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Variational approach to the modulational instability
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We study the modulational stability of the nonlinear Schinger equation using a time-dependent varia-
tional approach. Within this framework, we derive ordinary differential equati@i3E’s) for the time evo-
lution of the amplitude and phase of modulational perturbations. Analyzing the ensuing ODE'’s, we rederive the
classical modulational instability criterion. The cagelevant to applications in optics and Bose-Einstein
condensationwhere the coefficients of the equation are time dependent, is also examined.
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Modulational instability(Ml) is a general feature of dis- of references includingbut not limited t9 [14]. Further-
crete as well as continuum nonlinear wave equations. Thisore, a similar in spirit, three-mode approximation was sys-
instability shows that in such settings, a specific range ofematically developed in the works of R¢fl5]. There are,
wave numbers of plane wave profiles of the forrfx,t) however, a number of differences between the latter and the
~exfi(kx—wt)] becomes unstable to modulations. The latterpresent approach such as, e.g., our use of the variational
effect leads to an exponential growth of the unstable modeformulation of the problentinstead of the application of the
and eventually to delocalizatiofupon excitation of such three-mode ansatz in the dynamical equation in the context
wave numbersin momentum space. That is, in turn, equiva- of Ref. [15]), as well as the fact that we are perturbing
lent to localization in position space, and hence the formaaround an exact plane wave solution, while in the case of

tion of localized, coherent solitary wave structufés Ref. [15], the plane wave is an additional mode in the rel-
The realizations of this instability span a diverse set ofevant expansion.
disciplines ranging from fluid dynamid¢g] (where it is usu- In the linear stability frameworKsee, e.g., Refd.7,9],

ally referred to as the Benjamin-Feir instabilignd nonlin-  and references therein, for relevant dejaitee stability of
ear opticd 3] to plasma physicf4]. One of the earliest con- the plane waves has been examined. The latter are of the
texts in which its significance was appreciated was the lineaform
stability analysis of deep water waves. It was much later ,
recognized that the conditions for MI would be significantly P(X,0) = tho exli(kx—wt)], @)
modified for discrete settings relevant to, for instance, th
local denaturation of DNAS5] or coupled arrays of optical
waveguidegd6]. In the latter case, the relevant model is the
discrete nonlinear Schdinger equation, and its MI condi- w=k2—Uz,b§. (3
tions were discussed in Rdf7]. Most recently, the Ml has
been recognized as responsible for dephasing and localizdhen, the Ml is examined in the LS framework using the
tion phenomena in the context of Bose-Einstein condensatdgearization
(BEC's) in the presence of an optical latti¢8—11].

In this Brief Report, we present an alternative approach to
the modulational stability of plane waves in the context of
the nonlinear Schidinger equation

&nd constitute exact solutions of the nonlinear Sdimger
equation with a dispersion relation

u(x,t)= (ot ec)exgi[ (kx—wt) +ed(x,t)]} (4
and analyzing th®©(e€) terms as

c(x,t)=cq exgipB(x,t)], d(x,t)=dyexdipB(x,t)].
== o Ul Y%, (1) (5)

where ¢y is a complex field, the subscripts denote partialUSIng A(x,)=aqx—{t, the dispersion relation connecting

derivatives with respect to the corresponding variable,l@nd the wave numbeq and frequency) of the perturbatiorisee,

is a constant prefactdthe strength of the nonlinearityWe e.g. Ref[1)

examine MI using a time-dependent variational approach (—Q+2ka)?=0g%(q>—2U4?) (6)
(TDVA), and study the results in comparison with the stan-

dard linear stabilityLS) calculations. It should be mentioned is obtained. This implies that the instability region for Ed).
that the use of TDVA for the study of solitons at the classicalappears for perturbation wave numbeys<2U ¢g, and in
[12] and even at the quantufi3] level is not novel. What particular only for focusing nonlinearitiggo which we re-
distinguishes our study from these earlier ones is the use aftrict this study.

the MI-motivated ansatz in the TDVisee below We also We now attempt to identify the interval of unstable wave
note in passing that Ml and solitons from a quantum-numbers by means of the TDVA. In particular, we start from
mechanical point of view have been considered in a numbethe LagrangiarL
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doJL JL

L:jw [l(¢*¢_¢¢*)_|¢|2+2|¢|4dx () ——=—=b
= R | dtgp b 0%

=C3b+Cracoq ¢,+ ¢p) + Ub(b%+2a?),
(13

and consider a modulation of the plane wave of the form

y={got+a(t)exdipa(t)]expligx)+b(t)expidy(t)] d ol al
X exp(—igx)exfi(kx— wt)]. (8) arm=r%ﬂb=czasim¢a+¢b), (14)

However, instead of considering the modulation directly atvhere C;=Uy5—q*~2qk, C,=Uyj5, and C3=Uy5—q’

the level of the equation, the variation of our approach is thatt 29k are constant prefactors.

we use the modulational ansatz in the Lagrangian. This con- If we now keep all terms to @) in Egs. (11)—(14)

stitutes the basic novel ingredient of this variational-type ap{which is consistent with an approximation linearaj, we

proach to the modulational instability. obtain
Here we consider an annul@ne-dimensionalgeometry,

which imposes periodic boundary conditions on the wave a=b, (15
function ¢(x) and integration limits &x<27 in Eq. (7). - .

This results in the quantization of the wave numbkrg a=Csasin(¢), (16)
=0,£1,=2,....However, it is clear that our results can be .

easily generalized to the case of an infinite, open system and $=(C1+C3)+2C,c08¢), (17)

to higher dimensions.
After substitution of Eq.(8) into Eqg. (7), we obtain the
variational Lagrangian

where = ¢, + ¢, . The latter equation has the solution

2U 45— 9°)q?
¢<t>=2arcta{@tammwt>]_

L= —2(a%¢,+b’¢p) +2(Uys—a)(a°+b?) (18)
—U¢S—4qk(a2—b2)+4u z/fﬁabcos(¢>a+ bu) Two different cases arise here, corresponding, respec-
44 - tively, to whether the instability criterion is satisfied or not.
+U(@’+b"+4a’v%)]. © Namely, when 2J¢g—q2<0 the solution of Eq(16) is

It is clear from this Lagrangian that the pag(t), ¢p(t) 2Uyf [ T=20 P
can be interpreted as the generalized coordinates of the sys- &0~ \/ 1~ o siV(a"—2U¢p)a7t]% (19
tem, while A(t) =2a?(t),B(t)=2b?(t) are the correspond-

ing momenta. In particular, the pair&\(t),¢,(t) and while when zul//g—q2>o the solution of Eq(16) is
B(t), ¢p(t) are canonically conjugate with respect to the ef-
fective Hamiltonian 2Uy5 ,

a(t)y~ \/1+ 7 sinf\(2Uy5—a?)g%t]%. (20

Her=(Uy3—q?)(A+B)—2qk(A—B)+2U y3AB
= (U5 =% ) 2ak ) Vo The solutions signal the appearance of the modulational

instability when the threshold conditiom?=2U w(z) is
crossed(passing from higher to lower perturbation wave
numbers$. This is also clearly shown in the time evolution of
e%(t) in accordance with Eq$19)—(20) also shown in Fig. 1
in the case ofj=2 for 2U3/q°=0.2 (see the left panel of
Fig. 1) and 2J ¢%3/q?>=1.2 (see the right panel of Fig.)1

An alternative, more intuitive way to appreciate the linear
stability result from a dynamical systems viewpoint. This

U
X cog o+ bp) + Z(A2+ B2+4AB), (10)

which is an exact integral of motion on the subspace spann
by Eq. (8).
The Lagrangian equations of motion are

ddJL L ) consists of reducing Eq¢l1)— (14) to a one degree of free-
dt £:£:a¢a dom setting with an effective potential energy landscape
whose (parametri¢ variation will elucidate the instability.
=C,a+C,b coq ¢, + ¢,) + Ua(a®+2b?), Along these lines, using(t=0)=0 in (without loss of gen-
(11) erality) in Eq. (9) andA(t) =B(t) [from Egs.(12) and(14)]
in Eq. (10), we have
~ 3
gizﬂjézczbsimqm%)’ (12 H=m 2(U¢//S—q2)A+§UA2+2Uz//SA cos¢}=0.
dt iy 9%a (21)

017601-2



BRIEF REPORTS

0.98

0.96

T
~—0.94

0.92

09

0.88 I L L L I L
o

35

PHYSICAL REVIEW B9, 017601 (2004

35

25

0.5

FIG. 1. The left panel shows thstable oscillatorytime evolution ofa(t) for the case R ¢/3/q>=0.2, in accordance with E§19). The

right panel shows théunstable, exponentially growingime evolution

Eliminitating ¢ from Egs.(12) and (21) for A(0)=0, we
obtain the “energy equation” foA

1.
A2+ V=0,

5 (22

where the effective potentidl.4(A) is of the form:

9
Verl(A) = 20%(0%— 2U ) A+ 3U(U g5 — ) A+ S UPA®,
(23

One can then examine the stability of the effective potentia

by evaluating its curvature atA=0. We thus obtain
V2a(A) | a—0=49%(g?—2U43) and hence the potential will
be convex(and therefore the dynamics will be stabfer
q?>2U z/xé, while it will be concave(and the dynamics un-
stablg for g?<2U ¢g. Hence in this case also, we retrieve
the modulational stability criterion. The effective potential is

shown for the modulationally stable, unstable, and marginal

cases in Fig. 2.

Now we turn to a more interesting case, where the coef-
ficient of the dispersion term, as well as the coefficient of the

nonlinear term in Eq(1) are temporally modulated, namely,
we examine the equation

= D(t)(//XX—U(t)llff|21/I.

Our aim is to derive the modulational stability equation via
the TDVA, for generalD(t) and U(t). It is interesting to

(24)

ofa(t) for the case of B y2/q?=1.2, in accordance with E¢20).

retarded time variable. An alternative setting whex@) is
constant, butU(t) can be temporally modulatevia a
Feshbach resonance, i.e., an external magnetic field; see,
e.g., Ref[17]) can be found in Bose-Einstein condensation.
In the latter setting, there has been an explosion of interest
recently in time dependent scattering length and its effect on
patterns, coherent structures, and collapse théeenfimber
of very recent references can be found in R¢i8-21]).
While our primary motivation in considering Ml through the
TDVA in Eq. (24) principally stems from this recently ex-
plored experimental potential in Bose-Einstein condensates,
ve should note that this type of problem was investigated
earlier in nonlinear optics, see, e.g., Re2].

We consider the perturbation of the form

= [ 1+w(t)codqx)] (25

note that this equation has become of increasing importanci
in the past decade due to applications both in optics and alsc
more recently, in soft condensed-matter physics. In particu-
lar, in optics, the case d)(t) periodic andU(t) constant is

of relevance in the context of the so-called dispersion man-
agement. The latter is based on periodic alternation of fibers FiG. 2. The effective potential of E¢23) is shown as a function
with opposite signs of the group-velocity dispersjaB]. We  of A for U= y,=1 and three different values of q=1 (modula-

note in passing that in this application times, in reality, the  tionally unstable; solid ling q= 2 (at the threshold; dashed line
propagation distancé.e., spacg while x corresponds to a andg=2 (modulationally stable; dash-dotted line

IS

) 1.8
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to the plane wave solutions, =eil~K*/oP(ds+feU(9dstkd  computed(for details see Re{18], and references thergin
Notice that in Eq(25), we are using for simplicity a variant 't then becomes naturally an interesting problem in math-
of the ansatz of EQ(®), with a=b, ¢,= ¢, and (without ~ematical physics to determine the stability of Egg) for
loss of generality o=1. Following the same procedure as more general casgg.g., with both coefficients periodically

. = ; varying, etc).
ibic\j\yej" we can obtain the stability equations fwr=w; In this Brief Report, we have revisited the modulational
i

instability from a different point of view, namely, a varia-
_ 3 tional one. We have used this dynamical systems’ type ap-
w,=qg?D(t)w;— —U(t)(wi3+wiwr2), (26) proach to derive the Euler-Lagrange equations for the time-
4 dependent perturbation ansatz parameters and have
examined their stability for different wave numbers of the
W= —[qu(t)—2U(t)]Wr+;U(t)(W?+W,Wi2). (27) perfturbatio_n(which_ affect th_e constants of the e_znsuing_ set of
ordinary differential equations We have retrieved, in a
. . ) simple and intuitive way, the criterion for the instability. The
Hence, at the linear level, we can derive the following staechnique has also been generalized in cases in which the
bility equation: coefficients of the dispersion and/or nonlinearity are tempo-
: rally varying (a case which we have argued to be relevant to
:%Wr_ 92D (1)[2D(t) — 2U(t)w, . (29) a va_ri_ety of applicatior); We have found th_e corre_spondi_ng
D(t) stability condition obtaining a novel ordinary differential
equation, whose special cases correspond to stability or in-
stability criteria established previously. It would be interest-

W,

By determining the windows of stability of the ordinary dif-

ferential equat.ion 0(23), the modulational_ stability of Eq. ing to extend the considerations of this mettfathich seems
(24) is determme(_j. It is f_urther worth noting that far(t) applicable to any setting with an underlying Lagrangian or
constant andJ (t) time periodic, Eq(28) falls into Eq.(2) of  {amiltonian structureto contexts with explicit spatial de-

Rgf. [21] and becomes Hill’s equation fO( whi_ch many sta- pendence of the potentiégee, e.g., Ref$9,11]).
bility results are known in the mathematical literatI23].

Furthermore, in the case &f(t)=1+ 2« cost), Eq. (28) The support of NSEGrant No. DMS-0204585 UMass,
falls into Eq.(2) of Ref.[18] and the resulting equation is of and the Clay InstitutéP.G.K) is gratefully acknowledged.
the Mathieu type for which explicit stability windows can be The work at Los Alamos was supported by the U.S. DOE.
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