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Scale-free network on a vertical plane
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A scale-free network is grown in the Euclidean space with a global directional bias. On a vertical plane,
nodes are introduced at unit rate at randomly selected points and a node is allowed to be connected only to the
subset of nodes which are below it using the attachment probabilify) ~k;(t)€“. Our numerical results
indicate that the directed scale-free network de+0 belongs to a different universality class compared to the
isotropic scale-free network. Far< «, the degree distribution is stretched exponential in general which takes
a pure exponential form in the limit at——cc. The link length distribution is calculated analytically for all
values ofa.
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It has been seen in many branches of statistical physicelevant question is how to optimize the total cost of the
that a global directional bias in space has strong effect on theonnections, e.g., electrical wires, Ethernet cables, or say
critical behavior of simple models. Introduction of a pre- travel distances of postal carrigis7]. On the other hand a
ferred direction in the system reduces the degrees of freedoffetailed knowledge of link length distribution is also impor-
of the constituting elements of the system, which shrinks théant in the study of Internet’s topological structure for de-
configuration space available to the system compared to thgigning efficient routing protocols and modeling Internet
undirected system. As a result a directed system is simpldraffic. For example, Waxman model describes the Internet
and quite often tractable analytically. Examples include di-with exponentially decaying link length distributiofi8].
rected percolatiofil], directed sandpile modéP], directed Yook et al. observed that nodes of the router level network
river networks[3], and directed self-avoiding walkd] etc. = maps of North America are distributed on a fractal set and

Over the last few years it is becoming increasingly evi-the link length distribution is inversely proportional to the
dent that highly complex structures of many so¢Bl| bio-  link lengths[19]. Other models of networks on Euclidean
logical [6,7], or electronic communicatiofi8,9] networks space are also studied in the literat{2@—22.
etc. cannot be modeled by simple random graphs. For ex- In this paper we studied the effect of a global directional
ample, in the well known random graphs by Esdand Re  preference on the statistics of scale-free networks embedded
nyi, the degree distributioR (k) is Poissoniaridegreek of a  in the Euclidean space. A typical link in this model must
vertex is the number of edges attached ¢10]. In contrast, have a positive component along some preferred direction.
it has been observed recently that the nodal degree distrib®imilar to the directed versions of well known models of
tions of many networks, e.g., World Wide W8] and the  statistical physic§1—4] our spatially directed networks have
Internet[9] have power law tailsP(k)~k~”. Due to the different universal critical behavior compared to their undi-
absence of a characteristic value for the degrees these néected counterparts.
works are called “scale-free networks{SFN) [11-14. A two-dimensional network is grown whose nodes are
Barabai and Albert(BA) generated scale-free graphs wherethe points at randomly selected positions within an unit
a fixed number of vertices are added at each time and agguare on the verticat—y plane. To construct a network
linked with a linear attachment probabilitg1]. On the other of N+1 nodes, letXq,X;,Xz, ... Xy) @and {y1,Y2, ... ,YN)
hand some of these networks are directed networks whodge the N+1 independent random variables identically
links are meaningful only when there is a connection fromand uniformly distributed within the intervel0,1}. Let a
one end to the other but not the opposite, e.g., the Worlépecific set of values of the random variables
Wide Web[8], the phone-call graphl5], and the citation {(X0,0),(X1,Y1),(X2,Y2), . ... (Xn,Yn)} represent the coor-
graph[16]. dinates of theN+ 1 randomly distributed points. The growth

However, there are networks in which the nodes are geosf the network starts with only one nodgy(0) on the bot-
graphically located in different positions on a two- tom side of the unit square and then the other nodes are
dimensional Euclidean space, e.g., electrical networks, Inteadded one by one at unit rate according to their serial num-
net, or even in postal and transport networks etc. The edgdsersi=1 to N.
of the graphs representing these networks carry nonuniform We assume that the global directional bias is the gravity
weights which in most cases are either equal or proportionadnd acts along the y direction which restricts the choice of
to the Euclidean lengths of the links. In these networks ahe link: a new node can only be connected to a node posi-

tioned below this node. In practice when thia node is
introduced, we consider the subsgtof the nodes situated
*Electronic address: manna@boson.bose.res.in below thetth node. Thetth node is then connected to any

1063-651X/2004/64)/0171024)/$22.50 69017102-1 ©2004 The American Physical Society



BRIEF REPORTS PHYSICAL REVIEW B9, 017102 (2004

10 T T T T
10" | 4
1010 [ _‘
10° | 3
10° | 3
10 4
= 10°f -
Z 10° | 3
& 4
& 107 F .
FIG. 1. Pictures of the networks generated from the same dis- 10° b 3
tribution of 513 points within the unit box. A large degree node is s F
visible for a DSFN in(a) and long length early links are observed 101 _ _
for a DMGN in (b). 10 F .
. . g 100 ;- -;
node of this subset using some specific attachment rule. Ir | E
addition, we assume that from each node only one link o F | | . . 3
comes out but any number of links can terminate on this N TS R T TS T
node. This condition ensures that the network is a singly k/N

connected tree graph. Initially the zeroth point is assigned

the degreeky(0)=1. Link lengths are measured using the FIG. 2. The scaled degree distribution for DSFN for network
periodic boundary condition imposed only along theirec-  SizesN=2"%2", and 2° The collapse of the data at largealues
tion because of the anisotropy. Depending on how a nod#nPly that the degree distribution exponeyit-2.4.

from the subses, is selected for connection we consider the )
following two models: is compared withy=3 for the BA model of SFN'11] and

(a) Directed scale-free network (DSFNJhe tth node is therefore it seems that DSFN belongs to a new universality
randomly connected to a nodeof the subsetS, using an class different from BA SFN. On the other hand the degree
attachment probability which is linearly proportional to the distribution for the DMGN~|s found to decay exponentially
degreek;(t) of the nodei at timet as: ;(t) ~k;(t). as,P(k)~exp(-«k) with x~0.74. .

(b) Directed minimal growing network (DMGNYhe tth For a tree graph, the branch size distribution is very im-
node is connected with probability one to the nearest node iHo_rtanthand thi agsomated exponent maK bg used to charac-
the subses;. Pictures of typical network configurations are terize the graph. On a tree structure, each edge connects two
shown in Fig. 1. branchgs of the tree. If an edge is selected randomly, the

A continuous tuning between these two different modeld’roPability Probg) that any one of the two branches sup-
is possible by the choice of a suitable tunable parameter porEsTs nodes also decqys with 'a power law tail, Pr)b(
This is achieved by modulating the attachment probability in~S and follows a scaling form:

DSFN by a link length¢ dependent factor like Prol(s) ~N~7G(s/N¥%b). (3)
mi(O)~ k(€. @D For DSFN, we obtaing,~2.15 and{,~1, which implies

This introduces a competition between the roles played bt‘%hat TosFn™~2.15 compared fo its exact value 2 for the BA

the degree as well as the link length on the attachment pro
ability. The limiting extreme cases are the above two models.
In the case withw=0 the link lengths do not play any role
and therefore the model correspond®iSFN. On the other
hand whena= —« only the shortest link is selected with
probability one irrespective of the degree of the node an
therefore the model corresponds to DMGN. First we stud
these two limiting cases.

For a scale-free network the nodal degree distribution ha
a power law tailP(k) ~k™ 7 and it obeys a finite size scaling
form:

cale-free network23]. On the other hand for DMGN we
ind 7,~2 and{,~1 so thatrpygn=2.

The probability density distributio® (€) gives the prob-
ability D(€)d¢ that an arbitrarily selected link has a length
between¢ and ¢ +d¢. For the undirected scale-free Euclid-

an networks we saw th&t(¢) has a power law variation

(€)~+€°[19,27. D(£) can be calculated exactly for both
DSFN as well as DMGN in the following way. Let us try to
stign a link to ther{+ 1)th node and denote=y, ;. Let
n, points be positioned below thg level andn,=n—ny
points be above this level.

We first calculateD pygn(€). The probability that out of

P(k,N)~N~7F(k/N?). (2) Ny nodes the node which is nearest to time-(1)th node is

positioned at a distance betweérand ¢ +d{ has two dis-

We numerically find that the degree distribution of DSFN tinct contributions: One from the case of gl¢ and the
(excluding the node on the bottom linedeed follows such other for ally<¢ (due to the presence of the boundary at

a scaling form with7»p~2.40+0.05 and{~1.00=0.05 (Fig. = y=0). When the (+ 1)th point is at a specific heiglyt the

2). This givesypesn= 17/ {~2.4+0.1. This value ofypggy  first contribution is a product of three factors?d¢ for the
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FIG. 3. Variati ¢ th lusteri ficients f fit to the data pointqcircles obtained by simulation to a form:
- 3. Variations of the average clustering coefficients for g ,)—a(—o)"—b such thatg is extrapolated to zero ai,

DSFN: (a) Over the whole networkC(N)~N~#~ and(b) Over the 0.85.
subset of nodes having degreenly C(k)~[k(In K)] 4 Our esti-
mates argy~0.23 andg~0.64. As before a similar sum over and integration ovey from

) ) o o . =0 to y=¢ in the above expression gives the following
nearest point being within the annular semicircular ring ofcontribution toD(¢) for all y<¢:

radii € and € +d¢, restn;—1 points below they level but

outside the semicircle of radiué, and the remainingn,

points being situated above tlyelevel. Therefore the first Dpomen(Y<¢€)= —
contribution can be expressed as ¢

. L ot
mdC3] _o{"Cp tnaly — m€2/2]" (1 —y)" where A=f _esnz o,

0 sin"lz+zJ1-22

=mede(n)[1—7€32]"" 1.
Hence the total distribution is given by

Here the weight factor from each partitioning wfinto n;

andn, has been taken into account. The above probability Doman(€)= is 1— 1—ZA>4. @)
after integration over from ¢ to 1 and summed over all wf 4
n from 0 to « gives the net contribution t®(¢) for all y
>{: For the DSFN also one has
w 1a¢
Domen(y>€)=ml[1= €135 on[1—m¢?/2]" DDSFN(y>€)=Cj 5
¢
4 (1-¢) 2 sin Y(y/¢
= LT ¢ sin”
m® and DDSFN(y<€)=cf ¢ %d ,
0

Similarly the probability that ther(+1)th point is at @ spe- \yhere C is a constant. The total distribution is therefore
cific heighty<¢ is (note that here part of the semicircle of giyen py

aream(?/2 lies outside the boundary
Dosen(€) =C[BE =7 In(€)],

Y
2¢sin = des) _("C, H(ny) 1sin 1z
¢ R where B=2f dz.
y n;—1 0
— 2cin— 12 [p2 _\,2 _\y\n
Xy (€ sin=7 TFYNETy ” (1=y)™ From our numerical calculations we estimaie-1.59 and
I B~1.86. For any nonzere, the corresponding distribution
—o¢ sin‘lgn 1—(€Zsin‘l%+ym” de. E;ng(tl)e obtained by simply multiplying the above expression
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The clustering coefficien€(N) of a network ofN nodes plies that the stretched exponential form continues to be
measures the the local correlations among the links of thealid till «=a., where 3=0 and beyond that the degree
network. More precisely it measures the probability that twodistribution is a power law. Though from the valuesagi,
neighbors of an arbitrary node are also neighbors. Ifithe andb, a. is estimated to be-0.85 we believen,=—1 is
node has the degrde and there are; links among theki  more plausible. Also our numerical results indicate that for
neighbors ofi then the clustering coefficient of the sités gl 4> q, the degree distribution exponegtmaintains its
Ci=2¢/[ki(ki—1)], whereas the clustering coefficient of \51ue of a=0.

the whole network isC(N)=(C;). For a number of net- 14 symmarize, we studied the directed version of the

works it has been observed that the clustering Coeﬁ'c'enﬁarabasi-Albert scale-free network grown on a two-
i i ~N~ B i . . . .

decreases V‘;'tm like C(Né f_N N "’I‘S the netwo:cr_ SIZﬂ:\I dimensional vertical plane. Our numerical results on degree

mcreasej. Also ?}”e cr;n e |fne %C ustfegng coe rl]@( ) as well as branch size distributions indicate that this network

averaged over the subset of nodes of dedr@m the net- 010045 10 a different universality class compared to its un-

~k=B . . -
work. It has been also observed thak) ~k™7 for some ﬁlrected version. A competition between the dedkex the
networks. We estimated these exponents for DSFN an odes and a link length dependent factdr in the attach-

fom_md t_hat,BN%O.ZS, wheE%?Q(k) haf a Iogar_ithmic modu- ment probability is seen to control the network behavior. In
Iat|0_n like C(k) ~[k(Ink)] .W.'th Bi~0.64(Fig. 3)'. .. the limit a——2 one gets the directed minimally growing
Flna!ly we study the var|at|on ,Of the degree distribution network with exponentially decaying degree distribution.
P(k) with the parameter. For finite negative values ot o yever for finite negative values afstretched exponential
the distribution fits very well to a stretched exponential form: gistributions are observed. The link length distribution is cal-

P (k) ~exp(-ck¥?), whereB(a) is expected to reach to one . jated analytically for all values f.
asa——> and to zero asr— a.. Our numerical estimates

for B have been plotted in Fig. 4 withk and this data fits G.M. gratefully acknowledges facilities at S. N. Bose Na-
very well to form B(«)=a(— «)”—b, where the constants tional Center for Basic Sciences. P.S. acknowledges financial
are estimated to ba~0.47, v~0.51, andb~0.43. This im-  support from DST, Grant No. SP/S2-M11/99.
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