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Generalized bracket formulation of constrained dynamics in phase space
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A generalized bracket formalism is used to define the phase space flow of constrained systems. The gener-
alized bracket naturally subsumes the approach to constrained dynamics given by Dirac some time ago. The
dynamical invariant measure and the linear response of systems subjected to holonomic constraints are explic-
itly derived. In light of previous results, it is shown that generalized brackets provide a simple and unified view
of the statistical mechanics of non-Hamiltonian phase space flows with a conserved energy.
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[. INTRODUCTION formulation of constrained dynamics as the more natural
context in which statistical mechanics can be formulated. In
The use of mechanical constraints in molecular dynamicgrevious papergl7,18 an antisymmetric bracket formalism,
simulations has a fundamental importance for both modelinglescribing in a unified way non-Hamiltonian phase space
complex systems and dealing with rare evefits4], see flows commonly used in molecular dynamics simulations
Ref.[5] for a recent application. Constraints are also mandat19—23, has been provided and the statistical mechanics of
tory in molecular dynamics simulations with potentials de-non-Hamiltonian systems has been easily addreissed30.
rived from density functional theoify8]. Despite their impor- ~ Linear response theory, correlations functions, and the subtle
tance, it is reasonable to expect that the above-mentiond@foperties of the generalized phase space algebra, analogous
examples do not exhaust the range of possible applications & the ones of quantum-classical algef8a—33, have also
constraints in both theory and simulations. To this end, genbeen discussefil8]. Here it is shown how the generalized
eral and simple mathematical formalisms can provide thdracket formalism of Ref§17,18 can be easily extended to
language to attack new problems. The aim of the preserfirovide a formulation of the dynamics, equilibrium statistical
paper is to suggest such a formalism treating constraine@echanics, and linear response theory of systems with me-
dynamics in phase space by means of generalized antisyrihanical constraints. The key idea has been to write the Dirac
metric brackets. bracket in terms of the simpler and more general bracket
Some time ago, Dirac defined a generalized bracket tdtroduced in Refd.17,1§, with the rest following by means
treat constraint§7,8]. Its main concern was to quantize sys- Of algebraic manipulations. Thus, the main result is the defi-
tems with constraints arising from a singular Hessian. Highition of a simple language to formulate constrained phase
approach was successively adopted by Anderson and Berg§pace flows and their statistical mechanics which is unified
man to study systems with gauge symmetfi@s Systems With the formalism of non-Hamiltonian flows with a con-
with a singular Hessian naturally emerge in relativistic me-served energy. Extensions to quantum-classical systems are
chanics and field theorj10—17. In these cases, the singu- also straightforward34].
larity is shown to be related to gauge invariaht]. Ordi- The paper is organized as follows: in Sec. Il the properties
nary nonrelativistic constrained systems, such as those us&f the generalized bracket are briefly summarized; in Sec. Il
to simulate molecular systems, do not usually have a singulg@duilibrium statistical mechanics and linear response theory
Hessian. For example, one could consider a system of are discussed in a form useful for other sections; in Sec. IV it
nonrelativistic point charges interacting via Coulomiptus IS shown that the generalized bracket, in the form introduced
eventually Lennard-Jonggpotentials, with constraints to de- in Ref.[18], subsumes the Dirac formalism for constrained
scribe molecular topology or a rarely sampled configurationsystems; in Sec. V, using a specific choice of the Dirac
For such systems, one does not need to be concerned wiktiacket, phase space equations of motion for systems with
Dirac classification of constraints or with gauge invariance holonomic constraints are written down and their numerical
Thus, few applications of Dirac’s approach to classical nonjntegration is critically discussed; in Sec. VI the distribution
relativistic systems are found in the literature. Some exfunction for such systems, which is defined in terms of the
amples are the use of Dirac’s theory to study biophysicainvariant measure, is derived; in Sec. VIl a computable form
systemg13,14 and to formulate algorithms for holonomic ©f the linear response of a constrained system is given. A
constraints in molecular dynamics simulatifts,16.. Nev- ~ simple example is also worked out in detail to show that
ertheless, Dirac generalized bracket provides a phase spagerrection terms, arising in the response function, are zero
point of view for the constrained dynamics of classical non-for systems with holonomic constraints. The last section is
relativistic systemsfor which gauge symmetry has a minor devoted to conclusions.
importance that can still be useful.
In the present paper the emphasis is put on the bracket Il. GENERALIZED EQUATIONS OF MOTION
Let x=(q,p) be the point in a phase space of dimension
*Email address: asergi@chem.utoronto.ca 2N. Consider the antisymmetric matrix field
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Bj(x)=-Bji(x), i,j=1,... N, ) [22,23 equations of motion and their associated statistical
mechanics can be easily addressed within the above ap-
by means of which one can define the generalized algebrajeroach.
bracket

N Ill. STATISTICAL MECHANICS

Ja db
(ab)= > (X) = 2 Considering the distribution functign, weighting the ini-

B,
i oxg 1 ax] . o ) 4
=1 0% ] tial conditions, ensemble averadé@®,36 in the Heisenberg

wherea=a(x) andb=b(x) are generic phase space func- picture of statistical mechanics are written as

tions. Equation(2) reduces to the standard Poisson bracket

[35] when one adopts the constant antisymmetric matrix <a>(t):f dxp(x(0))a(x(t)). (12)
1
Bjj=Bf= 1 ol (3)  One can go to the Schdinger picture{18,36]
The generalized bracket in E) obeys the following prop- (a>(t):f dxp(x(t))a(x), (12
erties:
(a,b)=—(b,a) (4) where insteada is fixed in time andp obeys the time-
’ Y independent Liouville equation
(a,bc)=(a,b)c+b(a,c), (5 P N
p . -
(ka)=0, ©) gt (LtKp= 2 (). (13

wherek is a constant and, b, andc are phase space func- |n an equilibrium ensemble one has
tions. In general the Jacobi relation will not be satisfied:

Jot=—(iL + x) po=0.
[a,(b,c)]+[c.(a,b)]+[b,(c,a)]#0. @) Ipel == (L + 1) pe=0 19

. . Tuckermanret al. [24—2§ provided an alternative formu-
When Eq.(7) holds, the generalized bracket does not defingagion of non-Hamiltonian statistical mechanics which has
a Lie algebra in phase space. _ the merit to put the invariant measure into evidence. In their
Considering the phase space expression of the energy,,qach the equilibrium distribution function is written as
H(x), generalized equations of motion can be written in theyhe product of a true probability densitynd a metric factor

form [17,18 \/5
N o
=M= Byoo, =1 N (@ pe(X) = Vgfe(x) = "M (x), (15)
=1 j

wherew(x) is the primitive function of the compressibility
The time variation of any other phase space function such tha/dtw(x) = «(x). Consequently, the form of Liou-
=a(x) is then given by ville equation, in Eqs(13) and (14), should change. How-
ever, equivalent resultsl8,30 can be obtained using Egs.

2 (13) and(14). In this case, one must check at the end of the

a=(a,H)=i:El Xigx, L& (9 derivation that, indeed, the invariant measure can be ob-
tained.
where the last equality defines the Liouville operaibt The stationary solutiofil8,24—26,3pof Eq. (14) is
Flows defined by Eq(8) usually have nonzero phase space y
compressibility:
° g pe= 3, (K )e ", 16
. a=1
_ 2N X . 2N ﬁBij IH 10
K_i:1 ax; T X X (10 whereC,, «=1,... M are the relevant constants of mo-

tion which permit to specify the thermodynamical ensemble

It follows immediately from the antisymmetric property of [36]. In fact, it is worth to mention that one cannot include
the bracket, Eq(4), that the energy+ is conserved17] by  all mechanical constants of motion. To understand why, one
the equations of motiof8). In the following H will be sim-  can consider an integrable system. In this case the trajectory
ply referred to as the Hamiltonian, even if the term is notin phase space, which exists by definition, could be described
mathematically precise. by 2N—1 constant hypersurfaces. Only a few of these con-
In Refs.[17,18 it has been shown that Nostoover stants of motion are suited to define a thermodynamical en-
[19,20, NoseHoover chains[21], and Andersen-Nose semble. They are those related to symmetries of the system
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that survive the process of averaging over initial conditionshe perturbed distribution function to linear order s(t)

[36]. As discussed by Jayn¢37], they specify the allowed =, _+ Ap,(t), where the linear correction term has the form
physical states of the system. [18]
It has been shown by Tuckermai al. that the primitive

function w always exist§24—2§ for integrable equilibrium t )

flows [30]. In fact, defining the Jacobian J; Ap(t)= LdTexﬂ:—(t—T)(lLoJr Ko)]
=|ax(t)/ax(0)|, one finds the equatiod/dtInJ;=« which

shows that the compressibility is exactly integrable. One can X[(pe @)+ kapel F(7). (22)
check by direct substitution that,, given by Eq.(16), is )

indeed a solution of the Liouville equatidf9). To derive Eq. (22) we used the fact that the

To carry out linear response theory, one considers an ex;ompressibility <o disappears from the propagato’(t)
plicit time-dependent Liouville operator. Usually the explicit =€XH —(Lo+xo)(t)] when calculating its adjointU(t)

time dependence arises from a perturbig(t). In the  =exfdLo(t)] by integration by part, as already discussed in
present generalized formalism, the explicit ime dependenc®ef.[18]. _ _
could also arise from the elemen&; in Eg. (8). In the Considering an arbitrary phase space functioab(x),

time-dependent case, the Heisenberg picture of statisticits responseﬁ(t)=E(t)—<b)e is given by
mechanics requires that

‘ E(t):ft drep(7) F(t—7), (23
a(x(t))=U(t)a(x)zT(expfOiL(t’)dt’)a(x), (17) -

where, as shown in Reff18], the response functiog(t) can
whereTis the time-ordering operator ahd(t) is the propa- be written in the compact form
gator. Within the Schmdinger picture the distribution func-
tion evolves under the adjoint propagator ¢(t)=—((b(t),a))e. (24

ot _ t , , A form of the response function, equivalent to that in Eq.
p(x,1)=U(t)p(x)=Texy — O['L(t )+ k() ]dt" [p(x). (24) but more useful for numerical calculations, can be ob-
(18 tained by simple integration by parts:

Equation (18) is tantamount to writing the general time-
dependent Liouville equation

$(t)= f XD (pe.@) + kapel.  (25)

_ N Using Eq.(15), the response function in ER5) can be
=—[ILO+x(O]p(x,D =2, Z-[x(Dp(xD].  witten as
= i

(19

ap(x,t)
ot

In the following, the element#;; will not explicitly de- (1) f dx\/§b(x(t))[(fe(x),a)
pend on time. In this case it has been shown in Ri] that _
if one considers the perturbed Hamiltoniddp(t) ="M, Fe(x)W(x), @)+ afe(x)]. (26)
+H,(t), whereH, governs the dynamics of the system in
the absence of the external field akgi(t) = —a(x) F(t) is IV. DIRAC BRACKET FOR SYSTEM
an explicitly time-dependent interaction term, then, as usual, WITH CONSTRAINTS
the time-dependent Liouville equatidd9) can be used to Consider a system with Hamiltonia#, and a set of
derive the linear response of the system. To this end, it i%hase space constraints:
useful to introduce the phase space compressibilities

Ay Xo.(X)=0, a=1,...2. (27)
_ ij 7o
KO_HE:l X Jx; (20 Following Dirac[7,8], one can introduce the matrix
2N 2N 2 ax Ix
(98”’ IH, (1) ﬁBij Ja C :{ — z aBQ_ﬁ 28
= p— = — _— af Xa !XB} 4 . . ( )
«(t) i,jzzl X (9Xj i,j2:1 X ﬂXj}—(t) ij=1 9% . r?X]
= — Kk F(1). (21)  and its inverse (C‘l)aﬁ, wherea,8=1,...,2. In the ex-

pressions above, involving the Poisson bracket of the con-
The phase space compressibility of the perturbed system &raints, and in the following ones, where the generalized
obviously given bykp(t)=«y+ «,(t). One is also led to bracket of the constraints will be introduced, one must fol-
consider the Liouville operatorid o= (... ,Hg) andiL,(t) low the conventiori7,8] of evaluating brackets first and then
=(...,H(t)) with iLp(t)=iLo+iL,(t). Assuming as impose the constraints relations. By defining an antisymmet-
usual that in the distant past the system was in equilibriumgic matrix B°,
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In order to explicitly determine the Dirac bracket of Eq.

BP(x):B Z Z & 1)% XﬁBﬁ, , (30) in this specific case, the whole set of constraints can be
] 5i ax Ky ™
denoted as
(29)
an algebraic Dirac bracket can be introduced as (X1 - X1 Xi+10 - -x2) = (01, 07,01, - 00).
(34
2N ga__ ab _ . .
(a,b)p= 2 Bﬁ’ (30) It is easy to see that the antisymmetric mat@y, has a
=1 2 block structure
Equation (30) defines the Dirac bracket establishing the 0 T
phase space algebra of systems subjected to cons{rajais _ lo.0}
T ; > ; Cc (35
It was originally introduced by Dirac in the alternative but —{o, o T {g" }
equivalent form7,8]
’l To derive its explicit form, one considers
(abo={a,b}~ 3 {axaH(C Daslxsb}. (3D (00,05} =0, (36

Dirac also proved that this bracket satisfies the properties in
Egs.(4)—(6) and the Jacobi relatiof¥,8], so that it defines a {0,.08= E V o, Viog, (37)
Lie algebra in phase space. The bracket in(B6) is equiva-
lent to the one in Eq(31) and satisfies the Jacobi identity 5,4
too.
The phase space flow can now be defined by N . A
. pi 1 _, pi 1 2
: {0005 = 2 | = —Vio, Vo3~ — — Vo, Viog
a=(a,Ho)p - (32 k=1 \ M my m; My

This flow has the property of conserving the Hamiltonian =Tap- (38)

and any function of the constraints. To show this, one ca . . B
consider the action of the Dirac bracket on a general functiorr)rﬁgsn’ defining the matrZ,z=2;(1/m;)Vio,Viog, one

f(x,) of the constraints

(f(x,),Ho)p=0. (33

Equation(33) can be proved by simply using the definition

of the bracket in Eq(31) and the definition o€ andC™ . It |t is not difficult to see that the inverse matrix is given by
shows that general functions of the constraints are left invari-

0 Zz
-z T

{x:x"= (39

ant, by construction, under infinitesimal contact transforma- . z'rzt -zt
tions realized by means of the Dirac bracket. Cr=l ;1 0 (40
V. PHASE SPACE FLOW FOR SYSTEMS The Dirac bracket generates the equations of motion for
WITH HOLONOMIC CONSTRAINTS the phase space coordinates (r,p). They are explicitly
Consider a system with a numbkrof holonomic con- given by

straints in configuration space,({r})=0, a=1,... /. -

One would like to setup a mathematical framework in order (ri HO)D:&_ 2 ﬂ’u _bi (41)

to treat such a system using a generalized bracket in phase v m =1 0p Y my’

space. To this end, the following additional constraints must N

also be considereds,({r,i})==N,Vo,p/m=0, « Wherethe quantities

=1,... ). In Ref.[15] it has been argued that, within Dirac | |

approach, the constraints,, «=1,..., can be consid- Lo= D z;ﬁl{gﬁyH}: > z;ét}ﬁzo (42)

ered as redundant and that Hamiltonian equations of motion B=1 B=1

arising from Dirac formalism are equivalent with Lagrangian

equations of motion, derived by taking in account only thehave been defined.

set of o, constraints. Nevertheless, the setoof constraints Consider now the equations of motion for the momenta
is required to establish a Hamiltonian picture of the dynam- |

ics. It is in fact easy to verify that without them the matrix MY =F — V.o 43
C.p in Eq. (28) would be identically zero and the Dirac (P Ho)o=Fi~ 2, Vioahs, “3
bracket, as defined by E¢0) by means of Eq(29), could

not be defined. where one has introduced the quantities
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' . In EqQ. (49) the Lagrange multipliera , are not numbers but
No= E Z;l{a[, ,H} phase space functions whose expression is given by4&y.
p=1 For this reason the application of the factorized propagator in
£V Eq. (49) to the phase space point, that would give, at least in
kYkTp principle, a dynamics exactly satisfying the constraints, is
me )’ very difficult to calculate explicitly. Closed analytical formu-
(44) las have been found only for particular ca$d2—-44. In-
stead, if one forgets that the Lagrange multipliers are actually
which correspond to the analytical value of the Lagrangiarphase space functions and considers them as simple num-
multipliers. As shown by Dira¢7,8] and discussed in Ref. bers, then the application of the propagator in &§) to the
[15], the equations of motio41) and (43), expressed by phase space point gives a time translation resulting in the
means of the auxiliary quantities in Eq42) and(44), may  well-known velocity Verlet algorithm
be derived by following an alternative route. One could start
from the unconstrained Hamiltonigi, and add the con-
straints to define the modified Hamiltonian

N

I
_ Pr Pk
= 7z 1 RELR v JpN

321 p k,j2:1 m; my k78 kzl

At At?
r(Ay=ri(0)+ — p.(0)+ F i(0)

| ' At 2
Ho=Ho+ 2 (NaGa= fa0a)- (45) ~ o s Na(0)Vioy(0), (50)

i a=1

Then one can derive the equations of motion using the Pois- At
son bracket andH, as the generator of time translations Pi(At)=pi(0)+ —-[Fi(0)+F;(At)]
[7,8]. To achieve this one must adopt the convention that the

auxiliary quantities have to be treated as constédragrang- !

ian multipliers under the action of the Poisson bracket. 5 Z Na(0) Vi, (0) + N (A Vo, (AL) |
At this point, before deriving the equilibrium distribution a=l
function, it is worth making a little digression and consider- (52

ing the issue of numerically integrating the Eq41) and . . .
(43). The problem can be attacked within the time reversiblef one now substitutes the exact expressions in @¢) we
algorithms based on the Trotter factorization of the propagaobtain an algorithm that does not satisfy the constraints be-

tor [38—40. To Egs.(41) and (43) one can associate the cause of an exponential growing error. The above discussion
partial Liouville operators unveils the origin of this instability by showing its relation to

a toonaive approximation to the action of the propagator in

N pi o Eq. (49). Equations50) and(51) were obtained considering

Z F o (46) N\, as numerical parameters. Their numerical treatment must

a ! be consistent with such an assumption. As is well known, the
solution has been given by SHAKH ,45].

N2 Vo, 4
! &pl “21 'Z “0 VI. INVARIANT MEASURE FOR SYSTEMS WITH
HOLONOMIC CONSTRAINTS

Le=2, F

The propagator for a small time stéy is
From the explicit equations for phase space coordinates,

G(At)=exd (L,+Ly)At] one can calculate the flow compressibility in E§0) and
At At rewrite it for convenience as
=exp{L2— exp[LlAt]ex;{Lz— +O(At®), N .
2 2
2 ar, (7p, (52)
(48) =1 arl apl

where in the last line a simple symmetric Trotter factoriza-From the equations of motiof#1) and (43) one gets
tion [40,41], leading to the velocity Verlet algorithm, has

been chosen. Using the resulting operators one would get the N
propagator E 2 Vo

=1 a=1 “ ap|
N [
At d
G (At)zi[[l ex[{?( Fi—gl )\aVioa) r9_p.
dz, . d
ko=— > Z A — _Tyz.27"Y=-—In||Z]|.
apB=1 dt

Jd At Jd
xexp{m&— ex [{ (F Z A Vo )
2 ap; B gt

ar
+0O(At3). (49 (54

(53

where the conditiorr,=0 has been used. Finally, the phase
space compressibility is obtained:
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From Eq.(57) one immediately finds that(x), the primi-  Finally, collecting the results, one obtains the linear response
tive function of the compressibility, is given by formula for a constrained system

w(x)=—In||Z||. (55 _ t ,
Ab(t)=— f dr J' dxb(t—7)[ BH,(7)+ k,(7)]pe.
The stationary solution of the Liouville equatidi9), pe, 0 (60)
has the form given in Eq16). By realizing that the constant

of motion isHy and the constraintg,, «=1,...,2, one

can write p, as Equation(60) automatically expresses the average using the

correct invariant measure, the latter being contained in Eq.

2l (56). The interaction compressibility,(7) is expressed as

pe=0(Ho) 11 dx)lIZll=8Ho) 11 8(on)8(a)lIZ]l. .

c?Bi?(T) IH,(7)
(56) Kl(r)=iJ2:1 % ox

: (61)

Equation(56) proves that also in the important case of con-
strained systems the invariant measi28-24 arises from  \yhere B is given in Eq.(29). The explicit expression of
the generalized bracket, in this case the Dirac bracket, and (7) depends on the form of the interaction Hamiltonian
the correct solution of the Liouville equatig8,3d. H,(7) and for specific problems it could be in principle com-
_ The invariant measure for constrained systems was dgsjex to evaluate. A result equivalent to EG0) has also been
rived in Ref.[46] using only constraints in configuration gpizined by Tuckermaat al. [48].

space. This choice precludes the possibility to formulate a | order to make the formulas explicit, one considers a
proper bracket in phase space as instead done in the approaﬁ@rturbation of the form

of Dirac[7,8] and illustrated by the present derivation. Nev-
ertheless, the derivation given in Rp46] has been a useful
guide for the one presented above. The identity of our re-
sults, obtained by means of a generalized bracket in phase .
space, with the one presented in Ridi], obtained consid- Eduation(61) becomes
ering only the constraints in configuration space, shows that
the statistical mechanics of system with holonomic con- ab’ﬁ(t) da(t)

straints can be formulated in both ways. x ()= _F(t)iJZZl ax o

H(1)=—a(x) F(t). (62

2N

=—FH«D. (63

VII. LINEAR RESPONSE FOR CONSTRAINED SYSTEMS  jsing Eqs.(62) and (63), Eq. (60) becomes

Linear response for constrained systems can be obtained

simply by substituting the expression of the equilibrium dis- — _
tribution function, Eq.(56), in Eq. (25). Since any function Ab(t)= | drF(t=7n)d(7), (64)
of the constraint§see Eq.(33)] is conserved under Dirac
flow, one gets where one has introduced the response function
(pe. Hi(Mo=1ZIITT 8(x)(8(Ho) Hi(D))p, (57) Dpy(t) = Dpy(t) + DE(1), (65)
where (||1Z||,H,(7))p=0 has been used, fd it does not where
depend on particle momenta. So one is led to consider the
action of the Dirac bracket oa(H,): q’%a(t)= +'8f dXpeg(X)D(X(1))A(X), (66)
d6(Ho)
(5(H0)-HI(T))D:(9—%(HO-HI(T))D
DZ ()= J dXpeg(X)D(X(1)D. (67)
__ )y 58
==, (), (59

The response function in E@65) is composed of the two
. contributions in Eqs(66) and (67). The contribution in Eq.
where the equation of motioh, (7) = (H,(7),Ho)p has been (66) has the same form of that arising from linear response of
used. Introducing the Laplace transform representation of theiamiltonian systems. The difference is contained in the equi-
o function and taking the thermodynamic lini#7] one can  librium average over the constrained ensemble. The contri-
show that bution in Eq.(67) is a correction term coming from the gen-

. eralized bracket. In order to calculate this correction one

(8(Hg)  Hy(T)p=+ BS(Ho) Hi(7). (59 must work outKg’. To this end it is easy to see that
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ﬁ:_g E B¢ (92)(a (C—l) %
(7Xi k.| a,ﬂ ik aXian 01/3 (9X|
IXa HC Vg IXg  IXa xp
2 P PP, 2lcYy LB
&Xk aXi (9X| 07Xk (C )aﬁ 0-'Xi0-'X| B“,
(68)
where
[ 9zt
0 _
ot X
axi | 9zt
L &Xi
[ Z
0 _7-1"" 51
z X 69
. 2*1022*1 0 | 9
L &Xi

Using Egs(71) and(72) one can determine the quantirtﬁ ,

defined by Eq.(66), which enters in the correction term of

the response function of constrained systems(Hg), and it
must be evaluated explicitly in particular cases.

Dipole in a Lennard-Jones bath

PHYSICAL REVIEW E 69, 021109 (2004

n=2"1o, (74)
2 PP 2 V\VV,o
= -1 _I_J 2 ;
A=Z u};l v MV,J0+|§=‘,1 g (79
The equations of motion for the charged patrticles are
. P, do 26
I VIRCFTN (76)
P|:_V|V_)\V|O'+,LLV|(-T, (77)

for 1=1,2.
Now, the presence of an electric fiefift) would cause
the appearance of a perturbation Hamiltonian

Hi=—q(Ry—Rp)&(L) (78)
and one could consider the responsePefand P,, the mo-
menta of the charged particles, to the applied field. Using
linear response theory, E(66) gives the usual velocity au-
tocorrelation function from which, by Fourier transforming,
the mobility is calculated. Due to the constraints one must
also calculate the correction term in H§7).

To calculate this term it is useful to fix some conventions
to represent the generalized bracket of the systems. The
whole phase space has dimensivs 3X2(N+2) and con-

. . H D H H
In order to illustrate the theory with a concrete example Seduently the matrice8™ and 5° have dimensiorDxD.

+q with phase space coordinateR,(,P;) and R,,P,),

constrained at distan@kbut otherwise free to move within a

bath of Lennard-Jones particles with coordinate,§;), i

=1, ... N. The Hamiltonian of the system is
2 2 N 2
Pi Pi
H_Zlm_'—i:lﬁ—i_V({r,R})’ (70)

whereM is the mass of the chargems,is the mass of the bath
particles, and/({r,R}) is the interaction potential. The con-

straint on the charges is

o (Ri—Ry)*—d? 0 71
o] T IRi=Ry)-(P=Py |
Then
8 2
Z= +(Ri=Ry)?, (72
and
M
0 By
8(R,;—R,)
ci= S R
M
- 0
8(R;—Ry)?

The quantitiesu and\ are given by

and so only the corresponding degrees of freedom appear in
k2. For this reason, one can just work with the pertinent
block matrix of dimension®g XDy with Dg=3X4. In or-

der to simplify the notation the block matrices will be written
with the same symbols of the complete ones. So, considering
only the degrees of freedom of the dipole, the following
order for the phase space point can be chosen:

X1 Ry
X2 R,

X= = . 79
X, P, (79)
X2 P,

Consequently, the matri8° has the following symplectic
structure:

0 0 1
0 0 0 1

B =11 o o ol (80
0 -100

where every element is a diagonak3 matrix taking into
account the different Cartesian components. Then one can
see thakg, appearing in the correction term in E§7), can

be written as the sum of two terms:

BP, R, B IRy,
X, dR;  dX, IR,/

D_
Kz=(Q

(81)
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The first is flow with a conserved enerdyt7,18. To obtain a more gen-
5 ) ) eral bracket, still having the structure specified by E§),
By P _,. do  do d(C Yy, do one has just to define the phase space pwirgventually
=— (C Yot ——— —— : o : ; - -
aX, PR, P, IR, P, 9P, using additional variables, and substiti#€ with the desired
. . B(x) in Eqg. (29).
N Jo (C_l) Po o (C_l Jdo
IRy 29P1oPy1| [ IP,dR, 2P, VIll. CONCLUSION
do d(C Yy, do  do o P In this paper the constrained dynamics of classical sys-
* JR, 0P, P, 5_R2(C )12—(9p2(9p1 - tems in phase space has been formulated by means of the
generalized bracket previously introduced in Hé#]. The
(82 pracket subsumes the original Dirac approach to constrained
The second is systems. The formalism is also naturally Im_ked to_LlouvnIe _
operators and propagators and has made it possible to gain
oBP Po g do d(C Yy, do some insight into the problematic treatment of constraints by
12_ _ (C Yot — 2 means of algorithms based on the Trotter decomposition of
2" > - The equilibrium statistical mechanics and the linear re-
Jdo o T Jdo - . .
+—(C Yy, - (CH— sponse of systems with holonomic constraints have been re-
IRy dP19P,] [ IP20R, 9P, derived by means of the generalized bracket in phase space.
1 : 5 In the linear response derivation, correction terms have been
do d(C *)p doo  do o

found to be zero for the class of constraints explicitly treated.
Further study is required to address the statistical mechanics
(83) and _the Iinear_ response of systems with general nonholo-
nomic constraints.
So, after some tedious algebra, one derives that, sifjce By means of the generalized bracket, non-Hamiltonian
=0 for the specific constraints treated, the standard Hamilphase space flows with a conserved energy, as those used for
tonian form of linear response holds. The vanishing of thesystems with thermostats and barostats, can be easily com-
correction terms originated from the fact thaandC do not  bined with the Dirac formulations of the constraints and the
depend on the momenta andhas only a linear momentum Main ideas can also be extended to treat the dynamics of
dependence. Systems more complex than that specified Ijantum-classical systeni84]. In conclusion, considering
the Hamiltonian in Eq(70), and with holonomic constraints the ease provided in defining energy-conserving non-
other that the simple bond-type of the example, will still Hamiltonian phase space flows, controlling their statistical
satisfy the above conditions and will also provide zero cormechanics, and calculating eventual corrections in the linear
rection terms. response, it seems that the generalized bracket formalism
One could think of more general nonholonomic con-eémerges as a simple and promising tool which can unify
straints, for example, with a nonlinear dependence on botHifferent ideas otherwise presented in scattered form.
coordinates and momenta, and could obtain, in principle, a
nonzero corregtion. In this case, one wquld have to de.rive ACKNOWLEDGMENTS
again the explicit expression of the invariant measure since
the simple formulas rederived in this paper will no longer The author acknowledges many useful discussions with
hold. Further study is required to verify if this issue could beProfessor Mauro Ferrario. Professor Giovanni Ciccotti’s en-
addressed by means of the generalized bracket. thusiasm was instrumental in bringing this paper to comple-
For the moment, it is worth noticing that the bracket for- tion. The author owes much gratitude to Professor Raymond
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