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Dynamics of fluctuations in a fluid below the onset of Rayleigh-Beard convection
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We present experimental data and their theoretical interpretation for the decay rates of temperature fluctua-
tions in a thin layer of a fluid heated from below and confined between parallel horizontal plates. The
measurements were made with the mean temperature of the layer corresponding to the critical isochore of
sulfur hexafluoride above but near the critical point where fluctuations are exceptionally strong. They cover a
wide range of temperature gradients below the onset of RayleighrBeconvection, and span wave numbers
on both sides of the critical value for this onset. The decay rates were determined from experimental shadow-
graph images of the fluctuations at several camera exposure times. We present a theoretical expression for an
exposure-time-dependent structure factor which is needed for the data analysis. As the onset of convection is
approached, the data reveal the critical slowing down associated with the bifurcation. Theoretical predictions
for the decay rates as a function of the wave number and temperature gradient are presented and compared with
the experimental data. Quantitative agreement is obtained if allowance is made for some uncertainty in the
small spacing between the plates, and when an empirical estimate is employed for the influence of symmetric
deviations from the Oberbeck-Boussinesq approximation which are to be expected in a fluid with its density at
the mean temperature located on the critical isochore.
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[. INTRODUCTION At sufficiently large wave numbeigthe intensity of non-
equilibrium fluctuations is proportional toV(T)?q~* both
In this paper we present experimental data for and a thefor negative and positivR [1—4]. For smaller values o it
oretical analysis of the decay rates of fluctuations in a fluidvas shown theoretically5] and confirmed experimentally
layer between two horizontal plates that are maintained di6] that the increase of the fluctuation intensity with decreas-
two different temperatures. The sizeof the layer in the ing qis quenched in the presence of gravity, yielding a con-
horizontal directions is much larger than the distaddee-  stant value in the limit of smali. If the presence of top and
tween the plates. By now it has been well established that thieottom boundaries is taken into account, one finds that the
presence of a uniform and stationary temperature gradieritensity of the fluctuations vanishes @s[4,7,8 at smallg.
VT, in the fluid layer induces hydrodynamic fluctuations Hence, the nonequilibrium structure fac®(q) is predicted
that are long ranged in space. to exhibit a crossover from @ “ dependence for largeyto
An important dimensionless parameter that governs theg? dependence in the limg— 0, leading to a maximum at
nature of the thermal nonequilibrium fluctuations is the Ray-an intermediate wave numbe,,, Which has a value near
leigh number 7/d. As the RB instability is approached from below, linear
theory predicts tha8(g,.,) as well as the total fluctuation
powerl[i.e., the integral o5(q)] diverges, in agreement with
agd?VT, the asymptotic prediction obtained by Zaitsev and Shliomis
=D, (1) [9] and by Swift and Hohenberd0,11]. The predicted in-

T crease as the RB instability is approached was verified quan-
titatively by experiments using shadowgraph measurements
whereg is the gravitational acceleration and wherds the  [12]. As the fluctuations become large it was predicted
isobaric thermal expansion coefficiebty the thermal diffu- [10,11] and confirmed experimental[yL3] that linear theory
sivity, and v the kinematic viscosity of the fluid. The Ray- breaks down and that the fluctuation amplitudes saturate due
leigh number is commonly taken to be positive when theto nonlinear interactions.
fluid layer is heated from below. States in which the fluid The present paper is concerned not with the intensity, but
layer is heated from above then correspondrta0. The  with the dynamics of the nonequilibrium fluctuations. One
fluid layer in the presence of a temperature gradient remainexperimental technique to probe the time dependence of the
in a quiescent state for aR less than a critical valuR; for  fluctuations is provided by dynamic Rayleigh light-
the onset of Rayleigh-Beard (RB) convection, including all  scattering. Dynamic light-scattering experiments in fluid lay-
negative values oR. The present paper is concerned with ers with negative Rayleigh numbers have shown the exis-
thermal fluctuations in such a fluid layer for positive valuestence of two modes: a heat mode with a decay rate equal to
of R belowR.. D+q? associated with temperature fluctuations and a viscous
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mode with a decay rate equal t@° associated with trans- ¢ corresponding to the maximum enhancement of the in-
verse momentum fluctuatiof8,14]. Thus, for largeg where  tensity of the fluctuations as a function gfdiffers, at least
gravity and boundary effects are negligible the coupling befor R<R,, from the value ofj at which the decay rate has a
tween the heat mode and the viscous mode causes an eninimum [4].
hancement of the amplitude of nonequilibrium fluctuations, We present in this paper the results of experimental shad-
but does not affect the decay rates, in accordance with thewgraph measuremerit33] of the fluctuations in a thin hori-
original predictions of Kirkpatricket al. [1]. However, for ~ zontal layer of sulfur hexafluoride heated from below but
smallerq (corresponding to macroscopic wavelengtiggsav-  with R<R.. We show that the decay rates of the fluctuations
ity and boundary effects induce a coupling between the decan be obtained from an analysis of images acquired at vari-
cay rates of the viscous and heat modes, as originally sugus exposure times, and compare the experimental results
gested by Lekkerkerker and Bodh5]. For certain negative with the theoretical predictions. The data as well as the
values of the Rayleigh number the modes can even becontbeory reveal the critical slowing down of the fluctuations as
propagating[5,16—18§. On the other hand, for positivR the onset of convection is approached. To the best of our
near the RB instability the nonequilibrium structure factor isknowledge, previous shadowgraph experiments were used
dominated by a very slow mode with a decay rate whichprimarily to obtain the fluctuation intensiti¢$2,34]. Excep-
vanishes aR—R; [9-11,15,19. tions are studies of the dynamics of deterministic patterns

The phenomenon of critical slowing down of the fluctua- above the RB instability that used image sequences at con-
tions as the RB instability is approached from below hasstant time intervalg35,36. Measurements of the structure
been observed experimentally, but the results obtained so f&&ctor with the shadowgraph method can probe fluctuations
are qualitative. Using forced Rayleigh scattering Allairal.  at the small wave numbers which reveal the influence of the
[20] measured the decay of imposed horizontal spatially pefinite geometry. These wave numbers generally are not ac-
riodic temperature profiles with various wave numbgrs cessible to light scattering.
The decay time of these imposed deviations from the steady We shall proceed as follows. In Sec. Il we derive the
state increased as the temperature gradient approached @hecay rates of the nonequilibrium fluctuations in a fluid layer
value associated witR.. Furthermore, the decay times be- between two horizontal rigid boundaries. To obtain analytic
came larger for periodic temperature profiles wijtbloser to ~ expressions we determine the dynamic structure factor in a
g.. Critical slowing down of nonequilibrium fluctuations has first-order Galerkin approximation. This section is a sequel
also been observed by Sawada with an acoustic m¢idd to a previous publicatiofd], in which the static nonequilib-
In this experiment, first a deterministic RB pattern was esfium structure factor was considered. In Sec. Il we then use
tablished and then the cell was turned over so as to chandgge dynamic structure factor to calculate the dependence of
the sign of R. The experimental observations were inter- shadowgraph signals on the exposure-time intervéah Sec.
preted with an amplitude equation that did not include anylV we describe the experimental conditions and procedures,
wave-number dependence. The single decay time extractéacluding the collection and analysis of the shadowgraph im-
from the data did indeed increase as the onset of convectiorges. Specifically, we show how the decay latgq) of the
was approached, but numerical agreement with the amplifluctuations below the RB instability can be determined ex-
tude equation was poor. Using neutron scattering, Riste angerimentally from shadowgraph images obtained with two
co-workers[22,23 observed the critical slowing down of different exposure times. A comparison of the experimental
nonequilibrium fluctuations close to the onset of convectiorresults obtained fof _(q) with our theoretical predictions is
in a liquid crystal. Quantitative experimental studies havepresented in Sec. V. Finally, our conclusions are summarized
been performed showing the slowing down of the dynamicdn Sec. VI.
of deterministic patterns as the RB instability is approached
from above[24,25. L .| DYNAMIC STRUCTURE FACTOR AND DECAY RATES

In the present paper we present a quantitative theoretica OF FLUCTUATIONS
and experimental study of the decay rates of fluctuations for
positive R but below the RB instability. The results of both  As was done previously4,7,8, we determine the non-
experiment and theory reveal the critical slowing down asequilibrium structure factor by solving the linearized sto-
the RB instability is approached from below. Theoretically,chastic OB equations for the temperature and velocity fluc-
the decay rates can be determined, in principle, from a lineauations. It should be noted that the use of the linearized OB
stability analysis of the deterministic Oberbeck-Boussinesgquations implies that the critical slowing down of the fluc-
(OB) equations against perturbations, as has been done trasations near the RB instability is treated in a mean-field
ditionally [15,26—30. However, here we derive these decay approximation in which the decay rate will vanishR R,
rates by solving the linearized stochastic OB equations, obwhen the wave numbeg equals a critical wave numbey,
tained by supplementing the deterministic OB equations with9]. It is known from theon} 10,37 and experimenitl3] that
random dissipative fluxd®,10,31,32. Because of Onsager’'s nonlinear effects will cause a saturation of the fluctuating
regression hypothesis, the two procedures should yield themplitudes when they become very large. The effect of non-
same result, and indeed they do. However, it is important tdinear terms on the decay rates depends on the nature of the
note that a solution of the stochastic OB equations is rebifurcation in the presence of fluctuations. In the RB case the
quired to obtain the correct amplitudes of the nonequilibriumfluctuations change the bifurcation, which is supercritical in
fluctuations. For instance, it turns out that the wave numbethe absence of fluctuatiofi3g], to subcritica[10,13. In that
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case one would expect the decay rates to remain finite at th@alerkin polynomiald30]. Specifically, two of us have de-
bifurcation; however, this issue is beyond the scope of theermined the static nonequilibrium structure factor in a first-
present paper. order Galerkin approximatiof4]. A first-order Galerkin-
For the case of a fluid layer between two plates withpolynomial solution appears to provide a good
stress-fred(i.e., slip boundary conditions the intensity and approximation below the convection threshold for the total
the decay rates of the nonequilibrium fluctuations have beefhtensity of the fluctuation§4,39]. We thus extend here the
obtained in a previous publicatiof8]. The advantage of first-order Galerkin treatment considered in Rief], in the
stress-free boundary conditions is that they permit an exagypectation that it will also provide a good approximation for

analytic solution of the problem. Here, instead, we considefyg gecay rates and the actual amplitudes of the two coupled
the more realistic case of a fluid layer between two ”g'dhydrodynamic modes

boundaries, corresponding to two perfectly conducting walls The decay rates of the hydrodynamic modes can be

for the temperature and with no-slip boundary conditions for . : - ) .
the local fluid velocity. While this case does not permit anreadny obtained by finding the roots in of the determinant

exact analytic solution, a good approximation can be ob-Of the matrixH(w,q), defined by Eq(15) in Ref.[4]. There

tained by representing the dependence of the temperatu?ée fWO coupled hydrodynamic modes whose decay rates
and velocity fluctuations upon the verticalcoordinate by I'-(q) are given by

o(q*+24g2+504 | 27R0 G2

(9%+10)(9%+12) " 7(9%2+12) (g2 +10)?)

g%+ 2492+ 50
o (q*+24q 4)+1¢\/

— ~ 2
(q°+10)(g°+12) @

~ Dy .
+(q) 2dz(q )

where o=v/« is the Prandtl number ang=qd is the di- HereAt=|t—t’| andp is the average fluid density. The time
mensionless horizontal wave number of the fluctuations. Wéorrelation functionF(q,z,z",At) is just the inverse fre-
note that in the previous publicatid#] the symbolg was — guency Founer_ transform of t_he dynamic structure factor
used to emphasize that it represents the magnitude of a tw&(,q,z,z") defined by Eq.(9) in Ref. [4]. Following the
dimensional wave vectag in the horizontalXY plane. Here ~ steps described in Re#] we find after some long algebraic
we drop the SUbSCI’iFHt, since in the present paper the wave calculations that the time correlation functiErﬁq,z,z’,At)
vectors will always be two dimensional in the horizontal can be expressed as the sum of two exponentials:

plane. In Eq(2), I' _(q) represents the decay rate of a slower

heatlike mode which approachBsqg? for large values of,

while I', (q) represents the decay rate of a faster viscou§:(~ 2,7' At)= iE{K (Qexd —T.(a) At]+A_(q)

mode approaching/q? for large g. The advantage of the 4.2z g M+ +(d -

Galerkin approximation is that one can specify the decay

ratesI" . (q) explicitly as a function ofj. We note that in the , 2\ 2

first-order Galerkin approximation considered here, we find Xexr[—F_(a) At]}(—— _) —

only two decay rates, instead of a series of decay rates that d ¢2/\d g2

would be obtained if higher orders were considered in the

Galerkin expansion. For studying the situation below the RB (4)

instability, where fluctuations decay to zero, consideration of

the two primary decay rates will be adequate. As discusseflgre the coefficienSe represents the intensity of the fluc-

g:)c;]re in detail later, for these E() is a good approxima-  yations of the fluid in a local thermodynamic equilibrium
We are interested in the time correlation function for thesjjl)te _?r:ethga?;’fkriigeoﬁerr?opneﬂr:gr:Te(zfeinEg&? blgclzsge

density fluctuations at constant pressure which is directl;%he)'/ have been use% tg)/ representptﬂe dependence of the tem-

related to the time-dependent autocorrelation funCtionperature fluctuations on the vertical coordinaté\Ve intro-

* . ! ! ’ 1

(6T*(q,z,t)- 6T(q’,z',t")) of the temperature fluctuations duce the dimensionless decay rates

by [4]
(8T*(q,2,0)- 6T(q', 2 ,1")) T.(@=t,I.( (5)
21)? _A2A - o
=F(q,z,2',At) %5((1—(]’)- &) vv_heret\{—d /D is the vgrtlci';\l t_hermal relaxation t|_me. The
a‘p dimensionless amplitudes. (q) in Eq. (4) are then given by
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(®+10)| T2(q)—0?

Q+2402+504\ %] 27(G*+ 2492+ 5042 -
q°+12 28(g%+12)?
r(@[T(@-T%(@]

A.(q)=+30

(6)

In Eq. (6), Sie denotes the strength of the enhancement of The analysis in the previous papgt] was specifically
the static nonequilibrium structure factor of the fluid in the devoted to the static structure fact8fq,z,z"), which may

absence of any boundary conditions: be obtained by Settingt=0 in Eq (4) or, equivalently, by
integrating the dynamic structure fact& w,q,z,z') over

(Cp/T)d the entire range of frequencies[4]. However, as discussed
Le=0R+ P—Z(VTO)Z- (7)  in more detail in Ref[4], the structure factoB(q) that is
T actually measured in small-angle light-scattering or in zero-

collecting-time shadowgraph experiments is the one obtained

Herecp is the isobaric specific heat per unit m@d$ In Eq.  after integration of the full static structure factor oweand
(7), as everywhere else in the present paper, all thermophys# [18], so that
cal properties are to be evaluated at the average temperature
T=T. We note that the amplitude?i(a) depend on the S(@)= Efddzjddz’F(a’Z*Z"O)
Prandtl numbeir and on the Rayleigh numbét® not only dJo 0
explicitly in accordance with Eq(6), but also implicitly
through expressiof?) for the decay rate¥ . (q). =S—E{Z+(a)+5~7(a)}

As noted in the Introduction, the decay rates of the fluc- 36
tuations can also be obtained from an analysis of deviations
from steady state on the basis of the deterministic OB equa- =S
tions, i.e., the OB equations without random noise terms.

Hence, Eq(2) for I'..(q) is implicit in the standard calcula-
tion of the convection threshold within the same Galerkin
approximation employed hef@&0]. However, to obtain the

correct amplituded\. (q), it is necessary to solve the sto-

chastic OB equations for the fluctuating fields. factor S(q) is expressed as the sum of an equilibrium and a

thfggﬁii&lz;grr;?fe?gg?ﬂy Ezftz daST}l]V:" S??ﬂ Eﬁ@ I:%rnsi d nonequilibrium contribution. However, the dynamic structure
P _comp : y P factor and its equivalent, the time-dependent correlation
erably foroc—oe. In that limit the decay rate of the slower

AU function given by Eq(4), can no longer be written as a sum
model’_(q) reduces to of equilibrium and nonequilibrium contributions. This differ-
~ ence between the static and the dynamic structure factor re-
279°R @® sults from the coupling between hydrodynamic modes due to
28(Q + 2432+ 504) : the presence of gravity and boundaries. For the same reason,

the nonequilibrium intensity enhanceméﬁ]E no longer ap-

: ~ o~ pears as a simple multiplicative factor in the expression for
while the decay raté'. (q) of the faster mode becomes pro- o 4y namic structure factor. The observation that the non-
portional too and is so large that the first exponential term g ilibrium dynamic structure factor is no longer the sum of
in Eqg. (4) can be neglected. The amplitude (q) of the  an equilibrium and a nonequilibrium contribution already
remaining exponential term reduces, in the samex limit,  pertains to the dynamic structure factor of the “bulk” fluid
to a simpler expression to be used later, in Ef). It is  (i.e., without considering boundary conditionsvhere mix-
interesting to note that the limit for large Prandtl numbers ising of the modes is still caused by gravity effef#s.
approached rather fast. For instancegatl5, the difference

between the actudl () given by Eq.(2) and the value Ill. APPLICATION TO THE DEPENDENCE OF
deduced from the asymptotic expressi¢8) is always SHADOWGRAPH SIGNALS ON EXPOSURE TIME

smaller than 3% for any value @f, with the larger devia- _

tions of about 3% aff values close t@,. From Eq.(8) we The shadowgraph method prowdes, a powerful tool for

) aboLt 970 > . ] q- visualizing flow patterns in Rayleigh-Bard convection

find thatl' _(q) approaches 10 when—0, independently of 133 36 4Q. Of special interest for the present paper is that the
the values of the Rayleigh or Prandtl number. The value 1@hadowgraph method can also be used to measure fluctua-
obtained from our first-order Galerkin approximation has totjons in quiescent nonequilibrium fluids at very small wave
be compared withr?=9.87, obtained from the exact theory numberg 6,12,34,40,41

for the limiting value aig—0 of this decay rat¢30]. In shadowgraph experiments an extended uniform mono-

5 - ~
& +S%EA§(q)] : ©)

WhereAg(a) represents the normalized enhancement of the
intensity of nonequilibrium fluctuations in the first-order
Galerkin approximation, as given by EQO) in Ref.[4]. We

note that, in accordance with EQ), the static structure

T (9)=(9*+10—
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chromatic light source is employed to illuminate the fluid (2m)?

layer. Many shadowgraph images of a plane perpendicular to —— S(a,7) &(g—q')
the temperature gradient are obtained with a charge-coupled- @p

device detector that registers the spatial intensity distribution 1 ¢+ (r d
I(x,7) as a function of the two-dimensional position in the = ﬁfo dtJ'0 dt’ fo

imaging planex and the nonzero exposure timeised by the
detector to average photons for a single picture. An effective d
shadowgraph signal(x,7) is then defined as Xdzfo dz' (6T*(q,zt)-6T(q',Z',t")).

(13
[(X,7)—1o(X,7)

I(X,7)= To(x.7)

, (10 In principle, S(q,7) can be evaluated by substituting Eg)
with Eq. (4) for the correlation function of the density fluc-
tuations into the right-hand side of Ed.3). However, for the
. . o experimental results to be presented, it is sufficient to evalu-
wherel (X, 7) is a blank intensity distribution in the absence ate S(q,7) for large values of the Prandtl number, in
of any thermally excited fluctuations. In practidg(x,7) is  \yhich case the exponential contribution with dec'ay rate
calculated as an average over many original shadowgrapjt(q) in Eq. (4) can be neglected, as discussed before. Re-

images, so that fluctuation effects cancel. taining only the contribution from the slower mode with am-

From a series of experimental shadowgraph signalgu 4o % (q) in Eq.(4) and performing the integrations, we
I(x,7), the experimental shadowgraph structure facto deduce from Eq(13)

S(q,7) is defined as the modulus square of the two-

dimensional Fourier transform of the shadowgraph signals, s . 7T (Q-1+exi—7 T_(@]
averaged over all the signals in the serieSy(q,7) S(q,7)=ScA_(q) =5 = ,
=(|Z(q,7)|?). The physical meaning of the shadowgraph 1871~ (a)

structure factorS{q,7) in the past has been based on the (14)

assumption that the shadowgraph images are taken instanta-  ~ | _ . . L~
neously. In the limitr—0, S{q,7) has been related to the v_vhere Tisa d|mens.|onless exposure time, defmeq by
static structure factor of the fluig(q) by a relation of the ity with t, the'vertlcal relaxation time introduced n Eq.
form [4,12,36,40,4]'. (5) ~|n Nthe limit 7—0, Eq (14) reduces to S(q)
=SA_(q)/36, so that it equals the static structure factor
measured in small-angle light-scattering or in shadowgraph
S49,0=T(9)S(q). (11) experiments in the zero-collecting-time approximation, as
given by Eq.(9). It is interesting to note that, due to the
nonzero-collecting timer, even in thermal equilibriumR

In Eq. (11), 7(q) is an optical transfer function that contains —°) the shadowgraph measurements present some “struc-

various properties, such as the wave number of the inciderit"®-” From Ed.(14), we find that this equilibrium structure,
light, the temperature derivative of the refractive index of theas & function of the dimensionless collecting times given
fluid, and details of the experimental optical arrangementby

For the present work a specification Bfq) is not needed ~~ ~
since it will be eliminated in the treatment of the experimen- ¢ =~ _ o 5 7(@°+10)—1+exgd —7(q°+10)]
tal data in Sec. IV. The quantit$(q) in Eq. (11) equals the ' Eq72 (9%+10)2
static structure factor of the nonequilibrium fluid, as defined (15

in Eq. (9).

To determine the dependence of the experimental shadovit can be readily checked that, in the limit-0, Eq. (15
graph structure factoB(q,) on the exposure time we  reduces to the structureless constant (5£6)in agreement
need to extend the physical optics treatment performed bwith Eq. (9). This value is 17% lower than the actual value
Trainoff and Cannell40]. We then find that Eq(11) isto be  Sg, due to the use of a first-order Galerkin approximation
generalized to [4].

To gain insight into the effect of the exposure time on
shadowgraph measurements, we show in Fig. 1 the differ-
S(q,7)=709)S(q, ), (120  ence between the nonequilibrium structure factor as obtained
from Eq.(14) and the equilibrium structure factoRE0) as

obtained from Eq(15), as a function ofj, for three different
where 7(q) is the same optical transfer function as in Eq. collecting times. Corresponding to some of the experimental
(11) and whereS(qg, ) is a new exposure-time-dependent results to be discussed below, we used 1371, a vertical
structure factor, which is related to the autocorrelation funcselaxation timet,=d?/ Dt of 0.74 s, and a Prandtl number
tion of temperature fluctuations by equal to 34. We evaluated the difference for 0, 7=200,
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where forT'_(q) of Eq. (8) for large o should be used. As
discussed after Eq(8), for Prandtl numbers near 15 the
asymptotic limit(16) is already closely approached. Equa-
tion (16) reduces, in the limit—0, to the expressions ob-

z%,f tained in Ref[4]. It is interesting to note that, in the limit
@ g—o, Eq. (16) reduces to

5 B

2 85(q,7) a-= 45 1

: —— — == (17
- SeSNe 2870 q

showing, as mentioned above, that a nonzero-collecting time
changes the asymptotic behavior frgm* to 8. Note that

Eq. (17) is evidently not valid wherr=0 in which case one
needs the asymptotic expression given by Bf) in Ref.

~ ~ 4].
FIG. 1. DifferencesS(q, 7)/SeSye [see Eq(16) below] between 4]
the theoretical structure factors Rt=1371[Eq. (14)], and atR
=0 [Eq. (15)] as a function ofg, for three different collecting IV. EXPERIMENTS
times. The solid curve correspondsite 0 ms, the dashed curve to A. Apparatus
7=200 ms, and the dotted curve t&=500 ms. The Prandtl num- . . . .
ber iso =34 andt,=0.74 s. To visualize the thermal fluctuations with the shadow-

graph method one needs to perform the experiments with a
fluid in which the thermal noise will be large1,42. This
and 7=500 ms. The structure facto§(q,7) and Sg(q,7)  goal can be accomplished by selecting a fluid in the vicinity
have been normalized by dividing them by the produciof its critical point[12,13,33. The measurements reported
SeSuE - here were obtained for sulfur hexafluoride. The apparatus
From Fig. 1, we arrive at the following conclusions. and experimental procedures have been described in detail
(i) The main effect of a nonzero-collecting time is to elsewherdg33]. Here we describe only those aspects which
lower the height of the measureg{q, 7); this is expected are specific to the experiment with a fluid near its critical
since fluctuations cancel out when larger exposure times aigoint.
used. For the details of the cell construction we refer to Fig. 9
(i) An additional effect of a nonzero-collecting time, of Ref. [33]. Initially we used a diamond-machined alumi-
which can be observed in Fig. 1, is a displacement of théium bottom plate which could be positioned with piezoelec-
maximum inS(q, 7) to lowerq values. This effect is mainly ric eélements. The bottom-plate thermistors were embedded

due to the subtraction of the equilibrium structure given by™~0.64 cm below its top surface. Even though to the naked
Eq. (15), which decreases with increasitg eye this plate had a near-perfect mirror finish, the tool marks

(iii) Another interesting feature we infer from Fig. 1 is from the diamond machining imposed a preferred direction

~ ~ . on the fluctuations below the onset of convection. Thus we
that the dependence @t for low q is preserved, while the placed an optically flat sapphire of thickness 0.318 cm on top

dependence oq~* for largeq is destroyed for the effective of the aluminum plate. A thin silver film was evaporated on
structure factor. Actually, at largg there exists a crossover the top surface of this sapphire to provide a mirror for the
from aq * dependence to g ° dependence, for nonzero shadowgraphy.
values of7, as will be shown below in Eq17). Initially we used a sapphire of thickness 0.952 cm for the
A simpler formula forS(g,7) can be obtained by intro- cell top. In addition a sapphire of thickness 1.90 cm was in
ducing into Eq.(14) the limiting value ofA_(q) for large th.e optical path of the shadowgraphy qnd _proviQed the top
Prandtl numbers. We then obtain window of the pressure vessel. In combination with the very
small cell thickness used in these experiments, it turned out
that the optical anisotropy of these randomly oriented sap-
85(9,7)  S(9.7)—Se(q,7) phi_res introduced an anis_otropy of the shadowgraph images
—— = — which obscured the rotational symmetry of the fluctuations.
SESaE SeSNe In order to minimize this effect, we replaced the pressure
_~— o~ —~—~ o~ window by a fused-quartz window and used an optically flat
Sl (@—-1+exd—7I" (q)] sapphire of 0.318 cm thickness for the cell top. Under these
3o 2 T2(9) conditions we found that the fluctuations below the onset of
convection yielded a structure factor which was nearly in-
« 2797 variant under rotation, as can be seen from Fig. 5 below.
=~ = o2 =~ The cell spacing was fixed by a porous paper sidewall
28(q°+10)(g*+249°+ 504 — 27Rq with an inner(outep diameter of 2.53.5) cm. Since the top
(16 sapphire was supported along its perimeter which had a di-
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FIG. 3. The thermal expansion coefficiemtalong the isobar
FIG. 2. The temperature-density plane near the critical point of® =38.325 bars. The heavy part of the line terminated by two open
SF,. The dashed line indicates the coexistence curve separatingrcles indicates the temperature range spanned by the sample with
liquid and vapor. The vertical dotted line is the critical isochore.d=34.3 um andAT=AT,=0.44°C.
The solid circle is the critical point withT.=45.567 °C, P
=37.545 barsp,=0.742 g/cmi. The solid line represents the iso-
bar P=38.325 bars used in our measurements, and the heavy sec-
tion of this line shows the temperature-density range on the isobar Much of the theoretical work on RB convention was done
which is spanned by the sample with thicknelss34.3 um when  in the OB approximatior{26,27], which assumes that the
AT=0.22°C. fluid properties do not vary over the imposed temperature
interval, except for the density where it provides the buoyant
ameter of 10 cnfi.e., considerably larger than the cell wall  force[28]. Specifically, for the theory developed in Sec. Il to
the force exerted on the cell top by the bottom plate and thee valid it is necessary that the spatial variations of the vari-
wall caused a slight bowing of the initially flat top. Over the ous physical properties are negligible over distances of the
entire sample diameter this yielded a radial cell-spacingrder of the wavelengths of the fluctuations. Unfortunately,
variation corresponding to about one circular fringe whenthis assumption ceases to be valid for our experiment in the
illuminated with an expanded parallel He-Ne laser beamcritical region of a fluid, but to the best of our knowledge a
This variation of the thickness by about Qu3n assured that systematic theoretical approach dealing with the effects of
convection would start in the cell center, rather than beinguch spatial variations on the wave-number dependence of
nucleated inhomogeneously near the cell wall. Assuming &e fluctuations is not yet available. Non-OB effects for the
parabolic radial profile for the cell spacing, we estimate thateterministicsystem have been considered by a number of
the spacing was uniform to much better than 0.1% over thenvestigators, most systematically by Bu§s€] in the con-
1.3x1.3 mnf area near the cell center which was actuallytext of a hydrodynamic stability analysis. At leading order
used for the shadowgraph images. The actual sample thickhey break the reflection symmetry of the system about the
ness was measured interferometricdB] and found to be horizontal midplane, and at the onset of convection they
34.3 um. yield a transcritical bifurcation to a hexagonal pattgs6],
instead of the roll pattern of pure OB convection. When the
B. Properties of SF; near the critical point mean temperature corresponds to the critical isochpre,
n=Pc: this effect is of modest size. Although several proper-
ties contribute, we illustrate this by showing the isobaric
thermal expansion coefficient in Fig. 3 along the isobar of
Fig. 2 as an example. One can approximatas a sum of
afwo contributions, one of which is antisymmetric and the
other one symmetric about the mean temperatarel thus
approximately also about the horizontal midplaré the
The measurements were made at constant pregsanel sample. Only the antisymmetric part is considered .in the
— theory[52]. Its smallness near the onset of convection is seen
at constant mean sample temperafliréThe mean tempera- ¢ the similar values of at the top and bottom of the cell
ture was adjusted so that the densiyT) was the critical  (open circles in the figujeA quantitative calculation of the
density p.=742 kgm ®. The imposed temperature differ- paramete introduced by Bussg52] (see Eqs(13) in Ref.
enceAT caused a density variation of the sample along an3g]) yields P= —0.23. This value indicates that, within our
isobar. This is illustrated in Fig. 2 for the conditions of the experimental resolution, only rolls should be seen near onset.
present experiments, namely fé*=38.325 bars andl  This is indeed the casfl3]. However, the variation ofr
=46.50°C. At p=p., we have 0=34.0, Dy=1.59 which is symmetric about the midplane is quite large. It does
X 107° cn?/s, andt,=d?/D+=0.738 s. not break the reflection symmetry about that plane and thus

C. Symmetric departures from the Oberbeck-Boussinesq
approximation

The thermodynamic properties of sulfur hexafluoride i
the critical region can be calculated from a equation deve
oped by Wyczalkowska and Sengé¢#s]. For the viscosity
we used a fit of data from Refg14,45 to a smooth function.
This approach neglects a small anomaly of the viscosity
the critical point. We used fits of smooth functions to the
conductivity data from Refd46-51].
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FIG. 4. The Rayleigh numbeR [see Eq.(1)] along the isobar
P=238.325 bars fod=34.3 um. From top to bottom, the curves
are forAT/AT.=1.000, 0.860, 0.699, 0.430, and 0.269 witfi
=0.44°C.

permits the existence oblls at onset rather than requiring a
hexagonal plan form. Behavior similar to that @fis found
for the specific heatp and for the Rayleigh number. Even
for the deterministic system there is at present no theoretic%l1e
treatment of these higher-order non-OB effects. Thus we pr
ceed empirically by examining the variation Bfas a func-
tion of vertical position or local sample temperature. If we
neglect the temperature dependence of the thermal condubettom-plate thermistor. This temperature difference is the
tivity and assume that the local temperature in the fluid layesum of those across the bottom aluminum plafe, , across
still varies linearly as a function & we obtain the Rayleigh the boundary between the aluminum plate and the bottom
number profiles shown in Fig. 4. The curve at the top is forsapphireAT,,, across the bottom sapphifeT,, across the
the experimental valuAT=AT.=0.44 °C corresponding to Sample AT, across the top sapphiraTg, and across a
the onset of convection. The other curves, from top to botboundary layer above the top sapphire in the water bath
tom, correspond ta T/AT.=0.860, 0.699, 0.430, and 0.269. ATb_z. From estimates of the thermal resistances of these
For AT=0.44°C one sees that the locB{p.)=3190 far sections we find T/AT=0.473. Thus, at the onset of con-
exceeds the valuB,=1708 for the uniform system. On the VEction, we measured Te, =0.930°C and deducedT,
other hand, near the top and bottom of the sample the Rcal =0.44°C.
is well below the onset of convection for the homogeneous _ )
system. The data in Fig. 4 show that, though we find rolls E. Analysis of shadowgraph images
above threshold, non-OB effects cannot be completely ne- At each AT, three shadowgraph-image sequences
glected in our experiments. We shall return to the influence;(x,7;),i=1, ... N with N=1024, andj=0,1,2 were ac-
of non-OB effects on the comparison between experimenguired. For each sequence, a different exposure timeas
and theory in Sec. V. used, namelyr,=0.500 s, 7;=0.350 s, andr,=0.200 s.
The time intervaldt between the images was typigall s or
D. Sample temperature 2 s, which was large enough for the images to be nearly

uncorrelated. The images of each sequence were averaged to
The bath temperaturg,,, and the bottom-plate tempera- provide a background image(x,;), as discussed in Sec.

ture Tgp were adjusted so as to hold the mean sample temyj| Then, for each image of the sequence, a dimensionless
perature constant. This temperature was chosen so that tlgﬂadowgraph signal;(x,7;) was computed, in accordance
mean density corresponded to the critical dengity Be-  ith Eq. (10). The mean(overx) value of a typicalZ;(x, ;)
cause of the small sample thickness the thermal resistance @fs within the range- 0.01, indicating adequate stability of
the sample was comparable to that of the top and bottorghe Jight intensity and image-acquisition system. Next, the
confining plates. This fact required a special procedure tyo-dimensional Fourier transform of each shadowgraph sig-
assure that the sample was indeed at the temperature COrigy| in the sequence was computed, and the modulus square
sponding top.. Before a run at a given fixed pressure wascgjculated, obtaining series (f;(q, 7;)|? for further analy-
started, we measured the power of shadowgraph images gfs. Typical shadowgraph signals and the squares of the
the fluctuations at a fixed imposedle,=(Tep— Tpar) @8 @  moduli of their Fourier transforms are shown in Fig. 5. The
function of the mean temperatufg,= (Tgp+ Tpa/2 Of the  nearly uniform angular distribution of the transforms illus-
system consisting of the bottom plates, the sample, and thieates the rotational invariance of the RayleighiBed

top plate as determined by the bath temperature and theystem.

FIG. 5. Shadowgraph signaleft column, 1.3<1.3 mnf) and

moduli squared of their Fourier transforimgyht column for
O3T=0.189 (top row) and AT=0.378 K (bottom row. The expo-
sure time was 500 ms.
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S(q,7) shown in Fig. 1. The expected maximum negr
=7, is present, and the decreasegasanishes is consistent
with the predictedy? dependence. The longer averaging of
the random fluctuations diminishesrg Sy(q,7), which was
one of the features noted after Fig. 1 18(q, 7).

The experimental structure fact&s(a,rj ,AT) depends

on the Rayleigh number and, hence, Aif. For AT=0,
instrumental(mostly camera noise is expected to be the
dominant contribution, i.e., the contribution from the equilib-
rium fluctuations is negligible and the theoretical equilibrium
structure, given by Eq(15), is expected to be unobservable
in our experiments. Examples of the shadowgraph structure
factors forAT=0 are shown by the open symbols in Fig. 6.

o One sees that 20S4(q,7;,0) is well represented by a
FIG. 6. Experimental shadowgraph structure facte(d.7)  straight line, corresponding to white noise. At large
as a function of the dimensionless wave numgeiThese results ZWEISs(a,ijO) merges smoothly into the data for

are forP=38.325 barsT=46.5°C, andAT=0.189 °C. The solid ~a .
A ' o B 2mqSs(q,7;,AT) with the samer;, as one would expect.
squares(solid circles are for 7=0.200 s =0.500 s). The open A detailed comparison between the experimental and the

symbols are the corresponding background measurementsTior . . .
:yo P 9 9 theoretical structure factors requires knowledge of the optical

transfer function7Z{q), which depends on the details of the
As explained in Sec. IIl, due to the rotational invariance€XPerimental optical arrangement. It involves, for instance,
of RB convection in the horizontal plane, the modulusthe size of the pinhole and the focal length of the lens used to
squared Fourier transformed shadowgraph signals have rotgiake the “parallel” beam, and the spectral width of the light

tional symmetry, and for an infinitely extended sample theysource[_40]. In the prese_znt work the spatial structures to be
would depend only on the modulgsof the wave vector.  determined(the fluctuation wavelengthshad length scales

However, the finite spatial extent of the images leads to ran[typically O(50 um)] that are one or two orders of magni-
dom angular fluctuations df;(q, 7;)|2. To reduce these fluc- tude smaller than those of more conventional RB experi-

tuations, we performed azimuthal averag@gq, ;)| over ~ ments. For this reason, we found it difficult to obtaftg)
thin rings in Fourier spacéhe angular average is denoted by for our lnstrumentNWIth sufficient accuracy to avoid signifi-
the overline and depends only gnand 7;). Now for each  cant distortion ofS(q). We circumvented the difficulty of the

shadowgraph measureméngx, 7;) the integral optical transfer function by deriving théynamicproperties
. of the fluctuations from ratios cﬁs(a,rj) with different val-
Pi(Tj):f 27q |Zi(q,7)[? dq (18  ues ofr;. To account for the instrumental white noise, be-
0 fore taking such ratios, we subtracted the measured

Ss(a,rj,O) in the absence of a temperature gradient from

is the tota'l power and, by Earseval’s theorem, has to be equgL(a,Tj LAT) to yield
to the variance of the origindl(x,7;). We used Eq(18) as
a check of consistency for the entire procedure of taking the ~ o e
Fourier transform, of calculating the modulus squared and 9549, 7,AT)=54(0,7,AT) = 5(q,7,0).
the azimuthal average over thin rings, and of assigning to . .
each ring aq value. Finally, we averaged over theindi- Af;cgr this background subtraction, we formed for 1,2 the
vidual |Ii(q,7-j)|2 of eachr; series, to obtain the experimen- ratio
tal shadowgraph structure facty(q, 7;)=(|Z(q, ;) |?). 5 ~

For the remainder of this paper we shall use the experi- ~ _ 7 65(a,7;,AT)

tally determined cell i=34.3 um t | R(q,7j,70,AT)=— = : (20)

mentally determined ce spaciry=34.3 um to scaleq ac- 75 8540, 79,AT)
cording to gq=qd. Two examples of the product
2wass(a,7j), both for P=38.325 bars, T=46.5°C, and Wwherer, is the longest exposure timg=0.500 s. The ra-

AT=0.189°C, are shown in Fig. 6. The solid squares are fofios R obtained forr;=0.200 s as a function af are shown
7,=0.200 s, whereas the solid circles are tg=0.500 s. in Fig. 7 for four values of the temperature different@.

As discussed in the _preceding section, the relation€h® 11 shadowgraph transfer functi@ig) cancels and is no
between the experimental shadowgraph structure fact%nger contained irfR. In addition, for the ratiosR, it is

S{q,;) and the corresponding fluid structure facB0,7;) irrelevant whether we use the definition of the structure fac-
involves the optical transfer functicf{q). Nevertheless, we tor considered in Sec. Il or the shadowgraph definition dis-

observe some qualitative agreement of the experimental rgsiayed in Fig. 6, the latter including a factor®. Thus, we
sults for 27qS(q,7) in Fig. 6 and the theoretical results for are allowed to use Eq14) for §S;, so that

(19
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FIG. 7. The ratioR(q,7;,7,AT) [see Eq.(20)] based onr, FIG. 8. Results fod'(q,AT), in units of inverse seconds, ob-

O'_ZOO S andro=0.500 s. From topoto bottom the data are fgr tained from the values R shown in Fig. 7[see Eq.(21)]. The
AT=0.118, 0.189, 0.307 and 0.378°C. The onset of convection . .
— o symbols are the same as in Fig. 7. The tdash-double-dotted
occurred anT,=0.440°C. . - o
curve is the prediction foAT=0. The remaining curves are the
theoretical predictiongsee Eq(8)] for the values oAT of the data

7T (q)—1+exd —7T(q)] 20 (see Fig. 7.
7ol (@)~ 1+exd —7oI'(q)]

R(Q,7,70,AT) =

We believe that the major disagreement between the mea-
~ ~ surements and the calculation is due to symmetric non-OB
One sees thak depends only o, 7, . andl’(q,AT). At effects discussed in Sec. IV C. Since there is no quantitative
eachq andAT, only the decay rat¢' is unknown and thus theory, we proceeded empirically and explored the possibil-

can be determined from the experimental valuéRof ity that non-OB effects can be accommodated to a large ex-
tent by multiplying the experimental T/AT, used to esti-

V. EXPERIMENTAL RESULTS AND COMPARISON mate R by an adjustable scale factor. We introduced an
WITH THEORY adjustable parametég, , which was allowed to be different

_ for eachAT, and used
In Fig. 8 we show the decay raleas a function of]. The

symbols represent the experimental values deduced from the
data forR displayed in Fig. 7 by solving Ed21). From top
to bottom, the data sets are f&T/AT.= 0.269, 0.430,
0.698, and 0.861. The curves represent the theoretical valu
calculated from Eq(8) with t,=0.738 s(the value derived
from the fluid properties at the mean temperature and at th
critical density. The topmostdash-double-dottedine is for
equilibrium: AT=0 (i.e., R=0). The remaining four curves
are for the values cA T/AT. of the data sets, if we adopt the o= fqa (24)
Boussinesq estimate

R=fr«Ros (23

for the Rayleigh number. In addition, we introduced a single

%%ijustable scale factor for all data sets which adjusted the

length scale of the experiment so as to yield a corrected wave
umber

to be used in the fit of the theory to the data. We exppgto
compensate for experimental errors in the cell spacing and in
the spacing between the pixels of the images, to be within a
) ) ] few percent of unity, and to be the same for the runs at all
Wlth_RC=_ 1730 (th(_a va_lue obtained from the _Galerkln ap- AT. Finally, we treated the vertical relaxation tirheas an
proximation used in this papéBO])_fo_r the Rayleigh number adjustable parameter. We note that d2/D depends on the

in Eq. (2). One sees that the predictions, based on the Bousgg|| spacing, and thus any error in the length scale will lead
inesq approximation, do not agree very well with the experi-+q an error in the time scalg . One also might expett, to
ment. However, boLh theory and experiment reveal clearly Yepend omAT because quadratic non-OB effects would be
minimum of I' nearq=3 which becomes more pronounced |arger at largeA T; but it turned out that a single value for
asAT approacheaT,. For the larger values af T/AT the  for the runs at alA T was sufficient to describe all the data.
experimental values dof have a maximum neag=5. We  We carried out a simultaneous least-squares fit of(Et). to
expect that this is due to nonlinear effects in the physicak group of 11 data sets bf, such as those in Fig. 8, based on
system which lead to second-harmonic generation. This pher,=0.500 s andr;=0.200 s. Each data set was for a differ-
nomenon is not contained in the theory. ent AT,, and collectively they spanned the range 0.27

ROB= (AT/ATC) RC’ (22)
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FIG. 9. Results fol't, as a function offqa, using the values FIG. 10. Values of the fit parametég , obtained from the least-

t,=0.551 s and ,=0.944 from the least-squares fit described in thesquares fit described in the text. Solid symbols corresponH to

text. The data and symbols correspond to those in Fig. 8. The curvdsased on exposure timeg=0.500 s andr;=0.200 s. For the open

indicate the corresponding theoretical results obtained from{(@&q. symbols 7; was 0.350 s. The solid curve is the polynomig

by using the scale factors of the Rayleigh numbgy from the — =2.74-2.87AT/AT + 1.13(AT/AT.)? which passes through the

least-squares fit. point (1,1). The dashed curve represeki)/(R). and was calcu-
lated from values oR such as those shown in Fig. 4.

<AT,/AT.=<0.86. A separate fit was done to the second

group of nine available data sets basedmgr0.500 s and tion for fr must approach unity adT approached\ T, in
7;=0.350 s. For each group we simultaneously adjuste@rder forT'(q.,AT,) to vanish. As a simplest empirical at-
fq.ty, and 11 or 9fg . We obtained the same resdlfy  tempt to include non-OB effects in the comparison between
=0.944+0.010 from both groups. The fit also gawg experiment and theory, we define, in analogy to B&9), a
=0.551*+0.02 (0.565-0.029) s for the group based an  non-Boussinesq Rayleigh number

=0.200 (0.350) s. Qualitatively consistent with the ex-

pected influence of the symmetric non-OB effects, the fitted

value oft, is somewhat smaller than the value 0.738 s esti- Ruog(AT) = (R(p)) R (26)
mated forp= p. and the experimental valut=34.3 um. As NO8 (R(p))e ¢

said above, part of this difference is attributable to the error

in d indicated by the result obtained fdg. In Fig. 9 we  where as befor&R,=1730 and where the angular bracket
show the results for the produét=T't, for the four ex- indicates an average over the spanned temperénrethus

amples displayed in Fig. 8 as a functionfgg, together with ~ density range along the isobar. The averaged critical Ray-
the corresponding predictions generated by using the valudgigh number(R(p)). is equal to(R(p)) for AT=AT,. It
of fg from the fit. Except for the second-harmonic contri- turmns out that{(R(p)).=1120 for our experiment. This ap-

bution at largeq and AT, the adjusted theory agrees quite Proximation corresponds to a redefined
well with the data.

The values obtained fdig  are given in Fig. 10. The two AT. (R(p))
groups (;=0.200 s andr;=0.350 s) agree very well with fR(AT)= 1= RO
each other, showing that consistent results are obtained with Plle
different exposure times. Also shown is a fit to the data sets o
with 7;=0.200 s in which the individualg , were replaced ~\We note that by definitiofig(AT;)=1 and thusR=1730 as

by a quadratic function which was forced to pass througHt should be. Equatioii27) is plotted in Fig. 10 as a dashed
frk=1 atAT=AT,. This fit gave line. One sees that this simplest non-OB model accounts

very well for the experimental data df;. Of course, it
would be very helpful to have a proper thedrgther than an

(27)

AT AT \? empirical mode) of this interesting effect.
fRIAT/IAT)=2.74-2.8+—+1.1 . (25
AT, AT,
VI. SUMMARY
This two-parameter representationfeffits the data equally In this paper we have reported on experimental and theo-
well. retical studies of the dynamics of thermal fluctuations below

One sees thafy is largest at the smalleT, indicating  the onset of Rayleigh-Berd convection in a thin horizontal
that the estimat&k=Ryg [see Eq.(22)] becomes worse as fluid layer bounded by two rigid walls and heated from be-
AT decreases. This is to be expected because the approximaw. Starting from the fluctuating linearized Boussinesq
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equations, we derived theoretical expressions for the dymade for some experimental uncertainty in the small spacing
namic structure factor and the decay rates and amplitudes detween the plates and an empirical estimate was employed
the hydrodynamic modes that characterize the dynamics dbr symmetric deviations from the Oberbeck-Boussinesq ap-
the fluctuations. The dynamic structure factor is dominategroximation which are expected in a fluid with its mean den-

by a slow mode with a decay rate that vanishes as the Rayity on the critical isochore.

leigh numberR becomes equal to its critical vall, for the
onset of convection.
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