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Heuristic segmentation of a nonstationary time series
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Many phenomena, both natural and human influenced, give rise to signals whose statistical properties
change under time translation, i.e., are nonstationary. For some practical purposes, a nonstationary time series
can be seen as a concatenation of stationary segments. However, the exact segmentation of a nonstationary
time series is a hard computational problem which cannot be solved exactly by existing methods. For this
reason, heuristic methods have been proposed. Using one such method, it has been reported that for several
cases of interest—e.g., heart beat data and Internet traffic fluctuations—the distribution of durations of these
stationary segments decays with a power-law tail. A potential technical difficulty that has not been thoroughly
investigated is that a nonstationary time series witbcalefre¢ power-law distribution of stationary segments
is harder to segment than other nonstationary time series because of the wider range of possible segment
lengths. Here, we investigate the validity of a heuristic segmentation algorithm recently proposed by Bernaola-
Galvan et al. [Phys. Rev. Lett87, 168105(2001)] by systematically analyzing surrogate time series with
different statistical properties. We find that if a given nonstationary time series has stationary periods whose
length is distributed as a power law, the algorithm can split the time series into a set of stationary segments
with the correct statistical properties. We also find that the estimated power-law exponent of the distribution of
stationary-segment lengths is affected(bBythe minimum segment length aitid) the ratioR= o/ o5, where
oy is the standard deviation of the mean values of the segmentsransl the standard deviation of the
fluctuations within a segment. Furthermore, we determine that the performance of the algorithm is generally
not affected by uncorrelated noise spikes ommaklong-range temporal correlations of the fluctuations within
segments.
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[. INTRODUCTION tween the complexity of the calculation and the desired pre-
cision of the result.

A stationary time series has statistical properties that do Bernaola-Galva and co-workers recently proposed a heu-
not change under time translatiph]. Interestingly, the time ristic segmentation algorithrfil4] designed to characterize
series that arise in a large number of phenomena in a brodtie stationary durations of heart beat time series. In this al-
range of areas—including physiologic systems, economigiorithm [14], the calculation cost is reduced by iteratively
systems, vehicle traffic systems, and the Intef2etll]—  attempting to segment the time series into ohlo seg-
are nonstationary. Thus nonstationarity is a property commoments. A decision to cut the times series is made by evalu-
to both natural and human-influenced phenomena. For thigting a modified Studentstest for the data in the two seg-
reason, the statistical characterization of the nonstationaritie®ents[15].
in real-world time series is an important topic in many fields The application of this segmentation algorithm reveals
of research and numerous methods of characterizing nonstﬁlat the.distribution of the stationary du_ratipns in heart beat
tionary time series have been propo$ed]. time series decays as a power | ] Intr|gu|ngly_, a.recgnt

One useful approach to quantifying a nonstationary timeana]y&s of Internet t'rafflc uncover'ed that the dl_strlbutlon of
series is to view it as consisting of a number of time Seg_sFatlonary durations in the fluctuation of the traffic flow den-
ments that are themselves stationary. The statistical prope?ﬁty als_o folllor\]/vs a hp(_)wer_-lgw_ depehng_entm]. Becauseh
ties of the segment§) can help us better understand thet. ese signals have their origin in such diverse contexts, these
overall nonstationarity of the time series afiid yield prac- findings suggest that.the power-law decay of the distribution
. . ) of the stationary period may be a common occurrence for
tical applications. For example, developing control algo-

. L N complex time series. Thus, the correct implementation and
rithms for Internet traffic will be easier if we understand the P P

o , i interpretation of the results obtained by the segmentation al-
statistical properties of these stationary segmgmi gorithm is essential in understanding the dynamics of the

In general, it is impossible to obtain the exact segmentagysiem. In fact, there are many implementation issues con-
tion of a nonstationary time series because of the complexitxeming the segmentation algorithm of Rigf4] that have not
of the calculation. An exact segmentation algorithm require§,et been addressed explicitly in the literature, especially
a computation time that scales @N"), whereN is the  those conceming the proper estimation of the value of the
number of points in the time serigd43]. Hence, such an power-law tail's exponent in the cumulative distribution of
algorithm is not practical. For this reason, the segmentatiogtationary durations.
of a real-world time series must accomplish a trade-off be- In this paper we systematically analyze different types of
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surrogate time series to determine the scope of validity of theally significant, then the time series is cut into two segments
segmentation algorithm of Bernaola-Gaivand co-workers as long as the means of the two new segments are signifi-
[14]. In Sec. Il, we briefly explain the segmentation algo- cantly different from the means of the adjacent segments. If
rithm. In Sec. Ill, we present results for the dependence ofhe time series is cut, we continue iterating the above proce-
the exponent of the power-law tail on the minimum length ofdure recursively on each segment until the obtained signifi-
the segments in the distribution of the stationary durationscance value is smaller than the threshold, or the letfigi

In Sec. IV, we consider the effect of the amplitude of thethe obtained segments is smaller than an imposed minimum
noise and the presence of spike-type noise. In Sec. V wsegment lengtlf,. We will see that the value df, is one of
consider long-ranged temporally correlated noise. Finally, irthe parameters controlling the accuracy of the algorithm.
Sec. VI, we summarize our findings.

B. Surrogate time series

Il IMPLEMENTING THE SEGMENTATION ALGORITHM To investigate the validity of the algorithm, we analyze

A. The algorithm surrogate time serieg(t) generated by linking segments
with different means. As described in Sec. |, the cumulative

To divide a nonstationary time series into stationary seg-d. tributi f the stai durati ¢ | Id
ments[14], we move a sliding pointer from left to right Istribution of Ine stationary durations for Some real-wor

along the time series and, at each position of the pointelﬂme series is characterized by a power-law decay in the tail,

compute the mean of the subset of the signal to the left of théo _the Ft)r:Obab'l'“I/ (t)'f fln(;jlr;gba ts_‘egmfent of Ientglth Iatrr?e_r than
pointer e and to the rightyugy. For two samples of m, i.e., the cumulative distribution of segment lengths in our

Gaussian distributed random numbers, the statistical signiﬂt-Ime Seres, 1

cance of the difference between the means of the two

samples,u; and u,, is given by Student'd-test statistic p(>m)zilm—y for ms>my, (4)
[17], mg*
t= My M2 ) wherem, is the minimum length of a segment.
Sy | We generate time series with a power-law distribution of

segment lengths by the following procedure.

where (1) Draw from the interva[ my, +] a sequence of seg-
ment lengthgm;} with distribution given by Eq(4).

_ ( (Ny—1)s3+ (Np— 1)s§) llz(i i) 12 @ (2) Draw from the interva0,1] a sequence of mean time
° Ni+Ny—2 N1 Ny series value$x;} with uniform probability.

_ _ o (3) Draw from the interval — /3o ,+/3c.] a sequence of

is the pooled variandel8], s, , s, are the standard deviations f|,ctuation valueq e;(k)}, for ki=1, ... m;, with uniform

of the two samples, anl; andN, are the number of points yropability.

in the two samples. _ _ The resulting time series is given by

Moving the pointer along our time series from left to
right, we calculate as a function of the position in the time X(t):;Jr e (k) (5)
1 I 1/

series. We use the statistido quantify the difference be-
tween the means of the left-side and right-side time serieSyherei is such that
Largert means that the values of the mean of both time

series are more likely to be significantly different, making i-1 [
point t,.x, With the largest value of a good candidate as a z mj<ts2 m (6)
cut point. j=0 j=0

We then calculate the statistical significari@,,,,). Note )
that P(t s, is not the standard Studentgest[18] because andk; is such that
we are not comparing independent samples. We could not

obtainP(t,ay in a closed analytical form, so th@&(t,.,) is K —t—il 5

numerically approximateds[19] A m - (7
Pltmad ~{1-1 [v/(v+tﬁ1a))](5”’5)}n' 3) To quantify the level of the noise, we define the ratio

where n=4.19InN—-11.54 andé=0.40 are obtained from o

Monte Carlo simulationg14], N is the length of the time R= —i (8

series to be splity=N-2, andl,(a,b) is the incomplete Ox

beta function. . -
If the difference in mean is not statistically significant— Where oy is the standard deviation of the mean of the seg-

i.e., if is smaller than a thresholdypically set to 0.95—  Ments ando is the standard deviation of the fluctuations

then the time series is not cut. If the difference in meanswithin a segment. Fc»?i uniformly distributed in the interval
between the left and right part of the time series is statisti{0,1], o=0.3.
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coarse-grained description of the time series. As expected,
the segmentation algorithm cannot extract segments with
lengthm<{,,.

I1l. ACCURACY OF THE SEGMENTATION ALGORITHM
A. Dependence or{y and m,

Figure 2a) displays the cumulative distribution of seg-
ment lengths, which is the probability of finding a segment
with length larger thad for a surrogate time series split for
different values off,. The cumulative distributions of the
length of the stationary segments cut by the segmentation
algorithm for surrogate time series are well fit by a power-

FIG. 1. Surrogate time series constructed according to the proaw decay. For all cases, we find
cedure described in Sec. I B with parametgrs1.0, mg=20, and

R=1. The time series is drawn in light gray, and the stationary

Py mg(> )~ € 7o) ©)

segments are represented by a dashed gray line. The black line
displays the output of the segmentation algorithm g 50. It is A S
visually apparent that the black line provides an adequate coars&ith the same exponent valye~1.0[20], indicating that the

grained description of the surrogate time series. Note also that theégmentation algorithm splits the nonstationary time series
algorithm cannot extract the smallest segments because of the r#to segments with the correct asymptotic statistical proper-

strictions on resolution fom<¢,,.

ties. However, the range of scales for which we observe a
power-law decay withy~ y depends strongly on the selec-

For each set of parameters,(m,, R) we generate ten tion of £o.
time series, each with 50 000 data points. Note that knowing For € greater than about(y, the tails of the distributions
a priori the value ofmg in a real-world time series is un- are consistent with a power-law decay with= y=1.0. Ad-
likely, but in order to test the algorithm in a consistent way,ditionally, all P(>¢) track the surrogate data f@r>1000,
we consider in the following sectiomy=20 because that is i.e., the algorithm correctly identifies the large segments in-
the resolution limit for the algorithnisee also Appendix A
Figure 1 displays a surrogate time series, the correspondions are not consistent with a power-law decay. The origin
ing stationary durations, and the result of the segmentationf this behavior lies in the fact that) for €,=20=0(m,),
algorithm with €,=50 andmy=20. The segments obtained there are not enough data points to reliably perform Student’s
by the segmentation algorithm do not exactly match the stat-test, so one cannot reasonably expect any statistical proce-
tionary segments in the surrogate time series but the figurdure to be able to extract those short segments(andor
strongly suggests that the algorithm provides the correct,>mg, one fails to extract the stationary segments with
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FIG. 2. (a) Cumulative distributionP(>¢) of segment lengths larger thah for surrogate time series with 50 000 data poings;

=1.0,my=20, andR=1. The dotted line indicates the input segment length distribution for the surrogate time series. The slope of the line

is 1.0 for 20<cm<4000. The other curves shoR(>¢) for different values off,. For ¢,=20, the curve is well described in the range
100< ¢ <4000 by a power law withy~1.0. The distribution does not decay as a power lawfarL00 due to the fact that the segmentation
algorithm cannot split a time series with a number of points insufficient to perform Stuti¢ess For{ =400, P(>{) decays as a power
law for 1000<¢<8000. The segmentation algorithm correctly splits all segments in the surrogate time series with( led@®0. (b)
Dependence o on £, andm,. The mean and the standard deviation of the exponent for the original time series-+<01285 shown by
the black solid and dotted lines. The error bars show the standard deviation of the esiimBtey ,/m,<5, we findy~1. Thus, the
algorithm accurately estimates exponents in this region. However, the values of the exponent are close 1, Ing fol0, meaning that

my<<{, leads to an overestimation of
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TABLE I. Estimated exponen}/, as defined by E(5) for y=1.0. The mean and the standard deviation
of the exponents are calculated for the ranges indicated inside parentheses usiBd)Ed@he column
labeled “input” presents exponent estimates obtained from the segment lengths used to generate the surrogate

time series. We find/~y=1.0 for €,<5 m,.

lo

Mo 10 20 50 100 400 Input

20 1.1+0.3 1.1+0.3 1.2:0.3 1.3-0.4 1.3-0.3 1.1-0.3
(€>20) (¢>20) (¢>50) (¢>110) (¢>1000)

50 1.0:0.3 1.0:0.3 1.0:0.3 1.10.3 1.1+0.5 1.0:0.2
(£>50) (¢>50) (¢>100) (€>110) (¢>1000)

100 1.0-0.3 1.0:0.3 1.0-0.3 1.0:0.3 1.2£0.3 1.1:0.3
(¢>100) (€>100) (€>100) (€>100) (€>1000)

<{,. The reason for the latter is that the valuefgfis in this ~ segmentation algorithm is that E@4) indicates that the
case considerably larger than the length of the shortest segrobability of finding segments with length shorter than4
ments in the time series, so the algorithm is forced to mergés 90% for y=2.0, which can lead to the “aggregation” of
a number of short segments into longer ones with lengtiseveral consecutive segments of small length into a single
greater thanf,. This process gives rise to a deficit in the |onger segment.
number of segments with length smaller than Hence the As we found fory=1, the tails of the distributions follow
slower initial decay ofP(>{). o power-law decays for largé, showing that the algorithm
Table | shows the mean and standard deviation of thgje|ds segments with the proper statistical properties. In Fig.
esti_mated exponent valug calculated from surrogate time 3(b), we show the dependence ¢f on ¢, and m, for y
series for several values ‘11‘0 and £, (see Appendix B onr =2.0. We find that fo® , /my<<4 the algorithm extracts seg-
details on how to estimatg). Our results indicate thay  ments with distributions of lengths that decay in the tail as
depends on botimg and{y: If €;>my, y overestimates, power laws with exponents that are quite close to 2.0.
while if €3~0(mg), the algqrithm correctly estimates the |, Taples II and Ill, we report the values of for y
value of the exponent; cf. Fig. 2b). =2.0 andy= 3.0, respectively. We find that for smafl, and
large y, one overestimateg. Thus, we surmise that foy
>3.0, it becomes impractical to estimajeaccurately, ex-
Next, we focus on the dependency of the accuracy of theept for extremely long time series. This fact is not as serious
segmentation algorithm on the value of Figure 3a) dis-  a limitation as one may think because for largé is always
plays the cumulative distribution of segment lengths for surdifficult to judge whether a distribution decays in the tail as
rogate time series generated witkr 2.0. A challenge for the an exponential or as a power law with a large exponent.

B. Dependence ony
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FIG. 3. (a) Cumulative distribution of segment lengths fpe=2.0, my=20, andR=1. For{,=20 and 108 ¢ <1000, the exponeny

of the power law is close tg. For £,=100, we also findy~ y. However, forf,=400, the algorithm fails to split the time series correctly
for £<1000. Moreover, note that even though the exponent estimate is correct, the algorithm yields segments that are longer than the ones

in the surrogate time serieth) Dependence off on ¢4 andmg for y=2.0. For{y/my<4, the algorithm yields segments with the correct
statistical properties.
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TABLE II. Estimated exponent?y for y=2.0. The mean and the standard deviation of the exponents are
calculated for the ranges indicated inside parentheses usin@Eq.The column labeled “input” presents
exponent estimates obtained from the segment lengths used to generate the surrogate time series. We find

y~y=2.0 for€,<4 mq,.

lo
mo 10 20 50 100 400 Input
20 2.2+0.6 2.2:0.5 22605 2.4-0.7 3.8-0.7 2.2:0.1
(¢>100) (€>100) (€>100) (€>200) (€>800)
50 2.2+0.6 2.2:0.6 2.2:0.6 2.5-0.6 3.8:2.1 2.1+0.4
(¢>100) (¢>100) (¢>100) (¢>200) (¢>1000)
100 1.9-0.5 1.9-0.6 1.9-0.6 2.0:0.5 2.4-0.4 2.0:0.4

(£>100) (¢>100) (¢>100) (¢>200) (¢>1000)

V. ROW?’LNIEEsgAORFDTT%El\?(;?SIOERITHM In Fig. 6, we showy for different values ofR. For y
=1.0, we estimate}wy for 0O<R<4. In contrast, fory
A. Amplitude of fluctuations around a segment’s mean =2.0, we estimatey~y only for 0<R<1.5. WhenR in-

Another factor that may affect the performance of thecreases, the segmentation algorithm is unable to cut the seg-
segmentation algorithm of Bernaola-Gaivand co-workers ments because the greater amplitude of the fluctuations in-
is the amplitude of the fluctuations within a segment. It isside a segment decreases the significance of the differences
plausible that greater noise amplitudes will increase the difbetween regions of the time series. This effect yields very

ficulty in identifying the boundaries of neighboring seg- |arge segments, which results in very small estimateg.of
ments. Thus, we next ar_1a|yze the effect of the amplitude ofpis effect is even stronger fop=3.0, for which we find
the noise for surrogate time series. ~
Figure 4 demonstrates that for lar§e the segmentation ¥~ NIy for 0<R<0.6.
algorithm yields few short segments. This result arises from _ _
the concatenation of neighboring segments with means that B. Spike noise
become statistically indistinguishable due to the large value | many data-collection situations, one obtains data with
of o. spike noise. This type of noise is typically due to instrumen-
We show in Fig. 5 the cumulative distributions of segmenttation failure or due to deficiencies of the algorithm used for
lengths fory=1.0, my=20, and for different values 0k preprocessing the data, and in many situations it may be
For large¢ and R<3, we find y~ v, while for R=4 the impossible to fully clean the data of such noise. Due to its
algorithm becomes ineffective at extracting the stationaryubiquity, it is important to quantify the performance of the
segments in the time series. It is visually apparent that fosegmentation algorithm for signals with spike noise. Thus,
R=4.0 the fluctuations within a segment are so much largewe next analyze the effect of spike noise on the performance
than the jumps between the means of the stationary segmerigthe segmentation algorithm.
that the segmentation becomes unable to parse the different We generate surrogate time series as before and then for
segments; cf. Fig @). eacht replace, with probabilityp, the original value of(t)

TABLE IlI. Estimated exponenty for y=3.0. The mean and the standard deviation of the exponents are
calculated for the ranges indicated inside parentheses usin@Exq.The column labeled “input” presents
exponent estimates obtained from the segment lengths used to generate the surrogate time series. For this
value of y, one finds that a smath, leads to a clear underestimationpf Note that the standard deviation
of y becomes larger, indicating the difficulty in obtainiﬁgaccurately. Also noteworthy is the fact that
becausey is so large, the range of segment lengthdrawn becomes much reduced. This implies that if one
sets¢,=400 one is unable to properly estimage

o
Mo 10 20 50 100 400 Input
20 2.4-0.5 2.3:05 2.5-0.5 2.70.5 4314 3.1:0.5
(¢>100) (€>100) (€>100) (€>200) (€>1000)
50 3.0:0.8 3.0:0.8 3.0:0.9 3.4-0.6 5.9-1.3 3.0:0.6
(¢>100) (€>100) (€>100) (€>200) (€>1000)
100 2.8:0.9 2.8-0.8 2.8-0.9 2.8-0.8 5.2¢1.7 2.950.7

(¢>200) (€>200) (€>200) (€>200) (¢>1000)

021108-5



FUKUDA, STANLEY, AND NUNES AMARAL PHYSICAL REVIEW E 69, 021108 (2004

- Surrogate

I b)R=2.0

segmentation { [
i 2 " 1 L 1 " 1 L 1 L L 1 I 1 1 1 L 1

L (0)R=3.0

L (M R=4.0

3000 1000

1 1 1 "
2000 3000 4000

Time

1 I
2000 3000
Time

1()|00 5000

FIG. 4. Surrogate time series for different amplitudes of the fluctuations within the segments. The surrogate time series were generated
with the same sequence of random numbers and wit.0, my=20, and(a) R=1.0, (b) R=2.0, (c) R=3.0, and(d) R=4.0. The
segmentation was performed wity=20. It is visually apparent that the segmentation algorithm yields longer segmeRtineseases.
This fact arises from the fact that the statistical test cannot distinguish two neighboring segments whose difference in means is much smaller
thano, .
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FIG. 5. Cumulative distribution of segment length obtained with the segmentation algorithm for different amplitudes of the noise. As in
Fig. 1, the time series analyzed were generated with parameter=fdr0, my=20, and(a) R=1.0, (bh) R=2.0, (c) R=3.0, and(d) R
=4.0. ForR=<3, the tails of the distributions decay as power laws. Rer4.0, it is difficult to discriminate whether our the tails of
distribution conform to exponential or power-law decays. Note th& iasreases, the dependence of the functional form of the distributions
on ¢, decreases appreciably.
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FIG. 6. Dependence of on the ratioR= o ./ o7 for my=20, and three distinct values ¢f (a) y=1.0, (b) y=2.0, and(c) y=3.0. The
segmentation was performed wift=20. The different curves in each plot correspond to different values,ofFor y=1.0, we findy
=1.2 for 0<R<4.0, indicating that the algorithm is robust against increasés For y>1.0, we find that the impact of an increasiRg
on the performance of the algorithm becomes more and more marked. Specificaljy=#0, we findy~y for R<1.5, while for y
=3.0, we findy~y for R<0.6.
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FIG. 7. Surrogate time series with uncorrelated spike noisenfer 20, o.=0.3, y=1.0, and(a) p=0, (b) p=0.01, (c) p=0.05, and
(d) p=0.1. The segmentation was performed wif=20. For all values op considered, the application of the segmentation algorithm
yields segments that, in a coarse-grained way, match well the segments in the surrogate data.
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FIG. 8. Cumulative distribution of segment lengths for surrogate time seriesp#th0, my=20, R=1, and for different densitigs of
the spike noisefa) p=0.0, (b) p=0.01, (c) p=0.05, andd) p=0.1. The value ok(t) is set at 2.0 for a spike. It is visually apparent that
even forp=0.1 all the distributions decay as power laws {or 200 and that the slopes in the log-log plots are similar to the slope of the
input distributions, i.e., the segmentation algorithm yields segments with the correct statistical properties even in the presence of strong spike
noise.

by x(t)=2. The effect of this procedure is illustrated in Fig. particularly important because real-world time series often
7 for four distinct values op. The figure also suggests that display long-range power-law decaying correlations.

the segmentation algorithm yields a good coarse-grained de-

scription of the surrogate time series fpras large as 0.1. A. Segmentation of correlated noise with no segments

This result suggests that the algorithm is robust to the exis-

tence of uncorrelated spike noise in the ddim. 8). We generate temporally-correlated noise whose power

spectrum decays aS(f)~f~# [21]. These surrogate time
series consists of 60 000 points with mean zero. In Fig. 9, we
display the cumulative distribution of segment lengths for
In this section, we investigate the effect of long-rangetime series generated wig=0.3, 0.5, and 1.0. For uncor-
correlations in the fluctuations around the segment’s mean orelated time series—i.e@=0—we confirmed a single seg-
the performance of the segmentation algorithm. This study isnent, as expected. For small but nonzgrothe algorithm

V. CORRELATED NOISE
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FIG. 9. Segmentation of Gaussian distributed long-range correlated noise with power spgdtyunfi—# for (a) 8=0.3, (b) 8=0.5,
and(c) B=1.0. We generate time series with 60 000 data points according to the modified Fourier filtering method[2iR&¥e also
consider the casg=0 for which we find a single segment in the time series. It is visually apparent thatraseases, which indicates an
increase in the strength of the correlations, the distribu¢r ¢) also decays more rapidly. Notably, the decay is never consistent with a
power-law dependence.
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FIG. 10. Segmentation of surrogate time series obtained according to the procedure described in Sec. Il B {utkyitthaving

long-range correlations. The fluctuatiofns(k;)} were generated with the modified Fourier filtering method of R&f]. We show surrogate

time series obtained withy=1.0, my=20, R=1 and power spectra exponenta) 3=0.1, (b) 8=0.3, and(c) 8=0.5. The segmentation

was performed witl =20. For3=0.1 and 0.3, the results of the segmentation algorithm closely track the segments in the surrogate time
series. FoiB=0.5, it is visually apparent that short segments are identified correctly while long segments are cut multiple times, indicating
that the algorithm “judges” the noise within a segment as a nonstationary time series. This is to be expected Bsiacgethe correlated

noise in a segment is not stationary. Cumulative distributions of segment lendth &+ 0.1, (e) 8=0.3, and(f) 8=0.5. The distributions
confirm the visual impression obtained frdia—(c).

still identifies some very long segments, and one finds a slowc) 8=0.5. The figure suggests that the segmentation algo-
decaying distribution of segment lengths. As the valuggof rithm can correctly parse the short segments but that long-
increases, so does the strength of the correlations resulting gegments get cut multiple times, especially ¢ 0.5. This
nonstationary time series with regions of distinct meansresult is to be expected because the strong correlations in the
which the segmentation algorithm is able to identify. Thus,noise lead to marked changes in the mean.
as f3 increases the distribution of segment lengths decays |n Figs. 1qd)-10(f), we plot the cumulative distributions
more rapidly. _ _ of segment lengths fo8=0.1, 0.3, and 0.5. The data con-
We have not attempted to determine the functional formyim quantitatively the visual impression given by Figs.
of P(>¢) as a function of3. The important result to retain - 1g)_10(c)—i.e., longer segments get cut multiple times. In
from this portion of our analysis is that correfations lead {0 icyiar, forg=0.5 the distributions clearly deviate from
nonstationarity of the time series, which in turn result iny . power-law decay, independent of the selectiofiof
tion algorithm is able to identify. Notably, the decay qu\'lote that th?s fas:t should not be interprete_d as a_shortcoming
P(>¢) is never consistent with a power-law dependence forOf the algonthm, f(_)r larges, correlated noise |ns_|de a I_ong
the values of8 considered. segmeQUS nons_tatlonary, so that the algorithm is cutting a
nonstationary signal

B. Segmentation of a time series with segments with different
means and correlated fluctuations

A question prompted by the results presented in Sec. VA In this paper we analyzed nonstationary surrogate time
is: “What happens if the time series has correlated fluctuaseries with different statistical properties in order to investi-
tions superimposed on a nonstationary sequence of segate the validity of the segmentation algorithm of Bernaola-
ments?” In order to answer this question, we analyze surroGalvan and co-workerg14]. Our results demonstrate that
gate time series obtained according to the process describétis heuristic segmentation algorithm can be extremely effec-
in Sec. Il B, but in whiche;(k;) has long-range correlations. tive in determining the stationary regions in a time series

We show in Figs. 1@)—-10(c) typical surrogate time se- provided that a few conditions are fulfilled. First, one must
ries generated withy=1.0, my=20, R=1.0, ¢;=20, and have enough data points in the time series to yield a large
different temporal correlationga) 8=0.1, (b) 8=0.3, and number of segment lengths, otherwise one will not be able to

VI. DISCUSSION
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reach the asymptotic regime of the tail of the distribution of 1.5 : T : .
segment lengths.

Second, the ratio of the amplitude of the fluctuations
within a segment to the typical jump between the means of
the stationary segments must be relatively snilaks than
about 0.6) in order for one to trust the output of the segmen-
tation algorithm. This concern contrasts with the case of
spike noise in the data which affects the performance of the
segmentation algorithm only weakly.

Finally, if there are long-range temporal correlations of
the fluctuations around the mean of the segment, then the ; 0
segmentation algorithm correctly cuts the time series into the Segment length m
stationary segments for sma#l. However, for3>0.3 the
fluctuations inside long segments become nonstationary,
Wh'ch reSl,JItS, in the algorithm detecting many “stationary” generate surrogate time series which are constructed by the alter-
durations 'ns'd,e thesg long segments. L nated concatenation of two types of segments with lengthone

Our analysis provides a number of clear guidelines forith mean 0.0 and standard deviation 0.3 and another with mean
using the segmentation algorithm of Bernaola-Galeaal. 1.0 and standard deviation 0.3. We p@twhich is defined in Eq.

[14] effectively. (A1), as a function ofm, for different values off,. Our results

(1) One must perform the segmentation for a number ofndicate that the segmentation algorithm works best wingr 20
different values off, in order to identify the region for and 16<€y,<m,.
which the tails of the distributions of segment lengths reach

the asymptotic scaling behavi¢Note: If v is large, then the

estimation error can be quite considerable, especialtyifs i\ the surrogate time series even though the segment’s means

small) . are quite different. This result suggests that the resolution of
q (2) One anIUSt calculalte th]? hratlo between dthﬁ standdar e segmentation algorithm is20. We also find that for
eviation of the mean value of the segment and the standay 0=>5, the algorithm splits the time series into too many

_deV|at|on of the qu_ctuatlons within a segment _after perfor.m'segments. These results suggest that for optimal performance
ing the segmentation. If thR>0.6, then there is the possi- 10< ¢<m
o=""o-

bility that y is considerably underestimating

Ratio Q

FIG. 11. Algorithm’s resolution with regard t6, and m. We
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APPENDIX A: PERFORMANCE OF THE ALGORITHM
FOR FIXED SEGMENT LENGTHS

In order to quantify the dependence of the performance of Y€)= IN[P(>£n+ )1~ IN[P(>£y)]

the segmentation algorithm on the paraméigand to iden- " In(€n ;) —In(€y)
tify the algorithm’s length resolution, we analyze time series
comprising segments of fixed length. We concatenate seg-
ments with constant lengtimg with alternating means of 0.0 , o L ) ,
and 1.0. We then add fluctuations to those segments with XIS €xpression is a generalization of the Hill estima&s],
standard deviation of 0.3. We define the fraction of success®" Which 7=1. In our analysis, we have usee-5. In Fig.
fully split segments, 12 we present the local estimate&’ ) for the data shown in
Fig. 2(a). The black lines indicate the values of the exponent
. - . for segment lengths arourtd while the dashed lines indicate
# of segments correctly identified by the algorithm the values of the exponent of the power law in the distribu-
# of segments in surrogate data ’ tion of the surrogate time series.
(A1) We then estimatey by calculating the mean of all local
estimates in the region wherg(¢,,) is approximately con-
whereQ=1.0 corresponds to perfect segmentation. stant. That is, we omit the values in the regions correspond-
In Fig. 11, we plotQ as a function ofm, for segmenta- ing to the initial exponential decay of the distribution and
tions performed with different values éf . Formy<20, the  those corresponding to the truncation due to finite sample
segmentation algorithm does not yield the correct segmentsize.

(B1)

Q

021108-10



HEURISTIC SEGMENTATION OF A NONSTATIONARY . ..

PHYSICAL REVIEW B9, 021108 (2004

NN —— e -
35} (a) 1,=20 ] ) [,=50 1
= ] ]
5 2.5/
5 of
£ 15
88 il
0.5}
A
4
3.5
~ 3
5 2.5
g 2
Fs AR
1 V| ji,a H‘M\\ﬁ \/
0.5 1| 1
1o 10° 10’ 10*10' 10° 10° 10*
Segment length Segment length

FIG. 12. Local estimate of the exponentharacterizing the power-law decay of the distributi(®¢) for (a) €,= 20, (b) €,=50, (c)
£,=100, andd) £,=400. These results are obtained for surrogate time series generated with parametérsam,=20, andR=1.0. The

local estimate Of:y is calculated using EqB1). We indicate the local estimate &by the full black line and the local estimate of the

exponent in the surrogate dageby the dotted gray line. Fafy=20 and¢ >100, S/(€n) closely tracksy(¢,) and both curves have averages
close to one. Fof ;=100 and 400, the segmentation results track the properties of the surrogate data @ fprwhile for smaller¢

the segmentation results overestimate the valug. of
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