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Lattice models for large-scale simulations of coherent wave scattering
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Lattice approximations for partial differential equations describing physical phenomena are commonly used
for the numerical simulation of many problems otherwise intractable by pure analytical approaches. The
discretization inevitably leads to many of the original symmetries to be broken or modified. In the case of
Maxwell’s equations for example, invariance and isotropy of the speed of light in vacuum is invariably lost
because of the so-called grid dispersion. Since it is a cumulative effect, grid dispersion is particularly harmful
for the accuracy of results of large-scale simulations of scattering problems. Grid dispersion is usually com-
bated by either increasing the lattice resolution or by employing higher-order schemes with larger stencils for
the space and time derivatives. Both alternatives lead to increased computational cost to simulate a problem of
a given physical size. Here, we introduce a general approach to develop lattice approximations with reduced
grid dispersion error for a given stencil~and hence at no additional computational cost!. The present approach
is based on first obtaining stencil coefficients in the Fourier domain that minimize the maximum grid disper-
sion error for wave propagation at all directions~minimax sense!. The resulting coefficients are then expanded
into a Taylor series in terms of the frequency variable and incorporated into time-domain~update! equations
after an inverse Fourier transformation. Maximally flat~Butterworth! or Chebyshev filters are subsequently
used to minimize the wave speed variations for a given frequency range of interest. The use of such filters also
allows for the adjustment of the grid dispersion characteristics so as to minimize not only thelocal dispersion
error but also theaccumulatedphase error in a frequency range of interest.

DOI: 10.1103/PhysRevE.69.016701 PACS number~s!: 02.60.Cb, 03.50.De, 41.20.2q
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I. INTRODUCTION

Grid ~numerical! dispersion is a major source of error
the simulation of wave phenomena using discretized eq
tions on a lattice@1–5#. Grid dispersion manifests itself as
change on the phase velocity of the wave according to
quency and propagation angle and, because it is a cumul
effect, it poses serious limitations particularly for large-sc
~time-domain! simulations of coherent wave scattering.

Grid dispersion is usually combated by either increas
the resolution of the lattice~i.e., approaching the ‘‘continuum
limit’’ ! or by employing higher-order schemes which utili
larger stencils to approximate space and time derivative
the cost of loss of sparsity~‘‘locality’’ ! of the discrete mode
~spectral methods@4# can be thought of as the extreme e
amples in this direction!. Both alternatives lead to an in
creased computational cost to simulate a problem of gi
physical size. For electrodynamics, several techniques h
been developed over the years to reduce grid dispersion
@4–13#. In particular, space and time fourth-order accur
@~4,4! schemes# finite-difference time-domain ~FDTD!
schemes@4# have been shown to provide an attractive tra
off between increased computational cost and reduced
persion error@14#. Grid dispersion on finite element solution
have been extensively discussed in, e.g., Refs.@15,16#.

For most time-domain simulations of wave phenome
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the minimization of the local and accumulated dispers
error over a finite range of frequencies is often more relev
than the theoretical order of accuracy of the lattice appro
mation itself, where ‘‘order of accuracy’’ refers to the beha
ior of the truncation error of the scheme as the lattice spac
goes to zero~low frequency or long wavelength limit!. This
is because of two interconnected reasons. First, the lim
never taken in practice and, second, practical simulations
volve computational domains of fixed physical size, and, a
result, long wavelengths imply electrically smaller doma
where theaccumulatedphase error~which grows linearly
with the electric size of the domain! is much less of a prob-
lem.

One relevant question is then how to construct, give
particular stencil~and hence, computational cost!, optimal
lattice approximations for wave problems in the time dom
with optimal dispersion-relation-preserving~DRP! properties
over a given~possibly wide! frequency band. Moreover, a
alluded to above, since the high frequency spectrum is s
ject to larger cumulative phase error effect than the low f
quency spectrum, it is also of interest to investigate the p
sibility of constructing lattice approximations where th
~local! incurred dispersion error is actually lower at high fr
quencies than at low frequencies~traditionally, the opposite
is true!.

With the above observations in mind, we shall descr
here a general methodology to develop lattice approxim
tions of continuum equations with DRP properties. T
methodology is based on first obtainingfrequency dependen
stencil coefficients in the Fourier domain to minimize t
©2004 The American Physical Society01-1
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maximum grid dispersion error for wave propagation at
directions ~in a minimax sense!. The resulting coefficients
are then expanded into a Fourier series in terms of the
quency variable and incorporated into the time-domain~up-
date! equations after an inverse Fourier transformati
Maximally flat ~Butterworth! and Chebyshev filters are fur
ther used to minimize the wave speed error for a freque
range of interest. Moreover, the use of such filters allow
the adjustment of the grid dispersion characteristics so a
minimize both thelocal dispersion error and theaccumu-
lated phase error in a frequency range of interest. For c
creteness, we employ Maxwell’s equations in 211 dimen-
sions as example, but the same methodology is applicabl
other dimensions and other linear wave phenomena as w

II. METHODOLOGY

Because the dispersion error in FDTD simulations is
general a function of both frequency, propagation angle,
the particular Courant-Friedreich-Lewy~CFL! number, sev-
eral definitions of minimum dispersion error@4# are possible.
We define it here in the minimax~minimum maximum!
sense, i.e., for a given CFL number, the maximum dispers
error for all angles is minimized up to a certain maximu
frequency. More specifically, by denoting the dispersion
ror asd( f ,k̂,x), wheref denotes frequency,k̂5 k̄/uk̄u is the
unit propagation vector, andx is the CFL number, the DRP
FDTD seeks to minimize the objective functionF
[max$ud (f,k̂,x)u;0<f<fm, x5x0,;k̂.%. To coincide with the
case of most practical interest, the particular CFL numberx0
will most often be considered the maximum allowed fro
the CFL condition.

The DRP procedure here consists of three main steps~1!
For a scheme with given ‘‘order of accuracy in space’’~sten-
cil!, the dispersion error is expanded in a Fourier series
terms of the propagation angle, the leading terms of wh
are made equal to zero, and analytical expressions for
DRP coefficients are subsequently derived as a function
frequency.~2! These analytical expressions are then cast
a form implementable in the fully discrete problem~FDTD
update! by using polynomial expansions in terms of the fr
quency variable followed by an inverse Fourier transform
tion. ~3! Filtering schemes~maximally flat or Chebyshev! are
used to fine tune the DRP two-dimensional~2D! FDTD co-
efficients for a~possibly broad! range of frequencies of in
terest.

The first step consists in considering a scheme wit
given order of accuracy in space. Higher order of accurac
time is introduced in the second step as we expand the
lytical solution in series. The term order of accuracy in spa
is borrowed here from traditional higher-order schemes e
ploying Taylor expansions only@6,7#. Since this work treats
the problem from a different standpoint, this term does
retain its original meaning. The term order of accura
should rather be considered here as referring to a clas
spatial stencil sizes~and not necessarily to the order of th
truncation error as the discretization cell approaches ze!.
As we will see, the major difference between the DR
higher-order schemes derived here and traditional hig
01670
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order schemes resides in the coefficients and not on the
ticular stencil.

A. Nonfiltered, DRP „4,2… schemes

A traditional leap-frog scheme with second order of acc
racy in space can be written in general as

Exm11/2,n
l 11 5Exm11/2,n

l 1
Dt

eDy
Gx~Hzm11/2,n11/2

l 11/2

2Hzm11/2,n21/2
l 11/2 !, ~1!

Eym,n11/2
l 11 5Eym,n11/2

l 1
Dt

eDx
Gy~Hzm21/2,n11/2

l 11/2

2Hzm11/2,n11/2
l 11/2 !, ~2!

Hzm11/2,n11/2
l 11/2 5Hzm11/2,n11/2

l 21/2 1
Dt

mDy
Gx~Exm11/2,n11

l

2Exm11/2,n
l !1

Dt

mDx
Gy~Eym,n11/2

l

2Eym11,n11/2
l !, ~3!

where the subscripts denote the spatial location and the
perscripts denote the time step. We treatGx and Gy as un-
known coefficients for the moment. In the above, reciproc
is explicitly enforced@17,18# in order to obtain a condition-
ally stable scheme. TheE andH fields can be expanded int
a discrete set of Fourier modes. For each mode

Exm11/2,n
l 5E xe

j v lDte2 j [kx(m11/2)Dx1kynDy] , ~4!

Eym,n11/2
l 5E ye

j v lDte2 j [kxmDx1ky(n11/2)Dy] , ~5!

Hzm11/2,n11/2
l 11/2 5Hze

j v( l 11/2)Dte2 j [kx(m11/2)Dx1ky(n11/2)Dy] .
~6!

Substituting Eqs.~4!–~6! into Eqs. ~1!–~3! and noticing
that Ex52E sin(u), Ey5E cos(u), andHz5H, we have

sinS vDt

2 D E sin~u!5
Dt

eDy
GxH sinFk sin~u!Dy

2 G , ~7!

sinS vDt

2 D E cos~u!5
Dt

eDx
GyH sinFk cos~u!Dx

2 G , ~8!

sinS vDt

2 DH5
Dt

mDy
GxE sinFk sin~u!Dy

2 Gsin~u!

1
Dt

mDx
GyE sinFk cos~u!Dx

2 Gcos~u!, ~9!

where kx5k cos(u), ky5k sin(u). The numerical dispersion
relationship can be derived from Eqs.~7!–~9! as
1-2
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1

~vpDt !2
sin2S vDt

2 D5
Gx

2

Dy2
sin2Fk sin~u!Dy

2 G
1

Gy
2

Dx2
sin2Fk cos~u!Dx

2 G , ~10!

wherevp5Ame. For a given set of coefficientsGx and Gy
~in the classical Yee’s scheme@4# these are equal to unity!,
the above equation is traditionally used to analyze the
crete dispersion in the FDTD grid. The amount by which t
discrete dispersion relation deviates from the continu
limit gives the local dispersion error. In this work, we sh
adopt the reverse standpoint. That is, we shall enforce
exact relation between frequency and wave number, vizv
5vpk, for Eq. ~10!, and then solve forGx and Gy as the
unknowns~in an approximate sense to be clear later o!.
Ideally, the exact solutions forGx andGy should depend on
both the frequency and propagation angle. We shall first
pand the dispersion error in terms of a Fourier series in te
of the angular variableu and enforce coefficients on th
series to be zero~the number of coefficients made equal
zero give the ‘‘order’’ of the method!. In this manner, the
maximum dispersion error for all angles is minimized sim
taneously, andGx and Gy become a function of frequenc
only. This latter property allows for incorporation of the DR
coefficients in FDTD algorithms after a polynomial expa
sion.

A simpler but equivalent way of solving forGx andGy in
Eq. ~10! is to enforcev5vpk into Eqs.~7! and~8! and solve
for Gx andGy , respectively.@Note that~from the symmetry
of the problem! by lettingDx→Dy andu→u1p/2, Eq.~8!
reduces to Eq.~7!. In particular if Dx5Dy, we should of
course expectGx5Gy after these coefficients are reduced
functions of frequency only.# We start by defining an erro
functional proportional to the difference between left-ha
side ~lhs! and right-hand side~rhs! of Eq. ~7!:

d2~Gx ,u!5
A2

xy
sinS pqyxy

A2
D sin~u!2Gx sin@pqy sin~u!#,

~11!

where xy5A2vpDt/Dy, qy5Dy/l. Solving Eq. ~7! with
v5vpk is therefore equivalent to lettingd2(Gx ,u)50 and
enforcingE/h5H.

We expandd2(Gx ,u) in a Fourier series in terms ofu and
use the following identities:

E
0

2p

sin@x sin~u!#cos~nu!du50,

E
0

2p

sin@x sin~u!#sin~nu!du52pJn~x!

for odd n and

E
0

2p

sin@x sin~u!#cos~nu!du50,
01670
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0

2p

sin@x sin~u!#sin~nu!du50

for even n, where Jn(x) is the nth order first-kind Besse
function, to force the first nonzero~dominant! term of the
series to be zero. This leads to

Gx5gx
(`)[

A2

xy
sinS pqyxy

A2
D /@2J1~pqy!#. ~12!

Substituting Eq.~12! in Eq. ~11!, the residual error in Eq
~11! is given by

d2~gx
(`) ,u!5gx

(`)J3~pqy!sin~3u!1gx
(`)J5~pqy!sin~5u!

1••• .

The above is an asymptotic series@19#. The magnitude of
each coefficient in the series represents the maximum dis
sion error from the corresponding angular mode@either at
sin(nu)51 or at cos(nu)51].

It is clear that the solutiongx
(`) given in Eq.~12! cannot

be implemented in a time domain method. Because of t
we expandgx

(`) in a Taylor series aroundqy50 and retain
the lowest order terms, i.e.,gx

(`)5gx
(2)1O(qy

4) with

gx
(2)511 1

96 4p2qy
2~322xy

2!. ~13!

The above can be easily transformed back to time dom
throughv2→2]2/]t2. However, if straightforward time dis
cretization schemes are employed directly on the resul
equations ~with third-order time derivatives!, the update
becomes unconditionally unstable@7#. Alternatively, the
second-order time derivative can be further cast as a com
nation of spatial derivatives asvp

2¹2 ~Helmholtz equation!
and discretized as such@20#. This latter transformation is
valid for staggered grids as long ase is uniform in the local
stencil. In this manner, Eq.~13! becomes

gx
(2)512

~322xy
2!Dy

2¹2

96
. ~14!

Following a similar procedure forGy , we find

gy
(2)512

~322xx
2!Dx

2¹2

96
, ~15!

wherexx5A2vpDt/Dx. If only the first-order terms in Eqs
~14! and~15! are taken, the Yee’s scheme is recovered. N
that the second terms in Eqs.~14! and~15! are analogous to
third-order time derivative terms in traditional schemes w
fourth order of accuracy in time@7#. The difference resides in
multiplicative factors and, in this sense, we call it a~nonfil-
tered, minimax! DRP (4,2) scheme.

To investigate the resulting grid dispersion, we define
dispersion error functionald̄2(Gx ,Gy ,u) proportional to the
difference between the lhs and the rhs of Eq.~10!, i.e.,
1-3
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d̄2~Gx ,Gy ,u!5FA2

x
sinS pqx

A2
D G 2

2h2F Gx
2sin2S k sin~u!Dy

2 D
Dy2

1

Gy
2 sin2S k cos~u!Dx

2 D
Dx2

G , ~16!

wherex5A2vpDt/h, q5h/l, andh5min(Dx,Dy). By sub-
stituting Gx5gx

(`) and Gy5gy
(`) into Eq. ~16!, we obtain a

limit value for the errord̄2
(`)(u)5 d̄2(gx

(`) ,gy
(`) ,u). In prac-

tical time-domain simulations employing Eqs.~14! and~15!,
we have an errord̄2

(2)(u)5 d̄2(gx
(2) ,gy

(2) ,u) instead, which
inevitably introduces additional errors at high frequenci
The functiond̄2

(`)(u) therefore serves as an inferior theore
ical limit when an infinite Taylor expansion is considere
However, as we shall see in the following section, by e
pandingGx andGy in a different basis~e.g., Chebyshev poly
nomials! this limit can indeed be overcome over some fini
preassigned frequency range.

Figure 1 shows the maximum value for all angles
d̄2

(`)(u) ~analytical!, d̄2
(2)(u) ~second order!, and d̄2(1,1,u)

~Yee’s scheme!, as a function of the number of wavelengt
per cell ~or, equivalently, the frequency!. In these plots,Dx
5Dy and the CFL numberx53/4 (xx5xy5x). From this
figure, we observe that, for all the frequency range such
qy<0.1, the second-order approximation already gives
sults almost as accurate as using the analytical expres
~12!, and starts to deviate only slightly at high frequenc
close toqy50.1.

B. Nonfiltered, DRP „4,4… schemes

Traditional FDTD schemes with fourth order of accura
in space employ larger stencils for theEx and Ey update

FIG. 1. Comparison of the maximum value of the dispers

error d̄2(Gx ,Gy ,u) for all angles when using analytical solution
(Gx ,Gy)5(gx

(`) ,gy
(`)), second-order approximation (Gx ,Gy)

5(gx
(2) ,gy

(2)) and Yee’s scheme (Gx ,Gy)5(1,1).
01670
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equations. In this case, theEx update can be rewritten a
follows @compare with Eq.~1!#

Exm11/2,n
l 11 5Exm11/2,n

l 1
Dt

eDy
Gx1~Hzm11/2,n11/2

l 11/2

2Hzm11/2,n21/2
l 11/2 !1

Dt

eDy
Gx2~Hzm11/2,n13/2

l 11/2

2Hzm11/2,n23/2
l 11/2 !. ~17!

We proceed as before andGx1 , Gx2 can be solved from

sinS vpkDt

2 D E sin~u!5
Dt

eDy
Gx1H sinFk sin~u!Dy

2 G
1

Dt

eDy
Gx2H sinF3k sin~u!Dy

2 G .
~18!

To obtainGx1 and Gx2 , we define an error functional in
terms of the difference between the lhs and rhs of Eq.~18!:

d4~Gx1 ,Gx2 ,u!5
A2

xy
sinS pqyxy

A2
D sin~u!

2Gx1 sin@pqy sin~u!#

2Gx2 sin@3pqy sin~u!#. ~19!

Similarly as before, we expandd4(Gx1 ,Gx2 ,u) in a Fourier
series in terms ofu. However, since there are two unknown
Gx1 andGx2 , we now may force the first two nonzero term
of the series to be zero@sin(u) and sin(3u) terms#. The solu-
tions are given by

Gx15gx1
(`)[

A2sinS pqyxy

A2
D J3~3pqy!

2xy@J1~pqy!J3~3pqy!2J1~3pqy!J3~pqy!#
,

~20!

Gx25gx2
(`)[

A2sinS pqyxy

A2
D J3~pqy!

2xy@J1~3pqy!J3~pqy!2J1~pqy!J3~3pqy!#
.

~21!

With these coefficients, the residual error in Eq.~19! be-
comes

d4~gx1
(`) ,gx2

(`) ,u!5gx1
(`)J5~pqy!sin~5u!

1gx2
(`)J5~3pqy!sin~5u!1••• .

For incorporation into the FDTD update,gx1
(`) and gx2

(`)

are approximated as

gx1
(`)'gx1

(2)5gx11
(2)2gx12

(2)Dy2¹2, ~22!

gx2
(`)'gx2

(2)5gx21
(2)2gx22

(2)Dy2¹2, ~23!
1-4
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with

gx11
(2)5

9

8
gx12

(2)52
3~324xy

2!

512
,

gx21
(2)52

1

24
gx22

(2)52
~2724xy

2!

4608
.

The lowest order terms in Eqs.~22! and~23! recover Fang’s
~2,4! FDTD scheme@6#.

Similarly, gy1
2 andgy2

2 are written as
a

01670
gy1
(2)5gy11

(2) 2gy12
(2)Dx2¹2, ~24!

gy2
(2)5gy21

(2) 2gy22
(2)Dx2¹2, ~25!

with coefficientsgyi j
(2) written asgxi j

(2) above withxy replaced
by xx . In analogy to the~4,2! case in the preceding section
we denote a scheme implementing the coefficients abov
~nonfiltered, minimax! DRP ~4,4! scheme.

The implementation ofgx1
(2) , gx2

(2) , gy1
(2) , andgy2

(2) in stag-
gered grids are straightforward. For example, the fully d
crete form of Eq.~17! is
Exm11/2,n
l 11 5Exm11/2,n

l 1
Dt

eDy H Fgx11
(2)1gx12

(2)S 312
Dy2

Dx2D 2gx22
(2) G ~Hzm11/2,n11/2

l 11/2 2Hzm11/2,n21/2
l 11/2 !

1Fgx21
(2)12gx22

(2)S 11
Dy2

Dx2D 2gx12
(2) G ~Hzm11/2,n13/2

l 11/2 2Hzm11/2,n23/2
l 11/2 !2gx12

(2) Dy2

Dx2
~Hzm21/2,n11/2

l 11/2

1Hzm13/2,n11/2
l 11/2 2Hzm21/2,n21/2

l 11/2 2Hzm13/2,n21/2
l 11/2 !2gx22

(2)~Hzm11/2,n15/2
l 11/2 2Hzm11/2,n25/2

l 11/2 !

2gx22
(2) Dy2

Dx2
~Hzm21/2,n13/2

l 11/2 1Hzm13/2,n13/2
l 11/2 2Hzm21/2,n23/2

l 11/2 2Hzm13/2,n23/2
l 11/2 !J .
of

s a

al
y

-

for
The CFL stability condition can be derived in a standard w
@4# and the result is

Dt<
1

S vpA Dx
2

Dy2
1

Dy
2

Dx2
D , ~26!

where

Dx52
Dy2

Dx2 Fgx12
(2) sinS kyDy

2 D1gx22
(2) sinS 3kyDy

2 D Gcos~kxDx!

1gx22
(2) sinS 5kyDy

2 D2Fgx11
(2)1gx12

(2)S 312
Dy2

Dx2D
2gx22

(2) GsinS kyDy

2 D2Fgx21
(2)12gx22

(2)S 11
Dy2

Dx2D
2gx12

(2) GsinS 3kyDy

2 D ~27!

and similarly forDy . For Dx5Dy, Eq. ~26! becomes

Dt<
hx

vpA2
5

h

vpA2uD̃x,yumax

,

ywhere uD̃x,yumax denotes the maximum possible module
Dx and Dy . The minimum maximum CFL numberx with
guaranteed stability is found to be 48/65. Note that this i
conservative bound. In reality, we have foundx50.75 to
produce stable updates in our tests.

To estimate the approximation error, an error function
d̄4(Gx1 ,Gx2 ,Gy1 ,Gy2 ,u) is constructed in an analogous wa
as the error functional in Eq.~16!. Figure 2 shows the com

FIG. 2. Comparison of the largestd̄4 among all angles by using
different DRP schemes for the fourth-order stencil. See text
details.
1-5
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parison of the largestd̄4 ~among all angles! by using differ-
ent schemes whenDx5Dy and x548/65. In this figure,
the analytical result refers to the~ideal! choice
(Gx1 ,Gx2 ,Gy1 ,Gy2)5(gx1

(`) ,gx2
(`) ,gy1

(`) ,gy2
(`)), whereas the

second-order result refers to the~implementable! approxima-
tion for the coefficients given by Eqs.~22!–~25!,
(Gx1 ,Gx2 ,Gy1 ,Gy2)5(gx1

(2) ,gx2
(2) ,gy1

(2) ,gy2
(2)). Maximally flat

and Chebyshev refer to~implementable! approximations us-
ing filtering schemes to be detailed in the following sectio

C. Filtering

Instead of possibly using even higher-order terms in
Taylor series or other sophisticated~and more costly! time
integration schemes, it is possible to improve the results
the preceeding section~while maintaining the same spatia
stencil sizes and computational cost! by using filters adjusted
to some preassigned, finite frequency range.

The filters are designed to obtain bothGx andGy ~second-
order stencil!, or Gx1 , Gx2 , Gy1 , andGy2 ~fourth-order sten-
cil!. The procedure is essentially the same for all coefficie
and therefore, we will describe only theGx1 case in detail.

1. Maximally flat (Butterworth) filters

Expanding Eq.~20! in a Taylor series, and approximatin
Eq. ~20! in a finite series as in Eq.~22! noting thatDy2¹2

524p2qy
2 , we have

gx1
(`)2gx1

(m)5S 9

8
2gx11

(m)D2F3~4xy
223!p2

128
14p2gx12

(m)Gqy
2

1
3p4xy

2~2xy
225!

2560
qy

41O~qy
6!. ~28!

The superscript~m! in gx11
(m) and gx12

(m) above refer to maxi-
mally flat coefficients. Previously, we have simply chos
gx11

(m)5gx11
(2) andgx12

(m)5gx12
(2) so as to make the first and seco

terms of the right-hand side of the above identically ze
@and obtain aO(qy

4) truncation error#. These coefficients are
treated as unknowns for the moment. The above equation
be rewritten as

gx1
(`)2gx1

(m)5~d0,0,d2,0,d4!VT1O~qy
6!, ~29!

where

d05 9
8 2gx11

(m) ,

d252F3~4xy
223!p2

128
14p2gx12

(m)G ,
d45

3p4xy
2~2xy

225!

2560
,

V5~1,qy ,qy
2 ,qy

3 ,qy
4!.
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By expanding the above in a new basis$(qy2qy
c)n%,

whereqy
c refers to a center frequency of interest, the follo

ing relationship holds

QT5AVT

with

Q5„1,~q2qy
c!,~q2qy

c!2,~q2qy
c!3,~q2qy

c!4
… ~30!

A5S *20c1 0 0 0 0

2qy
c 1 0 0 0

qy
c2 22qy

c 1 0 0

2qy
c3 3qy

c2 23qy
c 1 0

qy
c4 24qy

c3 6qy
c2 24qy

c 1

D ~31!

and, therefore, Eq.~29! can be rewritten as

gx1
(`)2gx1

(m)5~d0,0,d2,0,d4!A21QT1O~qy
6!

5~ d̃0 ,d̃1 ,d̃2 ,d̃3 ,d̃4!QT1O~qy
6! ~32!

where

d̃05$288022560gx11
(m)13p4qy

c4xy
2~2xy

225!

220qy
c2@512p2gx12

(m)13p2~4xy
223!#%/2560,

d̃15qy
cp2$9013xy

2@p2qy
c2~2xy

225!240#25120gx12
(m)%/640,

d̃25p2$9013xy
2@3p2qy

c2~2xy
225!240#25120gx12

(m)%/1280,

d̃353p4xy
2qy

c~2xy
225!/640,

d̃453p4xy
2~2xy

225!/2560.

To solve forgx11
(m) andgx12

(m) , we forced̃0 and d̃1 to be zero
and obtain

gx11
(m)5@288013p4xy

2qy
c4~522xy

2!#/2560, ~33!

gx12
(m)53$301xy

2@p2qy
c2~2xy

225!240#%/5120, ~34!

which are functions ofqy
c . Note that, if we letqy

c50, we
recovergx11

(m)5gx11
(2) andgx12

(m)5gx12
(2) .

In this manner,

gx1
(`)2gx1

(m)5@ d̃2~qy2qy
c!21d̃3~qy2qy

c!31d̃4~qy2qy
c!4#

1O~qy
6!.

At the center frequency,qy5qy
c andd5O(qy

6). The remain-
der corresponds to aO(qy

6) error. Around the center fre

quency, the error is dominated by the(n52
4 d̃n(qy2qy

c)n

term. In the above, we have illustrated the derivation ofgx1
(m)

by using ap54 order polynomial for the Taylor expansio
in Eq. ~29!. Theoretically, we can increase indefinitely th
polynomial orderp at the ~one-time! cost of inverting a
1-6
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larger A and hence make the response as close to an e
second-order maximally flat filter response as desired. T
has the~one-time! cost of inverting an increasingly large
matrix A. In practice, we observe a fast convergence to
exact filter response since only negligible improvements
obtained forp>6. We employp510 throughout our numeri
cal simulations. Also in practice, the design frequencyqy

c

may be chosen as the highest frequency of interest.
Figure 2 includes thed̄4 error of the DRP scheme with

maximally flat filters designed atqc50.1 (Dx5Dy). From
this figure, we observe that near the central frequencyqc

50.1), thed̄4 using a second-order (withp510) maximally
flat filter is almost indistinguishable from the one using t
analytical solutions~20! and ~21!.
te

er

-

e

le
r-

ge

e

t
ol

01670
act
is

e
re

2. Chebyshev filters

We may choose$Tn@(qy2qy
c)/Dqy#% as a new basis ex

pansion in Eq.~30! instead, whereTn(x) is the nth order
first-kind Chebyshev polynomial, andDqy corresponds to
the frequency band of interest. Still usingp54 as an ex-
ample, Eq.~30! becomes

Q5S 1,
qy2qy

c

Dqy
,T2S qy2qy

c

Dqy
D ,T3S qy2qy

c

Dqy
D ,T4S qy2qy

c

Dqy
D D

andA becomes
1
1 0 0 0 0

2
qy

c

Dqy

1

Dqy
0 0 0

2qy
c22Dqy

2

Dqy
2

2
4qy

c

Dqy
2

2

Dqy
2

0 0

3qy
cDqy

224qy
c3

Dqy
3

12qy
c223Dqy

2

Dqy
3

2
12qy

c

Dqy
3

4

Dqy
3

0

8qy
c428qy

c2Dqy
21Dqy

4

Dqy
4

16qy
cDqy

2232qy
c3

Dqy
4

48qy
c228Dqy

2

Dqy
4

2
32qy

c

Dqy
4

8

Dqy
4

2 .
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Following the same procedure as the maximally flat fil
case, we can solve for the coefficients and obtaingx11

(c) and
gx12

(c) of an approximate second-order Chebyshev filter. H

gx1
(`)2gx1

(c)5d̂2T2@~qy2qy
c!/Dqy#1d̂3T3@~qy2qy

c!/Dqy#

1d̂4T4@~qy2qy
c!/Dqy#1O~qy

6!,

where d̂2 , d̂3 , and d̂4 denote the coefficients of the corre
sponding Chebyshev polynomials. Figure 2~with qy5qx
5q) clearly shows that, by using Chebyshev filters design
with qc50.1 andDq50.02, the error functionald̄4 can be
smaller than the one employing Eqs.~20! and ~21! around
the design frequency. (Dq50.02 is used here as an examp
As shown later,Dq can be fine-tuned for a better perfo
mance.!

Since the Chebyshev filter is of second order, lar
ripples are expected to occur in the passbandqc2Dq<q
<qc1Dq if a largerDq is used. In usual filter design, larg
ripples are undesired, but in our context,Dq represents an
extra degree of freedom that can be explored to reduce
accumulated phase error. This will be illustrated in the f
lowing section where we also setp510 for the Chebyshev
filter approximation.
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III. NUMERICAL RESULTS

We compare the DRP~4,2! and~4,4! schemes against th
Yee’s scheme, a traditional~2,4! scheme, and Deveze’s~4,4!
scheme. Both nonfiltered, and the maximally flat and Che
shev filtered versions of the DRP schemes are conside
The phase velocity in free space is solved from the transc
dental dispersion relation by assuming a uniform 2D FDT
grid with Dx5Dy, or Gx5Gy , and, hence, the coordinat
subscript in the coefficients is dropped in what follows.

The CFL numberx51 is used for ordinary FDTD, while
x56/7 for the~2,4! scheme,x53/4 for the~4,2! scheme and
x548/65 for all ~4,4! schemes. In fact, there is an optim
CFL number for each algorithm, which yields the minimu
dispersion error among all possible CFL numbers. Wh
comparing different algorithms, we employ their largest po

TABLE I. Coefficients used in different~4,4! schemes.

G11 G12

Deveze 1.125 21.13609431022

Nonfiltered DRP 1.125 4.79706031023

Maximally Flat DRP 1.125026 4.66930531023

Chebyshev DRP 1.125025 4.66514031023
1-7
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sible CFL numbers instead of that optimal one. This choic
justified since the largest CFL number minimizes the co
putational cost and is the most often used in practice.

Table I and Table II give some coefficients used in t
DRP ~4,4! schemes, where the maximally flat filter is d
signed withqc50.1, and the Chebyshev filter is design
with qc50.1 withDq50.02. Table III and Table IV give the
coefficients using Chebyshev filtering schemes for vari
pairs (qc , Dq).

Figures 3 and 4 show the maximum~for all angles! phase
error per wavelength, defined as (k̂/k21)3360 with k̂ de-
notes the discrete wave number obtained by solving the t
scendental dispersion relation andk refers to the exact~con-
tinuum! wave number. As we see from Fig. 3, the DRP~4,2!
scheme is about as accurate as the~2,4! scheme~with oppo-
site sign!. Figure 4 shows that filtering schemes do redu
the dispersion error considerably around the specified
quency. We also observe that the Chebyshev filter perfo
better than the maximally flat filter in the full frequenc
range considered. Note that Fig. 4 does not correspon
Fig. 2 well after the crossover since Fig. 2 is just an anal
cal estimation for design purposes, while Fig. 4 depicts
actual performance of the algorithms.

We also note from Fig. 4 that, for DRP schemes w
filtering, the dispersion error at high frequencies can ind
be made smaller than at low frequencies~contrary to nonfil-
tered DRP and traditional schemes!. As mentioned in the
Introduction, this is a desirable characteristic because, f
given computational domain size, high frequencies co
spond to an electrically larger problem and hence are m
impacted by theaccumulatedphase error. Nevertheless, u
less thelocal dispersion error decreases faster than linea
with frequency, the largest accumulated phase error in
computational domain is still given by the highest frequen
components. This issue will be further elaborated next.

We assume a FDTD simulation in a frequency range s
that the lowest frequency corresponds toq50.01 and the
highest frequency corresponds toq50.1 ~which is typical!.
We calculate the phase error accumulated in a distance w

TABLE II. Coefficients used in different~4,4! schemes~cont’d!.

G21 G22

Deveze 24.166 66731022 4.207 75831024

Nonfiltered DRP 24.166 66731022 25.386 00231023

Maximally flat DRP 24.159 72531022 25.733 25331023

Chebyshev DRP 24.159 84231022 25.744 64231023

TABLE III. Coefficients of Chebyshev filtering schemes wi
different parametersqc andDq.

G11 G12

qc50.1, Dq50.02 1.125 025 4.665 14031023

qc50.1, Dq50.046 1.125 024 4.647 15631023

qc50.1, Dq50.037 1.125 024 4.655 00931023

qc50.1, Dq50.058 1.125 023 4.633 95431023

qc50.114,Dq50.053 1.125 025 4.665 14031023
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equals the largest wavelength being considered. Figur
shows the largest~for all angles! phase error accumulated i
such a distance by employing Chebyshev filtered DRP a
rithms with differentDq ~while qc is kept fixed as 0.1). For
Dq50.02, the usual notion that the largest accumula
phase error is dominated by the highest frequency is
valid. However, this is not true anymore if larger values f
Dq are considered. In fact, whenDq50.046, the largest ac
cumulated phase error is now determined by lower freque
components. Indeed, there is an optimalDq around Dq
50.058 for which the maximum accumulated magnitude
the phase error for all frequencies is a minimum.

In the case of narrow band simulations, we can obtai
pair (qc ,Dq) which yields a minimum possible maximum
phase error for all angles at some specific frequency. As
lustrated in Fig. 6, if we specifyqc50.1 andDq50.046, the
maximum phase error is minimum atq50.087. This sug-
gests that, in order to obtain a better performance at a
cific frequency, we can simply design filters with a slight
larger qc and a fine tunedDq accordingly. Figure 6 shows
another example withq50.114 andDq50.053 which is in-
tended to improve the performance atq50.1. As we see, a
maximum phase error less than 531023 is obtained atq
50.1, while a good bandwidth is maintained.

Computational costs are compared for the same accu
requirements. Since decreasing the cell size also decre
the time step, a fair comparison of computational co

FIG. 3. Comparison of the maximum~for all angles! phase error
per wavelength using Yee’s, a traditional~2,4! scheme and the non
filtered DRP~4,2! scheme.

TABLE IV. Coefficients of Chebyshev filtering schemes wi
different parametersqc andDq ~cont’d!.

G21 G22

qc50.1, Dq50.02 24.159 84231022 25.744 64231023

qc50.1, Dq50.046 24.160 25131022 25.793 85431023

qc50.1, Dq50.037 24.160 09131022 25.772 36031023

qc50.1, Dq50.058 24.160 45431022 25.830 01031023

qc50.114,Dq50.053 24.159 84231022 25.744 64231023
1-8
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should consider the same elapsed time duration, not the s
number of time steps. Each field update of the DRP~4,4!
schemes involves 18 floating point operations in contras
three for the ordinary Yee’s scheme@4# and six for Fang’s
~2,4! scheme. Also the present maximum CFL number
48/65, in contrast to one for the Yee’s scheme, and 6/7
Fang’s ~2,4! scheme. For a wide band problem with fr
quency spectra in the rangeq50.01;0.1, the worst accu-
racy for the DRP scheme with Chebyshev filtering with (qc

50.1,Dq50.058) is about 0.073°/l. To obtain the same ac
curacy in the Yee’s scheme, the spacial resolution needs t
increased by a factor of 6.37 times. This requires roug
40.6 times more memory and 31.9 times more flops for
same physical size and elapsed time problem. On the o
hand, for a narrow band problem, we can use a DRP~4,4!
scheme optimized forq50.1 leading to a phase error o
0.005o/l. To achieve this accuracy, the cell size in Yee

FIG. 4. Comparison of the maximum~for all angles! phase error
per wavelength using different DRP~4,4! schemes and the Devez
~4,4! scheme.

FIG. 5. Comparison of the maximum~for all angles! accumu-
lated phase error over the largest wavelength in DRP schemes
Chebyshev filtering schemes with variousDq while fixing qc

50.1.
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scheme needs to be reduced by about 25 times, and a p
lem of same physical size and elapsed time would req
625 times more memory and roughly 1925 times more c
tral processing unit time than the DRP~4,4!. A similar com-
parison can be made against Fang’s~2,4! scheme, and the
results are summarized in Table V.

As a final example, we calculate the resonant frequen
of a TEz single ridge resonator, as shown in Fig. 7, from D
to 15 GHz. The boundaries correspond to an perfect elec
conductor. This 2D geometry is commonly used to find t
cutoff frequencies of the corresponding 3D single rid
waveguide underTEz excitation. The initial field is set to
zero and a point source is located inside the resonator
obtain adequate frequency resolution for the resonant
quencies, the time-domain simulations must be run over
ficiently long integration time. The resonant field at the c
off frequencies corresponds to waves bouncing many tim
inside the resonator, where grid dispersion error will ac
mulate and affect the results. This is an example of a pr
lem in a relatively small domain that can still be sensitive
grid dispersion error effects. Simulations are performed
ing Yee’s scheme, Fang’s~2,4! scheme, and DRP~4,4!
scheme with Chebyshev filtering optimized with (qc

50.1,Dq50.058). The CFL numbers are the same as befo
We run long enough time steps to guarantee 1 MHz f
quency resolution in the FFT. As mentioned before, this i
plies running the same elapsed time for different simulatio
~and hence different number of time steps!. All schemes use
the same spatial resolution corresponding to 13 cells at sh

ing

FIG. 6. Comparison of the maximum~for all angles! local phase
error per wavelength using DRP schemes and Chebyshev fi
with different parameters.

TABLE V. Ratios of memory and Flop requirements of Yee
scheme and Fang’s scheme vs the proposed DRP~4,4! scheme.

Yee’s Fang’s Yee’s Fang’s
~narrow band! ~narrow band! ~wide band! ~wide band!

Memory 625 294.5 40.6 20.5
Flops 1925 1066 31.9 19.6
1-9
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est wavelength of interest~at 15 GHz! and the resonant fre
quencies are compared against the results from a highly
fined grid ~no discernible variations on the resona
frequencies after further refinement!.

Figure 8 shows the absolute error computed by differ
schemes. The proposed DRP~4,4! scheme yields the bes
result for all frequencies being computed. It is interesting
see that because the discrete wave number in the Y
scheme is larger than the continuum wave number~Fig. 3!,
the accumulated dispersion error tends to lower down
resonant frequencies. In contrast, for both Fang’s~2,4! and
the proposed DRP~4,4! scheme, the discrete wave number
smaller than the continuum wave number~Fig. 3 and Fig. 6!
which results in an increase on the resonant frequencies
served.

IV. CONCLUSIONS

We have described a general approach to construct D
schemes for large-scale 2D FDTD simulations of Maxwe
equations. The maximum~for all angles! local dispersion
error is minimized~minimax sense! by expanding the loca
dispersion error~for a given spatial stencil! in a Fourier se-
ries in terms of propagation angle and enforcing the lead

FIG. 7. Geometry of the single ridged resonator with
56.15 cm, b52.7 cm, d50.45 cm, s51.05 cm.
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terms of this series to be zero. DRP-FDTD coefficients
then obtained which are functions of frequency. Using
polynomial ~Taylor! series of frequency, these coefficien
can be incorporated into the FDTD update by using the fi
terms of this series. The same methodology can be use
derive optimized 3D schemes as well@21#.

The dispersion error can be futher reduced to a theore
minimax limit ~i.e., if an infinite Taylor series were used! by
employing maximally flat~Butterworth! filters or even ex-
ceed that limit at some finite frequency band using Che
shev filters. The behavior of the local dispersion error c
also be adjusted by the filtering schemes in order to red
the accumulated phase error in the computational domain
a preassigned given frequency band. This is done by ma
the local dispersion error at high frequencies smaller tha
low frequencies.

FIG. 8. Comparison of the absolute error at each resonant
quency computed by different schemes.
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