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Simple statistical explanation for the localization of energy in nonlinear lattices
with two conserved quantities

Benno Rumpf
Max-Planck-Institute for the Physics of Complex Systems, No¨thnitzer Straße 38, 01187 Dresden, Germany

~Received 12 August 2003; published 30 January 2004!

The localization of energy in the discrete nonlinear Schro¨dinger equation is explained with statistical meth-
ods. The partition function and the entropy of the system are computed for low-amplitude initial conditions.
Detailed predictions for the long-time solution are derived. Localized high-amplitude excitations absorb a
surplus of energy when they emerge as a by-product of the production of entropy in the small fluctuations. The
thermodynamic interpretation of this process applies to many dynamical systems with two conserved quanti-
ties.
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Localization of energy within a small number of isolate
high-amplitude structures is a widespread phenomeno
nonlinear optics@1–3#, plasma physics@4#, Bose-Einstein
condensates@5#, and nonlinear lattice dynamics@6–8,10#.
Peaks of the energy density result either from a collaps
wave train that leads to a finite-time blow-up of the amp
tude@4,11#, or, in spatially discrete systems, from a sequen
of merging breathers@8#.

The purpose of this paper is to show that the formation
peaks is driven by the production of entropy and that t
behavior is generic for the thermalization of many conser
tive systems where a second quantity is conserved in a
tion to the Hamiltonian. The discrete nonlinear Schro¨dinger
equation is a simple generic equation that describes disc
breathers in nonlinear optical waveguide arrays@2,3# and di-
lute Bose-Einstein condensates that are trapped in peri
potentials@5#. The spatial discreteness avoids the leakage
energy to infinitesimal scales that can occur during the w
collapse of continuous systems@9# so that this system is a
simple but representative model for localization process
The noncompactness of the phase space leads to a m
technical difficulty in the statistical treatment of high
amplitude structures.

Figure 1~a! shows the focusing process for the focusi
discrete nonlinear Schro¨dinger equation~DNLS!

i ḟn5fn111fn211ufnu2fn . ~1!

Any coefficients of this equation can be removed by scali
and consequently all quantities are dimensionless. F
breathers with moderate amplitudes appear periodically
space and time following a phase instability of a regu
low-amplitude initial solution. Subsequently, they merge in
more persistent peaks with higher amplitudes@lattice site 188
in Fig. 1~a!#. The system finally settles into a state whe
immobile high-amplitude peaks@the ring with ufu'2.3 in
Fig. 1~b!# emerge from a low-amplitude disordered bac
ground~core withufu,0.5!. The peaks divide the system int
patches of the order of 100 lattice sites where the amplit
is low and the dynamics is irregular. The peaks oscill
corresponding to their amplitude-dependent frequency
their amplitudes fluctuate slightly, but their position in th
lattice almost never changes.
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This behavior depends crucially on the system’s ene
E5^H&, whereH5( i(f if i 11* 1f i* f i 11)1 1

2 f i
2f i*

2 is the

Hamiltonian of the DNLSi ḟn5]H/]fn* . Persistent local-
ization of energy occurs only if the system’s energy is po
tive. In this case the peaks finally absorb almost the to
energy@Fig. 2~a!#. The height of the peaksufu'2, . . .,2.5 is
almost independent of the total energy@Fig. 2~b!#, but the
number of peaks increases with the energy. For negative
ergies, there is no localization of energy@Fig. 1~c!# and the
system settles into a state of low-amplitude fluctuations@Fig.
1~d! and Fig. 2~a!#. The system’s second conserved quant
the modulus-square norm~or ‘‘particle number’’! A5^A&

FIG. 1. Numerical integration of the DNLS with 4096 oscilla
tors. The initial conditions are waves with the amplitudefn50.3
and the wave numberk50 for ~a!, ~b!, and withk5p/2 for ~c!, ~d!.
~a! and ~c! show the spatiotemporal patterns of high-amplitu
states~dark gray! in a small sector of the chain for the first 200
time steps.~b! and ~d! show the distributiions off after 23105

time steps.
©2004 The American Physical Society18-1
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with A5(f if i* is also crucial for this phenomenon. The
is no persistent localization of energy in this system if t
rotational symmetry linked to this second conserved quan
is broken.

The discrete nonlinear Schro¨dinger equation admits ene
gies 22A<E<2A for low-amplitude initial conditions
A/N!1. As suggested by Fig. 1~b!, the phase space may b
separated into a low-amplitude domainD, for uf,u,r and
a high-amplitude domainD. for uf.u>r . To avoid formal
difficulties with diverging terms, a preliminary upper boun
R.r of the phase space is introduced asufu<R. The main
contributions to the energy arise from interactions in the lo
amplitude domain~whereN2K oscillators are gathered an
nonlinear contributions are negligible! and from the quartic
contribution of K!N2K oscillators in the high-amplitude
domain. The Hamiltonian is therefore approximated as

H'H,1H.5( u~r 2uf i u!u~ ur 2uf i 11u!

3~f if i 11* 1f i* f i 11!1
1

2
u~ uf i u2r !f i

2f i*
2 ~2!

with the unit step functionu(x,0)50, u(x>0)51. The
second integral of motion may be separated in a similar w
asA5A,1A. . The system’s entropy as a function of th
conserved quantitiesE and A can be computed from th
grand partition functiony(b,g)5*r) i 51

N df idf i* using the
densityr5e2b(H2gA). The partition function is a sum ove
all possible numbers of peaksK, and only its leading term

y~b,g!'S N
K D y,~b,g,N2K !y.~b,g,K ! ~3!

will be considered.K andR will be determined later in orde
to maximize the entropy. The factor (K

N) gives the number of
combinations ofK high-amplitude sites onN lattice sites.
The contributionsy, and y. will be computed separately
The patches of small-amplitude fluctuations between
peaks give the contribution

FIG. 2. Energy@dots in ~a!# and height@dots in ~b!# of peaks
with ufu.1 as a function of the total energy after 23105 time steps
of numerical integration. The initial conditions of the 4096 latti
sites are waves with an amplitudeufu50.3 and wave numbers from
k50 to k5p. Lines, thermodynamic equilibrium value~a! and
critical height for lattice pinning~b!.
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y,~b,g!5E
D,

•••E
D,

r, )
i 51

N2K

df idf i* ~4!

to the partition function withr,5e2b(H,2gA,). These re-
gions are in thermal equilibrium with each other, and the
fore they are regarded as one single field ofN2K oscillators.
Similarly, theK oscillators in the high-amplitude regimeD.

have degrees of freedom corresponding to variations
phase and amplitude of the peaks. This leads to the co
bution to the partition function

y.~b,g!5E
D.

•••E
D.

r.)
j 51

K

df jdf j* ~5!

with r.5e2b(H.2gA.). This neglects the coupling term o
the peaks which is small compared to the quartic ene
However, peaks and fluctuations are coupled thermally,
that they can exchange energy and particles. This excha
vanishes on average when peaks and fluctuations have
same temperatureb21 and chemical potentialg. The energy
E'E,1E. and the particle numberA5A,1A. have con-
tributions from either domain.A, A, , A. , E. are positive,
E andE, may be positive or negative.

The partition functiony, can be reduced to Gaussia
integrals. The density may be written asr,

5)e2(l1fn82l2fn118 )2
e2(l1fn92l2fn119 )2

with l1/2

5@A2b(g12)6A2b(g22)#/2 ~it turns out later that
2bg>0 and ugu>2!. Introducing the variablesxn5l1fn8
2l2fn118 , the partition function of the fluctuations is re
duced to Gaussian integrals

y,~b,g!5S E e2xn
2

det~]fn8/]xn!) dxnD 2

. ~6!

Using det(]xn /]fn8)5l1
N2K2l2

N2K , the Jacobian is
det(]fn8/]xn)'l1

2(N2K) for N2K@1 since l1.l2. The
square in Eq.~6! is obtained from the identical integratio
over f9. This gives an analytic expression for the partitio
function y,(b,g,N2K)5LN2K with L5pl1

225p„2bg
1Ab2(g224)…21. The corresponding energy is

E,5S g

b

]

]g
2

]

]b D ln y,5~N2K !
Ag2242Ag2

bAg224
~7!

and their particle number is

A,5
1

b

]

]g
ln y,52~N2K !

g

bAg424g2
. ~8!

Consequently, the inverse temperature isb522E,(N
2K)/(4A,

2 2E,
2 ) and the chemical potential isg5(4A,

2

1E,
2 )/(2E,A,). Using these expressions, the canon

transformationS,5 ln y,1b(E,2gA,) leads to the entropy
of the small fluctuations

S,5~N2K !ln V ~9!
8-2
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SIMPLE STATISTICAL EXPLANATION FOR THE . . . PHYSICAL REVIEW E 69, 016618 ~2004!
with V5(4A,
2 2E,

2 )/@4A,(N2K)#. The entropy is the
most useful thermodynamic potential in this context beca
its variables~particle number and energy! are known from
the initial conditions. The fluctuation entropy per lattice s
ln V is plotted in Fig. 3~a!. The linesE,52A, and E,

522A, correspond to waves withk50 andk5p, respec-
tively. The entropy is infinitely low for these ordered state
The ridgeE,50 corresponds to a fluctuating state with
infinite temperature where all wave numbers have the s
power. A wave withk5p/2 is a nonthermalized solutio
with E50. This line b50 was first computed in Ref.@7#
where the additional nonlinear correction were included, a
it was identified as the transition line to the localizati
phase. No analytic results for the statistics beyond this
have been available yet.

Equation~9! gives a valid expression for the total entrop
if the system’s total energy is negative@corresponding to the
right slope with E,,0 of Fig. 3~a!#. The temperature is
positive in this case, and consequently the densityr.

;exp(2b(ufnu4/2) decays rapidly for huge amplitudes s
that the high-amplitude contribution to the partition functi
is negligible. In this phase only small fluctuations contribu
to the total entropyS5N ln V. This describes the low
amplitude fluctuating state (E5E, ,A5A,) with no peaks
of Fig. 1~d!.

The slopeE,.0 is linked to negative temperatures@7#.
The densityr. increases with the amplitude in this regim
which was suggested to be the reason for the formation
high-amplitude structures@7#. The increase of the densit
causes obvious technical difficulties. The phase space is~un-
like in the spin system of Refs.@8,10#! noncompact, so tha

FIG. 3. lnV ~a! and (K/N)ln G ~b! as a function ofE, andA, ;
line R25g for the simulation of Figs. 1~a! and 1~b!.
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the integraly. will diverge for any fixed negative values o
b. However, the artificial upper boundaryR of the phase
space prevents this divergence. The partition function
first be computed as a function of this parameterR, which
subsequently will be allowed to go to infinity as this max
mizes the entropy. From this the contributions of the peak
the entropy, the energy, and the particle number can be c
puted.

The grand partition function of the peaks increases
y.(b,g);@e2b(R4/22gR2)/(2bR21bg)#K with the cutoffR
of the phase space ifR is greater thanAg. Since the density
r gathers at the borderR, the particle number related to th
domainD. is A.5KR2 and the energy isE.5KR4/2. In-
serting b, g, and R5A2E. /A. into the entropy of the
peaksS.'2K ln(2bR2) yields

S.5K lnS K~4A,
2 2E,

2 !

4~N2K !A.E,
D 5K ln~K/N!1K ln V1K ln G

~10!

with G52A,N/A.E, . The combinations ofK5A.
2 /2E.

peaks onN lattice sites yield an entropy contributionSp

5 ln(K
N)'K ln(N/K). Adding up S, , S. , and Sp , the total

entropy is

S5N ln V1
A.

2

2E.
ln G. ~11!

This expression describes the thermodynamics in the dom
where localization occurs. The small fluctuations provide
leading termN ln V of the entropy while the contribution
K ln G @Fig. 3~b!# from the peaks is negligible under the co
straintR2.g or 2E. /A..(4A,

2 1E,
2 )/(2E,A,). y. and

G can be computed in the same way for various types
nonlinearities. The entropy increases withA, and decreases
with uE,u and has its maximum atE,50, A,5A, E.

5E, A.50. The state of maximum entropy is related
low-amplitude fluctuations withb50 andbg52N/A.

The crucial point is that the high peaks contribute little
the total entropy, while they can absorb high amounts
energy using only few particles. On the other side, the fl
tuations can reach a state with a maximum entropy, if th
contain the ideal amount of energy. This shows the therm
dynamical nature of energy localization. In order to ma
mize the system’s total entropy, the ideal amount of ene
E, must be allocated to the fluctuations. Starting from
initial condition with a positive energyE5E, at the left
slope in Fig. 3~a!, the entropy can be increased whenE,

decreases while the released energy is stored in the loca
structures. The state of maximum entropy corresponds
only one peak which absorbs the total energy@Fig. 2~a!#
while consuming very few particles. This also shows t
self-consistency of the truncation~2! that neglects the inter
action of the peaks with their environment. The equilibriu
state with localized structures corresponds tob50, so the
temperature is not negative. In the opposite case with ne
8-3
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BENNO RUMPF PHYSICAL REVIEW E69, 016618 ~2004!
tive total energiesE and a positive temperature, there is
energy surplus and consequently no localization@Figs. 1~c!
and 1~d!#. Figure 4 gives a numerical picture of the shift
energy and particles into the peaks for Eq.~1! and the corre-
sponding picture for a version of the DNLS where the ro
tional symmetry is broken by a small term 0.015 Re(fn). It
shows the evolution of the fluctuation energyE, and particle
numberA, versus the corresponding equilibrium isentrop
S5const for a homogeneous low-amplitude (ufu50.3) ini-
tial stateE,5E52A and A,5A. The boundary between
D, andD. is r 51. The particle-nonconserving system pr
duces no persistent peaks. Instead, it increases its entrop
increasing the total number of particles and ends up i
fluctuating high-amplitude state@13#. The particle-
conserving system~1! approaches the entropy maximum b
generating peaks and transferring energy from the fluc
tions E, to E. . On the other side, growing peaks also a
sorb particles that must be shifted fromA, to A. . The trace
(E, ,A,) therefore strives down to the left in Fig. 4. Th
loss of particles in the fluctuations is unfavorable for t
production of entropy. The merging of peaks, however,
lows the system to store more energy in the peaks w
feeding particles from the peaks back into the fluctuatio
A, which leads to an additional increase of the entropy.

A state with only one huge peak is not reached exp
mentally@Fig. 1~b!#. Instead, a number of coherent structur
of moderate height@Fig. 2~b!# survive even on very long
time scales (107 time steps in numerical simulations!. In Fig.
4, the trace (E, ,A,) does not reach the state of maximu
entropy at (E,50, A,'370), but ends up at in a state wit
only half that particle content, and still a positive amount
energy. The coherent structures contain a significant am
of particles, and the entropy of the fluctuations is below
maximum. The reason for this is the eventual breakdown
the two entropy-enhancing mechanisms, First, the merg
of peaks becomes impossible because peaks above a c
critical height are immobilized by a lattice-pinning effec
For that reason the trace (E, ,A,) in Fig. 4 does not cross
the isentropesS3 ,S2 ,S1. Second, the growth of peaks sto

FIG. 4. IsentropesS1.S2.S3.••• for the left slope of Fig.
3~a!; trace (E, ,A,) of the integration of Figs. 1~a! and 1~b! over
E, , A, ; trace for a version of the DNLS where the second co
servation law is violated.
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when this leads to no further increase of the fluctuation
tropy. This happens when the entropy gain due to the ene
transfer to the peaks is matched by the entropy loss du
the particle transfer. For this reason, the trace (E, ,A,) in
Fig. 4 does not approach the lineE,50 any further after
;105 time steps.

The mobility of a peak with an amplitudeufnu5Aa at a
site n depends on the compatibility of the local conservati
of its energyE5a2/2 and its particle numberA5a during a
possible migration to the siten11. Most of thea particles
are gathered at these two lattice sites during the migrat
The trajectory of such a migration is therefore close to
intersection of the level set ofE andA with the constraint of
nonvanishing amplitudes atn andn11 only. These paths are
given byfn(n)5AaA12neic andfn11(n)5Aaneia(n)eic

with cosa5aAn2n2/2. The parametern goes from 0 to 1
during the migration as the particles are shifted fromn to n
11. c is a phase factor. The bottleneck of this process is
intermediate storage ofufu4 energy in the coupling term
2 Re(fnfn11* ). The solvability condition cosa<1 for all n
requires thata<4, so that this migrational path only exis
for peaks below a maximum amplitudeufn(n50)u<2. For
higher peaks, it is impossible to conserve both particle nu
ber and energy at the instant whenufnu5ufn11u. These ide-
alized migrational paths deviate from exact solutions of
DNLS which necessarily have nonvanishing amplitudes
adjacent oscillators atn21, n12, etc. Monte Carlo simula-
tions of paths that include small amplitudes for adjacent
cillators ~4–20 lattice sites! show that migrations for slightly
higher peaks@ ufn(n50)u,2.28, Fig. 2~b!# are permitted by
the conservation laws. Higher peaks first need to decreas
transferring particles to remote lattice sites before they
move. This defocusing process would require a very unlik
decrease of entropy and the local conservation of parti
and energy is therefore statistically favorable. Spontane
collapses of peaks are only possible if this increases the
entropy, which is the case if the fluctuations have sm
wavelengths and a positive temperature.

Further growth of the peaks requires a flow both of p
ticles and of energy from the fluctuations to the peaks as
number of pinned peaks is fixed on relevant time scales. T
is thermodynamically favorable only if the increase of t
entropy due to the energy transfer is bigger than the decr
caused by the particle transfer. This process stops when
trace (E, ,A,) in Fig. 4 approaches an isentrope tangentia
as]E. /]A.uK5const5]E, /]A,uS5const which is equivalent
to g5R2. On this line, growth or decay processes of pea
absorb or release energy and particles in a ratio that amo
to isentropic changes of the fluctuations. The statistical
sults reflect microscopic dynamical findings@12# of the
growth and decay processes of localized structures pertu
by one or two incoming waves. Long waves lead to grow
short waves to decay of a peak while the radiated harmo
increase the systems entropy. Experimentally, one still fi
irregular oscillations of the peak heights, but no avera
growth. Interactions of peaks and fluctuations that incre
the peaks are matched on average by those interactions

-

8-4
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SIMPLE STATISTICAL EXPLANATION FOR THE . . . PHYSICAL REVIEW E 69, 016618 ~2004!
decrease the peaks. Waves with all wave numbers coexi
the state of equilibrium where growth processes are balan
by decay processes. Any changes of the peak amplitude
statistically unfavorable as they decrease the total entrop

To conclude, localization in nonintegrable systems c
strained by two integrals of motion is astatistical process.
The entropy is dominated by contributions from sma
amplitude fluctuations. The entropy is maximal if an optim
share of each conserved quantity is allocated to the fluc
tions. There is no localization if not enough energy is su
plied by the initial conditions. If a surplus of energy is pr
vided by the initial conditions, it is dumped into high
amplitude structures that absorb high amounts of ene
~Fig. 2! while using few particles. This explains the pha
where energy localization occurs. The lattice pinning eff
related to the conservation laws prevents the system f
reaching the absolute entropy maximum. For the final p
size, growth and decay interactions of the peaks with
fluctuations are balanced.

Obviously, the statistical analysis shows the macrosco
properties of an ensemble of microstates, and one might
pect that the Arnold diffusion process transfers the traject
from any initial condition to this most probable state. Ho
ever, the thermalization may have extremely long transie
In the numerical simulations, the amplitudes in the init
conditions were small enough so that the separation of
partition function in the statistical description was valid, b
large enough for the nonintegrability to have an impact
moderate time scales. In the ‘‘integrable’’ limit of smoo
initial conditions with very low amplitudes, the dynamics
d

nd

is
,

N
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most similar to the continuous one dimensional nonlin
Schrödinger equation, which is integrable. Consequently, t
part of the phase space is partitioned by Kolmogoro
Arnold-Moser tori that are not destroyed by the noninteg
bility and the dynamics is quasiperiodic on very long tim
scales. To escape from this state, the amplitude has to r
a sufficient height so that the nonlinearity absorbs a subs
tial amount of energy, which becomes a rare event for sm
average amplitudes. Such quantities that are almost c
served on moderate time scales can also be relevant fo
calization effects in systems where the Hamiltonian is
only exactly conserved quantity. For instance, the DN
with broken rotational symmetry shows energy localizati
on shorter time scales where the particle number chan
very little. This is the case in the early stadium of the pa
E, ,A, whereA is not conserved in Fig. 4. It is an interes
ing question if this also applies to other breather syste
where the Hamiltonian is the only conserved quantity@6,14#.

The mechanism of localization is found in very diver
dynamical systems as it relies only on the properties of
entropy functional and on the existence of two conserv
quantities and not on the spatial discreteness. Dependin
the type of the nonlinearity, the localized structures may
sorb primarily the second conserved quantity@8# and not the
energy. In continuous systems described by partial differ
tial equations@9,11#, the transport of fluctuations is contin
ued down to the molecular scale. Again, the conserva
laws require the formation of localized structures for th
exploitation of degrees of freedom on short space scales
ov,
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