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Diffusion in a two-dimensional anisotropic web map by extrinsic noise applied
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Diffusion by an extrinsic noise in a two-dimensional anisotropic web mapping is studied in the case where
an extrinsic noise is applied to the intrinsically perturb@utrinsically active physical quantity and the
intrinsic web diffusion is negligible. Contrary to the case where the extrinsic noise is applied to the other
(intrinsically passivephysical quantity to yield a highly anisotropic diffusion scal{@unyoung Park and C.

S. Chang, Phys. Rev. &, 026211(2001)], the diffusion scaling in this case is found to be isotropic.
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I. INTRODUCTION tional tolK ®?if | <K and proportional t&? (independent of
) if 1>K.

Understanding the effect of extrinsic noise on global dif- In the present work, we study an anisotropic web map in
fusion is an important problem in nonlinear dynamical sys-the case where the extrinsic noise and intrinsic perturbation
tems. In the so-called standard mapping, this problem hagXist on the same physical quantjy]. The present numeri-
been relatively simple and well understddd-3]: Below the cal simulation finds that the diffusion becomes isotropic in
stochasticity threshold, the extrinsic noise generates globdlis case, regardless of the extrinsic noise strength.
diffusion by letting the phase points “leak” across the The paper is organized as follows. In Sec. I, an aniso-
Kol'mogorov-Arnol'd-Moser(KAM ) curves in proportion to  (FOPIC web map is defined with an extrinsic noise existing on
the extrinsic noise strengtf2]. Above the stochasticity the same physical variable as the intrinsic perturbation does.
threshold, on the other hand, the extrinsic noise reduces tHQtseQ' lil, a dettacliled rr:'urr?ef.rl%al tsf;mtulterl‘tlonloll; ‘T%.?f'”‘%s'or?
global diffusion by trapping the phase points in the KAM rates 1S presented, which finds that the giobal diftusion 15
islands[3]. The amount of reduction by the extrinsic noise in isotropic. A simple analytic explanation of the surprising re-

S . y sult is also presented. Conclusion and discussion are pre-
the stochastic diffusion rate is the ratio of phase-space aregs, X P P
S o o . . nted in Sec. IV.
intrinsic to extrinsic stochasticity. This rate of reduction has
been observed to be a universal phenomenon, regardless of
the mapping typg3-5]. I. A NOISY ANISOTROPIC WEB MAP

In the present work it will be assumed that the intrinsic n
perturbation is much below the stochasticity threshold, When we add a toggle factor{1)" to the so-called stan-

hence, the diffusion is entirely from extrinsic noise. In an dard mapping, we obtain an area-preserving anisotropic web

isotropic web mapping, which arises when a linear oscillatormappmg[s]

is resonantly perturbed, it was shown in Rpf] that the

diffusion is isotropic and proportional to the extrinsic noise P, 1=P,+Ksing,,

strength | and square root of the intrinsic perturbation

strengthK (thus, DI \/K) if the extrinsic noisd is weaker _ n

than the intrinsic perturbatiok, andD |2 if | >K. en+1= et (1) Pnis

In an anisotropic two-dimensional web mapping, on the

other hand, it is reasonable to expect that global diffusion byor two variablesP, and ¢,, with the intrinsic perturbation

extrinsic noise is anisotropic. Refereri&g indeed found out parameteK. We callP the intrinsically active quantity ang

that the global diffusion in an anisotropic web map is highlythe passive quantity.

anisotropic when the intrinsic and extrinsic noises do not act Owing to the “toggle” factor in the second equation, we

on the same physical quantity. In this case, diffusion in thecall it toggle mapping. When the toggle factor is replaced by

extrinsically perturbed direction shows the same scaling aanity the standard mapping is restored. Figure 1 shows the

that in the isotropic web mapping, i.e., proportionall t& phase-space structure of this mapping for ememumbers.

for <K and tol? for I>K. On the other hand, diffusion in Odd n numbers form a similar phase-space structure at a

the intrinsically perturbed direction is different: it is propor- different ¢ location. The phase space is divided into infi-
nitely periodic, two-dimensional, anisotropic tiles. The
boundary between the tiles form a connected web structure

*Also at Courant Institute of Mathematical Sciences, New York (separatrix network Within a tile, the phase points rotate
University, New York, NY, USA. along the closed KAM curves. Properties of the intrinsic glo-
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FIG. 1. Phase-space structure of EB) for =0 in the limit
K—0, where connected separatrix network is given by ¢os
+cosfp+P)=0. P and ¢ are in radians. )

bal web diffusion in the toggle mapping for large enough FIG. 2. DP(r:_;ldiar?/mapping step) vs the dimensionl'ess noise
is not much different from those of the usual isotropic webStrengthl. Solid lines represerid,=0. 34| VK and dotted line rep-
mapping[5]. resentsD ,=14/2.

Referencel5] studied the extrinsic noise effect on this
mapping when the extrinsic noise explicitly scatters the pasthat T=1000 andN=2x 10° are proper. The dimension of
sive quantitye: Dp (orDy) is [radiarf/mapping step
Figures 2 and 3 show numerically evaluated diffusion co-

P,.1=P,+Ksing,, efficientDp in terms of the extrinsic noise strendtnd the
internal perturbation strengtt, respectively. Figures 4 and 5
Oni1=ent (—1)"P, .+, (1)  show numerical diffusion coefficied,, in terms of the ex-

trinsic noise strength and the internal perturbation strength

wherel ¢ is the extrinsic noisd, is the noise strength, angl K. Dp andD,, show identical behavidfisotropig except for

is taken to be a normal distribution of random numbers withthe factor-of-2 differencep=2D ). The factor-of-2 dif-
variance=1 and mean~0. As summarized in the preceding ference does not have a physical significance since the vari-
section, Ref[5] found out that the global diffusion is highly ables can be uniformly rescaled to remove it. Furthermore,
anisotropic. This finding presented no surprise since th¢he diffusion exhibits the same scaling law as in the isotropic
mapping itself is highly anisotropic. web map[4], which isDx=|K for smalll <K¥? andD«|?

The extrinsic noise can also enter in the actiPg direc-  for largel>K2
tion in a real physical situatiofg]. In this case the noisy This result is remarkably different from the case where

toggle mapping can be represented by the extrinsic noise is in the passive)(direction. In that case
. the diffusion is highly anisotropi¢5]: Dp~IK*? and D,
Pn+1=PhtKsing,+1§, ~IK¥2at lowl; andDpxK? andD .12 at highl. By simply
=@nt(—1)"Ppyy. 2 ]
1= ent(—=1)"Ppys 2 ] 0.34rlK"> m = 0.2666
In the present study we use the numerical technique of Ref L 12/2 4 lf 0.3325
. . - o [=0.4443
[5] to evaluate diffusion coefficients from E(R). = 14
) 3
@
Ill. DIFFUSION COEFFICIENTS ~
c
The discrete mapping, E@2), is studied numerically. In %
order to measure the diffusion coefficient, a single orbit is £ ¢4
broken intoN segments, each of which h&isnapping steps. QQ ]
Thus, the total length of the whole orbit BT. Numerical
diffusion coefficient forP (or ¢) is then given by
N
1 1 0014 S — S
De=1; 2, 57 (Pi=Pi_1)? 3 0.01 01 1
N i=1 2T K

Here, T must be sufficiently large to ensure that the transient  FIG. 3. D (radiarf/mapping step) vs the dimensionless intrinsic
behavior dies out, andl must be large enough to provide perturbation strengti. Solid lines represend,=0.347l /K and
meaningful statistics. As demonstrated in the R&fwe find  dotted lines represem,=1%/2.
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TABLE |I. Comparison between the extrinsic-noise-driven diffu-

100
—— 0.17nlK"? sion coefficients. The intrinsic perturbation is Bn
104 e 12/4 e
. .o Extrinsic noise onp Extrinsic noise orP
Q a
g 1 I>K l<K I>K l<K
E 04 D, K2/4 0.08r71K %2 1212 0.3471 VK
5 D, 12/2 0.2071 /K 1214 0.1771\K
é 0.01
0.001 o K=002513 The K dependent terms produce KAM rotations and separa-
: 4 K: 0.1257 trix structure of Fig. 1 and thedependent terms induce the
, © K=0.2513 ; e
tile-to-tile diffusion.
0.0001-— YT Notice here that the extrinsic noise, which was originally
introduced in the activé® direction in Eq.(2), propagated
! into the passivep-direction in Eq.(4). Under the present

FIG. 4. D(P(radiari’-/mapping step) vs the dimensionless noise assumption of s.m'aIK, thel t'erm's within theK-proportional
terms play negligible contribution compared to the standal-

strengthl. Solid lines represerid ,=0.17xl VK and the dotted line J .

represent® ,=12/4. onel terms. Since¢; and &, are two independent random
numbers](§1+§z) in Pnyo—Pyandlé;in Pn+27 Pn ple_\y

moving the extrinsic noise to the intrinsically acti¢@) di-  the same physical roles. Only the magnitudes are different

rection, the extrinsic-noise driven diffusion of the anisotropic(by \/5)-

web map becomes basically the same as that of the isotropic This behavior of the extrinsic noise is in contrast with the
map. case studied in Ref5] where the extrinsic noise originally

We find that this interesting behavior can be easily underentered in the passive direction. The two-step mapping

stood by a simple transformation of the mapping equai@n equation in that case becomes, from EL,

into the two-step mapping equation _ i )
P,.»=P,+Ksing,+Ksin(¢,+P,+Ksing,+1&;),

P =P,+Ksing,+ K si +P.+K sin
n2= oot Ksi(go+ Py e Ons 2= on— K SiN(@q+ P+ K sing,+1£0) +1(£,+ &),
+1E&)+H1E+1E,, (5)

—o.—Ksi +Ksino+P.+1E)—1&,. (4 The lowest-order extrinsic noise is confined ¢oonly, in
¥n+2= @n en ent Potlé)=le. (4 sharp contrast to Eq¢4). Hence, Eq(4) is basically isotropic

The one-step mapp|ng equa“(ﬁa) produces two separate with respect to the extrinsic noise, while 35) is inherently

phase plots at two differenp locations, one corresponding anisotropic. o _

to evenn and the other to odd. By taking a two-step dif- In the direction of extrinsic noiseg(), Ref.[5] showed

ference in Eq.(4), we have isolated the phase plot corre-that the diffusion obeys noisy scalingeI K for small|

sponding to evem numbers, as shown in Fig. 1 fo=0.  <K“?andDxI? for large|>K"2 In the present case, the
extrinsic noise is active in both directions. Thus, the diffu-

1 sion follows the noisy scaling in both directions, yielding an

1| —— 0.17alK™? R §= g~§ggg isotropic diffusion scaling.
-~ 1/4 o I=0.4443

IV. CONCLUSION AND DISCUSSION

We have shown that an extrinsically driven diffusion from
a two-dimensional anisotropic web mapping can be different
depending upon how the extrinsic noise enters into the sys-
tem. If the extrinsic noise is applied to the passive quantity,
the noise does not propagate into the active quantity. The
diffusion is then highly anisotropic. However, if the extrinsic
noise is applied to the intrinsically active quantity, the noise
propagates into the passive quantity. Diffusion in this case
0.01- becomes isotropic, following a noisy scaling of Ref].
YT Y In other words, an extrinsic noise in the passive direction
K makes only a small _contrlbutlon to the d|ﬁgS|qn in t.he intrin-
sically active direction. However, an extrinsic noise in the
FIG. 5. D (radiarf/mapping step) vs the dimensionless intrinsic active direction drives a large diffusion in the passive direc-
perturbation strengtik. Solid lines represend,=0.17r1\K and  tion. The diffusion coefficients are summarized and com-

dotted lines represem ,=1%/4. pared in Table I.

(radian? / step)
©
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