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Simple statistical explanation for the localization of energy in nonlinear lattices
with two conserved quantities
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The localization of energy in the discrete nonlinear Sdinger equation is explained with statistical meth-
ods. The partition function and the entropy of the system are computed for low-amplitude initial conditions.
Detailed predictions for the long-time solution are derived. Localized high-amplitude excitations absorb a
surplus of energy when they emerge as a by-product of the production of entropy in the small fluctuations. The
thermodynamic interpretation of this process applies to many dynamical systems with two conserved quanti-
ties.
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Localization of energy within a small number of isolated This behavior depends crucially on the system’s energy
high-amplitude structures is a widespread phenomenon iE=(H), whereH=3 (¢ d%, 1+ ¢ di.1)+ 3 d7PF? is the
nonlinear optics[1-3], plasma physicg4], Bose-Einstein  jamjjtonian of the DNLSI ¢, = dH/d¢* . Persistent local-
condensate$s), and nonlmear Iatt|ce_ dynamid$-8,10. ._ization of energy occurs only if the system’s energy is posi-
Peaks of the energy density result either from a collapsinge |y this case the peaks finally absorb almost the total
wave train that leads to a finite-time blow-up of the ampli- energy[Fig. 2@)]. The height of the peakg)|~2, . . .,2.5 is
tude[4,11], or, in spatially discrete systems, from a sequence,,ost independent of the total enerfig. 2b)], but the
of merging breathe@]. . . umber of peaks increases with the energy. For negative en-

The purpose of this paper is to show that the formation oy gie there is no localization of enerffig. 1(c)] and the
peaks is driven by the production of entropy and that thisy gtem settles into a state of low-amplitude fluctuatifi.
behavior is generic for the thermalization of many CONSeNVay ) ang Fig. 2a)]. The system's second conserved quantity

tive systems where a second quantity is conserved in add{he modulus-square norfor “particle number’ A={A
tion to the Hamiltonian. The discrete nonlinear Schinger a fror "p ) (A

equation is a simple generic equation that describes discrete
breathers in nonlinear optical waveguide arrg®8] and di-
lute Bose-Einstein condensates that are trapped in periodic
potentials[5]. The spatial discreteness avoids the leakage of
energy to infinitesimal scales that can occur during the wave
collapse of continuous systeri8] so that this system is a
simple but representative model for localization processes..
The noncompactness of the phase space leads to a merel =
technical difficulty in the statistical treatment of high-
amplitude structures.

Figure Xa) shows the focusing process for the focusing 1go
discrete nonlinear Schdinger equatior(DNLS) ¢

(b

250

ttice site

Reo¢
2.5

250(;

i bn=nr1t+ o1+ bnl>bn. (1)

Any coefficients of this equation can be removed by scaling,
and consequently all quantities are dimensionless. First, -
breathers with moderate amplitudes appear periodically in
space and time following a phase instability of a regular
low-amplitude initial solution. Subsequently, they merge into
more persistent peaks with higher amplituflegtice site 188

in Fig. 1(@)]. The system finally settles into a state where gl Rab
immobile high-amplitude peakgthe ring with [¢|~2.3 in 0 time 2000 25 0 25
Fig. 1(b)] emerge from a low-amplitude disordered back-  gg 1. Numerical integration of the DNLS with 4096 oscilla-
ground(core with|¢|<0.5). The peaks divide the system into tors. The initial conditions are waves with the amplitugig=0.3
patches of the order of 100 lattice sites where the amplitudgng the wave numbér=0 for (a), (b), and withk= /2 for (c), (d).

is low and the dynamics is irregular. The peaks oscillatga) and (c) show the spatiotemporal patterns of high-amplitude
corresponding to their amplitude-dependent frequency angtates(dark gray in a small sector of the chain for the first 2000
their amplitudes fluctuate slightly, but their position in the time steps.(b) and (d) show the distributiions ofp after 2x 10°
lattice almost never changes. time steps.

site

lattice
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(b)
(E-E_)IN 0] pinned peaks y<(B,y)= f f p< H dgdof (4)
25
012 TSI | to the partition function withp.=e A#(*<~74<) These re-
0.08 2 ¢ gions are in thermal equilibrium with each other, and there-
fore they are regarded as one single fieldNef K oscillators.
0.04 1.5 movable peaks Similarly, theK oscillators in the high-amplitude reginte.
have degrees of freedom corresponding to variations of
Py ammrs ¢ 5 5 Y E/’:Z phase and amplitude of the peaks. This leads to the contri-

bution to the partition function

FIG. 2. Energy[dots in(a)] and height{dots in (b)] of peaks
with |¢|>1 as a function of the total energy aftek40° time steps *
of numerical integration. The initial conditions of the 4096 lattice y>(B,7)= L T L P>.H1 d¢jd¢j ®)
sites are waves with an amplitugis=0.3 and wave numbers from . - 07
k=0 to k=. Lines, thermodynamic equilibrium valu@ and

i — e BH==YA) Thi -
critical height for lattice pinningh). with p.=e >~7v>)_ This neglects the coupling term of

the peaks which is small compared to the quartic energy.
However, peaks and fluctuations are coupled thermally, so
with A=3¢,; 4" is also crucial for this phenomenon. There that they can exchange energy and particles. This exchange
is no persistent localization of energy in this system if theyanishes on average when peaks and fluctuations have the
rotational symmetry linked to this second conserved quantitéame temperaturg~* and chemical potentiay. The energy
is broken. E~E_+E. and the particle numb&k=A_+A. have con-

The discrete nonlinear Schitimger equation admits ener- triputions from either domaim, A_, A, E- are positive,
gleS —2A<E=<2A for low- amplltude initial conditions E and E. may be posmve or neganve
AIN<1. As suggested by Fig.(ll), the phase space may be  The partition functiony. can be reduced to Gaussian
separated into a low-amplitude domain. for [¢-|<r and integrals. The density may be written as -
a high-amplitude domain .. for |¢~|=r. To avoid formal e~ (Mbh—rabh, )2 (adn Ao, )2 with N
difficulties with diverging terms, a preliminary upper bound _ . 1/2

=[V=B(y+2)=J-B(y—2)]/2 (it turns out later that

R>r of the phase space is introduced|g@$<R. The main . . a p
contributions to the energy arise from interactions in the low- _'872,0 and |=2). Introducing the variablest,=\; ¢,
N>/ .1, the partition function of the fluctuations is re-

amplitude domainfwhereN— K oscillators are gathered and
nonlinear contributions are negligibland from the quartic duced to Gaussian integrals
contribution of K<N—K oscillators in the high-amplitude

domain. The Hamiltonian is therefore approximated as y_(B,7)=

2

f e~ detagox)[] dx,| . (6

H~H-+H.=2 u(r=|dDu(lr = i) Using detgx,/dp,)=N)"K=\3)"%, the Jacobian is
det@p./axy)~N; NK) for N—K>1 since \;>\,. The
1 square in Eq(6) is obtained from the identical integration
X (il 1t o div1)+ EU(|¢i|_r)¢i2¢i*2 (2 over ¢". This gives an analytic expression for the partition
function y_(8,7,N—K)=AN"K with A=m\]?=7(—By
with the unit step functioru(x<0)=0, u(x=0)=1. The +B*(y*~4))"". The corresponding energy is

second integral of motion may be separated in a similar way

asA=A_+ A. . The system’s entropy as a function of the E :( v 9 )| ny.=(N—K) V¥ VY \/—2 7
conserved quantitieE and A can be computed from the = = BVY?

grand partition functiory(,B,y)zfpl'[i’\‘:ldqbid¢i* using the

densityp=e#"~7*4_The partition function is a sum over and their particle number is

all possible numbers of peaks and only its leading term

149 y

A== —Iny_.=—(N-K) ————. (8)
N >
y(ﬂa)’)%(K)y<(,31%N_K)Y>(,3,%K) (3) IB (9 B 74_47

Consequently, the inverse temperature gs=—2E_(N
will be consideredK andR will be determined later in order —K)/(4A%2—EZ2) and the chemical potential ig=(4A%
to maximize the entropy. The factq'ﬂ)( gives the number of +EZ2)/(2E_A_). Using these expressions, the canonic
combinations ofK high-amplitude sites oM lattice sites. transformationrS.=Iny_+B(E.—vA.) leads to the entropy
The contributionsy_ andy- will be computed separately. of the small fluctuations
The patches of small-amplitude fluctuations between the
peaks give the contribution S.=(N-=-K)InQ 9
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Ay (@ the integraly~ will diverge for any fixed negative values of

The grand partition function of the peaks increases as
y-(B,7)~[e AR"2= 7RI (_ BR2+ B4)]X with the cutoffR
of the phase space R is greater than/y. Since the density
p gathers at the borde®, the particle number related to the
. 015 domainA- is A. =KR? and the energy i&-. =KR*2. In-
0.15 E/N 0 serting 8, y, and R=+/2E. /A. into the entropy of the
peaksS. ~ — K In(— BR?) yields

/‘

—

T
i

Z L

4
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—

L In Q X ===‘=‘~\ =0 B. However, the qrtific;ial upper boundaﬁ_qf the ph_ase

Al ey 5 =-. :E““E:ﬁ:\\\\ ?pa':cs preventf éhls d|vfergetr_10e. Irtnﬁ partition d{gncﬁqog can
BEsE % s Emta SN irst be computed as a function of this parame®emvhic

i ’a’%%%%g‘gi%?‘;:%\:i\\\\\\\\\\ \ subsequently will be allowed to go to infinity as this maxi-
—af ’,’9’[’9‘%’—_&:‘:‘\‘\\\\\\\\\\ mizes the entropy. From this the contributions of the peaks to

- ,’ , ’l /%’,‘_‘S‘\\\\\\\\\\ the entropy, the energy, and the particle number can be com-
5 l I‘IM, "“\!‘\\\\\\\\ , puted.

Ul

—

K(4AZ—E2)

m)=KIn(K/N)+KInQ+KInF

(10

S>=Kln(

with T=2A_N/A_E_. The combinations oK =A2/2E_

peaks onN lattice sites yield an entropy contributio§,

=In(E)%KIn(N/K). Adding upS., S., andS;, the total
FIG. 3. InQ (@ and K/N)InT (b) as a function oE - andA_ ; entropy Is

line R?= y for the simulation of Figs. (&) and b).

A2
with Q=(4A%2—-E2)/[4A_(N—K)]. The entropy is the S=NInQ+ fm r. (12)
most useful thermodynamic potential in this context because -
its variables(particle number and energyare known from
the initial conditions. The fluctuation entropy per lattice site This expression describes the thermodynamics in the domain
InQ is plotted in Fig. 8a). The linesE.=2A_ and E.  where localization occurs. The small fluctuations provide the
=—2A_ correspond to waves witk=0 andk=, respec- leading termNIn() of the entropy while the contribution
tively. The entropy is infinitely low for these ordered states.K InI" [Fig. 3(b)] from the peaks is negligible under the con-
The ridgeE_=0 corresponds to a fluctuating state with anstraintR?>>y or 2E- /A_>(4A2+E2)/(2E_A.). y- and
infinite temperature where all wave numbers have the samE can be computed in the same way for various types of
power. A wave withk=/2 is a nonthermalized solution nonlinearities. The entropy increases with and decreases
with E=0. This line =0 was first computed in Ref7]  with |E_| and has its maximum aE_=0, A_=A, E-
where the additional nonlinear correction were included, and=E, A.=0. The state of maximum entropy is related to
it was identified as the transition line to the localization low-amplitude fluctuations witl8=0 andB8y= —N/A.
phase. No analytic results for the statistics beyond this line The crucial point is that the high peaks contribute little to
have been available yet. the total entropy, while they can absorb high amounts of
Equation(9) gives a valid expression for the total entropy energy using only few particles. On the other side, the fluc-
if the system’s total energy is negatil@rresponding to the tuations can reach a state with a maximum entropy, if they
right slope withE_-<0 of Fig. 3a]. The temperature is contain the ideal amount of energy. This shows the thermo-
positive in this case, and consequently the dengity dynamical nature of energy localization. In order to maxi-
~exp(—B2|¢*2) decays rapidly for huge amplitudes so mize the system’s total entropy, the ideal amount of energy
that the high-amplitude contribution to the partition function E. must be allocated to the fluctuations. Starting from an
is negligible. In this phase only small fluctuations contributeinitial condition with a positive energfe=E_ at the left
to the total entropyS=NIn(). This describes the low- slope in Fig. 8a), the entropy can be increased whEn
amplitude fluctuating stateE(=E_ ,A=A_) with no peaks decreases while the released energy is stored in the localized
of Fig. 1(d). structures. The state of maximum entropy corresponds to
The slopeE_>0 is linked to negative temperaturgg|. only one peak which absorbs the total enef@yg. 2(a)]
The densityp-.. increases with the amplitude in this regime while consuming very few particles. This also shows the
which was suggested to be the reason for the formation ddelf-consistency of the truncatid@) that neglects the inter-
high-amplitude structuref7]. The increase of the density action of the peaks with their environment. The equilibrium
causes obvious technical difficulties. The phase spa@eis state with localized structures correspondsBte0, so the
like in the spin system of Ref$8,10])) noncompact, so that temperature is not negative. In the opposite case with nega-
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' T ' T ' J ; hen this leads to no further increase of the fluctuation en-
R A W . .
E< 1=0 tropy. This happens when the entropy gain due to the energy
- Aot conserved 1 transfer to the peaks is matched by the entropy loss due to
500 / the particle transfer. For this reason, the traBe (A.) in

Fig. 4 does not approach the lite. =0 any further after
~10° time steps.
The mobility of a peak with an amplitudes,|= Va at a

/ 1 site n depends on the compatibility of the local conservation

of its energyE=a?/2 and its particle numbek=a during a

possible migration to the site+1. Most of thea particles

| are gathered at these two lattice sites during the migration.

Ss Sz S The trajectory of such a migration is therefore close to the

0 L L . L . intersection of the level set & and A with the constraint of

0 100 200 300 A nonvanishing amplitudes atandn+ 1 only. These paths are

given by ¢,(v)=Vay1—rve'” and ¢, ,(v) = Jave *Me'?

3(a); trace E- ,A.) of the integration of Figs. (& and 1b) over Wlth cosa=avy—v /2. The pargmetev goes from 0 to 1

E_, A_; trace for a version of the DNLS where the second con-durlng _the migration as the particles are Shlf_ted froro n_

servation law is violated. +1. ¢ is a phase factor. The bottleneck of this process is the
intermediate storage df¢|* energy in the coupling term

tive total energie€ and a positive temperature, there is no2 Re(p, ¢, ;). The solvability condition coa<1 for all v

energy surplus and consequently no localizafiigs. c)  requires tham=<4, so that this migrational path only exists

and 1d)]. Figurg 4 gi\_/es a numerical picture of the shift of for peaks below a maximum amplitudle,,(v=0)|<2. For

energy and particles into the peaks for L. and the corre-  pignher peaks, it is impossible to conserve both particle num-

;pondmg p|cture_for a version of the DNLS where the rota-per and energy at the instant whieby| = | ¢, 1. These ide-

tional symmetry is broken by a small term 0.015Bg). It jized migrational paths deviate from exact solutions of the

shows the evolution of the fluctuation eneigy and particle DNLS which necessarily have nonvanishing amplitudes for
numberA_ versus the corresponding equilibrium isentropes

S—const for a homogeneous low-amplitudes{=0.3) ini adjacent oscillators at—1, n+2, etc. Monte Carlo simula-
fial stateE.—E—2A and A_—A. The boundary between tions of paths that include small amplitudes for adjacent os-

. : . cillators (4—20 lattice sitesshow that migrations for slightly
A_ andA. isr=1. The particle-nonconserving system pro- . _ . .
. o ; igher peaks$|¢,(v=0)|<2.28, Fig. 2b)] are permitted by
duces no persistent peaks. Instead, it increases its entropy tion | Hiah ks first dtod b
increasing the total number of particles and ends up in N C?ns_erva lon ?WS' 'gher pela S |rs_neeb fo ecr:ease y
fluctuating high-amplitude ~ state[13]. The particle- transferring particles to remote lattice sites before they can

conserving systerfl) approaches the entropy maximum by MOVe: This defocusing process would require avery unlikely
generating peaks and transferring energy from the fluctuzdecrease of.entropy and thg Ipcal conservation of particles
tions E_ to E~ . On the other side, growing peaks also ab-and energy is therefore statistically favorable. Spontaneous
sorb particles that must be shifted froka to A~ . The trace collapses of peaks are only possible if this increases the total
(E-,A.) therefore strives down to the left in Fig. 4. This entropy, which is the case if the fluctuations have small
loss of particles in the fluctuations is unfavorable for thewavelengths and a positive temperature.
production of entropy. The merging of peaks, however, al- Further growth of the peaks requires a flow both of par-
lows the system to store more energy in the peaks whiléicles and of energy from the fluctuations to the peaks as the
feeding particles from the peaks back into the fluctuationsiaumber of pinned peaks is fixed on relevant time scales. This
A_ which leads to an additional increase of the entropy. is thermodynamically favorable only if the increase of the
A state with only one huge peak is not reached experientropy due to the energy transfer is bigger than the decrease
mentally[Fig. 1(b)]. Instead, a number of coherent structurescaused by the particle transfer. This process stops when the
of moderate heighfFig. 2(b)] survive even on very long trace E-,A.) in Fig. 4 approaches an isentrope tangentially
time scales (10time steps in numerical simulationsn Fig.  asdE~ /dA- |k = cons™= IE < | A - | s— const Which is equivalent
4, the trace E_ ,A_.) does not reach the state of maximumto y=R2. On this line, growth or decay processes of peaks
entropy at E. =0, A_~370), but ends up at in a state with absorb or release energy and particles in a ratio that amounts
only half that particle content, and still a positive amount ofto isentropic changes of the fluctuations. The statistical re-
energy. The coherent structures contain a significant amousults reflect microscopic dynamical findingé2] of the
of particles, and the entropy of the fluctuations is below itsgrowth and decay processes of localized structures perturbed
maximum. The reason for this is the eventual breakdown oby one or two incoming waves. Long waves lead to growth,
the two entropy-enhancing mechanisms, First, the merginghort waves to decay of a peak while the radiated harmonics
of peaks becomes impossible because peaks above a certainrease the systems entropy. Experimentally, one still finds
critical height are immobilized by a lattice-pinning effect. irregular oscillations of the peak heights, but no average
For that reason the trac&( ,A_) in Fig. 4 does not cross growth. Interactions of peaks and fluctuations that increase
the isentropes;,S,,S,. Second, the growth of peaks stops the peaks are matched on average by those interactions that

A conserved

t=200000
| RZy

FIG. 4. Isentropess;>S,>S;> - .- for the left slope of Fig.
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decrease the peaks. Waves with all wave numbers coexist most similar to the continuous one dimensional nonlinear
the state of equilibrium where growth processes are balancesichralinger equation, which is integrable. Consequently, this
by decay processes. Any changes of the peak amplitude apart of the phase space is partitioned by Kolmogorov-
statistically unfavorable as they decrease the total entropy. Arnold-Moser tori that are not destroyed by the nonintegra-
To conclude, localization in nonintegrable systems contjlity and the dynamics is quasiperiodic on very long time
strained by two integrals of motion is statistical process. scales. To escape from this state, the amplitude has to reach
The entropy is dominated by contributions from small-5 sfficient height so that the nonlinearity absorbs a substan-
amplitude fluctuations. The entropy is maximal if an optimaliis| amount of energy, which becomes a rare event for small
share of each conserved quantity is allocated to the ﬂ“Ctuadverage amplitudes. Such quantities that are almost con-

tions. There is no localization if not enough energy is SUp-geryed on moderate time scales can also be relevant for lo-
p_Iled by the '”'F'f%'_cond'“o_”_s- If a_su_rplus of ENErgy 1S Pro- qajization effects in systems where the Hamiltonian is the
vided by the initial conditions, it is dumped into high- only exactly conserved quantity. For instance, the DNLS
With broken rotational symmetry shows energy localization

where energy localization occurs. The lattice pinning effec®” sh_orter time scales Whgre the particle .““mber changes
related to the conservation laws prevents the system frome"Y little. This '_S the case in the_ear_ly Stad“_Jm Of_ the path
reaching the absolute entropy maximum. For the final peak <A< WhereA is not conserved in Fig. 4. It is an interest-
size, growth and decay interactions of the peaks with thé"d question if this also applies to other breather systems
fluctuations are balanced. where the Hamiltonian is the only conserved quaritiyl 4].
Obviously, the statistical analysis shows the macroscopic The mechanism of localization is found in very diverse
properties of an ensemble of microstates, and one might exdynamical systems as it relies only on the properties of the
pect that the Arnold diffusion process transfers the trajectorgntropy functional and on the existence of two conserved
from any initial condition to this most probable state. How- quantities and not on the spatial discreteness. Depending on
ever, the thermalization may have extremely long transientghe type of the nonlinearity, the localized structures may ab-
In the numerical simulations, the amplitudes in the initial sorb primarily the second conserved quanfyand not the
conditions were small enough so that the separation of thenergy. In continuous systems described by partial differen-
partition function in the statistical description was valid, buttial equationg9,11], the transport of fluctuations is contin-
large enough for the nonintegrability to have an impact onued down to the molecular scale. Again, the conservation
moderate time scales. In the “integrable” limit of smooth laws require the formation of localized structures for this
initial conditions with very low amplitudes, the dynamics is exploitation of degrees of freedom on short space scales.

(Fig. 2) while using few particles. This explains the phase
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