-

fied to lPL 1F†(t) due to the orthogonality property,

PlL 0
l 5PrL 0

r 5PL050, ~10!

which follows from the relationL 0
ara50. Using this rela-

tion and the definition of the projection operators, Eq.~9!
takes the form
02111
t
n

d

r,

e

F~ t !5F†~ t !1lE
0

t

dteL(t2t)H P*
m K ]

]X
F†~t!L

1
]

]P*
^FF†~t!&J . ~11!

In this expression the factor

K ]

]X
F†~t!L 5E dV lr lE dV rr r

]

]X
F†~t! ~12!

can be simplified by pulling the differential operator out
the integral,

K ]

]X
F†~t!L 5

]

]X
^F†~t!&2E dV lE dV rF

†~t!
]

]X
~r lr r !.

~13!

Using properties of the projection operator, the first term
the right-hand side of Eq.~13! can be simplified using the
fact that

^F†~ t !&5^etQLF&5PetQLF5PF5^F&. ~14!

For a homogeneous system, one expects^F&50 and hence
^F†(t)&50. For an asymmetric system, on the other ha
^F&Þ0 and the first term on the right-hand side of Eq.~13!
generally does not vanish.

The second term in the right-hand side of Eq.~13!, in-
volving (]/]X)r lr r , can be worked out taking into accoun

that in the distributionsra5Za
21e2baH0

a
not only the Hamil-

tonians but also the partition functionsZa depend parametri-
cally on X,

]

]X
~r lr r !5r lr r S b lFl1b rFr2

1

Zl

]Zl

]X
2

1

Zr

]Zr

]X D .

~15!

It is straightforward to show that

1

Za

]Za

]X
5ba^Fa&, ~16!

whereFl andFr are the forces on the left and right surfac
of the fixed piston such thatFl1Fr5F. Therefore Eq.~13!
takes the form

K ]

]X
F†~ t !L 5

d^F&
dX

2b l^^FlF
†~ t !&&2b r^^FrF

†~ t !&&,

~17!

where the double brackets denote the cumulants,^^AB&&
5^AB&2^A&^B&. Substituting this result into Eq.~11!, we
get the following exact equation of motion of the piston:
2-3
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dP* ~ t !

dt
5lF†~ t !1l2E

0

t

dteL(t2t)H ]

]P*
^FF†~t!&

1
P*
m

d^F&
dX

2
P* b l

m
^^FlF

†~t!&&

2
P* b r

m
^^FrF

†~t!&&J . ~18!

For some systems, such as the extended Rayleigh mode
cussed in Sec. IV, the parametric dependence of^F& on the
position X of the piston is weak, and the derivative of^F&
scales as 1/L in the limit of largeL. In fact, for the Rayleigh
model, the bath is comprised of ideal gas molecules, and
parametric dependence of^F& on X arises through the depen
dence of̂ F& on the concentrations of bath molecules in t
respective compartments of the cylinder,na . Since

nl5
Nl

~L/21X!S
, nr5

Nr

~L/22X!S
,

whereNl andNr are the total number of bath molecules
the left and right compartments, respectively,dna /dX
;na /L for large L, and henced^F&/dX;1/L. Thus, for
large cylinders, this term may be dropped in the equation
motion of the piston and we obtain

dP* ~ t !

dt
5lF†~ t !1l2E

0

t

dteL(t2t)H ]

]P*
^FF†~t!&

2
P* b l

m
^^FlF

†~t!&&2
P* b r

m
^^FrF

†~t!&&J ,

~19!

which is exact for such systems in the thermodynamic lim
By expanding Eq.~19! in powers of the square root of th
mass rationl, one can derive the Langevin equation to a
order inl.

III. NONLINEAR LANGEVIN EQUATION

The forceF†(t)5eQLtF in the Eq.~19! can be expanded
in powers ofl using the fact thatPL050 and the operato
identity ~8!, to yield

F†~ t !5e(L01lQL1)tF

5F0~ t !1lE
0

t

dteL0(t2t)QL1F0~t!1O~l2!,

~20!

where F0(t)5eL0tF is the force exerted by the bat
molecules on the fixed piston. SinceL1F0(t)
5(P* /m)(]/]X)F0(t), the above equation takes the form

F†~ t !5F0~ t !1
lP*

m E
0

t

dtdG~ t,t!1O~l2!, ~21!

where
02111
is-

he

f

t.

G~ t,t!5eL0(t2t)
]

]X
F0~t! ~22!

and dG5G2^G&. Using this result, one can extract th
leading order approximation inl of the correlation functions
^FF†(t)& and^^FaF†(t)&& appearing in the equation of mo
tion ~19!. Since the evolution of the dynamical function
F0(t) andG(t) is governed by the Liouville operatorL0, the
left and right components ofF0(t) and G(t) are indepen-
dent, which implies that the cumulants^^FlF0

r &&, ^^FrF0
l &&,

^^FlGr&&, and ^^FrGl&& are all zero. Taking this into ac
count, one obtains

^^FaF†~ t !&&5^^FaF0
a~ t !&&1

lP*
m E

0

t

dt8^^FaGa~ t,t8!&&

~23!

and

^FF†~ t !&5^FF0~ t !&1
lP*

m E
0

t

dt8$^^FlGl~ t,t8!&&

1^^FrGr~ t,t8!&&%. ~24!

Substitution of these expressions into the equation of mo
~19! leads to the non-Markovian~generalized! nonlinear
Langevin equation,

dP* ~ t !

dt
5lF†~ t !2l2E

0

t

dtP* ~ t2t!M1~t!2l3E
0

t

dtP
*
2 ~ t

2t!M2~t!1l3E
0

t

dtM3~t!1O~l4!, ~25!

where the memory functions are given by

M1~t!5
1

m
$b l^^FlF0

l ~t!&&1b r^^FrF0
r ~t!&&%, ~26!

M2~t!5
1

m2E0

t

dt8$b l^^FlGl~t,t8!&&1b r^^FrGr~t,t8!&&%,

~27!

M3~t!5
1

mE
0

t

dt8$^^FlGl~t,t8!&&1^^FrGr~t,t8!&&%.

~28!

Note that for a totally symmetric system in which all param
eters characterizing the bath to the left and to the right of
piston are the same,^^FlGl(t,t8)&&52^^FrGr(t,t8)&&. In
this case the functionsM2(t), M3(t) vanish, and the Lange
vin equation~25! is linear. Furthermore, for a symmetric ba
it can be shown that the first nonlinear correction term is
orderl4 and proportional toP3 @1#.

Assuming that the memory functionsMi(t) decay with a
characteristic timetc which is short on the time scale fo
relaxation of the momentum of the piston, the generaliz
Langevin equation~25! can be written in form that is local in
time. In fact, on a time scalet,tc the momentum change
2-4



e

e

tic
a
e

of

d
is

be

or

We
sec-

he

al
il-
d

ules
ial,

the

em,
ed

ents

ig-
tion

alf

e

ric

LANGEVIN EQUATION FOR THE EXTENDED RAYLEIGH . . . PHYSICAL REVIEW E69, 021112 ~2004!
primarily due to the random force while the effect of th
damping force is of higher order inl,

P* ~ t2t!5P* ~ t !2E
t2t

t

dt8Ṗ* ~t8!

5P* ~ t !2lE
t2t

t

dt8F†~t8!1O~l2!. ~29!

Substitution of this expression and a similar one forP2(t
2t) into Eq.~25! leads to an expression that is local in tim
and of the form

dP* ~ t !

dt
5lF̃†~ t !2l2z1~ t !P* ~ t !2l3z2~ t !P

*
2 ~ t !1l3z3~ t !

1O~l4!, ~30!

where z i(t)5*0
t dtMi(t) and F̃†(t) is the random force

modified with a correction of second order inl,

F̃†~ t !5F†~ t !2
l2

mE
0

t

dtM1~t!E
t2t

t

dt8F†~t8!. ~31!

Since this correction is small and does not change statis
properties of the force, it will be neglected below. In wh
follows the dynamics of the piston on a time scale long
than the bath correlation timetc are considered. Whent
@tc , the kinetic coefficientsz i(t) assume their limiting val-
uesz i5*0

`dtMi(t). Re-expressing this equation in terms
the unscaled momentum of the pistonP5P* /l yields

dP~ t !

dt
5F†~ t !2g1P~ t !2g2P2~ t !1g3 , ~32!

where the kinetic coefficientsg i are given by

g15l2z15
1

ME
0

`

dt$b l^^FlF0
l ~t!&&1b r^^FrF0

r ~t!&&%,

~33!

g25l4z25
1

M2E0

`

dtE
0

t

dt$b l^^FlGl~ t,t!&&

1b r^^FrGr~ t,t!&&%, ~34!

g35l2z35
1

ME
0

`

dtE
0

t

dt$^^FlGl~ t,t!&&1^^FrGr~ t,t!&&%.

~35!

It is important to note that Eq.~32! with the kinetic coeffi-
cients given by Eqs.~33!–~35! is a general result that is vali
for arbitrary interaction potentials for the bath and that
also independent of the specific form of the interactions
tween the piston and the bath molecules.

Note that the correlations ^^FlGl(t,t)&& and
^^FrGr(t,t)&& are of different signs, which suggests that f
the asymmetric bath eitherg2 or g3 can vanish for certain
combinations of the parameters of the bath. Ifg250, the
02111
al
t
r

-

Langevin equation is linear and can be easily integrated.
postpone further discussion of these issues until the next
tion where the general results~32!–~35! are applied for the
specific model of ideal gas molecules interacting with t
piston via a truncated parabolic potential.

IV. EXTENDED RAYLEIGH MODEL

The kinetic constantsg i in Eqs. ~33!–~35! are expressed
in terms of integrals of correlation functions of dynamic
variables whose time evolution is described by the Liouv
lian operatorL0 of the bath in the presence of the fixe
piston. These correlations can be calculated explicitly@1# in
the case when the bath is comprised of ideal gas molec
interacting with the piston via a parabolic repulsive potent

U~x2X!5H 1
2 kf~x2Xl !

2, x.Xl

1
2 kf~x2Xr !

2, x,Xr

0 otherwise.

~36!

Here x is the coordinate of a bath molecule,Xl5X2a, Xr
5X1a define the boundaries of interaction between
molecule and the piston, with the parametera serving as a
measure of the range of the potential. In the model syst
the width of the piston is neglected. In addition, it is assum
that the temperatures of the ideal gas in both compartm
are sufficiently low~or the potential strength constantkf is
sufficiently large! that the average penetration (kfba)21/2 of
a bath particle into the interaction regions (Xa ,X) is much
less thana @9#.

In the limit of large cylinder lengthL, recollisions of the
piston and gas due to the finite size of the bath can be
nored. This assumption corresponds to analyzing the mo
of the piston on intermediate time scalest!tL , wheretL is
the time it takes on average for a bath particle to travel h
the length of the cylinder. Fort!tL , the force acting on the
sides of the piston can be written in the form@1#

Fl~ t !52kfE
0

`

dvE
2vt l

0

dqN~Xl1q,v;t2t l !
v
v l

sin
v lq

v
,

Fr~ t !52kfE
2`

0

dvE
0

2vtr
dqN~Xr1q,v;t2t r !

v
v r

sin
v rq

v
,

where va5Akf /ma is the characteristic frequency of th
parabolic system,ta5p/va , and the functionN(x,v;t) is
the microscopic linear density of particles defined by

N~x,v;t !5(
i

d~x2xi~ t !!d~v2v i~ t !!.

The average forces are

^Fl&5
nlS

b l
^Fr&52

nrS

b r
. ~37!

Note that as mentioned in Sec. II, the average force^F&
5^Fl&1^Fr& does not vanish in general in the asymmet
2-5
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system though the derivatived^F&/dX;1/L can be ne-
glected for a long cylinder. The equation of motion of t
piston is given by Eq.~19! in this limit.

For this model, it was found that@1#

^^FaF0
a~ t !&&5Akf /bau^Fa&uj1

a~ t !, ~38!

^^FaGa~ t1 ,t2!&&52kf^Fa&j2
a~ t1 ,t2!, ~39!

where the functionsj i
a(t) are

j1
a~ t !5

1

A2p
$sinvat1~p2vat !cosvat%u~ta2t !,

~40!

j2
a~ t1 ,t2!5 1

2 cosvat2~11cosvat1!u~ta2t1!u~ta2t2!,
~41!

andu(t) is the step function.
The above results and Eqs.~33!–~35! lead to the follow-

ing expressions for the kinetic coefficients:

g15A8

p

1

M
$Amlb l^Fl&2Amrb r^Fr&%, ~42!

g252
1

M2
$mlb l^Fl&1mrb r^Fr&%, ~43!

g352
1

M
$ml^Fl&1mr^Fr&%. ~44!

Note that these expressions are independent of the force
stantkf of the quadratic potential.

Since ^Fa&56naS/ba one can see from Eq.~43! that
g250 when the mass densities in both compartments are
same,mlnl5mrnr . In this case the Langevin equation~32!
becomes linear and has a solution

P~ t !5Pe2g1t1E
0

t

dteg1(t2t)F†~t!1
g3

g1
~12e2g1t!,

~45!

which describes relaxation of the momentum to the stati
ary value^P&5^F&/g11g3 /g1. If ^F&50 it follows from
Eqs.~42! and ~44! that the stationary momentum equals

^P&5Ap

8

mr2ml

Amlb l1Amrb r

, ~46!

which means that the piston moves in the direction of
compartment with the heavier bath particles. Conditions
equal mass densities,mlnl5mrnr , and of equal pressure
nl /b l5nr /b r , are satisfied simultaneously only whenmlb l
5mrb r . Therefore Eq.~46! describes motion in the directio
of the compartment of higher temperature.

In the general case whereg2Þ0, the nonlinear Langevin
equation~32! has a form of the nonlinear Riccati equatio
and cannot be explicitly integrated. Using the transformat
02111
on-

he

-

e
f

n

u5exp(g2P) it can be converted into a second-order line
equation. In the following, however, this line of reasonin
will not be pursued and a simple perturbation analysis of
nonlinear Langevin equation will be conducted.

V. STATIONARY AND TRANSIENT SOLUTIONS

Let us first analyze the stationary solution of Eq.~32!.
Since^F†(t)&5^F&, as demonstrated in Eq.~14!, the Lange-
vin equation~32! implies that the stationary value of th
momentum of the piston is given by

^P&5
1

g1
^F&2

g2

g1
^P2&1

g3

g1
. ~47!

To calculatê P& perturbatively to first order inl, one sub-
stitutes in Eq.~47! the lowest inl approximations for̂ P2&,
which can be derived solving the linear Langevin equatio

Ṗ~ t !5F0~ t !2g1P~ t !. ~48!

Note that here the ‘‘random’’ forceF0 generally is not zero
centered. In the long time limit, the autocorrelation functio
for the force on the piston in the left and right compartme
are effectively

^FaF0
a~ t !&5^Fa&21^^FaFa

0~ t !&&→^Fa&212Gad~ t !,
~49!

whereGa5*0
`dt^^FaFa

0(t)&&. Thus the correlation function
of the total forceF05F0

l 1F0
r is

^FF0~ t !&5^F&212Gd~ t !, ~50!

whereG5G l1G r .
Using Eq.~50!, one can calculatêP2(t)& from the solu-

tion of the linear Langevin equation~48!, namely,

P0~ t !5Pe2g1t1E
0

t

dte2g1(t2t)F0~t!. ~51!

For t@1/g1, the result assumes the form

^P0
2&5

G

g1
1

1

g1
2 ^F&2, ~52!

whereG is given by

G5E
0

`

dt^^FlFl
0~ t !&&1E

0

`

dt^^FrFr
0~ t !&&. ~53!

It has been assumed throughout our analysis that the
tribution of the systematic forcêF& to the momentum of the
piston is small. This implies that the second term on
right-hand side of Eq.~52! is small compared to the first one
Since G;l0 and g1;l2 this restriction requires that̂F&
;l11e, for somee.0.

For the truncated quadratic potential,G can be evaluated
using Eq.~38! to obtain
2-6
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G5A8

pHAml

b l
^Fl&2Amr

b r
^Fr&J . ~54!

It then follows that for the casêF&50, one obtains

^P0
2&5M

Aml /b l1Amr /b r

Amlb l1Amrb r

. ~55!

For a random force obeying Gaussian statistics, distribu
of the momentum of the piston is of Maxwellian form wit
the effective temperaturekBTp5^P0

2&/M . In particular, if
ml5mr , then it is found thatTp5ATlTr from Eq. ~55!, in
agreement with the results of Piasecki and Gruber@5#.

Substitution of expression~52! for ^P0
2& into Eq. ~47!

yields for the stationary momentum

^P&5
1

g1
^F&2

g2

g1
3 ^F&21

g3

g1
2

g2G

g1
2

. ~56!

For ^F&50 and with explicit expressions~42!–~44! for g i ,
Eq. ~56! takes the form

^P&5Ap

8

Amlmr

Amlb l1Amrb r
SAb l

b r
2Ab r

b l
D . ~57!

When the masses of the bath particles are the same in
compartments,ml5mr[m, this expression reduces to th
result of Piasecki and Gruber@5#:

^P&5Ap

8
Am~AkBTr2AkBTl !. ~58!

Note that in this case,g3 vanishes as can be seen from E
~44!. If mlb l5mrb r ~and thereforeg250), Eq. ~57! coin-
cides with the result~46! obtained in the previous section.

In addition to the stationary solutions of the nonline
Langevin equation, perturbative solutions of the time evo
tion of the momentum of the piston can be examined
expanding the momentum in the formP(t)5P0(t)1P1(t)
.

02111
n

th

.

r
-
y

1••• whereP0(t) is the solution~51! of the linear Langevin
equation~48! and P1(t) is the next-order correction inl
which satisfies the equation

dP1~ t !

dt
5F1~ t !2g1P1~ t !2g2P0

2~ t !1g3 ~59!

and the conditionP1(0)50. In this equation, the force
F1(t)5F†(t)2F0(t) is zero centered, sincê F†(t)&
5^F0(t)&5^F(0)&, as established in Eq.~14!. Solving Eq.
~59! and taking the average gives

^P1~ t !&5
g3

g1
~12e2g1t!2

g2

g1
P2e2g1t~12e2g1t!

2
2g2

g1
2 ^F&Pe2g1t$g1t2~12e2g1t!%

2
2g2

g1
2 ^F&2e2g1t~sinhg1t2g1t !

2
2g2G

g1
2

e2g1t~coshg1t21!, ~60!

where P5P(0). Note that the average momentum̂P&
5^P0(t)&1^P1(t)& takes the stationary value~56! in the
long-time limit t@g1

21. It should be emphasized that th
transient solution obtained here is valid only on a time sc
that is much longer than the characteristic timetc for the
relaxation of the bath but shorter thantL , the time scale for
particles to move half the length of the cylinder. The abo
analysis may be readily extended to the short-time dom
using as a starting point the Langevin equation~30! with
time-dependent damping coefficients.
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