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In this paper a one-dimensional model of two infinite gases separated by a movable heavy piston is consid-
ered. The nonlinear Langevin equation for the motion of the piston is derived from first principles for the case
when the thermodynamic parameters and/or the molecular masses of gas particles on the left and right sides of
the piston are different. Microscopic expressions involving time correlation functions of the force between bath
particles and the piston are obtained for all parameters appearing in the nonlinear Langevin equation. It is
demonstrated that the equation has stationary solutions corresponding to directional fluctuation-induced drift in
the absence of systematic forces. In the case of ideal gases interacting with the piston via a quadratic repulsive
potential, the model is exactly solvable and explicit expressions for the kinetic coefficients in the nonlinear
Langevin equation are derived. The transient solution of the nonlinear Langevin equation is analyzed pertur-
batively and it is demonstrated that previously obtained results for systems with the hard-wall interaction are
recovered.
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[. INTRODUCTION tagged particle motion in a dilute gaslike medium provided
the tagged particléor “piston” in the present cages large
The Brownian motion of a massive piston in a cylinder enough that the average numhrof gas molecules in the

filled with an ideal gas is one of the oldest models of non-interaction shell around the particle is larger than 1. Although
equilibrium statistical physics. In its simplest version, bothin this case the qualitative form of correlation functions does
the piston(of massM) and the gas moleculgsf massm) not depend orN, the softness of the potential essentially
are confined to move in one dimension along the symmetrynfluences the short-time behavior of the system leading to
axis of the cylinder. The piston is assumed to be adiabatic ithe nonexponential initial decay of time correlation functions
the sense that its heat conductivity is negligible so that therg3].
is no transfer of heat between the two compartments of the Another reason why one may wish to go beyond the ap-
cylinder as long as the piston is held fixed. This simpleproximation of hard-wall interaction is methodological. It is
model has served as a useful test of new schemes and apiten problematic to directly apply general analytical tech-
proximations for several generations of physicigse Ref. nigues involving differential operators for systems with a
[1] for referenceps In most treatments it is assumed that thesingular potential. Even if one expects multiple collisions to
bath particles interact with the piston via the hard-wall po-be unimportant, it is often convenient to model interactions
tential, i.e., piston-molecule collisions are considered to bevia a short-ranged potential of rangeand subsequently ana-
instantaneous. In this model the piston interacts with batlyze results in the hard-wall limit;—0.
particles through a sequence of binary collisions and the pos- In an earlier papefl], a microscopic derivation of the
sibility of simultaneous interaction of the piston with more nonlinear Langevin equation was presented for a system con-
than one molecule is neglected. This approximation is validisting of a massive piston interacting with bath particles via
as long as one is interested in the asymptotic long time bean arbitrary repulsive potential. We use the term “nonlinear”
havior of the system which is apparently insensitive to deto refer to the Langevin equation with not only the linear
tails of the interactions between the bath particles and thdissipative termStokes dampingbut also dissipative terms
piston. On the other hand, the motion of the system on shoxf higher orders in particle’s momentum. In REf] all gen-
to intermediate time scales is clearly influenced by the natureralized kinetic coefficients appearing in the nonlinear
of bath particle-piston interactions, and one has to take inthangevin equation were expressed in terms of time correla-
account the finite range of the potential and effects of multition functions involving the interaction force between the
particle collisions. It is known that many-particle collisions piston and the bath particles and its derivatives. For some
are an important factor in liquidlike systems, essentially af-systems, such as an ideal gas interacting with the piston
fecting the shape of the velocity correlation function, espethrough a repulsive quadratic potential, the microscopic ex-
cially when a repulsive part of potential is relatively “soft” pressions for all the kinetic coefficients can be calculated
[2]. In such systems, a given particle interacts simulta-analytically. For this reason, simple models, such as the ideal
neously with a relatively heavy swarm of other particles ingas-piston system, provide a convenient means of studying
its vicinity, leading to an enhancement of caging effects inmany subtle points of Brownian motion theory, such as the
comparison to systems with a short-ranged potential. As a&le and form of nonlinear damping, relative importance of
result, the velocity autocorrelation function has a more pronon-Markovian effects, and convergence properties of small
nounced negative part corresponding to an anticorrelation iparameter expansions.
the velocity induced by a particle rebounding of its neigh- In Ref.[1] the dynamics of the piston in a homogeneous
bors. Multiparticle collisions may also be important for bath was examined. The purpose of this paper is to extend
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the analysis in Refl1] to the case of an asymmetric bath in cylinder are filled with bath molecules of densityandn,,
which the parameters characterizing the bath to the left antemperaturel, andT,, and massn, andm,, and move in
to the right of the piston are different. This model has re-one dimension along the axis. We assume the bath mol-
ceived a recent renewal of interest after it was discovere@cules are confined to their respective compartments by hard-
that the system may exhibit nontrivial transient and stationwall interactions with the immobile ends of the cylinder, and
ary behavior when there is an initial asymmetry in the ther-interact with the piston through a short-ranged, repulsive po-
modynamics properties of the gases to the left and to théential. The Hamiltonian of the piston-bath system can be
right of the pistor{4]. Among other interesting points, it was written in the form
found that the piston undergoes a noise-induced directional
movement in the absence of macroscopic forces, a character- p2
istic of motion in molecular motors and stochastic ratchets. H= W+ Ho(X), (1)
In the limit of an infinitely long cylinder, Piasecki and Gru-
ber[5] found a stationary solution of the equations of motion i
of the piston corresponding to the drift of the piston in theWhere X and P are the coordinate and the moment of the
direction of the compartment with higher temperature everPiSton, andHq(X) is the Hamiltonian of the bath in the pres-
when the pressure on the left and the right of the piston ar€NCce Of the piston constrained at positinHo(X) can be
the same. This result has been later confirmed by numericflecomposed into the sum of two partsy(X)=H(X)
simulations[6]. This fluctuation-induced motion is an effect +Hgp(X), corresponding to the Hamiltonian for the bath
of the first order in a small mass-ratio parameterdefined =~ molecules on the left and right of the piston,
as A=ym/M. It does not follow from the conventional
Langevin equation with linear dissipation, and appears only No pi2
when nonlinear damping terms, which are of higher orders in HE(X) =2, :Zm + U(X_Xi)] : 2
\, are taken into account. =1 @

In this paper the projection-operator method applied by
Mazur and Oppenheiifiv] to the theory of Brownian motion For simplicity of notation, above and throughout this paper
is adapted to the case of the asymmetric bath. We shall cofite super- or subscript index={l,r} is used to label dy-
sider a slightly more general model of the asymmetric batiiamical variables in the left and right compartments of the
than that analyzed by Gruber and Piasecki in that not onlgylinder. In the above equatioN, andm, are the number
temperatures but also the masses of the bath particles in ttad the mass of particle in a respective compartment.
left and right compartment may differ. For such a system, the In the following, we restrict our analysis to the case when
Langevin equation, including nonlinear dissipative terms todifferences in the thermodynamic parameters of the bath in
third order in\, is derived from first principles. The result- the left and right compartments of the cylinder are small.
ing equation is general, holds for arbitrary interactions beFurthermore, the molecular massesandm, are assumed
tween the piston and the bath particles, and is not restricte® be of the same order of magnitude and much less than the
to the ideal gas bath. The kinetic coefficients appearing in théass of the pistorM. Under these conditions, one might
nonlinear Langevin equation are expressed as integrals @nticipate that the directional contribution to the momentum
time correlation functions of the force between the pistonof the piston is small, and on average is of order
and bath particles. For a bath of ideal gas particles interact= VMKkgT,, where the effective temperatufg of the piston
ing with the piston via the parabolic repulsive potential, theis of the same order of magnitude as the left and right tem-
correlation functions can be computed in closed analyticaperaturesT, and T,. In the subsequent analysis, we show
form. For this model, an explicit expression describing relax-that this intuition is correct, and an explicit expressionTgr
ation of the momentum of the massive piston is obtainedwill be presented.
The analysis based on the Langevin equation is much more It is convenient to express the equations of motion of the
simple than that involving the language of distribution func-piston-bath system in scaled coordinates. To this end, we
tions adopted in other papers on the subject. The perturbativiatroduce the small paramete= ym/M, wherem s an ar-
and stationary solutions are analyzed and demonstrated to hétrary mass of the same order of magnitudergsandm; .
consistent with the results of Gruber and Piasecki obtaine®ne may reasonably expect that the scaled momentum of the
for a model of instantaneous binary collisions. piston P, =\ P will typically be of the same order of mag-
nitude as the momentum of a bath molecule. The parameter
\ therefore serves as a quantitative measure of the time scale
separation between the slow evolution of the massive piston
and the fast evolution of the light bath molecules. As in the

The system consists of a piston of madsand cross- case of Brownian motiofi7], it will be useful as an expan-
sectional are® confined to move in one dimensigohosen  sion parameter to simplify the physics of the sys{é@h
to be along thex axis) in a cylinder of total lengtH.. It is In terms of the scaled piston’s momentu?y =\P, the
assumed that the piston is initially at positiohnear the Hamiltonian readsH=P2/2m+H,. The corresponding
center of the cylinder, taken to be the origin, with the left- Liouville operatorL, which governs the evolution of an ar-
most and right-most ends of the cylinder at positiens/2  bitrary dynamical variable via the equatiéx(t)=e*'A [A
andL/2, respectively. The left and right compartments of the=A(0) throughout the tex}t can be written in the form

II. AN EXACT EQUATION OF MOTION
FOR THE PISTON
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P/ _,
mlax (7

J T

L=Lo+NLy, Lo=Ly+LE. (3)

t
F(t):FT(t)H\f dreft=
Here the Liouville operatorg g, °

«_ pi 9 J
5= [ 5+

(4)

describe dynamics of the bath molecules in the left and righ[n this expression the factor

compartments of the cylinder in the presence of the piston

held fixed at positiorX, where the forcé=; acting on a mol- I 4 _f J’ I 4
eculei is F;=—9gU(X—x;)/dx;. The Liouville operator’; ax (D)= | dipy | dQpagF () (12
is defined by

P g J can be simplified by pulling the differential operator out of
* (5) theintegral,

== _+
L1= 0 ox FaP*’

whereF=—Z%,;9U(X—x;)/dX is the total force exerted on iFT :i =i _J d0 j dQ.FT 7
the piston by the bath molecules. axF (D)= 5% (F D ! P (P

Our task is to express the equation of motion of the scaled (13
momentum of the pistord P, (t)/dt=\F(t), in the form of
a Langevin equation in which the instantaneous fd¥¢e) Using properties of the projection operator, the first term on
acting on the piston at timeis decomposed into “dissipa- the right-hand side of Eq13) can be simplified using the
tive” and “random” parts. To accomplish this goal, we de- fact that
fine the projection operatof® , P, , andP, which act on an
arbitrary dynamical variabl& according to the rules (FT(1))=(e'94F) = Pe!2LF = PF = (F). (14)

PaA=(A)a=f dQ,p A, (6)  For a homogeneous system, one expéEts=0 and hence
(FT(t))=0. For an asymmetric system, on the other hand,
(F)#0 and the first term on the right-hand side of E&B)
PA=P|7?,A=(A>=J dQ|p|J dQ,p,A, (7)  generally does not vanish.
The second term in the right-hand side of Ef3), in-
where ), ={x®,p?} are the phase points for the bath mol- volving (d/dX)p,p,, can be worked out taking into account

ecules in the left and right compartments of the cylinder,that in the distributiong,=Z_, *e~#<"o not only the Hamil-
pa=Z;1exp{—,8aHg(X)} are the corresponding canonical tonians but also the partition functios, depend parametri-
distributions for the bath molecules in the presence of thé&ally onX,

piston fixed at coordinatX, 8,=(kgT,) !, andkg is the

Boltzmann constant. Note that the projection opergtaaf- d 192, 1 97
fectively averages over initial conditions of the bath at a  gx (PP =pipe BIFI+ BiF = 7 2= 5 o).
fixed position of the piston. Using the operator identity (15)
t
eATBIt= Al f dret-1BeATB)T (8) It is straightforward to show that
0
with A= L andB= —"PL, one obtains the following decom- i IZa = B.(F.) (16)
position for the force on the pistdR(t) =e“'F: Z, oxX Tenen
F()=FT(t)+ ftdq_eﬁ(tf‘r)'p‘CFT(T)' 9) whereF_| andl_:r are the forces on the left and right surfaces
0 of the fixed piston such thd, +F,=F. Therefore Eq(13)

takes the form
whereFT(t)=e?“'F andQ=1-P.
The structurePLFT(7) in Eq. (9) can be further simpli-

fied toAPL ,FT(7) due to the orthogonality property, <%FT('{)> = %—ﬂ|<<F|FT(t)>>—Br<(FrFT(t)>>,
PiLo="P,Ly=PLo=0, (10) (17)
which follows from the relationC gp,=0. Using this rela- where the double brackets denote the cumulaftsB))
tion and the definition of the projection operators, E9).  =(AB)—(A)(B). Substituting this result into Eq11), we
takes the form get the following exact equation of motion of the piston:
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dpP, (t t d
dt( ) =)\FT(t)+)\2fodTeﬁ(t—T)[E(FFT(T»
P, d(F) P,B
B B BB rpio)
*Br

(F, F*<r>>>] (18)

PHYSICAL REVIEW E69, 021112 (2004

J
G(t,r)=e£0(t_7)(9—xFo( 7) (22)

and 6G=G—(G). Using this result, one can extract the
leading order approximation ix of the correlation functions

(FFT'(t)) and{(F ,F(t))) appearing in the equation of mo-
tion (19). Since the evolution of the dynamical functions

Fo(t) andG(t) is governed by the Liouville operatdal,, the
left and right components dfy(t) and G(t) are mdepen—

For some systems, such as the extended Rayleigh model digent, which implies that the cumulantéF Ff)), ((F, |:O>>

cussed in Sec. IV, the parametric dependencé&-9fon the
position X of the piston is weak, and the derivative @¥)
scales as 1/in the limit of largeL. In fact, for the Rayleigh

model, the bath is comprised of ideal gas molecules, and the
parametric dependence @) on X arises through the depen-
dence of(F) on the concentrations of bath molecules in the

respective compartments of the cylindey,. Since

N
(L21X)S’

N;

M= (LI2=X)S’

n,=

whereN, andN, are the total number of bath molecules in

the left and right compartments, respectivelyn,/dX
~n,/L for large L, and henced(F)/dX~1/L. Thus, for

large cylinders, this term may be dropped in the equation o

motion of the piston and we obtain

dP, (1)
dt

t J
=>\FT(t)+>\2f dTeﬁ(tT)(F“:FT(T»
0 *

*IBI *IBr

(D)=~

((FIF( (F, FT(T>>>]

19

((F\Gy)), and ((F,G,)) are all zero. Taking this into ac-
count, one obtains

* tdt’((FaGa(t,t’)»
0
(23

((FoFT(O)=((F.F5(1))

and

(FFY(t))= (1))

+{(F: G (L))} (24)
pubstitution of these expressions into the equation of motion
(19) leads to the non-Markoviarigeneralized nonlinear
Langevin equation,

which is exact for such systems in the thermodynamic limit.

By expanding Eq(19) in powers of the square root of the
mass ration\, one can derive the Langevin equation to any

order in\.

III. NONLINEAR LANGEVIN EQUATION

The forceFT(t)=e9“'F in the Eq.(19) can be expanded
in powers of\ using the fact thaPL,=0 and the operator
identity (8), to yield

FT(t) — e(£0+>\Q£1)tF

t
=Fo(t)+ xf drefot"1 QL Fo(7)+O(N\?),
0

(20

where Fo(t)=e'F is the force exerted by the bath
molecules on the fixed piston. Sincel Fq(t)
=(P, Im)(a/ dX)Fy(t), the above equation takes the form

FT(t)=Fo(t) 2), (2D

where

J()—)\FT(I) A deP (t—7)M(7)—\ dePz(t
t
—T)M2(7)+>\3f d7M3(7)+ O\, (25
0
where the memory functions are given by
1
My(7)= —{B{(FIFo(n))+B(FFo(D))} (26)

1 (7
Mar)= = | dr (BU(F G770 + BAF G (7))
m=Jo
@

1 (7
Ms(r)= = | (R @ )+ (F B (-
(28)

Note that for a totally symmetric system in which all param-
eters characterizing the bath to the left and to the right of the
piston are the samé(F\G(7,7')))=—{((F,;G;(7,7'))). In

this case the functioni§! ,(t), M5(t) vanish, and the Lange-
vin equation(25) is linear. Furthermore, for a symmetric bath
it can be shown that the first nonlinear correction term is of
order\* and proportional tdP® [1].

Assuming that the memory functioid;(t) decay with a
characteristic timer, which is short on the time scale for
relaxation of the momentum of the piston, the generalized
Langevin equatiori25) can be written in form that is local in
time. In fact, on a time scale<r. the momentum changes
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primarily due to the random force while the effect of the Langevin equation is linear and can be easily integrated. We
damping force is of higher order ix, postpone further discussion of these issues until the next sec-
tion where the general resul(82)—(35) are applied for the
_ ! i , specific model of ideal gas molecules interacting with the
Pe(t=1)=P.(1) J;,TdT Pe(7") piston via a truncated parabolic potential.

t
—P, (t)_)\f dT’FT(T’)-i-O()\Z). (29) IV. EXTENDED RAYLEIGH MODEL
t—7

The kinetic constants; in Egs. (33)—(35) are expressed

Substitution of this expression and a similar one R#(t N terms of integrgls of corr_elation func.tions of dynamicgl
— 7) into Eq.(25) leads to an expression that is local in time Variables whose time evolution is described by the Liouvil-
and of the form lian operatorL, of the bath in the presence of the fixed
piston. These correlations can be calculated expli€itlyin
dP, (1) ., 5 3 ) 5 the case when the bath is comprised of ideal gas molecules
g M OTALOPL O =MEHOPL(D+A (L interacting with the piston via a parabolic repulsive potential,

+O(\Y), (30) ski(x—=Xp?,  x>X
where ¢(t)=[{d7M;(7) and F'(t) is the random force Ux=X)=1 zki(x=Xp)?  x<X (36)
modified with a correction of second ordern 0 otherwise.

~ A? ([t t Herex is the coordinate of a bath molecul§,=X—a, X
toy— gt Bty ' o
FIH=F (t)_ﬁfodTMl(T)ft_TdT FI(7). B _xia define the boundaries of interaction between the
molecule and the piston, with the parameteserving as a
Since this correction is small and does not change statisticaheasure of the range of the potential. In the model system,
properties of the force, it will be neglected below. In whatthe width of the piston is neglected. In addition, it is assumed
follows the dynamics of the piston on a time scale longerthat the temperatures of the ideal gas in both compartments
than the bath correlation time, are considered. Wheh  are sufficiently low(or the potential strength constak is
> 7., the kinetic coefficientg;(t) assume their limiting val- ~ sufficiently large that the average penetratiok;3,) 2 of
ues¢=[od7M;(7). Re-expressing this equation in terms of a bath particle into the interaction regionX (,X) is much

the unscaled momentum of the pistBr P, /\ yields less tharma [9].
In the limit of large cylinder length., recollisions of the

dP(t) N 2 piston and gas due to the finite size of the bath can be ig-
gt~ 7 W= 7PO =P+ s, (32 hored. This assumption corresponds to analyzing the motion
of the piston on intermediate time scatesr , wherer is
where the kinetic coefficientg; are given by the time it takes on average for a bath particle to travel half

the length of the cylinder. Fdr< 7, the force acting on the
sides of the piston can be written in the foft]

—\2 :i ” | r
N=N2=1r | AHB(RIFY(7))+ B((F Ry},
0

(33 Fl(t)=—kff:dvfo qu(X|+q,v;t—r|)%sianlq,
—UT |
1 (= [t |
yoNt=— [ ot dnt(F G ) - o
M<Jo  Jo Fr(t)=—kff dvf dgN(X;+q,0;t—7)—sin——,
— o0 0 r
+Br<<FrGr(th)>>}! (34)

L where w,= yKk;/m, is the characteristic frequency of the
o, * t parabolic systemr,=m/w,, and the functiorN(x,v;t) is
3= A g3_ﬁfo dtfodT{«F'G'(t’T)>>+<<Ffo(t'T)>>}' the microscopic linear density of particles defined by

(35
It is important to note that Eq32) with the kinetic coeffi- N(X’U't)_Ei S(X=xi(1)) 8(v ~v;i(1)).
cients given by Eq9433)—(35) is a general result that is valid
for arbitrary interaction potentials for the bath and that isThe average forces are
also independent of the specific form of the interactions be-
tween the piston and the bath molecules. _n . nS

Note that the correlations ((F,Gi(t,7))) and (Fi)= B (Fo=- B (37)

((F,G,(t,7))) are of different signs, which suggests that for
the asymmetric bath eithey, or y; can vanish for certain Note that as mentioned in Sec. Il, the average faiee
combinations of the parameters of the bathyyf=0, the  =(F)+(F,) does not vanish in general in the asymmetric
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system though the derivatived(F)/dX~1/L can be ne-

PHYSICAL REVIEW E69, 021112 (2004

u=exp(y,P) it can be converted into a second-order linear

glected for a long cylinder. The equation of motion of the equation. In the following, however, this line of reasoning

piston is given by Eq(19) in this limit.
For this model, it was found thai

<<FaFg(t)>>: ka/Ba|<Fa>|§g(t)v (38)
<<FaGa(tllt2)>>:_kf<Fa>§g(tllt2)! (39)

where the functiong{(t) are

{sinw t+(7m— w,t)cosw,t}o(7,—1),

(40)

1
()= E
£5(t1,t2) = 5C0Swto(1+COSw,t1) O( 7, —t1) O(T,— 1),
(41)

and 6(t) is the step function.
The above results and Eq83)—(35) lead to the follow-
ing expressions for the kinetic coefficients:

"= \/é%‘{\/mlﬁl“:ﬁ_ vm, B (F )},

(42)
1
72:_W{mIIBI<FI>+mrBr<Fr>}! (43
1
')’3:_M{ml<':l>+mr<':r>}- (44)

Note that these expressions are independent of the force con-

stantk; of the quadratic potential.
Since(F,)==*n,S/B, one can see from Eg43) that

v>,=0 when the mass densities in both compartments are t

same,mn;=m;n,. In this case the Langevin equati¢d?)
becomes linear and has a solution

will not be pursued and a simple perturbation analysis of the
nonlinear Langevin equation will be conducted.

V. STATIONARY AND TRANSIENT SOLUTIONS

Let us first analyze the stationary solution of E§2).
Since(FT(t))=(F), as demonstrated in E{L4), the Lange-
vin equation(32) implies that the stationary value of the
momentum of the piston is given by

1 Y2 Y3
Py=—(F)— —=(P?)+ —. 4
(P)=—(F) = (P @7
To calculate(P) perturbatively to first order i, one sub-
stitutes in Eq(47) the lowest in\ approximations fof P?),
which can be derived solving the linear Langevin equation
P(t)=Fo(t) = y:P(1). (48)
Note that here the “random” forc&, generally is not zero
centered. In the long time limit, the autocorrelation functions

for the force on the piston in the left and right compartments
are effectively

(FLF§(1))=(F )2+ ((FFUD)) —(F )2 +2T ,8(1),
(49

wherel = [5dt((F ,F°(t))). Thus the correlation function
of the total forceF,=Fy+F} is
(FFo(t))=(F)2+2I'8(1), (50

wherel'=T"+T,.

he Using Eq.(50), one can calculatéP?(t)) from the solu-

tion of the linear Langevin equatio@8), namely,

t
Po(t):Pe‘71‘+f dre” (IR (7). (51)
‘ 0
P(t)= Pe’711+f dtentIEt () + L1-e ),
’ & (45) For t>1/y,, the result assumes the form
which describes relaxation of the momentum to the station- r 1 52

ary value(P)=(F)/y;+ y3/y,. If (F)=0 it follows from
Egs.(42) and(44) that the stationary momentum equals

m

5 _\/EL
< >— 8VmI:8I+ mrIBr,

(46)

(Pg)= P ?(FV’

wherel is given by

r= [CauE R+ [ awER). 69
0 0

which means that the piston moves in the direction of the

compartment with the heavier bath particles. Conditions of

It has been assumed throughout our analysis that the con-

equal mass densitiespn,=m,n,, and of equal pressure, tribution of the systematic forcg) to the momentum of the

n/B;=n,!B,, are satisfied simultaneously only whemg,

piston is small. This implies that the second term on the

=m, 3, . Therefore Eq(46) describes motion in the direction right-hand side of Eq(52) is small compared to the first one.

of the compartment of higher temperature.

In the general case wheng# 0, the nonlinear Langevin
equation(32) has a form of the nonlinear Riccati equation

Since I'~\° and y;~\? this restriction requires thatF)
~\1*e for somee>0.
For the truncated quadratic potentikl,can be evaluated

and cannot be explicitly integrated. Using the transformatiorusing Eq.(38) to obtain
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) m, m, +--- wherePy(t) is the solution(51) of the linear Langevin
=~ E<FI>_ B—<Fr> : (54)  equation(48) and P4(t) is the next-order correction i
;

which satisfies the equation
It then follows that for the cas@)=0, one obtains

dPy(t) ,
JmiiB —C=Fy(t)— y1P1(t) — v,P3(t) + 59
(P2>—|\/| m /B +m; /B, (55 dt 1() = ¥1P1(D) = 72Po(t) + 73 (59
o/ — .
Vm B+ vm; B, and the conditionP,(0)=0. In this equation, the force

— ety — ; ; t
For a random force obeying Gaussian statistics, distributiorllzl(t) FI() —Fo(t) is zero centered, since(F'(t))

of the momentum of the piston is of Maxwellian form with (_5§9)F ?a(rfzi>tgliii(got)rzé Z?/ ;232';222 in Eq14). Solving Eq.
the effective temperaturkBTp=(P(2,>/ M. In particular, if
m;=m;, then it is found thafl,= T, T, from Eq. (55), in Y3 Yo
agreement with the results of Piasecki and Grybér (Py(t))==(1-e M) — =pZe ni(1-e M

Substitution of expressio52) for (P3) into Eq. (47) " "
yields for the stationary momentum 2y,
- FHPPe T{nt-(1me )

1
(P)=(F)- 2 2T e
4! Y1 Yooy 2y, B )
- —Z(F)ze "1Y(sinhy t— y,t)
For (F)=0 and with explicit expression&2)—(44) for v;, Y1
Eq. (56) takes the form
2’}/21—‘

— e "'(coshy,t—1), (60)
\@_ \ /&) (57) 7% '
Br BI

(P)— \ﬁ vymm,
~ V8 mB+ ymi B,
i b where P=P(0). Note that the average momentu(®)

When the masses of the bath particles are the same in both(P(t))+(P4(t)) takes the stationary valug&6) in the

compartmentsm=m,=m, this expression reduces to the long-time limit t>v; . It should be emphasized that the

result of Piasecki and Grubgs]: transient solution obtained here is valid only on a time scale
that is much longer than the characteristic timefor the
_ T T T relaxation of the bath but shorter thap, the time scale for
(P)= \[S\ﬁ( keTr = VkeT)- (58) particles to move half the length of the cylinder. The above

analysis may be readily extended to the short-time domain

Note that in this casey; vanishes as can be seen from Eq.ysing as a starting point the Langevin equati®®) with
(44). If mB=m;B, (and thereforey,=0), Eq.(57) coin-  time-dependent damping coefficients.
cides with the result46) obtained in the previous section.
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