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Generalized bracket formulation of constrained dynamics in phase space
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A generalized bracket formalism is used to define the phase space flow of constrained systems. The gener-
alized bracket naturally subsumes the approach to constrained dynamics given by Dirac some time ago. The
dynamical invariant measure and the linear response of systems subjected to holonomic constraints are explic-
itly derived. In light of previous results, it is shown that generalized brackets provide a simple and unified view
of the statistical mechanics of non-Hamiltonian phase space flows with a conserved energy.
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I. INTRODUCTION

The use of mechanical constraints in molecular dynam
simulations has a fundamental importance for both mode
complex systems and dealing with rare events@1–4#, see
Ref. @5# for a recent application. Constraints are also man
tory in molecular dynamics simulations with potentials d
rived from density functional theory@6#. Despite their impor-
tance, it is reasonable to expect that the above-mentio
examples do not exhaust the range of possible application
constraints in both theory and simulations. To this end, g
eral and simple mathematical formalisms can provide
language to attack new problems. The aim of the pres
paper is to suggest such a formalism treating constra
dynamics in phase space by means of generalized antis
metric brackets.

Some time ago, Dirac defined a generalized bracke
treat constraints@7,8#. Its main concern was to quantize sy
tems with constraints arising from a singular Hessian.
approach was successively adopted by Anderson and B
man to study systems with gauge symmetries@9#. Systems
with a singular Hessian naturally emerge in relativistic m
chanics and field theory@10–12#. In these cases, the singu
larity is shown to be related to gauge invariance@12#. Ordi-
nary nonrelativistic constrained systems, such as those
to simulate molecular systems, do not usually have a sing
Hessian. For example, one could consider a systems oN
nonrelativistic point charges interacting via Coulombic~plus
eventually Lennard-Jones! potentials, with constraints to de
scribe molecular topology or a rarely sampled configurati
For such systems, one does not need to be concerned
Dirac classification of constraints or with gauge invarian
Thus, few applications of Dirac’s approach to classical n
relativistic systems are found in the literature. Some
amples are the use of Dirac’s theory to study biophys
systems@13,14# and to formulate algorithms for holonomi
constraints in molecular dynamics simulation@15,16#. Nev-
ertheless, Dirac generalized bracket provides a phase s
point of view for the constrained dynamics of classical no
relativistic systems~for which gauge symmetry has a mino
importance! that can still be useful.

In the present paper the emphasis is put on the bra
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formulation of constrained dynamics as the more natu
context in which statistical mechanics can be formulated
previous papers@17,18# an antisymmetric bracket formalism
describing in a unified way non-Hamiltonian phase spa
flows commonly used in molecular dynamics simulatio
@19–23#, has been provided and the statistical mechanics
non-Hamiltonian systems has been easily addressed@24–30#.
Linear response theory, correlations functions, and the su
properties of the generalized phase space algebra, analo
to the ones of quantum-classical algebra@31–33#, have also
been discussed@18#. Here it is shown how the generalize
bracket formalism of Refs.@17,18# can be easily extended t
provide a formulation of the dynamics, equilibrium statistic
mechanics, and linear response theory of systems with
chanical constraints. The key idea has been to write the D
bracket in terms of the simpler and more general brac
introduced in Refs.@17,18#, with the rest following by means
of algebraic manipulations. Thus, the main result is the d
nition of a simple language to formulate constrained ph
space flows and their statistical mechanics which is unifi
with the formalism of non-Hamiltonian flows with a con
served energy. Extensions to quantum-classical systems
also straightforward@34#.

The paper is organized as follows: in Sec. II the propert
of the generalized bracket are briefly summarized; in Sec
equilibrium statistical mechanics and linear response the
are discussed in a form useful for other sections; in Sec. I
is shown that the generalized bracket, in the form introdu
in Ref. @18#, subsumes the Dirac formalism for constrain
systems; in Sec. V, using a specific choice of the Di
bracket, phase space equations of motion for systems
holonomic constraints are written down and their numeri
integration is critically discussed; in Sec. VI the distributio
function for such systems, which is defined in terms of t
invariant measure, is derived; in Sec. VII a computable fo
of the linear response of a constrained system is given
simple example is also worked out in detail to show th
correction terms, arising in the response function, are z
for systems with holonomic constraints. The last section
devoted to conclusions.

II. GENERALIZED EQUATIONS OF MOTION

Let x5(q,p) be the point in a phase space of dimensi
2N. Consider the antisymmetric matrix field
©2004 The American Physical Society09-1
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Bi j ~x!52Bj i ~x!, i , j 51, . . . ,2N, ~1!

by means of which one can define the generalized algeb
bracket

~a,b!5 (
i , j 51

2N
]a

]xi
Bi j ~x!

]b

]xj
, ~2!

wherea5a(x) and b5b(x) are generic phase space fun
tions. Equation~2! reduces to the standard Poisson brac
@35# when one adopts the constant antisymmetric matrix

Bi j 5B i j
c 5F 0 1

21 0G . ~3!

The generalized bracket in Eq.~2! obeys the following prop-
erties:

~a,b!52~b,a!, ~4!

~a,bc!5~a,b!c1b~a,c!, ~5!

~k,a!50, ~6!

wherek is a constant anda, b, andc are phase space func
tions. In general the Jacobi relation will not be satisfied:

@a,~b,c!#1@c,~a,b!#1@b,~c,a!#Þ0. ~7!

When Eq.~7! holds, the generalized bracket does not defi
a Lie algebra in phase space.

Considering the phase space expression of the en
H(x), generalized equations of motion can be written in
form @17,18#

ẋi5~xi ,H!5(
j 51

2N

Bi j

]H
]xj

, i 51, . . . ,2N. ~8!

The time variation of any other phase space functiona
5a(x) is then given by

ȧ5~a,H!5(
i 51

2N

ẋi

]a

]xi
5 iLa, ~9!

where the last equality defines the Liouville operatoriL .
Flows defined by Eq.~8! usually have nonzero phase spa
compressibility:

k5(
i 51

2N
] ẋi

]xi
5(

i j

2N
]Bi j

]xi

]H
]xj

. ~10!

It follows immediately from the antisymmetric property o
the bracket, Eq.~4!, that the energyH is conserved@17# by
the equations of motion~8!. In the followingH will be sim-
ply referred to as the Hamiltonian, even if the term is n
mathematically precise.

In Refs. @17,18# it has been shown that Nose´-Hoover
@19,20#, Nosé-Hoover chains @21#, and Andersen-Nose´
02110
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@22,23# equations of motion and their associated statisti
mechanics can be easily addressed within the above
proach.

III. STATISTICAL MECHANICS

Considering the distribution functionr, weighting the ini-
tial conditions, ensemble averages@30,36# in the Heisenberg
picture of statistical mechanics are written as

^a&~ t !5E dxr„x~0!…a„x~ t !…. ~11!

One can go to the Schro¨dinger picture@18,36#

^a&~ t !5E dxr„x~ t !…a~x!, ~12!

where insteada is fixed in time andr obeys the time-
independent Liouville equation

]r

]t
52~ iL 1k!r5(

i 51

2N
]

]xi
~ ẋir!. ~13!

In an equilibrium ensemble one has

]re/]t52~ iL 1k!re50. ~14!

Tuckermanet al. @24–26# provided an alternative formu
lation of non-Hamiltonian statistical mechanics which h
the merit to put the invariant measure into evidence. In th
approach the equilibrium distribution function is written
the product of a true probability densityf and a metric factor
Ag,

re~x!5Ag fe~x!5e2w(x) f e~x!, ~15!

wherew(x) is the primitive function of the compressibility
such thatd/dtw(x)5k(x). Consequently, the form of Liou
ville equation, in Eqs.~13! and ~14!, should change. How-
ever, equivalent results@18,30# can be obtained using Eqs
~13! and~14!. In this case, one must check at the end of
derivation that, indeed, the invariant measure can be
tained.

The stationary solution@18,24–26,30# of Eq. ~14! is

re5 (
a51

M

d~Ka!e2w(x), ~16!

whereKa , a51, . . . ,M are the relevant constants of mo
tion which permit to specify the thermodynamical ensem
@36#. In fact, it is worth to mention that one cannot includ
all mechanical constants of motion. To understand why,
can consider an integrable system. In this case the trajec
in phase space, which exists by definition, could be descri
by 2N21 constant hypersurfaces. Only a few of these c
stants of motion are suited to define a thermodynamical
semble. They are those related to symmetries of the sys
9-2
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that survive the process of averaging over initial conditio
@36#. As discussed by Jaynes@37#, they specify the allowed
physical states of the system.

It has been shown by Tuckermanet al. that the primitive
function w always exists@24–26# for integrable equilibrium
flows @30#. In fact, defining the Jacobian Jt
5u]x(t)/]x(0)u, one finds the equationd/dtlnJt5k which
shows that the compressibility is exactly integrable. One
check by direct substitution thatre, given by Eq.~16!, is
indeed a solution of the Liouville equation~19!.

To carry out linear response theory, one considers an
plicit time-dependent Liouville operator. Usually the explic
time dependence arises from a perturbedHP(t). In the
present generalized formalism, the explicit time depende
could also arise from the elementsBi j in Eq. ~8!. In the
time-dependent case, the Heisenberg picture of statis
mechanics requires that

a„x~ t !…5U~ t !a~x!5T S expE
0

t

iL ~ t8!dt8D a~x!, ~17!

whereT is the time-ordering operator andU(t) is the propa-
gator. Within the Schro¨dinger picture the distribution func
tion evolves under the adjoint propagator

r~x,t !5U†~ t !r~x!5T expF2E
0

t

@ iL ~ t8!1k~ t8!#dt8Gr~x!.

~18!

Equation ~18! is tantamount to writing the general time
dependent Liouville equation

]r~x,t !

]t
52@ iL ~ t !1k~ t !#r~x,t !5(

i 51

2N
]

]xi
@ ẋi~ t !r~x,t !#.

~19!

In the following, the elementsBi j will not explicitly de-
pend on time. In this case it has been shown in Ref.@18# that
if one considers the perturbed HamiltonianHP(t)5H0
1HI(t), whereH0 governs the dynamics of the system
the absence of the external field andHI(t)52a(x)F(t) is
an explicitly time-dependent interaction term, then, as us
the time-dependent Liouville equation~19! can be used to
derive the linear response of the system. To this end,
useful to introduce the phase space compressibilities

k05 (
i , j 51

2N
]Bi j

]xi

]H0

]xj
, ~20!

k I~ t !5 (
i , j 51

2N
]Bi j

]xi

]HI~ t !

]xj
52 (

i , j 51

2N
]Bi j

]xi

]a

]xj
F~ t !

[2kaF~ t !. ~21!

The phase space compressibility of the perturbed syste
obviously given bykP(t)5k01k I(t). One is also led to
consider the Liouville operatorsiL 05( . . . ,H0) and iL I(t)
5„ . . . ,HI(t)… with iL P(t)5 iL 01 iL I(t). Assuming as
usual that in the distant past the system was in equilibriu
02110
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the perturbed distribution function to linear order isrP(t)
5re1Dr I(t), where the linear correction term has the for
@18#

Dr I~ t !5 È t

dtexp@2~ t2t!~ iL 01k0!#

3@~re,a!1kare#F~t!. ~22!

To derive Eq. ~22! we used the fact that the
compressibility k0 disappears from the propagatorU†(t)
5exp@2(L01k0)(t)# when calculating its adjointU(t)
5exp@L0(t)# by integration by part, as already discussed
Ref. @18#.

Considering an arbitrary phase space functionb5b(x),
its responseDb(t)5b̄(t)2^b&e is given by

Db~ t !5E
2`

t

dtf~t!F~ t2t!, ~23!

where, as shown in Ref.@18#, the response functionf(t) can
be written in the compact form

f~ t !52^„b~ t !,a…&e . ~24!

A form of the response function, equivalent to that in E
~24! but more useful for numerical calculations, can be o
tained by simple integration by parts:

f~ t !5E dxb„x~ t !…@~re,a!1kare#. ~25!

Using Eq.~15!, the response function in Eq.~25! can be
written as

f~ t !5E dxAgb~x~ t !!@„f e~x!,a…

2 f e~x!„w~x!,a…1kaf e~x!#. ~26!

IV. DIRAC BRACKET FOR SYSTEM
WITH CONSTRAINTS

Consider a system with HamiltonianH0 and a set of
phase space constraints:

xa~x!50, a51, . . . ,2l . ~27!

Following Dirac @7,8#, one can introduce the matrix

Cab5$xa ,xb%5 (
i , j 51

2N
]xa

]xi
B i j

c ]xb

]xj
~28!

and its inverse (C21)ab , wherea,b51, . . . ,2l . In the ex-
pressions above, involving the Poisson bracket of the c
straints, and in the following ones, where the generaliz
bracket of the constraints will be introduced, one must f
low the convention@7,8# of evaluating brackets first and the
impose the constraints relations. By defining an antisymm
ric matrix B D,
9-3
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B i j
D~x!5B i j

c 2 (
k,m51

2N

(
a,b51

2l

B ik
c ]xa

]xk
~C21!ab

]xb

]xm
B m j

c ,

~29!

an algebraic Dirac bracket can be introduced as

~a,b!D5 (
i , j 51

2N
]a

]xi
B i j

D ]b

]xj
. ~30!

Equation ~30! defines the Dirac bracket establishing t
phase space algebra of systems subjected to constraints@7,8#.
It was originally introduced by Dirac in the alternative b
equivalent form@7,8#

~a,b!D5$a,b%2 (
a,b51

2l

$a,xa%~C21!ab$xb ,b%. ~31!

Dirac also proved that this bracket satisfies the propertie
Eqs.~4!–~6! and the Jacobi relation@7,8#, so that it defines a
Lie algebra in phase space. The bracket in Eq.~30! is equiva-
lent to the one in Eq.~31! and satisfies the Jacobi identi
too.

The phase space flow can now be defined by

ȧ5~a,H0!D . ~32!

This flow has the property of conserving the Hamiltoni
and any function of the constraints. To show this, one
consider the action of the Dirac bracket on a general func
f (xs) of the constraints

„f ~xs!,H0…D50. ~33!

Equation~33! can be proved by simply using the definitio
of the bracket in Eq.~31! and the definition ofC andC21. It
shows that general functions of the constraints are left inv
ant, by construction, under infinitesimal contact transform
tions realized by means of the Dirac bracket.

V. PHASE SPACE FLOW FOR SYSTEMS
WITH HOLONOMIC CONSTRAINTS

Consider a system with a numberl of holonomic con-
straints in configuration spacesa($r %)50, a51, . . . ,l .
One would like to setup a mathematical framework in ord
to treat such a system using a generalized bracket in p
space. To this end, the following additional constraints m
also be consideredṡa($r , ṙ %)5( i 51

N
“sapi /mi50, a

51, . . . ,l . In Ref. @15# it has been argued that, within Dira
approach, the constraintsṡa , a51, . . . ,l , can be consid-
ered as redundant and that Hamiltonian equations of mo
arising from Dirac formalism are equivalent with Lagrangi
equations of motion, derived by taking in account only t
set ofsa constraints. Nevertheless, the set ofṡa constraints
is required to establish a Hamiltonian picture of the dyna
ics. It is in fact easy to verify that without them the matr
Cab in Eq. ~28! would be identically zero and the Dira
bracket, as defined by Eq.~30! by means of Eq.~29!, could
not be defined.
02110
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In order to explicitly determine the Dirac bracket of E
~30! in this specific case, the whole set of constraints can
denoted as

~x1 , . . . ,x l ,x l 11 , . . . ,x2l !5~s1 , . . . ,s l ,ṡ1 , . . . ,ṡ l !.

~34!

It is easy to see that the antisymmetric matrixCab has a
block structure

C5F 0 $s,ṡT%

2$s,ṡT% $ṡ,ṡT%
G . ~35!

To derive its explicit form, one considers

$sa ,sb%50, ~36!

$sa ,ṡb%5(
i 51

N
1

mi
“ isa“ isb , ~37!

and

$ṡa ,ṡb%5 (
i ,k51

N S pi

mi

1

mk
¹ki

2 sa“ksb2
pi

mi

1

mk
“ksa¹ki

2 sbD
5Gab . ~38!

Then, defining the matrixZab5( i(1/mi)“ isa“ isb , one
has

$x,xT%5F 0 Z

2Z G
G . ~39!

It is not difficult to see that the inverse matrix is given by

C215FZ21GZ21 2Z21

Z21 0 G . ~40!

The Dirac bracket generates the equations of motion
the phase space coordinatesx5(r ,p). They are explicitly
given by

~r i ,H0!D5
pi

mi
2 (

a51

l
]ṡa

]pi
ma 5

pi

mi
, ~41!

where the quantities

ma5 (
b51

l

Zab
21$sb ,H%5 (

b51

l

Zab
21ṡb 50 ~42!

have been defined.
Consider now the equations of motion for the moment

~pi ,H0!D5Fi2 (
a51

l

“ isala , ~43!

where one has introduced the quantities
9-4
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la5 (
b51

l

Zab
21$ṡb ,H%

5 (
b51

l

Zab
21S (

k, j 51

N
pl

ml

pk

mk
¹k j

2 sb2 (
k51

N
Fk“ksb

mk
D ,

~44!

which correspond to the analytical value of the Lagrang
multipliers. As shown by Dirac@7,8# and discussed in Ref
@15#, the equations of motion~41! and ~43!, expressed by
means of the auxiliary quantities in Eqs.~42! and ~44!, may
be derived by following an alternative route. One could st
from the unconstrained HamiltonianH0 and add the con-
straints to define the modified Hamiltonian

H 085H01 (
a51

l

~lasa2maṡa!. ~45!

Then one can derive the equations of motion using the P
son bracket andH 08 as the generator of time translation
@7,8#. To achieve this one must adopt the convention that
auxiliary quantities have to be treated as constants~Lagrang-
ian multipliers! under the action of the Poisson bracket.

At this point, before deriving the equilibrium distributio
function, it is worth making a little digression and conside
ing the issue of numerically integrating the Eqs.~41! and
~43!. The problem can be attacked within the time reversi
algorithms based on the Trotter factorization of the propa
tor @38–40#. To Eqs. ~41! and ~43! one can associate th
partial Liouville operators

L15(
i 51

N
pi

mi

]

]r i
, ~46!

L25(
i 51

N

Fi

]

]pi
2 (

a51

l

la(
i 51

N

¹isa

]

]pi
. ~47!

The propagator for a small time stepDt is

G~Dt !5exp@~L11L2!Dt#

5expFL2

Dt

2 Gexp@L1Dt#expFL2

Dt

2 G1O~Dt3!,

~48!

where in the last line a simple symmetric Trotter factoriz
tion @40,41#, leading to the velocity Verlet algorithm, ha
been chosen. Using the resulting operators one would ge
propagator

G8~Dt !5)
i 51

N

expFDt

2 S Fi2 (
a51

l

la“ isaD ]

]pi
G

3expFDt
pi

mi

]

]r i
GexpFDt

2 S Fi2 (
a51

l

la¹isaD ]

]pi
G

1O~Dt3!. ~49!
02110
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In Eq. ~49! the Lagrange multipliersla are not numbers bu
phase space functions whose expression is given by Eq.~44!.
For this reason the application of the factorized propagato
Eq. ~49! to the phase space point, that would give, at leas
principle, a dynamics exactly satisfying the constraints,
very difficult to calculate explicitly. Closed analytical formu
las have been found only for particular cases@42–44#. In-
stead, if one forgets that the Lagrange multipliers are actu
phase space functions and considers them as simple n
bers, then the application of the propagator in Eq.~49! to the
phase space point gives a time translation resulting in
well-known velocity Verlet algorithm

r i~Dt !5r i~0!1
Dt

mi
pi~0!1

Dt2

2mi
Fi~0!

2
Dt2

2mi
(
a51

l

la~0!“ isa~0!, ~50!

pi~Dt !5pi~0!1
Dt

2
@Fi~0!1Fi~Dt !#

2
Dt

2 S (
a51

l

la~0!“ isa~0!1la~Dt !“ isa~Dt !D .

~51!

If one now substitutes the exact expressions in Eq.~44! we
obtain an algorithm that does not satisfy the constraints
cause of an exponential growing error. The above discus
unveils the origin of this instability by showing its relation t
a toonaiveapproximation to the action of the propagator
Eq. ~49!. Equations~50! and~51! were obtained considering
la as numerical parameters. Their numerical treatment m
be consistent with such an assumption. As is well known,
solution has been given by SHAKE@1,45#.

VI. INVARIANT MEASURE FOR SYSTEMS WITH
HOLONOMIC CONSTRAINTS

From the explicit equations for phase space coordina
one can calculate the flow compressibility in Eq.~20! and
rewrite it for convenience as

k05(
i 51

N S ] ṙ i

]r i
1

] ṗi

]pi
D . ~52!

From the equations of motion~41! and ~43! one gets

k052(
i 51

N

(
a51

l

“ isa

]la

]pi
, ~53!

where the conditionṡa50 has been used. Finally, the pha
space compressibility is obtained:

k052 (
ab51

l

Zab
21dZab

dt
52Tr~ Ż•Z21!52

d

dt
lnuuZuu.

~54!
9-5
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From Eq.~57! one immediately finds thatw(x), the primi-
tive function of the compressibility, is given by

w~x!52 lnuuZuu. ~55!

The stationary solution of the Liouville equation~19!, re,
has the form given in Eq.~16!. By realizing that the constan
of motion is H0 and the constraintsxa , a51, . . . ,2l , one
can writere as

re5d~H0! )
a51

2l

d~xa!uuZuu5d~H0! )
a51

l

d~sa!d~ṡa!uuZuu.

~56!

Equation~56! proves that also in the important case of co
strained systems the invariant measure@24–26# arises from
the generalized bracket, in this case the Dirac bracket,
the correct solution of the Liouville equation@18,30#.

The invariant measure for constrained systems was
rived in Ref. @46# using only constraints in configuratio
space. This choice precludes the possibility to formulat
proper bracket in phase space as instead done in the app
of Dirac @7,8# and illustrated by the present derivation. Ne
ertheless, the derivation given in Ref.@46# has been a usefu
guide for the one presented above. The identity of our
sults, obtained by means of a generalized bracket in ph
space, with the one presented in Ref.@46#, obtained consid-
ering only the constraints in configuration space, shows
the statistical mechanics of system with holonomic co
straints can be formulated in both ways.

VII. LINEAR RESPONSE FOR CONSTRAINED SYSTEMS

Linear response for constrained systems can be obta
simply by substituting the expression of the equilibrium d
tribution function, Eq.~56!, in Eq. ~25!. Since any function
of the constraints@see Eq.~33!# is conserved under Dira
flow, one gets

„re,HI~t!…D5uuZuu)
a

d~xa!„d~H0!,HI~t!…D , ~57!

where „uuZuu,HI(t)…D50 has been used, forZ it does not
depend on particle momenta. So one is led to consider
action of the Dirac bracket ond(H0):

„d~H0!,HI~t!…D5
]d~H0!

]H0
„H0 ,HI~t!…D

52
]d~H0!

]H0
ḢI~t!, ~58!

where the equation of motionḢI(t)5„HI(t),H0…D has been
used. Introducing the Laplace transform representation of
d function and taking the thermodynamic limit@47# one can
show that

„d~H0!,HI~t!…D51bd~H0!ḢI~t!. ~59!
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Finally, collecting the results, one obtains the linear respo
formula for a constrained system

Db~ t !52 E
0

t

dt E dxb~ t2t!@bḢI~t!1k I~t!#re.

~60!

Equation~60! automatically expresses the average using
correct invariant measure, the latter being contained in
~56!. The interaction compressibilityk I(t) is expressed as

k I~t!5 (
i , j 51

2N ]B i j
D~t!

]xi

]HI~t!

]xj
, ~61!

whereB i j
D is given in Eq.~29!. The explicit expression of

k I(t) depends on the form of the interaction Hamiltoni
HI(t) and for specific problems it could be in principle com
plex to evaluate. A result equivalent to Eq.~60! has also been
obtained by Tuckermanet al. @48#.

In order to make the formulas explicit, one considers
perturbation of the form

HI~ t !52a~x!F~ t !. ~62!

Equation~61! becomes

k I~ t !52F~ t ! (
i , j 51

2N ]B i j
D~ t !

]xi

]a~ t !

]xj
52F~ t !ka

D . ~63!

Using Eqs.~62! and ~63!, Eq. ~60! becomes

Db~ t !5E dtF~ t2t!F~t!, ~64!

where one has introduced the response function

Fba~ t !5Fba
1 ~ t !1Fba

2 ~ t !, ~65!

where

Fba
1 ~ t !51bE dxreq~x!b„x~ t !…ȧ~x!, ~66!

Fba
2 ~ t !5E dxreq~x!b„x~ t !…ka

D . ~67!

The response function in Eq.~65! is composed of the two
contributions in Eqs.~66! and ~67!. The contribution in Eq.
~66! has the same form of that arising from linear response
Hamiltonian systems. The difference is contained in the eq
librium average over the constrained ensemble. The con
bution in Eq.~67! is a correction term coming from the gen
eralized bracket. In order to calculate this correction o
must work outka

D . To this end it is easy to see that
9-6
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]B i j
D

]xi
52(

k,l
(
a,b

B ik
c F ]2xa

]xi]xk
~C21!ab

]xb

]xl

1
]xa

]xk

]~C21!ab

]xi

]xb

]xl
1

]xa

]xk
~C21!ab

]2xb

]xi]xl
GB l j

c ,

~68!

where

]C21

]xi
5F 0 2

]Z21

]xi

]Z21

]xi
0

G
5F 0 2Z21

]Z

]xi
Z21

Z21
]Z

]xi
Z21 0

G . ~69!

Using Eqs.~71! and~72! one can determine the quantityka
D ,

defined by Eq.~66!, which enters in the correction term o
the response function of constrained systems, Eq.~70!, and it
must be evaluated explicitly in particular cases.

Dipole in a Lennard-Jones bath

In order to illustrate the theory with a concrete examp
one could consider a dipole made by two opposite char
6q with phase space coordinates (R1 ,P1) and (R2 ,P2),
constrained at distanced but otherwise free to move within
bath of Lennard-Jones particles with coordinate (r i ,pi), i
51, . . . ,N. The Hamiltonian of the system is

H5(
I 51

2 PI
2

2M
1(

i 51

N pi
2

2m
1V~$r ,R%!, ~70!

whereM is the mass of the charges,m is the mass of the bath
particles, andV($r ,R%) is the interaction potential. The con
straint on the charges is

x5Fs

ṡ
G5F ~R12R2!22d2

~R12R2!•~P12P2!
G50. ~71!

Then

Z5
8

M
~R12R2!2, ~72!

and

C215F 0 2
M

8~R12R2!2

M

8~R12R2!2
0

G . ~73!

The quantitiesm andl are given by
02110
,
s,

m5Z21ṡ, ~74!

l5Z21S (
I ,J51

2
PI

M

PJ

M
¹ IJ

2 s1(
I 51

2
“ IV“ Is

M D . ~75!

The equations of motion for the charged particles are

ṘI5
PI

M
2m

]ṡ

]Pi
, ~76!

ṖI52“ IV2l“ Is1m“ I ṡ, ~77!

for I 51,2.
Now, the presence of an electric fieldE(t) would cause

the appearance of a perturbation Hamiltonian

HI52q~R12R2!E~ t ! ~78!

and one could consider the response ofP1 andP2, the mo-
menta of the charged particles, to the applied field. Us
linear response theory, Eq.~66! gives the usual velocity au
tocorrelation function from which, by Fourier transformin
the mobility is calculated. Due to the constraints one m
also calculate the correction term in Eq.~67!.

To calculate this term it is useful to fix some conventio
to represent the generalized bracket of the systems.
whole phase space has dimensionD5332(N12) and con-
sequently the matricesB D and B c have dimensionD3D.
Anyway, only the charged particles appear in the constra
and so only the corresponding degrees of freedom appe
ka

D . For this reason, one can just work with the pertine
block matrix of dimensionsDB3DB with DB5334. In or-
der to simplify the notation the block matrices will be writte
with the same symbols of the complete ones. So, conside
only the degrees of freedom of the dipole, the followin
order for the phase space point can be chosen:

X5F X1

X2

X1

X2

G5F R1

R2

P1

P2

G . ~79!

Consequently, the matrixB c has the following symplectic
structure:

B c5F 0 0 1 0

0 0 0 1

21 0 0 0

0 21 0 0
G , ~80!

where every element is a diagonal 333 matrix taking into
account the different Cartesian components. Then one
see thatka

D , appearing in the correction term in Eq.~67!, can
be written as the sum of two terms:

ka
D5qS ]B I1

D

]XI

]R12

]R1
1

]B I2
D

]XI

]R12

]R2
D . ~81!
9-7
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The first is

]B I1
D

]XI
52F ]2s

]P1]R1
~C21!12

]ṡ

]P1
1

]s

]R1

]~C21!12

]P1

]ṡ

]P1

1
]s

]R1
~C21!12

]2ṡ

]P1]P1
G2F ]2s

]P2]R2
~C21!12

]ṡ

]P1

1
]s

]R2

]~C21!12

]P2

]ṡ

]P1
1

]s

]R2
~C21!12

]2ṡ

]P2]P1
G50.

~82!

The second is

]B I2
D

]XI
52F ]2s

]P1]R1
~C21!12

]ṡ

]P2
1

]s

]R1

]~C21!12

]P1

]ṡ

]P2

1
]s

]R1
~C21!12

]2ṡ

]P1]P2
G2F ]2s

]P2]R2
~C21!12

]ṡ

]P2

1
]s

]R2

]~C21!12

]P2

]ṡ

]P2
1

]s

]R2
~C21!12

]2ṡ

]P2]P2
G50.

~83!

So, after some tedious algebra, one derives that, sinceka
D

50 for the specific constraints treated, the standard Ha
tonian form of linear response holds. The vanishing of
correction terms originated from the fact thats andC do not
depend on the momenta andṡ has only a linear momentum
dependence. Systems more complex than that specifie
the Hamiltonian in Eq.~70!, and with holonomic constraint
other that the simple bond-type of the example, will s
satisfy the above conditions and will also provide zero c
rection terms.

One could think of more general nonholonomic co
straints, for example, with a nonlinear dependence on b
coordinates and momenta, and could obtain, in principle
nonzero correction. In this case, one would have to de
again the explicit expression of the invariant measure si
the simple formulas rederived in this paper will no long
hold. Further study is required to verify if this issue could
addressed by means of the generalized bracket.

For the moment, it is worth noticing that the bracket fo
mulation of dynamics with holonomic constraints can be e
ily generalized to deal with non-Hamiltonian phase spa
pu

-

m
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flow with a conserved energy@17,18#. To obtain a more gen-
eral bracket, still having the structure specified by Eq.~30!,
one has just to define the phase space pointx, eventually
using additional variables, and substituteB c with the desired
B(x) in Eq. ~29!.

VIII. CONCLUSION

In this paper the constrained dynamics of classical s
tems in phase space has been formulated by means o
generalized bracket previously introduced in Ref.@18#. The
bracket subsumes the original Dirac approach to constra
systems. The formalism is also naturally linked to Liouvil
operators and propagators and has made it possible to
some insight into the problematic treatment of constraints
means of algorithms based on the Trotter decomposition
the propagator.

The equilibrium statistical mechanics and the linear
sponse of systems with holonomic constraints have been
derived by means of the generalized bracket in phase sp
In the linear response derivation, correction terms have b
found to be zero for the class of constraints explicitly treat
Further study is required to address the statistical mecha
and the linear response of systems with general nonh
nomic constraints.

By means of the generalized bracket, non-Hamilton
phase space flows with a conserved energy, as those use
systems with thermostats and barostats, can be easily c
bined with the Dirac formulations of the constraints and t
main ideas can also be extended to treat the dynamic
quantum-classical systems@34#. In conclusion, considering
the ease provided in defining energy-conserving n
Hamiltonian phase space flows, controlling their statisti
mechanics, and calculating eventual corrections in the lin
response, it seems that the generalized bracket forma
emerges as a simple and promising tool which can un
different ideas otherwise presented in scattered form.
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