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Lattice models for large-scale simulations of coherent wave scattering
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Lattice approximations for partial differential equations describing physical phenomena are commonly used
for the numerical simulation of many problems otherwise intractable by pure analytical approaches. The
discretization inevitably leads to many of the original symmetries to be broken or modified. In the case of
Maxwell's equations for example, invariance and isotropy of the speed of light in vacuum is invariably lost
because of the so-called grid dispersion. Since it is a cumulative effect, grid dispersion is particularly harmful
for the accuracy of results of large-scale simulations of scattering problems. Grid dispersion is usually com-
bated by either increasing the lattice resolution or by employing higher-order schemes with larger stencils for
the space and time derivatives. Both alternatives lead to increased computational cost to simulate a problem of
a given physical size. Here, we introduce a general approach to develop lattice approximations with reduced
grid dispersion error for a given stenédnd hence at no additional computational £.oEhe present approach
is based on first obtaining stencil coefficients in the Fourier domain that minimize the maximum grid disper-
sion error for wave propagation at all directioimsinimax sensg The resulting coefficients are then expanded
into a Taylor series in terms of the frequency variable and incorporated into time-dénpaiate equations
after an inverse Fourier transformation. Maximally fi8utterworth or Chebyshev filters are subsequently
used to minimize the wave speed variations for a given frequency range of interest. The use of such filters also
allows for the adjustment of the grid dispersion characteristics so as to minimize not ombgahdispersion
error but also theccumulatedpbhase error in a frequency range of interest.
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I. INTRODUCTION the minimization of the local and accumulated dispersion
error over a finite range of frequencies is often more relevant

Grid (numerica) dispersion is a major source of error in than the theoretical order of accuracy of the lattice approxi-

the simulation of wave phenomena using discretized equamation itself, where “order of accuracy” refers to the behav-
tions on a latticd 1-5]. Grid dispersion manifests itself as a ior of the truncation error of the scheme as the lattice spacing
change on the phase velocity of the wave according to fregoes to zerdlow frequency or long wavelength limitThis
guency and propagation angle and, because it is a cumulative because of two interconnected reasons. First, the limit is
effect, it poses serious limitations particularly for large-scalenever taken in practice and, second, practical simulations in-
(time-domain simulations of coherent wave scattering. volve computational domains of fixed physical size, and, as a
Grid dispersion is usually combated by either increasingesult, long wavelengths imply electrically smaller domain
the resolution of the latticé.e., approaching the “continuum where theaccumulatedphase errowhich grows linearly
limit” ) or by employing higher-order schemes which utilize with the electric size of the domainis much less of a prob-
larger stencils to approximate space and time derivatives aém.
the cost of loss of sparsitfflocality” ) of the discrete model One relevant question is then how to construct, given a
(spectral method§4] can be thought of as the extreme ex- particular stencil(and hence, computational chsbptimal
amples in this direction Both alternatives lead to an in- lattice approximations for wave problems in the time domain
creased computational cost to simulate a problem of givemvith optimal dispersion-relation-preservifi@RP) properties
physical size. For electrodynamics, several techniques hawever a given(possibly wide frequency band. Moreover, as
been developed over the years to reduce grid dispersion erratluded to above, since the high frequency spectrum is sub-
[4-13. In particular, space and time fourth-order accuratgect to larger cumulative phase error effect than the low fre-
[(4,4 schemeb finite-difference time-domain(FDTD)  quency spectrum, it is also of interest to investigate the pos-
scheme$4] have been shown to provide an attractive trade=sibility of constructing lattice approximations where the
off between increased computational cost and reduced diglocal) incurred dispersion error is actually lower at high fre-
persion errof 14]. Grid dispersion on finite element solutions quencies than at low frequenciésaditionally, the opposite
have been extensively discussed in, e.g., Héfs,16]. is true.

For most time-domain simulations of wave phenomena, With the above observations in mind, we shall describe
here a general methodology to develop lattice approxima-
tions of continuum equations with DRP properties. The

*Electronic address: shumin.wang@med.ge.com methodology is based on first obtainifrgquency dependent
Electronic address: teixeira@ee.eng.ohio-state.edu stencil coefficients in the Fourier domain to minimize the
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maximum grid dispersion error for wave propagation at allorder schemes resides in the coefficients and not on the par-
directions(in a minimax sense The resulting coefficients ticular stencil.

are then expanded into a Fourier series in terms of the fre-

quency varigble and incorpprated into th_e time-don(a'p}. A. Nonfiltered, DRP (4,2) schemes

date equations after an inverse Fourier transformation. . )

Maximally flat (Butterworth and Chebyshev filters are fur- A traditional leap-frog scheme with second order of accu-
ther used to minimize the wave speed error for a frequenc@CY in space can be written in general as

range of interest. Moreover, the use of such filters allow for

. AN ; e At
+1 _ e | I+1/2
the .ad_justment of the grlq dlspersmn characteristics so as to = von=Exms 120t Trx( ] o2
minimize both thelocal dispersion error and thaccumu- y
lated phase error in a frequency range of interest. For con- H+12 1
“Mzm+12n-1/2)» ()]

creteness, we employ Maxwell's equations it 2 dimen-
sions as example, but the same methodology is applicable for

other dimensions and other linear wave phenomena as well. ElFL gl I At T(H 12
ym,n+1/27 =ym,n+1/2 eAX y( zZm—1/2n+1/2
Il. METHODOLOGY I1+1/2
—Hm it 12) @
Because the dispersion error in FDTD simulations is in
general a function of both frequency, propagation angle, and i1 1 At |
the particular Courant-Friedreich-LewZFL) number, sev- Homi 120+ 12= Hams 1i2p+ 127 mrx(Emerl/ZnJrl
eral definitions of minimum dispersion erra¥] are possible.
We define it here in the minimaxminimum maximum
. . . . . —E.)! )+ ——T(E |
sense, i.e., for a given CFL number, the maximum dispersion xm+22n) T Ay YL oymn 12
error for all angles is minimized up to a certain maximum
frequency. More specifically, by denoting the dispersion er- — Ey'mﬂlnﬂ,z), (©)]

ror as 8(f,k, ), wheref denotes frequenck=k/|K] is the

unit propagation vector, ang is the CFL number, the DRP- Where the subscripts denote the spatial location and the su-
FDTD seeks to minimize the objective functiofr  perscripts denote the time step. We tréatand T’y as un-
=max| 8 (fk x):0=f<f., x=xo,Vk}. To coincide with the known coefficients for the moment. In the above, reciprocity
case of most practical interest, the particular CFL numjger 'S explicitly enforced 17,18 in order to obtain a condition-

will most often be considered the maximum allowed from &/ly Stable scheme. The andH fields can be expanded into
the CEL condition. a discrete set of Fourier modes. For each mode

The DRP procedure here consists of three main stéps:

For a scheme with given “order of accuracy in spacsten- Exmy 1720 = Ex@ !4 16 1M V2 gAY, (4)
cil), the dispersion error is expanded in a Fourier series in

terms of the propagation angle, the leading terms of which Ey'mynﬂlzzgyerIAtefJ[kxmAX+ky(n+1/2)Ay], (5)
are made equal to zero, and analytical expressions for the

DRP coefficients are subsequently derived as a function of ; 1+12 = gl 01+ U2)At g = j[ky(m+ 1/2)Ax-+ky (n+1/2)Ay]
frequency(2) These analytical expressions are then cast into = 2m*2n+1/2 7"z (.6)

a form implementable in the fully discrete problgfDTD
update by using polynomial expansions in ter_ms of the fre- Substituting Eqs(4)—(6) into Egs.(1)—(3) and noticing
guency variable followed by an inverse Fourier transforma-,[hat(S — —£sin(d), £,=£cos@), andH,=H, we have
tion. (3) Filtering schemegmaximally flat or Chebyshe\are x Y ' z '

used to fine tune the DRP two-dimensioiaD) FDTD co-

efficients for a(possibly broagirange of frequencies of in- sin( w_At)g sin(9) = EFXH sin —k sin(6)Ay . (D
terest. 2 €A 2
The first step consists in considering a scheme with a
given order of accuracy in space. Higher order of accuracy in [ wAt [kcoq 8)Ax
time is introduced in the second step as we expand the ana- SIH(T)?:COS( 0)=ZIyHsn——s5— (8
lytical solution in series. The term order of accuracy in space
is borrowed here from traditional higher-order schemes em- i
ploying Taylor expansions onl6,7]. Since this work treats sin(w—At)Hz At -,{ks"‘( H)Ay}sin(e)
the problem from a different standpoint, this term does not 2 nlAy X 2
retain its original meaning. The term order of accuracy At k cog B)Ax
should rather be considered here as referring to a class of +—T,Esin————|cog 6), (9)
spatial stencil sizegand not necessarily to the order of the pAXY 2 ’

truncation error as the discretization cell approaches)zero
As we will see, the major difference between the DRPwherek,=kcos(), k,=ksin(f). The numerical dispersion
higher-order schemes derived here and traditional higherelationship can be derived from Eq3)—(9) as
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2 : 2
g ("’At) e M} f sin[x sin( 6)]sin(n#)d6=0
(vpAt)? 2 Ay? 2 0
r§ [kcog 8)Ax for evenn, WhereJn(x)' is the nth orde'r first-kind Bessel
+— sir? 5 ] (10 function, to force the first nonzer@ominanj term of the

Ax series to be zero. This leads to

wherev,=\ue. For a given set of coefficients, and I’y /2

(in the classical Yee’s schenjd] these are equal to unity Io= =Y sin T 005 (rq)]. (12)

the above equation is traditionally used to analyze the dis- Xy J2 Y

crete dispersion in the FDTD grid. The amount by which the
discrete dispersion relation deviates from the continuunBSubstituting Eq.(12) in Eq. (11), the residual error in Eq.
limit gives the local dispersion error. In this work, we shall (11) is given by

adopt the reverse standpoint. That is, we shall enforce the

exact relation between frequency and wave number,aiz.  8,(y5?,0) =y I5(may)sin(36) + ¥ Is(7q,)sin(56)
=vpk, for Eq. (10), and then solve fol", and I’y as the
unknowns(in an approximate sense to be clear latej. on

Ideally, the exact solutions fdr, andT’y should depend on . ) . .
both the frequency and propagation angle. We shall first ex] € above is an asymptotic serigk9]. The magnitude of

pand the dispersion error in terms of a Fourier series in term§ach coefficient in the series represents the maximum disper-

of the angular variabled and enforce coefficients on the SION error from the corresponding angular mdeéher at

series to be zeréthe number of coefficients made equal to SINMP)=1 or at cosf)=1]. S

zero give the “order” of the method In this manner, the ~ ItiS clear that the solutiory, ™ given in Eq.(12) cannot

maximum dispersion error for all angles is minimized simul-P€ implemented in a time domain method. Because of this,

taneously, and", and I'y become a function of frequency We expandy” in a Taylor series around,=0 and retain

only. This latter property allows for incorporation of the DRP the lowest order terms, eyl =P+ O(q;‘) with

coefficients in FDTD algorithms after a polynomial expan-

sion. YP=1+ 5547053~ 2x7). (13

A simpler but equivalent way of solving fdr, andl'y in

Eq. (10) is to enforcew=v ,k into Egs.(7) and(8) and solve The above can be easily transformed back to time domain

for I', andTy, respectively[Note that(from the symmetry ~throughw?— — °/3t>. However, if straightforward time dis-

of the problem by letting Ax— Ay and 6— 6+ =/2, Eq.(8)  cretization schemes are employed directly on the resulting

reduces to Eq(7). In particular if Ax=Ay, we should of equations(with third-order time derivativgs the update

course expeck',=T', after these coefficients are reduced to becomes unconditionally unstablg’]. Alternatively, the

functions of frequency only.We start by defining an error second-order time derivative can be further cast as a combi-

functional proportional to the difference between left-handnation of spatial derivatives as,z)VZ (Helmholtz equation

side (Ihs) and right-hand sidérhs) of Eq. (7): and discretized as sud0]. This latter transformation is
valid for staggered grids as long ads uniform in the local
stencil. In this manner, Eq13) becomes

0,(I'x,0)= X—\/E sin( Ty Xy a3

y

+.o.

V2

sin(6) —I'y sin g, sin(0)],

3—2x2)A2v?
(11 @_q_ 3724V
»o=1 96 . (14)
where x,=2v,At/Ay, g,=Ay/\. Solving Eq.(7) with
o=vk is therefore equivalent to letting,(I'y,0)=0 and  Following a similar procedure for,, we find
enforcing&/ n="H.
We expands,(T', , ) in a Fourier series in terms @fand (3—2x2)A2v?
2\ 8 X 7) TS (2)_q_ 0 “AEXE
use the following identities: Yy =1 % , (15
2
f sin x sin(#)]Jcognd)d =0, where y, = \/Evat/Ax. If only the first-order terms in Eqgs.
0

(14) and(15) are taken, the Yee’s scheme is recovered. Note
that the second terms in Eq4.4) and(15) are analogous to
fZWSidX Sin(6) Jsin(n)d 6= 27J,,(x) third-order time derivative terms in traditional schemes with
n fourth order of accuracy in timZ]. The difference resides in
multiplicative factors and, in this sense, we call itrenfil-
for odd n and tered, minimax DRP (4,2) scheme
To investigate the resulting grid dispersion, we define a

szsir{xsin( 6)]cogn)de=0, d?spersion error functionad,(I'y,I'y , 6) proportior_1al to the
0 difference between the lhs and the rhs of Eq)), i.e.,
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x10° equations. In this case, tHe, update can be rewritten as
16 . . . . . . . . .
! follows [compare with Eq(1)]
1.4f —__ Analytical /‘/ ] i1 1o
nd ; + +
ol - $ee°rder / | Exmi12n= =Eyn- 2nt Tho Ay Usa(Hzmi 120+ 12
/'I.
L : . I+1/2 1+1/2
! / —Homiizn-12+ ho Ay To(Hams 12+ 312
0.8 . l+1/2
—Hamy 12n-3/2)- 17
0.6
We proceed as before aiy,, I'y, can be solved from
0.4F )
[ vpkAL £sin g At o Hsi ksin(9)Ay
sin Si =— sin ————
0.21 2 n( ) EAy x1 2
0 . : . . . . At | 3ksin(6)Ay
0.01 002 003 004 005 006 007 008 009 0.1 +——Iy _—.
q: wavelengths per cell € Ay 2
FIG. 1. Comparison of the maximum value of the dispersion (18)

error 62(I‘ Ty 0) for all angles when using analytical solution, To obtainT',, andT,,, we define an error functional in

(x)
(F(X’Fy) s ar;o)l/y\(e)es ::rfgr:ir(()xrdrer) ?Fl)plr)ox'mat'on TLTY)  terms of the difference between the Ihs and rhs of E6):
= (. ,
i V2 [ mapx

5 ) rssmz("s'”(z—“’)“) BT,z )= sin| 20 i 0
— y
So(T Ty 0)=| “sin] TX || _p2 .

X\ V2 Ay —Tq sin( wqy sin(0)]

r? Sinz(kcosze)AX) —T,, sin3mqy sin(0)]. (19

+ 5 , (16)  Similarly as before, we expandly(I'y;,I'y,,8) in a Fourier
Ax series in terms of). However, since there are two unknowns

I'y; andI'y,, we now may force the first two nonzero terms

where = \/—U At/h g=h/x, andh=min(axAy). By sub- of the series to be zefsin(¢) and sin(3) termg. The solu-

stituting T'y= %" andT'y= §,°°) into Eq. (16), we obtain a o0 e civen by
limit value for the errorg(”)(e) 85(¥ 957 ,6). In prac-
tical time-domain simulations employing Eq44) and(15), q
2 2) (2 : : \/Esi Xy J5(3 )
we have an erroBs?(60) = 6,(v{?,»{?,6) instead, which 2 e m0y
inevitably introduces additional errors at high frequencies.T", ;= 'yxl) )
2 —
The functionss”(6) therefore serves as an inferior theoret- X[I1(may) I5(37ay) = Ja(37Gy) J(7ay )]
ical limit when an infinite Taylor expansion is considered. (20)
However, as we shall see in the following section, by ex- _—
pano_lingl“x_an_dl“_y in a_different basige.g., Chebyshev po_Iy_- \/fsw< | Js(mqy)
nomialg this limit can indeed be overcome over some finite, I )= \/E
prea_ssigned frequency range. x2= V2 = 2xy[31(37qy)I3(7qy) — I1(7may)I3(37qy) ]
Figure 1 shows the maximum value for all angles of (21)

&57(6) (analytica), 552(6) (second ordér and 6,(1,1.,6)
(Yee’s schemg as a function of the number of wavelengths
per cell(or, equivalently, the frequengyln these plotsAx
=Ay and the CFL numbex=3/4 (xy= xy=x). From this () )
figure, we observe that, for all the frequéncy range such that Ba(%d) 7 =74 Js(0y)sSin(56)

qy<0.1, the second-order approximation already gives re- +7X2‘)JS(3qu)sir(5g)+ e
sults almost as accurate as using the analytical expression

(12), and starts to deviate only slightly at high frequencies For incorporation into the FDTD updatey(*) and yg)

With these coefficients, the residual error in EG9) be-
comes

close toq,=0.1. are approximated as
B. Nonfiltered, DRP (4,4) schemes y( )~ %((21)— 7&21)1_ yizl)szZVZ, (22)
Traditional FDTD schemes with fourth order of accuracy ( V@ @ 2) A v 202
in space employ larger stencils for titg and E, update 27 Yx2 T Va1 szsz Ve, (23)
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with Mo = vy WXV, (24)
9 3(3—4x5) @) (2) _ (2) Ay 202
Po=gh=——p Y=Y P~ 1Ax?V2, (25)
with coefficientsy\?) written asy() above withy, replaced
@ 1 @) (27— 4)(5) by x,. In analogy to th€4,2) case in the preceding section,
Yx21T T 52 Yx22T T T 4608 we denote a scheme implementing the coefficients above a
(nonfiltered, minimax DRP (4,4) scheme.
The lowest order terms in Eq&22) and(23) recover Fang's The implementation o7, ¥{3, 7, and»{3 in stag-
(2,4 FDTD schemg6]. gered grids are straightforward. For example, the fully dis-
Similarly, y;, andy;, are written as crete form of Eq(17) is

t y?
+1 | 2 2 2 1+1/2 1+1/2
Exm+ 12n— Exm+ 1/2n + eAy { 7’>(<1)1+ 75(1)2 3+ 2AX2) - 7’5(2)2 ( H zm+1/2n+1/2~ H zm+1/2n— 1/2)
@) @) Ay? ©) 1+1/2 1+1/2 @) Y2 e
T 721t 2y 1+ 2| (Hzmi12n+ 32~ Hame 12n-32) — Va2 2 (Hzm-12n+172

I+1/2 I+1/2 1+1/2 2 1+1/2 1+1/2
+H Zm+3/2n+1/2" H zm—-1/2n—1/2" H zZm+3/2n— 1/2) — Yx22 H Zm+1/2n+5/2" H zZm+1/2n— 5/2)

2
@ Ay (H,+12 L2 12 R+
7x22_AX2 m-12n+3/2T Pzm+3/2n+32~ Hzm-12n-32~ Nzm+32n-3/2) [ -

The CFL stability condition can be derived in a standard wayyhere |D, yImax denotes the maximum possible module of

[4] and the result is D, andD,. The minimum maximum CFL numbey with
guaranteed stability is found to be 48/65. Note that this is a

1 conservative bound. In reality, we have fouga=0.75 to
At< , (26)  produce stable updates in our tests.
D)2( D§ To estimate the approximation error, an error functional
Up P 04(T'x1,T'x2,Ty1,y2,0) is constructed in an analogous way
Ay®  Ax as the error functional in Eq16). Figure 2 shows the com-
g
where
Ay? kyA 3k,A ; \
DX=2—y2[7§21)2 sin(y—y +4), sin( Y y) cog kyAx) T AN
Ax 2 2
5kyAy Ay? -2r N\
2) y 2 2 N
T Y Y | Rt .
X <3l — Analytical \
5 w - - Non-filtered DRP \
k Ay Ay ---- Maximally Flat DRP \
Y \
o 90| e 127 .
1
3k Ay \\
. y i
~ % sm( 5 ) 27 - t
-6 | 1 | | | | | |
and Simi|ar|y forDy_ For Ax= Ay, Eq (26) becomes 0.01 002 0.03 0.04: 0.05 006 0.07 0.08 0.09 0.1
q: wavelengths per cell
hy h FIG. 2. Comparison of the Iargegg among all angles by using
At = — , different DRP schemes for the fourth-order stencil. See text for
Up\/E Up\/§|Dx,y|max details.
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parison of the largess, (among all anglesby using differ- By expanding the above in a new badi&,—ay)"},
ent schemes wheAx=Ay and y=48/65. In this figure, Whereqf, refers to a center frequency of interest, the follow-
the analytical result refers to the(idea) choice ing relationship holds
(Fxl Ixz vryl -Fy2) = (')’S(Cf) ' 75(020) ' 7510;) ’ 7’%)), whereas the
second-order result refers to tlimplementablgapproxima-
tion for the coefficients given by EQgs.(22)—(25), :
@) (2) (2 @) : with
(Fxlrrx2vryl1ry2):(7xl 1 Yx2 s Yyl -7y2)- Maximally flat ) . .
1 i i _ [ Cc Cc C
and Chebyshev refer témplementable approximations us- Q=(1(g—ay).(a—ay*(a—ay)°.(q—ay)”) (30
ing filtering schemes to be detailed in the following section.

QT= AVT

*20cl 0 0 0 0
C. Filtering _q;j 1 0 0 0
Instead of possibly using even higher-order terms in the A= q§2 _2q§ 1 0 0 (31)
Taylor series or other sophisticatéand more costlytime 3 2 c
integration schemes, it is possible to improve the results of -q° 3q° -3q 1 O
the preceeding sectiofwhile maintaining the same spatial q§4 _4q§3 6q§2 _4q§ 1
stencil sizes and computational gdsy using filters adjusted
to some preassigned, finite frequency range. and, therefore, Eq29) can be rewritten as
The filters are designed to obtain bdth andI’, (second- =) () T 6
order stencil, or 'y, I'y,, I'y1, andl'y, (fourth-order sten- ¥xi' — Yx1 = (d,0d2,0d,)A™"Q"+O(qy)

cil). The procedure is essentially the same for all coefficients e - 6
and therefore, we will describe only thg, case in detail. =(do,d;,d3,d3,ds)Q"+O(qy) (32

1. Maximally flat (Butterworth) filters where
Expaqding _Eq(ZO) i_n a Tay_lor series, ar_ld approxirznazting dy=1{2880- 2560}’§<Ti+3774q;4)(§(2x)2,—5)
Eqg. (20 in a finite series as in Eq22) noting thatAy<V )
= —4m%q%, we have — 20057 51272y} + 3m3(4 x5 — 3)]}/2560,

dy=qSm?{90+ 3x7[ m2agA(2x;— 5) — 40] — 5120y{72}/640,

2_ 2
(=) _ (m):<2_ <m>)—[m+4wzy§qg o

Yx1" T Yx1 ) Yx11 128 5
d,=m2{90+ 3y [ 37?0 2(2x%— 5) — 40] — 5120y{72}/1280,
37mx5(2x;—5)

4 6 -
2560 WOy 28 4= 37*x20%(2x 2~ 5)/640,
The superscriptm) in ¥ and {T) above refer to maxi- d,=37"x5(2x5—5)/2560.

mally flat coefficients. Previously, we have simply chosen ~ _

¥ =72} and 7= {2} s0 as to make the first and second To solve for»{T} and {7}, we forced, anddj to be zero
terms of the right-hand side of the above identically zeroand obtain

[and obtain aO(q‘y‘) truncation errof. These coefficients are (m_ 4.2 ca 2

treated as unknowns for the moment. The above equation can Yx11=[2880+ 37" xyqy"(5—2xy)1/2560, (33

be rewritten as
Y{T=3{30+ x2[ m2qSA(2x2—5)—40]}/5120, (34)

() _ (M) _ T 6
Yx1' — v =(d,00d,,0d,) V' +0O(ay), (29 \which are functions oiq?. Note that, if we letqy=0, we
recovery{f) =7} and %= 3.
where In this manner,
do=5— 1, Y — A =[dz(ay—a5)?+d(ay— a5)°+da(a,— a5)*]
+0(qd).
- 3(4X§—3)772+4 > () Ay
2T 7|7 128 T Yxaz) At the center frequencyqy=q§ and 5=O(q§). The remain-
der corresponds to @(qg) error. Around the center fre-
3m*x3(2x25) quency, the error is dominated by ti&}_,d,(q,—qS)"
4= oBep term. In the above, we have illustrated the derivation/{Jp
by using ap=4 order polynomial for the Taylor expansion
5 3 4 in Eqg. (29). Theoretically, we can increase indefinitely the
V=(14y,dy,dy,dy)- polynomial orderp at the (one-timg cost of inverting a
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larger A and hence make the response as close to an exact 2. Chebyshev filters

second-order maximally flat filter response as desired. This

has the(one-timg cost of inverting an increasingly larger ~ We may choose{Tn[(qy—q§)/Aqy]} as a new basis ex-
matrix A. In practice, we observe a fast convergence to theansion in Eq.(30) instead, whereTl,(x) is the nth order
exact filter response since only negligible improvements aréirst-kind Chebyshev polynomial, andq, corresponds to
obtained forp=6. We employp= 10 throughout our numeri- the frequency band of interest. Still usifg=4 as an ex-
cal simulations. Also in practice, the design frequeru;gy ample, Eq.(30) becomes

may be chosen as the highest frequency of interest.

Figure 2 includes the_S4 error of the DRP scheme with . . . .
maximally flat filters designed ai°=0.1 (Ax=Ay). From Q:(1Qy—qy Tz(qy_qy) Ts(qy_qy) T4(qy_qy>>

this figure,_we observe that near the central frequengy ( " Ag, Ag, Ag, Ag,
=0.1), thed, using a second-order (with=10) maximally
flat filter is almost indistinguishable from the one using the
analytical solutiong20) and (21). and A becomes
|
1 0 0 0 0
Cc
1
_ Y = 0 0 0
Aqy Aqy
2657~ Ao} B
Aqj Aq; Aqj
3a5Aq;—4q;° 12052~ 3Aq) _ 12q8 A,
Ag; Agy Agy Ag;
4 2 2 4 2 3 2 2
8qy*—8ay°Aqy+Aqy 16q;Aqy—32q,° 480y°—8Aqy B 32qy 8
Aqy Aqy Aqy Agy Adgy
|
Following the same procedure as the maximally flat filter IIl. NUMERICAL RESULTS

c?cs),e, we can solye for the coefficients and Ob@ﬁ and We compare the DRE4,2) and(4,4) schemes against the
vx12 Of an approximate second-order Chebyshev filter. Here{ee's scheme, a tradition&2,4) scheme, and Deveze(d,4)

scheme. Both nonfiltered, and the maximally flat and Cheby-

¥ — ¥ =Tl (ay—aS)/Ady]+daT4[ (dy—aS)/Agy] shev filtered versions of the DRP schemes are considered.
A The phase velocity in free space is solved from the transcen-
+d4T4[(qy—q§)/Aqy]+O(q§3 , dental dispersion relation by assuming a uniform 2D FDTD

grid with Ax=Ay, or I'y=TI"y, and, hence, the coordinate
N A . _ subscript in the coefficients is dropped in what follows.
whered,, d3, andd, denote the coefficients of the corre The CFL number=1 is used for ordinary FDTD, while

sponding Chebyshev polynomials. Figure(®ith q,=qy B =~
) cleary shows that, by using hetyshev fters designed 710 DL S 3 e scheme e,
with q°=0.1 andAq=0.02, the error functiona, can be X ) . o 0P

' e T 4 CFL number for each algorithm, which yields the minimum
smaller than the one employing Eq€0) and (21) around dispersion error among all possible CFL numbers. When

the design frequencyA(q=0.02 is used here as an example. .o mnaring different algorithms, we employ their largest pos-
As shown later,Aq can be fine-tuned for a better perfor-

mance) - L

Since the Chebyshev filter is of second order, larger TABLE |. Coefficients used in differer4,4) schemes.
ripples are expected to occur in the passbhafd Agq=<q T I
<q°+Aq if a largerAq is used. In usual filter design, large - 12
ripples are undesired, but in our contefty represents an Deveze 1.125 —1.136094< 102
extra degree of freedom that can be explored to reduce theonfiltered DRP 1.125 4.79706Q10 3
accumulated phase error. This will be illustrated in the fol-maximally Flat DRP 1.125026 4.6693658L0 2
lowing section where we also spt=10 for the Chebyshev chebyshev DRP 1.125025 4.6653400 3

filter approximation.
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TABLE Il. Coefficients used in different4,4) schemegcont’d). TABLE IV. Coefficients of Chebyshev filtering schemes with
different parameterg, andAq (cont'd).
1—‘21 1—‘22
_ _ IﬂZl Iﬂ22
Deveze —4.166 66K 102  4.207 75& 104
Nonfiltered DRP —4.166 6610 2 —5.38600%10 %  °=0.1,Aq=0.02 —4.159 84X 1072 —5.74464%10°
Maximally flat DRP  —4.159 72510 2 —5.73325%10 °  °=0.1,Aq=0.046  —4.16025X10°2 —5.793854 103
Chebyshev DRP —4.15984X10°2 -5.74464%10° q°=0.1,Aq=0.037 —4.16009 102 —5.772360x10°3
q°=0.1,Aq=0.058  —4.16045410 > —5.830010<10 3

q°=0.114,Aq=0.053 —4.15984% 102 —5.74464%103

sible CFL numbers instead of that optimal one. This choice i
justified since the largest CFL number minimizes the com-
putational cost and is the most often used in practice. equals the largest wavelength being considered. Figure 5
Table | and Table Il give some coefficients used in theshows the largegfor all angle$ phase error accumulated in
DRP (4,4) schemes, where the maximally flat filter is de- such a distance by employing Chebyshev filtered DRP algo-
signed withg®=0.1, and the Chebyshev filter is designedrithms with differentAq (while q. is kept fixed as 0.1). For
with g°=0.1 with Aq=0.02. Table Ill and Table IV give the Aq=0.02, the usual notion that the largest accumulated
coefficients using Chebyshev filtering schemes for variouphase error is dominated by the highest frequency is still
pairs (@c, Ad). valid. However, this is not true anymore if larger values for
Figures 3 and 4 show the maximu(for all angleg phase  Aq are considered. In fact, wheiq=0.046, the largest ac-
error per wavelength, defined ak/k—1)x 360 withk de-  cumulated phase error is now determined by lower frequency
notes the discrete wave number obtained by solving the trarcomponents. Indeed, there is an optimed) around Aq

scendental dispersion relation akdefers to the exadicon-  =0.058 for which the maximum accumulated magnitude of
tinuum) wave number. As we see from Fig. 3, the DRR2) the phase error for all frequencies is a minimum.
scheme is about as accurate as(thd) schemgwith oppo- In the case of narrow band simulations, we can obtain a

site sign. Figure 4 shows that filtering schemes do reducepair (q.,Aq) which yields a minimum possible maximum
the dispersion error considerably around the specified frephase error for all angles at some specific frequency. As il-
guency. We also observe that the Chebyshev filter performiistrated in Fig. 6, if we specifg®=0.1 andAg=0.046, the
better than the maximally flat filter in the full frequency maximum phase error is minimum gt=0.087. This sug-
range considered. Note that Fig. 4 does not correspond ftgests that, in order to obtain a better performance at a spe-
Fig. 2 well after the crossover since Fig. 2 is just an analyti<ific frequency, we can simply design filters with a slightly
cal estimation for design purposes, while Fig. 4 depicts théarger g, and a fine tuned\q accordingly. Figure 6 shows
actual performance of the algorithms. another example witlq=0.114 andAq=0.053 which is in-

We also note from Fig. 4 that, for DRP schemes withtended to improve the performancecpt 0.1. As we see, a
filtering, the dispersion error at high frequencies can indeegnaximum phase error less thark30 2 is obtained atq
be made smaller than at low frequenciesntrary to nonfil-  =0.1, while a good bandwidth is maintained.
tered DRP and traditional scheme#s mentioned in the Computational costs are compared for the same accuracy
Introduction, this is a desirable characteristic because, for gequirements. Since decreasing the cell size also decreases
given computational domain size, high frequencies correthe time step, a fair comparison of computational costs
spond to an electrically larger problem and hence are more
impacted by theaccumulatedohase error. Nevertheless, un- . : : : : . : . : :
less thelocal dispersion error decreases faster than linearly 35| j

with frquency, the ]argest_ aqcumulated phase error in the Al L 2;‘:'29) DRP scheme |
computational domain is still given by the highest frequency = =~ (2,4) scheme

components. This issue will be further elaborated next. ii 25

2

that the lowest frequency correspondsae 0.01 and the § 15
&

highest frequency correspondsde- 0.1 (which is typica). ;

b
o

o
«
8
TABLE Ill. Coefficients of Chebyshev filtering schemes with g
different parameterg, andAq. %

=

-0.5
-1
I‘Ill I‘|12 )

-15 s
0°=0.1,Aq=0.02 1.125 025 4.665 140102 , , . , . , , , . .
g°=0.1,Aq=0.046 1.125 024 4.647 15610 3 001 002 003 004 005 006 007 008 009 0.1
q°=0.1,Aq=0.037 1.125 024 4.655 00910 3 g- wavelengths per cell
g°=0.1,Aq=0.058 1.125 023 4.633 954103 FIG. 3. Comparison of the maximuffor all angle$ phase error
g°=0.114,Aq=0.053 1.125 025 4.665 140103 per wavelength using Yee's, a traditiordl4) scheme and the non-

filtered DRP(4,2) scheme.
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2 2-0.04F
[ [+
o —0.06F @
& 8
< < —0.06
e o
% -0.08 g
S : 2 _0.08
£ - Non-filtered DRP N £ .
£ o4 - - Maximally Flat DRP N g ” =~ ¢°=0.1,4g=0.02
% — ghebyshev DRP "'-._ \7\ g —01} - _ q°=O.1,A 4=0.046
= eveze \ = — ¢°=0.1,A=0.058
-0.12r ] _o0.12F -+ q%=0.114,A q=0.053
—0.14 L L . L . L L L - —0.14 L 1 ) 1 ) ) ) L
001 002 003 004 005 006 007 008 009 0. 0.01 002 003 004 005 006 007 008 009 O.1
q: wavelengths per cell g: wavelengths per cell
FIG. 4. Comparison of the maximuffor all angle$ phase error FIG. 6. Comparison of the maximuffor all angle$ local phase
per wavelength using different DRR,4) schemes and the Deveze error per wavelength using DRP schemes and Chebyshev filters
(4,4 scheme. with different parameters.

should consider the same elapsed time duration, not the sargeheme needs to be reduced by about 25 times, and a prob-
number of time steps. Each field update of the DRR)  lem of same physical size and elapsed time would require
schemes involves 18 floating point operations in contrast t@25 times more memory and roughly 1925 times more cen-
three for the ordinary Yee's schenid] and six for Fang's tral processing unit time than the DR®,4). A similar com-
(2,4) scheme. Also the present maximum CFL number isparison can be made against Fan@s4) scheme, and the
48/65, in contrast to one for the Yee's scheme, and 6/7 foresults are summarized in Table V.

Fang's (2,4 scheme. For a wide band problem with fre-  As a final example, we calculate the resonant frequencies
quency spectra in the rangg=0.01~0.1, the worst accu- of a TE? single ridge resonator, as shown in Fig. 7, from DC
racy for the DRP scheme with Chebyshev filtering witft ( to 15 GHz. The boundaries correspond to an perfect electric
=0.1Aq=0.058) is about 0.073%/. To obtain the same ac- conductor. This 2D geometry is commonly used to find the
curacy in the Yee’s scheme, the spacial resolution needs to lititoff frequencies of the corresponding 3D single ridge
increased by a factor of 6.37 times. This requires roughlywaveguide undef E? excitation. The initial field is set to
40.6 times more memory and 31.9 times more flops for theero and a point source is located inside the resonator. To
same physical size and elapsed time problem. On the oth@btain adequate frequency resolution for the resonant fre-
hand, for a narrow band problem, we can use a MRB  quencies, the time-domain simulations must be run over suf-
scheme optimized fog=0.1 leading to a phase error of ficiently long integration time. The resonant field at the cut-
0.00%/\. To achieve this accuracy, the cell size in Yee'soff frequencies corresponds to waves bouncing many times
inside the resonator, where grid dispersion error will accu-
mulate and affect the results. This is an example of a prob-
lem in a relatively small domain that can still be sensitive to

§ 02 e grid dispersion error effects. Simulations are performed us-
] -- Ag;oj(m ing Yee's scheme, Fang's$2,4 scheme, and DRR4,4)
0.1- — AQ=0.046 scheme with Chebyshev filtering optimized withg®(
o 46-0.058 =0.1Aq=0.058). The CFL numbers are the same as before.

o
T

We run long enough time steps to guarantee 1 MHz fre-
quency resolution in the FFT. As mentioned before, this im-
plies running the same elapsed time for different simulations
(and hence different number of time stgpsll schemes use
the same spatial resolution corresponding to 13 cells at short-

Maximum accumulated phase error/A
S
=

-0.2
—0.3F N TABLE V. Ratios of memory and Flop requirements of Yee's
* scheme and Fang’s scheme vs the proposed @RIP scheme.
04 L L ' ! ! ) L ' )
001 002 003 004 005 006 007 008 009 O.1 Yee's Fang’s Yee’s Fang'’s

q: wavelengths per cell

) i (narrow bang (narrow bang (wide band (wide band
FIG. 5. Comparison of the maximuifor all angle$ accumu-

lated phase error over the largest wavelength in DRP schemes usifgemory 625 294.5 40.6 20.5
Chebyshev filtering schemes with variodsy while fixing q° Flops 1925 1066 31.9 19.6
=0.1.

016701-9



S. WANG AND F. L. TEIXEIRA PHYSICAL REVIEW E69, 016701 (2004

100

a
y o
4 -+ (2,2) scheme _F RalRo
d 80  |.o- (2,4) scheme Y ]
X ] —— DRP (4,4) scheme g ¢
b J
le— S i

FIG. 7. Geometry of the single ridged resonator with a
=6.15cm, b=2.7 cm, ¢=0.45 cm, s=1.05 cm.

Absolute error (MHz)

est wavelength of interegat 15 GH2 and the resonant fre- _
guencies are compared against the results from a highly re

fined grid (no discernible variations on the resonant -sof NN :
frequencies after further refinement o *

Figure 8 shows the absolute error computed by different o0 4000 6000 8000 10000 12000 14000 16000
schemes. The proposed DR®4) scheme yields the best Resonant frequency (MHz)

result for all frequenc|es be|ng Computed Itis |nterest|ng to FIG. 8. Compal‘ison. of the absolute error at each resonant fre-
see that because the discrete wave number in the Yee®!ency computed by different schemes.

scheme is larger than the continuum wave numbeg. 3, terms of this series to be zero. DRP-FDTD coefficients are
the accumulated dispersion error tends to lower down thenen obtained which are functions of frequency. Using a
resonant frequencies. In contrast, for both Fari@:#d) and  polynomial (Taylor) series of frequency, these coefficients
the proposed DRF4,4) scheme, the discrete wave number iscan be incorporated into the FDTD update by using the first
smaller than the continuum wave numiiEig. 3 and Fig. &  terms of this series. The same methodology can be used to
which results in an increase on the resonant frequencies olgerive optimized 3D schemes as wigll].
served. The dispersion error can be futher reduced to a theoretical
minimax limit (i.e., if an infinite Taylor series were usehly
IV CONCLUSIONS employing .quimally fIat'(Efutterworth filters or even ex-
ceed that limit at some finite frequency band using Cheby-
We have described a general approach to construct DRéhev filters. The behavior of the local dispersion error can
schemes for large-scale 2D FDTD simulations of Maxwell'salso be adjusted by the filtering schemes in order to reduce
equations. The maximunffor all angle$ local dispersion the accumulated phase error in the computational domain on
error is minimized(minimax sensgby expanding the local a preassigned given frequency band. This is done by making
dispersion erroffor a given spatial stengilin a Fourier se- the local dispersion error at high frequencies smaller than at
ries in terms of propagation angle and enforcing the leadingow frequencies.
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