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Variational approach to the modulational instability
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We study the modulational stability of the nonlinear Schro¨dinger equation using a time-dependent varia-
tional approach. Within this framework, we derive ordinary differential equations~ODE’s! for the time evo-
lution of the amplitude and phase of modulational perturbations. Analyzing the ensuing ODE’s, we rederive the
classical modulational instability criterion. The case~relevant to applications in optics and Bose-Einstein
condensation! where the coefficients of the equation are time dependent, is also examined.
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Modulational instability~MI ! is a general feature of dis
crete as well as continuum nonlinear wave equations. T
instability shows that in such settings, a specific range
wave numbers of plane wave profiles of the formu(x,t)
;exp@i(kx2vt)# becomes unstable to modulations. The lat
effect leads to an exponential growth of the unstable mo
and eventually to delocalization~upon excitation of such
wave numbers! in momentum space. That is, in turn, equiv
lent to localization in position space, and hence the form
tion of localized, coherent solitary wave structures@1#.

The realizations of this instability span a diverse set
disciplines ranging from fluid dynamics@2# ~where it is usu-
ally referred to as the Benjamin-Feir instability! and nonlin-
ear optics@3# to plasma physics@4#. One of the earliest con
texts in which its significance was appreciated was the lin
stability analysis of deep water waves. It was much la
recognized that the conditions for MI would be significan
modified for discrete settings relevant to, for instance,
local denaturation of DNA@5# or coupled arrays of optica
waveguides@6#. In the latter case, the relevant model is t
discrete nonlinear Schro¨dinger equation, and its MI condi
tions were discussed in Ref.@7#. Most recently, the MI has
been recognized as responsible for dephasing and loca
tion phenomena in the context of Bose-Einstein condens
~BEC’s! in the presence of an optical lattice@8–11#.

In this Brief Report, we present an alternative approach
the modulational stability of plane waves in the context
the nonlinear Schro¨dinger equation

ic t52cxx2Uucu2c, ~1!

where c is a complex field, the subscripts denote part
derivatives with respect to the corresponding variable, anU
is a constant prefactor~the strength of the nonlinearity!. We
examine MI using a time-dependent variational appro
~TDVA !, and study the results in comparison with the sta
dard linear stability~LS! calculations. It should be mentione
that the use of TDVA for the study of solitons at the classi
@12# and even at the quantum@13# level is not novel. What
distinguishes our study from these earlier ones is the us
the MI-motivated ansatz in the TDVA~see below!. We also
note in passing that MI and solitons from a quantu
mechanical point of view have been considered in a num
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of references including~but not limited to! @14#. Further-
more, a similar in spirit, three-mode approximation was s
tematically developed in the works of Ref.@15#. There are,
however, a number of differences between the latter and
present approach such as, e.g., our use of the variati
formulation of the problem~instead of the application of the
three-mode ansatz in the dynamical equation in the con
of Ref. @15#!, as well as the fact that we are perturbin
around an exact plane wave solution, while in the case
Ref. @15#, the plane wave is an additional mode in the r
evant expansion.

In the linear stability framework~see, e.g., Refs.@7,9#,
and references therein, for relevant details!, the stability of
the plane waves has been examined. The latter are of
form

c~x,t !5c0 exp@ i ~kx2vt !#, ~2!

and constitute exact solutions of the nonlinear Schro¨dinger
equation with a dispersion relation

v5k22Uc0
2 . ~3!

Then, the MI is examined in the LS framework using t
linearization

u~x,t !5~c01ec!exp$ i @~kx2vt !1ed~x,t !#% ~4!

and analyzing theO(e) terms as

c~x,t !5c0 exp@ ib~x,t !#, d~x,t !5d0 exp@ ib~x,t !#.
~5!

Using b(x,t)5qx2Vt, the dispersion relation connectin
the wave numberq and frequencyV of the perturbation~see,
e.g., Ref.@1#!

~2V12kq!25q2~q222Uc0
2! ~6!

is obtained. This implies that the instability region for Eq.~1!
appears for perturbation wave numbersq2,2Uc0

2, and in
particular only for focusing nonlinearities~to which we re-
strict this study!.

We now attempt to identify the interval of unstable wa
numbers by means of the TDVA. In particular, we start fro
the LagrangianL
©2004 The American Physical Society01-1
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L5E
2`

` F i

2
~c* c t2cc t* !2ucxu21

U

2
ucu4Gdx, ~7!

and consider a modulation of the plane wave of the form

c5$c01a~ t !exp@ ifa~ t !#exp~ iqx!1b~ t !exp@ ifb~ t !#

3exp~2 iqx!%exp@ i ~kx2vt !#. ~8!

However, instead of considering the modulation directly
the level of the equation, the variation of our approach is t
we use the modulational ansatz in the Lagrangian. This c
stitutes the basic novel ingredient of this variational-type
proach to the modulational instability.

Here we consider an annular~one-dimensional! geometry,
which imposes periodic boundary conditions on the wa
function c(x) and integration limits 0<x,2p in Eq. ~7!.
This results in the quantization of the wave numbersk,q
50,61,62, . . . . However, it is clear that our results can b
easily generalized to the case of an infinite, open system
to higher dimensions.

After substitution of Eq.~8! into Eq. ~7!, we obtain the
variational Lagrangian

L5p@22~a2ḟa1b2ḟb!12~Uc0
22q2!~a21b2!

2Uc0
424qk~a22b2!14Uc0

2ab cos~fa1fb!

1U~a41b414a2b2!#. ~9!

It is clear from this Lagrangian that the pairfa(t),fb(t)
can be interpreted as the generalized coordinates of the
tem, while A(t)52a2(t),B(t)52b2(t) are the correspond
ing momenta. In particular, the pairsA(t),fa(t) and
B(t),fb(t) are canonically conjugate with respect to the
fective Hamiltonian

Heff5~Uc0
22q2!~A1B!22qk~A2B!12Uc0

2AAB

3cos~fa1fb!1
U

4
~A21B214AB!, ~10!

which is an exact integral of motion on the subspace span
by Eq. ~8!.

The Lagrangian equations of motion are

d

dt

]L

]ȧ
5

]L

]a
⇒aḟa

5C1a1C2b cos~fa1fb!1Ua~a212b2!,

~11!

d

dt

]L

]ḟa

5
]L

]fa
⇒ȧ5C2b sin~fa1fb!, ~12!
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d

dt

]L

]ḃ
5

]L

]b
⇒bḟb

5C3b1C2a cos~fa1fb!1Ub~b212a2!,

~13!

d

dt

]L

]ḟb

5
]L

]fb
⇒ḃ5C2a sin~fa1fb!, ~14!

where C15Uc0
22q222qk, C25Uc0

2, and C35Uc0
22q2

12qk are constant prefactors.
If we now keep all terms to O(a) in Eqs. ~11!–~14!

~which is consistent with an approximation linear ina), we
obtain

a5b, ~15!

ȧ5C2a sin~f!, ~16!

ḟ5~C11C3!12C2 cos~f!, ~17!

wheref5fa1fb . The latter equation has the solution

f~ t !52arctanFA~2Uc0
22q2!q2

q2
tanh~A~2Uc0

22q2!q2t !G .

~18!

Two different cases arise here, corresponding, resp
tively, to whether the instability criterion is satisfied or no
Namely, when 2Uc0

22q2,0 the solution of Eq.~16! is

a~ t !;A12
2Uc0

2

q2
sin@A~q222Uc0

2!q2t#2, ~19!

while when 2Uc0
22q2.0 the solution of Eq.~16! is

a~ t !;A11
2Uc0

2

q2
sinh@A~2Uc0

22q2!q2t#2. ~20!

The solutions signal the appearance of the modulatio
instability when the threshold conditionq252Uc0

2 is
crossed~passing from higher to lower perturbation wav
numbers!. This is also clearly shown in the time evolution o
a(t) in accordance with Eqs.~19!–~20! also shown in Fig. 1
in the case ofq52 for 2Uc0

2/q250.2 ~see the left panel of
Fig. 1! and 2Uc0

2/q251.2 ~see the right panel of Fig. 1!.
An alternative, more intuitive way to appreciate the line

stability result from a dynamical systems viewpoint. Th
consists of reducing Eqs.~11!– ~14! to a one degree of free
dom setting with an effective potential energy landsca
whose ~parametric! variation will elucidate the instability.
Along these lines, usingA(t50)50 in ~without loss of gen-
erality! in Eq. ~9! andA(t)5B(t) @from Eqs.~12! and~14!#
in Eq. ~10!, we have

H̃5pF2~Uc0
22q2!A1

3

2
UA212Uc0

2A cosfG50.

~21!
1-2



BRIEF REPORTS PHYSICAL REVIEW E69, 017601 ~2004!
FIG. 1. The left panel shows the~stable oscillatory! time evolution ofa(t) for the case 2Uc0
2/q250.2, in accordance with Eq.~19!. The

right panel shows the~unstable, exponentially growing! time evolution ofa(t) for the case of 2Uc0
2/q251.2, in accordance with Eq.~20!.
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Eliminitating f from Eqs. ~12! and ~21! for A(0)50, we
obtain the ‘‘energy equation’’ forA

1

2
Ȧ21Veff50, ~22!

where the effective potentialVeff(A) is of the form:

Veff~A!52q2~q222Uc0
2!A213U~Uc0

22q2!A31
9

8
U2A4.

~23!

One can then examine the stability of the effective poten
by evaluating its curvature atA50. We thus obtain
Veff9 (A)uA5054q2(q222Uc0

2) and hence the potential wil
be convex~and therefore the dynamics will be stable! for
q2.2Uc0

2, while it will be concave~and the dynamics un
stable! for q2,2Uc0

2. Hence in this case also, we retriev
the modulational stability criterion. The effective potential
shown for the modulationally stable, unstable, and marg
cases in Fig. 2.

Now we turn to a more interesting case, where the co
ficient of the dispersion term, as well as the coefficient of
nonlinear term in Eq.~1! are temporally modulated, namel
we examine the equation

ic t52D~ t !cxx2U~ t !ucu2c. ~24!

Our aim is to derive the modulational stability equation v
the TDVA, for generalD(t) and U(t). It is interesting to
note that this equation has become of increasing importa
in the past decade due to applications both in optics and a
more recently, in soft condensed-matter physics. In part
lar, in optics, the case ofD(t) periodic andU(t) constant is
of relevance in the context of the so-called dispersion m
agement. The latter is based on periodic alternation of fib
with opposite signs of the group-velocity dispersion@16#. We
note in passing that in this application timet is, in reality, the
propagation distance~i.e., space!, while x corresponds to a
01760
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retarded time variable. An alternative setting whereD(t) is
constant, butU(t) can be temporally modulated~via a
Feshbach resonance, i.e., an external magnetic field;
e.g., Ref.@17#! can be found in Bose-Einstein condensatio
In the latter setting, there has been an explosion of inte
recently in time dependent scattering length and its effect
patterns, coherent structures, and collapse thereof~a number
of very recent references can be found in Refs.@18–21#!.
While our primary motivation in considering MI through th
TDVA in Eq. ~24! principally stems from this recently ex
plored experimental potential in Bose-Einstein condensa
we should note that this type of problem was investiga
earlier in nonlinear optics, see, e.g., Ref.@22#.

We consider the perturbation of the form

c5c1@11w~ t !cos~qx!# ~25!

FIG. 2. The effective potential of Eq.~23! is shown as a function
of A for U5c051 and three different values ofq: q51 ~modula-
tionally unstable; solid line!, q5A2 ~at the threshold; dashed line!,
andq52 ~modulationally stable; dash-dotted line!.
1-3
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to the plane wave solutionc15ei [ 2k2*0
t D(s)ds1*0

t U(s)ds1kx] .
Notice that in Eq.~25!, we are using for simplicity a varian
of the ansatz of Eq.~8!, with a5b, fa5fb , and ~without
loss of generality! c051. Following the same procedure a
above, we can obtain the stability equations forw5wr
1 iwi :

ẇr5q2D~ t !wi2
3

4
U~ t !~wi

31wiwr
2!, ~26!

ẇi52@q2D~ t !22U~ t !#wr1
3

4
U~ t !~wr

31wrwi
2!. ~27!

Hence, at the linear level, we can derive the following s
bility equation:

ẅr5
Ḋ~ t !

D~ t !
ẇr2q2D~ t !@q2D~ t !22U~ t !#wr . ~28!

By determining the windows of stability of the ordinary di
ferential equation of~28!, the modulational stability of Eq
~24! is determined. It is further worth noting that forD(t)
constant andU(t) time periodic, Eq.~28! falls into Eq.~2! of
Ref. @21# and becomes Hill’s equation for which many st
bility results are known in the mathematical literature@23#.
Furthermore, in the case ofU(t)5112a cos(vt), Eq. ~28!
falls into Eq.~2! of Ref. @18# and the resulting equation is o
the Mathieu type for which explicit stability windows can b
D

an

p,

i

v
.

01760
-

computed~for details see Ref.@18#, and references therein!.
It then becomes naturally an interesting problem in ma
ematical physics to determine the stability of Eq.~28! for
more general cases~e.g., with both coefficients periodically
varying, etc.!.

In this Brief Report, we have revisited the modulation
instability from a different point of view, namely, a varia
tional one. We have used this dynamical systems’ type
proach to derive the Euler-Lagrange equations for the tim
dependent perturbation ansatz parameters and h
examined their stability for different wave numbers of t
perturbation~which affect the constants of the ensuing set
ordinary differential equations!. We have retrieved, in a
simple and intuitive way, the criterion for the instability. Th
technique has also been generalized in cases in which
coefficients of the dispersion and/or nonlinearity are tem
rally varying ~a case which we have argued to be relevan
a variety of applications!. We have found the correspondin
stability condition obtaining a novel ordinary differentia
equation, whose special cases correspond to stability or
stability criteria established previously. It would be intere
ing to extend the considerations of this method~which seems
applicable to any setting with an underlying Lagrangian
Hamiltonian structure! to contexts with explicit spatial de
pendence of the potential~see, e.g., Refs.@9,11#!.

The support of NSF~Grant No. DMS-0204585!, UMass,
and the Clay Institute~P.G.K.! is gratefully acknowledged
The work at Los Alamos was supported by the U.S. DOE
-

d,

.A.

ys.
@1# C. Sulem and P.L. Sulem,The Nonlinear Schro¨dinger Equa-
tion ~Springer-Verlag, New York, 1999!.

@2# T.B. Benjamin and J.E. Feir, J. Fluid Mech.27, 417 ~1967!.
@3# L.A. Ostrovskii, Sov. Phys. JETP24, 797 ~1969!.
@4# T. Taniuti and H. Washimi, Phys. Rev. Lett.21, 209~1968!; A.

Hasegawa,ibid. 24, 1165~1970!.
@5# M. Peyrard, T. Dauxois, H. Hoyet, and C.R. Willis, Physica

68, 104 ~1993!.
@6# R. Morandotti, U. Peschel, J.S. Aitchison, H.S. Eisenberg,

Y. Silberberg, Phys. Rev. Lett.83, 2726~1999!.
@7# Yu.S. Kivshar and M. Peyrard, Phys. Rev. A46, 3198~1992!.
@8# B. Wu and Q. Niu, Phys. Rev. A64, 061603~R! ~2001!.
@9# A. Smerzi, A. Trombettoni, P.G. Kevrekidis, and A.R. Bisho

Phys. Rev. Lett.89, 170402~2002!.
@10# V. V. Konotop and M. Salerno, Phys. Rev. A65, 021602

~2002!.
@11# F. S. Cataliottiet al., New J. Phys.5, 71 ~2003!.
@12# B.A. Malomed, Prog. Opt.43, 71 ~2002!.
@13# B. Crosignani, P. Di Port, and A. Treppiedi, Quantum Sem

classic. Opt.7, 73 ~1995!.
@14# T.A.B. Kennedy, Phys. Rev. A44, 2113 ~1991!; S.J. Carter,

P.D. Drummond, M.D. Reid, and R.M. Shelby, Phys. Re
Lett. 58, 1841~1987!; P.D. Drummond, S.J. Carter, and R.M
Shelby, Opt. Lett.14, 373 ~1989!; H. Haus and Y. Lai, J. Opt.
d

-

.

Soc. Am. B7, 386 ~1990!; H.P. Thacker, Rev. Mod. Phys.53,
253 ~1981!.

@15# S. Trillo and S. Wabnitz, Opt. Lett.16, 986~1991!; G. Cappel-
lini and S. Trillo, J. Opt. Soc. Am. B8, 824 ~1991!; S. Trillo
and S. Wabnitz, Opt. Lett.16, 1566~1991!.

@16# C. Kurtzke, IEEE Photonics Technol. Lett.5, 1250 ~1993!;
N.J. Smithet al., Electron. Lett.32, 54 ~1996!; I. Gabitov and
S. Turitsyn, Opt. Lett.21, 327 ~1996!; N.J. Smith and N.J.
Doran, ibid. 21, 570 ~1996!.

@17# S. Inouyeet al., Nature~London! 392, 151 ~1998!; J. Stenger
et al., Phys. Rev. Lett.82, 2422~1999!.

@18# K. Staliunas, S. Longhi, and G. J. de Valca´rcel, Phys. Rev.
Lett. 89, 210406~2002!.

@19# F.Kh. Abdullaev, E.N. Tsoy, B.A. Malomed, and R.A. Kraen
kel, cond-mat/0306281 ~unpublished!; F.Kh. Abdullaev,
J.G. Caputo, R.A. Kraenkel, and B.A. Malome
cond-mat/0209219~unpublished!.

@20# E.A. Donleyet al., Nature~London! 412, 295 ~2001!.
@21# P.G. Kevrekidis, G. Theocharis, D.J. Frantzeskakis, and B

Malomed, Phys. Rev. Lett.90, 230401~2003!.
@22# J. Bronski and N. Kutz, Opt. Lett.21, 937~1996!; F.K. Abdul-

laev, S.A. Darmanyan, A. Kobyakov, and F. Lederer, Ph
Lett. A 220, 213 ~1996!.

@23# W. Magnus and S. Winkler,Hill’s Equation ~Wiley, New York,
1966!.
1-4


