
PHYSICAL REVIEW E 69, 021108 ~2004!
Heuristic segmentation of a nonstationary time series
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Many phenomena, both natural and human influenced, give rise to signals whose statistical properties
change under time translation, i.e., are nonstationary. For some practical purposes, a nonstationary time series
can be seen as a concatenation of stationary segments. However, the exact segmentation of a nonstationary
time series is a hard computational problem which cannot be solved exactly by existing methods. For this
reason, heuristic methods have been proposed. Using one such method, it has been reported that for several
cases of interest—e.g., heart beat data and Internet traffic fluctuations—the distribution of durations of these
stationary segments decays with a power-law tail. A potential technical difficulty that has not been thoroughly
investigated is that a nonstationary time series with a~scalefree! power-law distribution of stationary segments
is harder to segment than other nonstationary time series because of the wider range of possible segment
lengths. Here, we investigate the validity of a heuristic segmentation algorithm recently proposed by Bernaola-
Galván et al. @Phys. Rev. Lett.87, 168105~2001!# by systematically analyzing surrogate time series with
different statistical properties. We find that if a given nonstationary time series has stationary periods whose
length is distributed as a power law, the algorithm can split the time series into a set of stationary segments
with the correct statistical properties. We also find that the estimated power-law exponent of the distribution of
stationary-segment lengths is affected by~i! the minimum segment length and~ii ! the ratioR[se /s x̄ , where
s x̄ is the standard deviation of the mean values of the segments andse is the standard deviation of the
fluctuations within a segment. Furthermore, we determine that the performance of the algorithm is generally
not affected by uncorrelated noise spikes or byweaklong-range temporal correlations of the fluctuations within
segments.

DOI: 10.1103/PhysRevE.69.021108 PACS number~s!: 05.40.2a
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I. INTRODUCTION

A stationary time series has statistical properties that
not change under time translation@1#. Interestingly, the time
series that arise in a large number of phenomena in a b
range of areas—including physiologic systems, econo
systems, vehicle traffic systems, and the Internet@2–11#—
are nonstationary. Thus nonstationarity is a property comm
to both natural and human-influenced phenomena. For
reason, the statistical characterization of the nonstationar
in real-world time series is an important topic in many fiel
of research and numerous methods of characterizing non
tionary time series have been proposed@12#.

One useful approach to quantifying a nonstationary ti
series is to view it as consisting of a number of time s
ments that are themselves stationary. The statistical pro
ties of the segments~i! can help us better understand t
overall nonstationarity of the time series and~ii ! yield prac-
tical applications. For example, developing control alg
rithms for Internet traffic will be easier if we understand t
statistical properties of these stationary segments@10#.

In general, it is impossible to obtain the exact segmen
tion of a nonstationary time series because of the comple
of the calculation. An exact segmentation algorithm requi
a computation time that scales asO(NN), whereN is the
number of points in the time series@13#. Hence, such an
algorithm is not practical. For this reason, the segmenta
of a real-world time series must accomplish a trade-off
1063-651X/2004/69~2!/021108~12!/$22.50 69 0211
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tween the complexity of the calculation and the desired p
cision of the result.

Bernaola-Galva´n and co-workers recently proposed a he
ristic segmentation algorithm@14# designed to characteriz
the stationary durations of heart beat time series. In this
gorithm @14#, the calculation cost is reduced by iterative
attempting to segment the time series into onlytwo seg-
ments. A decision to cut the times series is made by ev
ating a modified Student’st-test for the data in the two seg
ments@15#.

The application of this segmentation algorithm reve
that the distribution of the stationary durations in heart b
time series decays as a power law@14#. Intriguingly, a recent
analysis of Internet traffic uncovered that the distribution
stationary durations in the fluctuation of the traffic flow de
sity also follows a power-law dependence@16#. Because
these signals have their origin in such diverse contexts, th
findings suggest that the power-law decay of the distribut
of the stationary period may be a common occurrence
complex time series. Thus, the correct implementation
interpretation of the results obtained by the segmentation
gorithm is essential in understanding the dynamics of
system. In fact, there are many implementation issues c
cerning the segmentation algorithm of Ref.@14# that have not
yet been addressed explicitly in the literature, especia
those concerning the proper estimation of the value of
power-law tail’s exponent in the cumulative distribution
stationary durations.

In this paper we systematically analyze different types
©2004 The American Physical Society08-1
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surrogate time series to determine the scope of validity of
segmentation algorithm of Bernaola-Galva´n and co-workers
@14#. In Sec. II, we briefly explain the segmentation alg
rithm. In Sec. III, we present results for the dependence
the exponent of the power-law tail on the minimum length
the segments in the distribution of the stationary duratio
In Sec. IV, we consider the effect of the amplitude of t
noise and the presence of spike-type noise. In Sec. V
consider long-ranged temporally correlated noise. Finally
Sec. VI, we summarize our findings.

II. IMPLEMENTING THE SEGMENTATION ALGORITHM

A. The algorithm

To divide a nonstationary time series into stationary s
ments @14#, we move a sliding pointer from left to righ
along the time series and, at each position of the poin
compute the mean of the subset of the signal to the left of
pointer m left and to the rightm right . For two samples of
Gaussian distributed random numbers, the statistical sig
cance of the difference between the means of the
samples,m1 and m2, is given by Student’st-test statistic
@17#,

t[Um12m2

SD
U, ~1!

where

SD5S ~N121!s1
21~N221!s2

2

N11N222 D 1/2S 1

N1
1

1

N2
D 1/2

~2!

is the pooled variance@18#, s1 , s2 are the standard deviation
of the two samples, andN1 andN2 are the number of points
in the two samples.

Moving the pointer along our time series from left
right, we calculatet as a function of the position in the tim
series. We use the statistict to quantify the difference be
tween the means of the left-side and right-side time ser
Larger t means that the values of the mean of both ti
series are more likely to be significantly different, maki
point tmax, with the largest value oft, a good candidate as
cut point.

We then calculate the statistical significanceP(tmax). Note
that P(tmax) is not the standard Student’st-test @18# because
we are not comparing independent samples. We could
obtainP(tmax) in a closed analytical form, so thatP(tmax) is
numerically approximatedas @19#

P~ tmax!'$12I [n/(n1t
max
2 )]~dn,d!%h, ~3!

where h54.19 lnN211.54 andd50.40 are obtained from
Monte Carlo simulations@14#, N is the length of the time
series to be split,n5N22, and I x(a,b) is the incomplete
beta function.

If the difference in mean is not statistically significant—
i.e., if is smaller than a threshold~typically set to 0.95!—
then the time series is not cut. If the difference in mea
between the left and right part of the time series is stati
02110
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cally significant, then the time series is cut into two segme
as long as the means of the two new segments are sig
cantly different from the means of the adjacent segments
the time series is cut, we continue iterating the above pro
dure recursively on each segment until the obtained sign
cance value is smaller than the threshold, or the length, of
the obtained segments is smaller than an imposed minim
segment length,0. We will see that the value of,0 is one of
the parameters controlling the accuracy of the algorithm.

B. Surrogate time series

To investigate the validity of the algorithm, we analyz
surrogate time seriesx(t) generated by linking segment
with different means. As described in Sec. I, the cumulat
distribution of the stationary durations for some real-wo
time series is characterized by a power-law decay in the
so the probability of finding a segment of length larger th
m, i.e., the cumulative distribution of segment lengths in o
time series, is

P~.m!5
g11

m0
g11

m2g for m@m0 , ~4!

wherem0 is the minimum length of a segment.
We generate time series with a power-law distribution

segment lengths by the following procedure.
~1! Draw from the interval@m0 ,1`# a sequence of seg

ment lengths$mi% with distribution given by Eq.~4!.
~2! Draw from the interval@0,1# a sequence of mean tim

series values$x̄i% with uniform probability.
~3! Draw from the interval@2A3se ,A3se# a sequence of

fluctuation values$e i(ki)%, for ki51, . . . ,mi , with uniform
probability.

The resulting time series is given by

x~ t !5 x̄i1e i~ki !, ~5!

wherei is such that

(
j 50

i 21

mj,t<(
j 50

i

mj ~6!

andki is such that

ki5t2(
j 50

i 21

mj . ~7!

To quantify the level of the noise, we define the ratio

R[
se

s x̄

, ~8!

wheres x̄ is the standard deviation of the mean of the se
ments andse is the standard deviation of the fluctuation
within a segment. Forx̄i uniformly distributed in the interval
@0,1#, s x̄50.3.
8-2
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For each set of parameters (g, m0 , R) we generate ten
time series, each with 50 000 data points. Note that know
a priori the value ofm0 in a real-world time series is un
likely, but in order to test the algorithm in a consistent wa
we consider in the following sectionm0>20 because that is
the resolution limit for the algorithm~see also Appendix A!.

Figure 1 displays a surrogate time series, the correspo
ing stationary durations, and the result of the segmenta
algorithm with,0550 andm0520. The segments obtaine
by the segmentation algorithm do not exactly match the
tionary segments in the surrogate time series but the fig
strongly suggests that the algorithm provides the cor

FIG. 1. Surrogate time series constructed according to the
cedure described in Sec. II B with parametersg51.0, m0520, and
R51. The time series is drawn in light gray, and the station
segments are represented by a dashed gray line. The black
displays the output of the segmentation algorithm for,0550. It is
visually apparent that the black line provides an adequate coa
grained description of the surrogate time series. Note also tha
algorithm cannot extract the smallest segments because of th
strictions on resolution form,,0.
02110
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coarse-grained description of the time series. As expec
the segmentation algorithm cannot extract segments w
lengthm,,0.

III. ACCURACY OF THE SEGMENTATION ALGORITHM

A. Dependence onø0 and m0

Figure 2~a! displays the cumulative distribution of seg
ment lengths, which is the probability of finding a segme
with length larger than, for a surrogate time series split fo
different values of,0. The cumulative distributions of the
length of the stationary segments cut by the segmenta
algorithm for surrogate time series are well fit by a pow
law decay. For all cases, we find

P,0 ,m0
~., !;,2ĝ(,0 ,m0) ~9!

with the same exponent valueĝ'1.0 @20#, indicating that the
segmentation algorithm splits the nonstationary time se
into segments with the correct asymptotic statistical prop
ties. However, the range of scales for which we observ
power-law decay withĝ'g depends strongly on the sele
tion of ,0.

For , greater than about 5,0, the tails of the distributions
are consistent with a power-law decay withĝ'g51.0. Ad-
ditionally, all P(.,) track the surrogate data for,.1000,
i.e., the algorithm correctly identifies the large segments
dependently of the selection of,0. For ,,5,0, the distribu-
tions are not consistent with a power-law decay. The ori
of this behavior lies in the fact that~i! for ,05205O(m0),
there are not enough data points to reliably perform Stude
t-test, so one cannot reasonably expect any statistical pr
dure to be able to extract those short segments and~ii ! for
,0@m0, one fails to extract the stationary segments withm
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FIG. 2. ~a! Cumulative distributionP(.,) of segment lengths larger than, for surrogate time series with 50 000 data points;g
51.0, m0520, andR51. The dotted line indicates the input segment length distribution for the surrogate time series. The slope of
is 1.0 for 20,m,4000. The other curves showP(.,) for different values of,0. For ,0520, the curve is well described in the rang

100,,,4000 by a power law withĝ'1.0. The distribution does not decay as a power law for,,100 due to the fact that the segmentati
algorithm cannot split a time series with a number of points insufficient to perform Student’st-test. For,05400, P(.,) decays as a powe
law for 1000,,,8000. The segmentation algorithm correctly splits all segments in the surrogate time series with length,.1000. ~b!

Dependence ofĝ on ,0 andm0. The mean and the standard deviation of the exponent for the original time series is 1.0560.24, shown by

the black solid and dotted lines. The error bars show the standard deviation of the estimatesĝ. For ,0 /m0,5, we find ĝ'1. Thus, the
algorithm accurately estimates exponents in this region. However, the values of the exponent are close to 1.3 for,0 /m0.10, meaning that
m0!,0 leads to an overestimation ofg.
8-3
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TABLE I. Estimated exponentĝ, as defined by Eq.~5! for g51.0. The mean and the standard deviati
of the exponents are calculated for the ranges indicated inside parentheses using Eq.~B1!. The column
labeled ‘‘input’’ presents exponent estimates obtained from the segment lengths used to generate the s

time series. We findĝ'g51.0 for ,0,5 m0.

,0

m0 10 20 50 100 400 Input

20 1.160.3 1.160.3 1.260.3 1.360.4 1.360.3 1.160.3

(,.20) (,.20) (,.50) (,.110) (,.1000)

50 1.060.3 1.060.3 1.060.3 1.160.3 1.160.5 1.060.2

(,.50) (,.50) (,.100) (,.110) (,.1000)

100 1.060.3 1.060.3 1.060.3 1.060.3 1.260.3 1.160.3

(,.100) (,.100) (,.100) (,.100) (,.1000)
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,,0. The reason for the latter is that the value of,0 is in this
case considerably larger than the length of the shortest
ments in the time series, so the algorithm is forced to me
a number of short segments into longer ones with len
greater than,0. This process gives rise to a deficit in th
number of segments with length smaller than,0. Hence the
slower initial decay ofP(.,).

Table I shows the mean and standard deviation of
estimated exponent valueĝ calculated from surrogate tim
series for several values ofm0 and ,0 ~see Appendix B for
details on how to estimateĝ). Our results indicate thatĝ
depends on bothm0 and,0: If ,0@m0 , ĝ overestimatesg,
while if ,0'0(m0), the algorithm correctly estimates th
value of the exponentg; cf. Fig. 2~b!.

B. Dependence ong

Next, we focus on the dependency of the accuracy of
segmentation algorithm on the value ofg. Figure 3~a! dis-
plays the cumulative distribution of segment lengths for s
rogate time series generated withg52.0. A challenge for the
02110
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segmentation algorithm is that Eq.~4! indicates that the
probability of finding segments with length shorter than 4m0

is 90% forg52.0, which can lead to the ‘‘aggregation’’ o
several consecutive segments of small length into a sin
longer segment.

As we found forg51, the tails of the distributions follow
power-law decays for large,, showing that the algorithm
yields segments with the proper statistical properties. In F

3~b!, we show the dependence ofĝ on ,0 and m0 for g
52.0. We find that for,0 /m0,4 the algorithm extracts seg
ments with distributions of lengths that decay in the tail
power laws with exponents that are quite close to 2.0.

In Tables II and III, we report the values ofĝ for g
52.0 andg53.0, respectively. We find that for smallm0 and
large g, one overestimatesg. Thus, we surmise that forg
.3.0, it becomes impractical to estimateg accurately, ex-
cept for extremely long time series. This fact is not as seri
a limitation as one may think because for largeg it is always
difficult to judge whether a distribution decays in the tail
an exponential or as a power law with a large exponent.
tly
n the ones

ct
FIG. 3. ~a! Cumulative distribution of segment lengths forg52.0, m0520, andR51. For,0520 and 100,,,1000, the exponentĝ

of the power law is close tog. For ,05100, we also findĝ'g. However, for,05400, the algorithm fails to split the time series correc
for ,,1000. Moreover, note that even though the exponent estimate is correct, the algorithm yields segments that are longer tha

in the surrogate time series.~b! Dependence ofĝ on ,0 andm0 for g52.0. For,0 /m0,4, the algorithm yields segments with the corre
statistical properties.
8-4
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TABLE II. Estimated exponentsĝ for g52.0. The mean and the standard deviation of the exponents
calculated for the ranges indicated inside parentheses using Eq.~B1!. The column labeled ‘‘input’’ presents
exponent estimates obtained from the segment lengths used to generate the surrogate time series

ĝ'g52.0 for ,0,4 m0.

,0

m0 10 20 50 100 400 Input

20 2.260.6 2.260.5 2.260.5 2.460.7 3.860.7 2.260.1
(,.100) (,.100) (,.100) (,.200) (,.800)

50 2.260.6 2.260.6 2.260.6 2.560.6 3.862.1 2.160.4
(,.100) (,.100) (,.100) (,.200) (,.1000)

100 1.960.5 1.960.6 1.960.6 2.060.5 2.460.4 2.060.4
(,.100) (,.100) (,.100) (,.200) (,.1000)
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IV. ROBUSTNESS OF THE ALGORITHM
WITH REGARD TO NOISE

A. Amplitude of fluctuations around a segment’s mean

Another factor that may affect the performance of t
segmentation algorithm of Bernaola-Galva´n and co-workers
is the amplitude of the fluctuations within a segment. It
plausible that greater noise amplitudes will increase the
ficulty in identifying the boundaries of neighboring se
ments. Thus, we next analyze the effect of the amplitude
the noise for surrogate time series.

Figure 4 demonstrates that for largeR, the segmentation
algorithm yields few short segments. This result arises fr
the concatenation of neighboring segments with means
become statistically indistinguishable due to the large va
of se .

We show in Fig. 5 the cumulative distributions of segme
lengths forg51.0, m0520, and for different values ofR.
For large, and R<3, we find ĝ'g, while for R54 the
algorithm becomes ineffective at extracting the station
segments in the time series. It is visually apparent that
R54.0 the fluctuations within a segment are so much lar
than the jumps between the means of the stationary segm
that the segmentation becomes unable to parse the diffe
segments; cf. Fig 4~d!.
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In Fig. 6, we showĝ for different values ofR. For g

51.0, we estimateĝ'g for 0,R,4. In contrast, forg

52.0, we estimateĝ'g only for 0,R,1.5. WhenR in-
creases, the segmentation algorithm is unable to cut the
ments because the greater amplitude of the fluctuations
side a segment decreases the significance of the differe
between regions of the time series. This effect yields v

large segments, which results in very small estimates ofĝ.
This effect is even stronger forg53.0, for which we find

ĝ'g only for 0,R,0.6.

B. Spike noise

In many data-collection situations, one obtains data w
spike noise. This type of noise is typically due to instrume
tation failure or due to deficiencies of the algorithm used
preprocessing the data, and in many situations it may
impossible to fully clean the data of such noise. Due to
ubiquity, it is important to quantify the performance of th
segmentation algorithm for signals with spike noise. Th
we next analyze the effect of spike noise on the performa
of the segmentation algorithm.

We generate surrogate time series as before and then
eacht replace, with probabilityp, the original value ofx(t)
are

. For this
n

t
ne
TABLE III. Estimated exponentsĝ for g53.0. The mean and the standard deviation of the exponents
calculated for the ranges indicated inside parentheses using Eq.~B1!. The column labeled ‘‘input’’ presents
exponent estimates obtained from the segment lengths used to generate the surrogate time series
value ofg, one finds that a smallm0 leads to a clear underestimation ofg. Note that the standard deviatio

of ĝ becomes larger, indicating the difficulty in obtainingĝ accurately. Also noteworthy is the fact tha
becauseg is so large, the range of segment lengthsm drawn becomes much reduced. This implies that if o
sets,05400 one is unable to properly estimateg.

,0

m0 10 20 50 100 400 Input

20 2.460.5 2.360.5 2.560.5 2.760.5 4.361.4 3.160.5
(,.100) (,.100) (,.100) (,.200) (,.1000)

50 3.060.8 3.060.8 3.060.9 3.460.6 5.961.3 3.060.6
(,.100) (,.100) (,.100) (,.200) (,.1000)

100 2.860.9 2.860.8 2.860.9 2.860.8 5.261.7 2.960.7
(,.200) (,.200) (,.200) (,.200) (,.1000)
8-5
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FIG. 4. Surrogate time series for different amplitudes of the fluctuations within the segments. The surrogate time series were
with the same sequence of random numbers and withg51.0, m0520, and~a! R51.0, ~b! R52.0, ~c! R53.0, and~d! R54.0. The
segmentation was performed with,0520. It is visually apparent that the segmentation algorithm yields longer segments asR increases.
This fact arises from the fact that the statistical test cannot distinguish two neighboring segments whose difference in means is mu
thanse .

FIG. 5. Cumulative distribution of segment length obtained with the segmentation algorithm for different amplitudes of the nois
Fig. 1, the time series analyzed were generated with parameter forg51.0, m0520, and~a! R51.0, ~b! R52.0, ~c! R53.0, and~d! R
54.0. For R<3, the tails of the distributions decay as power laws. ForR54.0, it is difficult to discriminate whether our the tails o
distribution conform to exponential or power-law decays. Note that asR increases, the dependence of the functional form of the distribut
on ,0 decreases appreciably.
021108-6
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FIG. 6. Dependence ofĝ on the ratioR5se /s x̄ for m0520, and three distinct values ofg: ~a! g51.0, ~b! g52.0, and~c! g53.0. The

segmentation was performed with,0520. The different curves in each plot correspond to different values ofs x̄ . For g51.0, we findĝ
51.2 for 0,R,4.0, indicating that the algorithm is robust against increases inR. For g.1.0, we find that the impact of an increasingR

on the performance of the algorithm becomes more and more marked. Specifically, forg52.0, we findĝ'g for R,1.5, while for g

53.0, we findĝ'g for R,0.6.

FIG. 7. Surrogate time series with uncorrelated spike noise form0520, se50.3, g51.0, and~a! p50, ~b! p50.01, ~c! p50.05, and
~d! p50.1. The segmentation was performed with,0520. For all values ofp considered, the application of the segmentation algorit
yields segments that, in a coarse-grained way, match well the segments in the surrogate data.
021108-7
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FIG. 8. Cumulative distribution of segment lengths for surrogate time series withg51.0, m0520, R51, and for different densitiesp of
the spike noise:~a! p50.0, ~b! p50.01, ~c! p50.05, and~d! p50.1. The value ofx(t) is set at 2.0 for a spike. It is visually apparent th
even forp50.1 all the distributions decay as power laws for,.200 and that the slopes in the log-log plots are similar to the slope of
input distributions, i.e., the segmentation algorithm yields segments with the correct statistical properties even in the presence of st
noise.
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by x(t)52. The effect of this procedure is illustrated in Fi
7 for four distinct values ofp. The figure also suggests th
the segmentation algorithm yields a good coarse-grained
scription of the surrogate time series forp as large as 0.1
This result suggests that the algorithm is robust to the e
tence of uncorrelated spike noise in the data~Fig. 8!.

V. CORRELATED NOISE

In this section, we investigate the effect of long-ran
correlations in the fluctuations around the segment’s mea
the performance of the segmentation algorithm. This stud
02110
e-

s-

on
is

particularly important because real-world time series of
display long-range power-law decaying correlations.

A. Segmentation of correlated noise with no segments

We generate temporally-correlated noise whose po
spectrum decays asS( f ); f 2b @21#. These surrogate time
series consists of 60 000 points with mean zero. In Fig. 9,
display the cumulative distribution of segment lengths
time series generated withb50.3, 0.5, and 1.0. For uncor
related time series—i.e.,b50—we confirmed a single seg
ment, as expected. For small but nonzerob, the algorithm
n
ith a
FIG. 9. Segmentation of Gaussian distributed long-range correlated noise with power spectrumS( f ); f 2b for ~a! b50.3, ~b! b50.5,
and ~c! b51.0. We generate time series with 60 000 data points according to the modified Fourier filtering method of Ref.@21#. We also
consider the caseb50 for which we find a single segment in the time series. It is visually apparent that asb increases, which indicates a
increase in the strength of the correlations, the distributionP(.,) also decays more rapidly. Notably, the decay is never consistent w
power-law dependence.
8-8
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FIG. 10. Segmentation of surrogate time series obtained according to the procedure described in Sec. II B but with$e i(ki)% having
long-range correlations. The fluctuations$e i(ki)% were generated with the modified Fourier filtering method of Ref.@21#. We show surrogate
time series obtained withg51.0, m0520, R51 and power spectra exponents:~a! b50.1, ~b! b50.3, and~c! b50.5. The segmentation
was performed with,0520. Forb50.1 and 0.3, the results of the segmentation algorithm closely track the segments in the surroga
series. Forb50.5, it is visually apparent that short segments are identified correctly while long segments are cut multiple times, in
that the algorithm ‘‘judges’’ the noise within a segment as a nonstationary time series. This is to be expected for largeb since the correlated
noise in a segment is not stationary. Cumulative distributions of segment length for~d! b50.1, ~e! b50.3, and~f! b50.5. The distributions
confirm the visual impression obtained from~a!–~c!.
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still identifies some very long segments, and one finds a s
decaying distribution of segment lengths. As the value ob
increases, so does the strength of the correlations resultin
nonstationary time series with regions of distinct mea
which the segmentation algorithm is able to identify. Th
as b increases the distribution of segment lengths dec
more rapidly.

We have not attempted to determine the functional fo
of P(.,) as a function ofb. The important result to retain
from this portion of our analysis is that correlations lead
nonstationarity of the time series, which in turn result
there being regions with different means that the segme
tion algorithm is able to identify. Notably, the decay
P(.,) is never consistent with a power-law dependence
the values ofb considered.

B. Segmentation of a time series with segments with different
means and correlated fluctuations

A question prompted by the results presented in Sec.
is: ‘‘What happens if the time series has correlated fluct
tions superimposed on a nonstationary sequence of
ments?’’ In order to answer this question, we analyze su
gate time series obtained according to the process desc
in Sec. II B, but in whiche i(ki) has long-range correlations

We show in Figs. 10~a!–10~c! typical surrogate time se
ries generated withg51.0, m0520, R51.0, ,0520, and
different temporal correlations:~a! b50.1, ~b! b50.3, and
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~c! b50.5. The figure suggests that the segmentation a
rithm can correctly parse the short segments but that lo
segments get cut multiple times, especially forb50.5. This
result is to be expected because the strong correlations in
noise lead to marked changes in the mean.

In Figs. 10~d!–10~f!, we plot the cumulative distributions
of segment lengths forb50.1, 0.3, and 0.5. The data con
firm quantitatively the visual impression given by Fig
10~a!–10~c!—i.e., longer segments get cut multiple times.
particular, forb50.5 the distributions clearly deviate from
the a power-law decay, independent of the selection of,0.
Note that this fact should not be interpreted as a shortcom
of the algorithm; for largeb, correlated noise inside a lon
segmentis nonstationary, so that the algorithm is cutting
nonstationary signal.

VI. DISCUSSION

In this paper we analyzed nonstationary surrogate t
series with different statistical properties in order to inves
gate the validity of the segmentation algorithm of Bernao
Galván and co-workers@14#. Our results demonstrate tha
this heuristic segmentation algorithm can be extremely eff
tive in determining the stationary regions in a time ser
provided that a few conditions are fulfilled. First, one mu
have enough data points in the time series to yield a la
number of segment lengths, otherwise one will not be able
8-9
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reach the asymptotic regime of the tail of the distribution
segment lengths.

Second, the ratio of the amplitude of the fluctuatio
within a segment to the typical jump between the means
the stationary segments must be relatively small~less than
about 0.6) in order for one to trust the output of the segm
tation algorithm. This concern contrasts with the case
spike noise in the data which affects the performance of
segmentation algorithm only weakly.

Finally, if there are long-range temporal correlations
the fluctuations around the mean of the segment, then
segmentation algorithm correctly cuts the time series into
stationary segments for smallb. However, forb.0.3 the
fluctuations inside long segments become nonstation
which results in the algorithm detecting many ‘‘stationar
durations inside these long segments.

Our analysis provides a number of clear guidelines
using the segmentation algorithm of Bernaola-Galva´n et al.
@14# effectively.

~1! One must perform the segmentation for a number
different values of,0 in order to identify the region for
which the tails of the distributions of segment lengths rea
the asymptotic scaling behavior.~Note: If ĝ is large, then the
estimation error can be quite considerable, especially ifm0 is
small.!

~2! One must calculate the ratio between the stand
deviation of the mean value of the segment and the stan
deviation of the fluctuations within a segment after perfor
ing the segmentation. If theR.0.6, then there is the poss
bility that ĝ is considerably underestimatingg.
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APPENDIX A: PERFORMANCE OF THE ALGORITHM
FOR FIXED SEGMENT LENGTHS

In order to quantify the dependence of the performance
the segmentation algorithm on the parameter,0 and to iden-
tify the algorithm’s length resolution, we analyze time ser
comprising segments of fixed length. We concatenate s
ments with constant lengthm0 with alternating means of 0.0
and 1.0. We then add fluctuations to those segments wi
standard deviation of 0.3. We define the fraction of succe
fully split segments,

Q[
# of segments correctly identified by the algorithm

# of segments in surrogate data
,

~A1!

whereQ51.0 corresponds to perfect segmentation.
In Fig. 11, we plotQ as a function ofm0 for segmenta-

tions performed with different values of,0 . Form0,20, the
segmentation algorithm does not yield the correct segm
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in the surrogate time series even though the segment’s m
are quite different. This result suggests that the resolution
the segmentation algorithm is'20. We also find that for
,055, the algorithm splits the time series into too ma
segments. These results suggest that for optimal perform
10,,0<m0.

APPENDIX B: ESTIMATION OF ĝ

To estimate the exponentĝ characterizing the power-law
decay of the tail ofP(.,), we first calculate local estimate
for segment lengths around,n,

ĝ~,n![
ln@P~.,n1t!#2 ln@P~.,n!#

ln~,n1t!2 ln~,n!
. ~B1!

This expression is a generalization of the Hill estimator@22#,
for which t51. In our analysis, we have usedt55. In Fig.
12 we present the local estimatesĝ(,n) for the data shown in
Fig. 2~a!. The black lines indicate the values of the expone
for segment lengths around,, while the dashed lines indicat
the values of the exponent of the power law in the distrib
tion of the surrogate time series.

We then estimateĝ by calculating the mean of all loca
estimates in the region whereĝ(,n) is approximately con-
stant. That is, we omit the values in the regions correspo
ing to the initial exponential decay of the distribution an
those corresponding to the truncation due to finite sam
size.

FIG. 11. Algorithm’s resolution with regard to,0 and m. We
generate surrogate time series which are constructed by the a
nated concatenation of two types of segments with lengthm0: one
with mean 0.0 and standard deviation 0.3 and another with m
1.0 and standard deviation 0.3. We plotQ, which is defined in Eq.
~A1!, as a function ofm0 for different values of,0. Our results
indicate that the segmentation algorithm works best whenm0.20
and 10,,0<m0.
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FIG. 12. Local estimate of the exponentĝ characterizing the power-law decay of the distributionP(.,) for ~a! ,0520, ~b! ,0550, ~c!
,05100, and~d! ,05400. These results are obtained for surrogate time series generated with parametersg51.0, m0520, andR51.0. The

local estimate ofĝ is calculated using Eq.~B1!. We indicate the local estimate ofĝ by the full black line and the local estimate of th

exponent in the surrogate datag by the dotted gray line. For,0520 and,.100, ĝ(,n) closely tracksg(,n) and both curves have average
close to one. For,05100 and 400, the segmentation results track the properties of the surrogate data only for,.,0, while for smaller,
the segmentation results overestimate the value ofg.
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