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Nonlinear surface waves in left-handed materials
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We study both linear and nonlinear surface waves localized at the interface separneatiijamded(LH)
medium(i.e., a medium with both negative dielectric permittivity and negative magnetic permegaiiitya
conventionallor right-handed(RH)] dielectric medium. We demonstrate that the interface can support both
TE- and TM-polarized surface wavess#face polaritonsand we study their properties. We describe the
intensity-dependent properties mbnlinear surface waveis three different cases, i.e., when both the LH and
RH media are nonlinear and when either of the media is nonlinear. In the case when both media are nonlinear,
we find two types of nonlinear surface waves, one with the maximum amplitude at the interface, and the other
one with two humps. In the case when one medium is nonlinear, only one type of surface wave exists, which
has the maximum electric field at the interface, unlike waves in right-handed materials where the surface-wave
maximum is usually shifted into a self-focusing nonlinear medium. We discuss the possibility of tuning the
wave group velocity in both the linear and nonlinear cases, and show that group-velocity dispersion, which
leads to pulse broadening, can be balanced by the nonlinearity of the media, so resulting in soliton propagation.
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I. INTRODUCTION The improved resolution of a LH slab and the correspond-
ing amplification of evanescent modes even in a lossy LH
Novel physical effects in dielectric media with both nega- material, can be understood from simple physics. Indeed, the
tive permittivity and negative permeability were first ana-near field of an image, which cannot be focused by a normal
lyzed theoretically by Veselagd] who predicted a number lens, can be transferred through the slab of a LH material due
of unusual phenomena including, for example, negative reto the excitation ofsurface wavesor surface polaritonsat
fraction of waves. Such media are usually knownlefs-  both interfaces of the slab. Therefore, as the first major step
handed(LH) mediasince the electric and magnetic fields in the understanding of the amplified transmission of the
form a left-handed set of vectors with the wave vector. Theevanescent waves, as well as other unusual properties of the
physical realization of such LH media was demonstrated.H materials, it is important to study the properties of dif-
only recently[2] for a novel class of engineered compositeferent types of surface wave that can be excited at the inter-
materials, now called LHnetamaterials(LHM). Such LH faces between LH and convention@ir right-handed, RH
materials have attracted attention not only due to their recenhedia. Some preliminary studies in this direction included
experimental realization and a number of unusual propertiesalculation of thelinear dispersion properties of modes lo-
observed in experiment, but also due to the expanding dezalized at a single interface or in a slab of LH material
bates on the use of a slab of a LH metamaterial as a perfepg—10|.
lens for focusing both propagating and evanescent wi@jes In this paper, we present a comprehensive study of the
The concept of a perfect lens was first introduced byproperties of botHinear and nonlinear surface waves the
Pendry[4], who suggested the idea that a slab of a losslesmterface between semi-infinite materials of two types, left-
negative-refraction material can be used for creating a pemnd right-handed ones, and demonstrate a number of unique
fect image of a point source. Although the concept of a perfeatures of surface waves in LH materials. In particular, we
fect lens is a result of an ideal theoretical model employed irshow the existence of surface waves of both TE and TM
the analysig4], the resolution limit of a LH slab was shown polarizations, a specific feature of the RH/LH interfaces. We
to be independent of the wavelength of the electromagnetistudy in detail TE-polarized nonlinear surface waves and
wave (but can be determined by other factors includingsuggest an efficient way for engineering the group velocity
losses, spatial dispersion, and othes® that the resolution of surface waves using the nonlinearity of the media. The
can be indeed much better than the resolution of a converdispersion broadening of the pulse can be compensated by
tional lens[5]. the nonlinearity, thus leading to the formation of surface-
polariton solitons at the RH/LH interfaces with a distinctive
vortexlike structure of the energy flow. We must note here
*URL:http://wwwrsphysse.anu.edu.au/nonlinear/ that the presented study is based on the effective medium
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approximation, which treats the LH materials as homoge- RH z g
neous and isotropic. It can be applied to the manufactured 2 ™ E(x)
metamaterials, which possess negative dielectric permittivity TE ackward g1, &M,
and negative permeability in the microwave frequency range, Forwird

when the characteristic scale of the variation of the electro- =
magnetic fielde.g., a field decay length and a wavelength of .,
radiation is much higher than the period of the metamate- TE

rial. The possibility of preparing isotropic LH materials was i ™ ackward
studied in Ref[11], where the isotropy of the composite in Forward

two dimensions has been shown. To obtain a negative-

refraction material in optics it is suggested that metallic % ' 1 ' 2
nanowires are used RgflL2]. Also, we note that losses is an X

intrinsic feature of LHM. However, the study of the effect of

losses on the quided waves is not in the scope of the present FIG. 1. Existence regions of surface waves on the parameter
- 9 P P plane X,Y), whereX=|e,|/e; andY=|u,|/ ;. The inset shows

. . the problem geometry.
The paper is organized as follows. In Sec. Il we study the P g y

properties of surface waves in the linear regime. We consider
the most general case of an interface between linear RH a
LH media, and present a classification of TE- and TM-

ave equation, which for the case of the TE waves is written
r they component of the electric field,

polarized surface waves localized at the interface. Section Il 2 2 2

: . J 1% 1) 1 Jdu(x) d

is devoted to the study of the structure and general properties | — + — + —e(X) u(X) — —— —|E,=0.
of nonlinear surface waves. We describe the intensity- |dz° dx* c? p(x) ax X

dependent properties of TE-polarized surface waves in three (1)
possible cases. In the first case, we assume that both the LH
and RH media are nonlinear. In the second case, the LHn the case of the TM waves, the scalar wave equation is
medium is nonlinear, but the RH medium is assumed to bavritten for they component of magnetic field,
linear. In the third case, the RH medium is considered to be
nonlinear while the LH medium remains linear. In all these
cases, we take the nonlinear medium to have an intensity- |5+
dependent Kerr-like dielectric permittivity. In Sec. IV, we dz°  oX
study the frequency dispersion of nonlinear surface waves. In @
articular, we demonstrate that the group velocity of surface , )
\F/)vaves can effectively be engineere?j bypusing tl}l/e intensity Eas-(1) and(2), the functionse(x) and u(x) are dielec-
dependent dispersion. A detailed analysis is carried out fofliC Permittivity and magnetic permeability in a bulk me-
the example of nonlinear RH and linear LH media. Finally, dium. respectivelyw is the angular wave frequency, aods
in Sec. V we describe the properties of nonlinear localizedn® SPeed of light in vacuum. The nonzero components of the
modes propagating along the interface, and predict the exignagnetlf: field qnd of the electric field are found from the
tence of surface-polariton solitons. Maxwell's equations, i.e., for TE waves

#? 9 +w2 1 Jde(x)
ge(X)M(X) ) ax ax

y

ic JE, ic JE,
Il. LINEAR SURFACE WAVES H=———, H:="—"—, 3
op IX opn 0z
A. Model
Linear surface waves are known to exist, under certairand for TM waves
special conditions, at an interface separating two different
isotropic dielectric media. In particular, the existence of TM- _ic dHy _ic dHy
polarized surface waves requires that the dielectric constants EZ_& ax ' Ex=— we dz ' )

of two dielectric materials separated by an interface have

different §_igns, whilst for T_E—polarized waves j[he mag",‘eticrespectively. Solutions of Eq&l) and(2) in each linear me-
permeability of the materials should be of different signsyium for localized modes, i.e., those propagating along the

(see, e.g., Refd13,14, and references therginMaterials  jnierface and decaying in transverse direction, have the form
with negativee are readily availablde.g., metals excited

below a critical frequengy whilst materials with negativg (E, H,)=Ape"* K1 9| (5)
were not known until recently. This explains why only TM- iy '

olarized surface waves have been of interest over the last . . . .
?ew decades whereA, is the wave amplitude at the interfat¢eis a propa-

In this paper, we consider an interface between the RrHyation constant,
(medium 2 and LH (medium 2 semi-infinite media, as )
shown in the inset of Fig. 1. The propagation of monochro- _n2 w
= h°—e¢
K12 1,2M1,2

matic waves with the frequenay is governed by the scalar c

1/2
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is the transverse wave number which characterizes the in- 05 T | - | :
verse decay length of the surface wave in the corresponding E
medium.

It follows from Egs.(1) and (2) that the tangential com- 048 .
ponents of the electric and magnetic fields change continu- | g | "._.£1=3_5
ously at the interface between two media. These conditions  o47[ =
give the dispersion relations for surface wayék - .

046 g=2 .
K1 K2 | L | ]
—+—=0 (6) 043 . . :
w1 o 0.5 1 . 15 2
and FIG. 2. Dispersion curves of the TE-polarized surface waves,
for different values ofe;, shown for the normalized values
K1 K2 _ =wlw, are h=hc/w,. Dotted curves mark the dependenke
+ - 01 (7) — P . . .
€ € =w+€eyu5. The dashed line is the critical frequeney.
for the cases of the TE- and TM-polarized surface waves, 5 Fu?
. w w
respectively. el@)=1-—, pf0)=1-——, (10
w w —w

r
B. Properties of surface waves

For the analysis presented below, it is convenient to rewhere losses are neglected, and the values of the parameters
write the dispersion relationé5) and (7) in the following 4, w,, andF are chosen to fit approximately to the experi-
form: mental data[2]: w,/27=10 GHz, w,/2r=4 GHz, andF

) =0.56. For this set of parameters, the region in which per-
h2= ¢ (2) Y(Y—X) ®) mittivity and permeability are simultaneously negative is
1l e (Y2—1) from 4 GHz to 6 GHz.
The dispersion curves of the TE-polarized surface wave
and (or surface polaritoncalculated with the help of Eq10) are
depicted in Fig. 2 on the plane of the normalized parameters

| 2X(X-Y) w=olw, andh= hc/w,. We note that the structure of the
h®= €1, ol Nz (9)  dispersion curves for surface waves depends on the relation
(X*=1) between the values of the dielectric permittivities of the two

. , ) ) media at the characteristic frequeney, at which the abso-
respectively, where we introduced the dimensionless normali;ie values of magnetic permeabilities of two media coin-

ized ratiosX=|e,|/e; and Y=|u,|/u, which characterize cide, u1=|u,(w;)|. The corresponding curve in Fig. 2 is

the relative properties of the media creating the interface onotonically decreasing far,>|e,(w,)|, but it is mono-
The existence regions for surface waves can be determinq nically increasing otherwisé i e2 f&1%|62(w1)| only

from the condition of surface wave localization, i.e., Wheny,q firt case was identified in the previous analysis reported
the transverse wave numbersc;, are real, h i, pef 6] The change of the slope of the curitke slope of
>Mmaxweyp; /C,weu,/C). Existence regions for both polar- yhe gispersion curve represents the group velpaitgh the
izations of surface wave are presented on the parametgtation of the dielectric permittivity of the RH medium can

plane (X,Y) in Fig. 1. Along with the polarization, we deter- e seq for group-velocity engineering, which we discuss in
mine the type of the wave dsrward or backward as dis-  gg¢ v

cussed below in Sec. Il C. We n'ote that there eX|§t No regions The critical value of dielectric permittivitye,(w,)| for
where both TE- and TM-polarized waves coexist simulta-a case of a nonmagnetic RH medium,&1) is found
neously, but both types of surface wave can be supported By, the gispersion relatior§) and(10), and it has the form
the same interface for different parameters, e.g., for different
frequencies.

One of the distinctive properties of the LH materials F\lop 2
which has been demonstrated experimentally is their specific €= €x(w1)|= ( 1- 5) (w_) -1 1D
frequency dispersion. To study the dispersion of the corre- '
sponding surface waves, it is necessary to select a particular
form of the frequency dependence of the dielectric permit+or the parameters specified above, this critical value.is
tivity and magnetic permeability of the LH medium. A nega- =3.5.
tive dielectric permittivity is selected in the form of the com-  The change of the dispersion curve from monotonically
monly used function for plasmon investigatiofist] and a  increasing to monotonically decreasing, shown in Fig. 2, is
negative permeability is constructed in an analogous forntonnected with a change in the direction of the total power
(see, e.g., Ref6)), i.e., flow in the wave, as discussed below.
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C. Energy flow near the interface where the first term characterizes the linear properties, i.e.,

The energy flow is described by the Poynting vector,tN0S€ in the limit of vanishing wave amplitude.

which defines the energy density flux averaged over the pe-, First, we should mention that the recent systematic study
fiod T=2m/w. and can be written in the form of nonlinear properties of metallic composif{d$] suggested
’ the possibility of hysteresis-type nonlinear effects in a struc-

c ture consisting of arrays of split-ring resonat¢®8RkRsg and
S= g REEXH"], (120 wires embedded in a nonlinear dielectric medium. Such ef-
fects can also be caused by a nonlinear dielectric material
placed in the slits of the SRRs, which results in an intensity-
A jependent it f the slit. These hysteresis effect

and magnetic field of a surface wave, respectively, and th ependent capacitance of e Sit. 1nese NYSIeresis elects
' ' &an be avoided if the structure is filled by a nonlinear dielec-

asterlsk_ stands for the complex conjl_Jgatlon. . tric material except in the SRR slits. In what follows, we
A uniform surface wave propagating along the interface

- “consider such composite structures for which the nonlinear
has only one nonzero component of the averaged Poynti

n : . .
vector|S =|S,|. The energy flux in the RH and LH media is Sropertles can be characterized by Eif) valid far from the

. > . resonances.
an integral of the Poynting vector over the corresponding For a conventionalor right-handel dielectric medium

semi-infinite spatial region, positivea, corresponds to a self-focusing nonlinear material,
whilst negativea; characterizes defocusing effects in the

whereE,H are the complex envelopes of the electric fiel

Pi= f i S, dz= B_h 1y forTE, (13) beam propagation. However, this classification becomes re-
S Ky | e, forTM, versed in the case of LH materials and, for example, a self-

focusing LH medium corresponds to negatiwg. Indeed,

" Bh(1/u, forTE, taking into account relatio(]l6),_we re\_/vrite Eq.(l_) for the
P,= f S,dz=— (14) case of the TE-polarized wave in nonlinear media as follows:

0 Ky | lle;,  for TM,
P’E  9°E 2 )
where the constar=c?A3/167w. We note that the elec- g*’ y*’ c (et palE[HE=0. (17)

tromagnetic energy flow is in opposite directions at either

side of the interface, as was also predicted in RE8] for  According to Eq(17), the sign of the produgt« determines

TM polarized waves. The total energy flux in the forward the type of nonlinear self-action effects which occur. There-

direction is defined as the suf=P;+ P,, and itis found as  fore, in a LH medium with negativg., all nonlinear effects
are oppositeto those in RH media with positive, for the

P (1= XY) BhwZeiuq [(L+YDI[Y(pmik1— paks)], sameaw. B(_elow, we assume for def?niteness th_at bo_th LH and
—lezcz (1+XDI[X(egry— €360)], gan ma<t%r|als possess self-focusing properties, ng>0

We look for the stationary solutions of E¢L7) in the

. form Ej (x,z)=", (x)exp(hz). Then, the profiles of the
for the TE and TM waves, respectively. The total energy ﬂuxspatially localized wave envelopas, Ax) are found a§17]

is positive forXY<1, and negative foKY>1. The surface

waves are forward or backward, respgctlvely. Thg corre- Wy AX)= (710 /—2/011,2/«01,2)5(30@ mAX—x1 )], (18
sponding types of surface waves determined from this analy-
sis are labeled in Fig. 1. where 7, ,= k1 £/ @ are normalized transverse wave num-
bers,x, , are centers of the sech functions which should be
lIl. NONLINEAR SURFACE WAVES chosen to sa_tisfy the continL_Jity_of the tanger_1tia| components
. . of the electric and magnetic fields at the interface. These
A. Nonlinear LH/RH interface conditions can be presented in the form of two transcenden-

Nonlinear surface waves at an interface separating twé! equations,
conventional dielectric media have been analyzed exten-
sively for several decades starting from the pioneering paper
[15]. In brief, one of the major findings of those studies is
that the TE-polarized surface waves can exist at the interface
separating two RH media provided ttedtleast one of these and
is nonlinear but thatno surface waves exist in the linear
limit. 72 /A
In this section, we study TE-polarized nonlinear surface E tank 772)(2)_; tanh(7:xy).
waves assuming that both media are nonlinear, i.e., they dis-
play a Kerr-type nonlinearity in their dielectric properties, Note, that if the parameters{,x,) correspond to one of the
namely, solutions of the equation, then—(;,—X,) gives another

NL 5 solution. Two waves described by these solutions have the
€15= €10t a1 JE[%, (16)  same wave number, but they correspond to different trans-

2
a7

ag
(1_ 1M2
A1

-1
) (19

tanhz(nlx1)=( 1— 5
/I

(20)
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0.5 — —
RH RH‘} VA ]_nlJH d
L linéar | Q —
R Ex) | A
0.4— f !
5 0 /i 0 1
I I X
0.3
&o | I \ 1
A -1 Y<1 -
0.2 i Linear limit 1
D =
_3> . | . | . | . | . |
0.1f- 2 2.05 2.1 2.15 22 225
| Y
% ! FIG. 4. Normalized energy flux vs normalized wave numper
1 =hc/w for the nonlinear surface waves at the nonlinear LH/linear
0 , RH interface. Surface waves can be both forwgrdsitive energy
XY>1 flux) and backward(negative energy flux The inset shows the
. . Y<1 1 geometry of the problem. The solid line shows the transverse wave
o5l RH LH Linear limit profi!e, the doFted line showg the conti'nuation of the solutior.1 in
) nonlinear medium(22) to the linear medium, and the dashed line
) indicates the position of the centeg of the sech function.
5: 0 5
O 3 . L
E -1 . The linear limit corresponds to the caBe—~0 whenx;
S — +o andx,— —. Moving along the curves, the centers
L /1“ ______________ P of the sech functions move toward the interface and at the
1.5 . point withdP/dy=, x;=x,=0, and from that point along
(b) the dashed linex;— —,x,— + o, thus revealing the two-
I | humped transverse structure of the surface wave. Note that
2 ; l . | \ I . the forward(backward wave in the linear case remains for-
8 L 1;{9 153 2 ward (backward in the nonlinear case, i.e., the type of the

mode is determined by the linear parameters of the system
FIG. 3. Normalized energy flux vs normalized wave numper and can be found using the diagram in Fig. 1.
=hc/w for the nonlinear surface waves in two cases: XY<1,
Y>1; and(b) XY>1, Y<1. The solid curve corresponds to a B. Nonlinear LH/linear RH interface
one-humped structure; dashed, double-humped structure. The insets
show the structure of the surface waves at the points indicated by
arrows. Dotted lines denote the linear surface wave wave numbe

Next, we consider surface waves propagating along an
nterface between a linear RH and a nonlinear LH méska

the inset in Fig. #having a nonlinear coefficient, which is
negative and, thus, displaying the self-focusing properties.
$he transverse structure of the stationary surface wave has
She form

verse structures of the surface wave, one of which has
maximum of the intensity at the interface, and the other on
that has two humps shifted into the media.

In a degenerate case, when ai(uq,€1) Eo expl 71X), x<0
=(|as|,|m2l,|€2]), the system has an infinite number of so- \I’(x)z[ 12 B
lutions. Indeed, anyx,—x) pair will describe a stationary (2aapiz) "2 seCh 72(X=X0)], x>0, 22

solution for the surface wave. Such waves have a zero total

energy flux because of the symmetry of the solution. whereE, andx, are two parameters which should be deter-

The energy flow in this wave can be written in the form mined from the continuity conditions at the interface for the
tangential components of the electric and magnetic fields,

P=Pyy tanh( 7,%1) |, tanh(7,%0) = w271/ (1172),

a a
71 2M2+E+ﬂ(1— 2M2

apd M2 M

aj g

(21) Eo=(2laymz) %y, sectinyX). (23

Analyzing the relationg23), we find that a surface wave
where Py=c?/4mwa,u,, and y=hc/w is the normalized always has the maximum of field intensity at the interface.
wave number. We now consider the surface waves in th&his is in a sharp contrast to the nonlinear surface waves
nondegenerate case when only=|a,|. The dependence of excited at the interface separating two RH media, when the
the normalized energy flulP/P, on the parametery is  electric field has maximum shifted into a self-focusing non-
shown in Fig. 3 for the cases when linear waves are forwardinear mediun18].
or backward, respectively. Corresponding transverse wave The corresponding nonlinear dispersion relation of the
structures are shown in the insets. surface waves is found in the form
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' R TH XY>1. In contrast to the linear waves, the nonlinear surface
Y1 monlnsaE i waves can be either forward or backwaske Fig. L In
E(x) analogy with the cas¥<1 for the nonlinear LH/linear RH
interface, it can be shown that there exists no small-
< amplitude limit for the nonlinear surface waves fér>1.

For XY<1 only forward traveling waves exist whefi>1,
reproducing the property of the corresponding linear waves.

IV. FREQUENCY DISPERSION OF NONLINEAR
SURFACE WAVES

We have demonstrated in Sec. Il B that the frequency dis-
persion of surface waves depends on the dielectric permittiv-
ity of the RH medium(see Fig. 2 These results suggest that
the dispersion type can be switched between normal and
anomalous if the RH medium is nonlinear.

FIG. 5. Normalized energy flux vs normalized wave numper
=hcl/w for the nonlinear surface waves at the linear LH/nonlinear
RH interface. Surface waves can be either forw@akitive energy
flux) or backward(negative energy flux The inset shows the ge-

ometry of the problem. To demonstrate this property, we study the properties of
nonlinear surface waves near the critical point and sedgect
2\ 12 =3.4, in order to stay just below the critical valeg corre-
ﬂ+ 2, ﬁ -0 (24) sponding to the linear case. It should be mentioned here that
R ) 775 ’ although the negative permeability of the LH composite ma-

terial is necessary for the existence of TE surface waves in
where A;=Eq(a1,/2)"? is the normalized electric field the present model, it has been shol#9] that TE surface
amplitude at the interface. Equati®®4) reduces to the linear waves do exist at the interface between a RH nonlinear
dispersion relation(6) in the small-amplitude limit, i.e., plasma and a RH nonlinear dielectric medium with a con-

whenA;—0. stant zero-field permittivity, provided that the nonlinear pa-
The energy fluxP associated with the nonlinear surface rameter in the plasma exceeds that in the dielectric medium.
wave can be calculated in the form In that case, since=1 in both media, it has also been
shown[19] that the relation for wave intensity at the bound-
H271|| 2 72 M2 ary and the frequency are independent of the wave number.
P=Pgyyn,| 1+ —t—1-—]], : :
wim) | o Mg 172 In the present case, where the LH composite material has a

permeability not equal to unity, this result is no longer valid.
wherePy is defined above. In our problem, Eq(25) provides a dependence between the
As an example, we consider the ca§é<1 for which, as  three variable$, A,, andw, so that the wave intensity at the
we have shown above, only forward surface waves can exisioundary depends on bothand w.
at the interface between two linear media. However, nonlin- As was shown for the case of linear surface waves, a
ear surface waves can be either forward or backward, ashange of the slope of the dispersion curve takes place at the
demonstrated in Fig. 4. F&f<1, there exist®i0 linear limit  critical value of dielectric permittivity of the RH medium
for the existence of the surface waves, while in the other twd@11). In the nonlinear case, the dielectric permittivity of the
regions the results for linear surface waves are recovered iRH medium depends on the field intensity and, in particular,
the limit P—0. The point on the curve correspondingRo it exceeds the critical value when the wave amplitusle
=0 in the caser<1 describes the wave of finite amplitude becomes larger than the threshold valg given by the
in which the energy flows on the two sides of the interfaceequation
are balanced. Such a wave does not exist in the linear limit.
w,)? F
. . . 2 _|%p
C. Linear LH /nonlinear RH interface AS.= (w—r) (1— E) —(1+e€y). (26)
Finally, we consider the case when the LH material is

linear, Wh”.e the.RH medium is nonlinear. In. such a 980M-cor the media parameters corresponding to Fig. 2,(E6).
etry, the dispersion relation for the TE-polarized waves haﬁives:A2C=0.3162. Figure 6 shows the dispersion curves for

the form three different wave amplitudes. As was shown in Sec. Il B,
A2\ 12 the frequency dispersion is normal for the wave amplitudes

ﬂ+ My, _"2 =0 (25) below the critical valug26), and it is negative, otherwise.
M2 M1 77% ’ One can also note from Fig. 6 that the existence region for

surface waves depends on the wave amplitigleln Fig. 7
where A,=EqJa,u,/2 is the normalized amplitude of the we present this region of wave existence on the plane of the
electric field at the interface. wave amplitude and normalized frequency. The existence re-

The dependence of the normalized energy flux on theion of the backward surface waves below the critical value
wave number of the surface wave is shown in Fig. 5 forcollapses af,., and it expands in the region of the forward
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0.472

FIG. 6. Normalized frequency vs normalized wave number for
different values of the amplitud®,. The dashed line corresponds FIG. 8. Normalized wave number vs normalized field amplitude
to the linew, in Fig. 2; the dotted line is;,=0. A, for different frequencies. The dashed linezis=0. The curves

on the left ofA,. meet the wave number axis at the values corre-

surface waves above the threshold. Note, that the forwargponding to the linear case. There exist no linear solutions to the
and backward waves exist at different frequencies only.  right of the critical vertical lineA,=Asc .

The existence regions of the surface wave can be ex-
plained from the viewpoint of the physics of wave localiza- c’y
tion. The wave localization is determined by the normalized Pi=——7—
transverse wave numbers ,, which define the inverse de- dmopia
cay length of the surface wave in the corresponding mediu
The conditionsy; =0 and»,=0 correspond to the delocal-

ized waves, and determine the boundary of the existen . -
© ’ de © y © Hon to the linear caséwhen a;—0) can be performed in a

region. Figure 8 shows the dependence of the normalized . :
wave number on the wave amplitude for different frequen—S’tr"’“ghtfon’vaIrd way by expanding E(R8) as for smalle,

ag g
( 71— ﬂi_Eg 2

(28)

nWe note here that, although the nonlinear coefficieptp-
cgears as a factor in the denominator of E2B), the reduc-

cies. These curves represent the horizontal cross sections i follows,

the region of the wave existence shown in Fig. 7. The dashed 2

line in Fig. 8 shows the boundary of localization of the wave __ Y 2

: 9 . indary . Py Eo+O(al), (29)
in the LH material. Comparing Fig. 8 and Fig. 7, we come to 16mwuym

the conclusion that in Fig. 7 the upper boundary for the ex-

istence of the forward wavetbelow A,.) and the lower Which has the same form as EQ7). _

boundary for the backward wave existeri@doveA,.) are The absolute value of the ratio of the power flow in the

determined by the wave localization in the LH material. ~ RH nonlinear medium to the power flow in the LH compos-
The power flow in the linear LH composite medium is 't medium is depicted in Fig. 9. Above the critical vakig,

given by the result there exists a value of the wave number at which the power
flow is positive. In this region, there exists a forward travel-
c?y ) ing surface wave. Note that no matter what the value of the
P2:16—Eo (27)  field intensity at the boundary is, there always exists some
TO U272

value of the wave number where the flow is negative and

and, using the boundary value technig8], the power flow there exists a backward traveling surface wave. This can be

in the nonlinear half spacdkH mediun) can be obtained in

. 1 1 T T T T
the following form I I | . T
A,=1
0472 gl ' ' ' ' r 1
047 - N
13 L A,=0
0.468 — |
| A
\ | s
950y 0.2 A 04 0.6 0.8
26 A, FIG. 9. The absolute value of the ratio of the power flow in the

nonlinear dielectric to that in the LH material. Above the critical
FIG. 7. Existence region of nonlinear surface wavssadegl value A;, the power flow in the nonlinear half space dominates,
The curves show the amplitud®, vs normalized frequency for giving a forward traveling wave. Ag, approaches zero towards the
different values of the normalized wave numkenarked at the left-hand side of the curves, the power in the left-handed medium
curves. All curves intersect at the critical poidt,= A, . dominates.
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seen by reference to E@27). The presence ofy, in the
denominator of Eq(27) means that ak approaches a value
that makes#,=0 (i.e., a dispersion curve in Fig. 6 ap-
proaches the dashed linde negative power flow in the LH
material dominates the total power flow. Converselyzas
increases from zero, the negative power flow in the LH me-
dium decreases so that, provided the intensity of the electric
field at the boundary is high enough, the positive power flow
in the nonlinear dielectric dominates.
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V. NONLINEAR PULSE PROPAGATION
AND SURFACE-WAVE SOLITONS

4144‘1111

Envelope equation

Propagation of pulses along the interface between RH and
LH media is of particular interest, since it was shown before FIG. 10. A vortexlike distribution of the Poynting vector in a
[13] for TM modes that the energy fluxes aligected oppo-  surface-wave soliton propagating along the LH/RH interface.
sitely at either side of the interface. Therefore, we can expect
that the energy flow in a pulse with finite temporal and spa-of the nonlinear coefficientd,) (see, e.g., Refl21], and
tial dimension has a nontrivial forfrl0] and, in particular, it references therejn The existence of the surface polariton
can be associated with a vortexlike structure of the energgolitons has been predicted in a number of structures sup-

flow. porting nonlinear guided wavdsee, e.g., Ref22], and ref-
We analyze the structure of surface waves of both tempoerences therejn

ral and spatial finite extent that can exist in such a geometry. The effective nonlinear coefficient for the case of an in-

To obtain the equation describing the pulse propagatioterface between the nonlinear LH medium and the linear RH

along the interface, we look for the structure of a broad elecmedium can be found using E®3),

tromagnetic pulse with carrier frequeney described by an

asymptotic multiscale expansion with the main terms of the = Q1K K02 dw
general form wy(h)=—

441411“11

—. 32
4hc(exua—€rpq) dh (32

IA(ED) The signs of the group velocityw/dh and of the parameter
25 6 can be determined from the Fig. 2. As a result, for any
reasonable values of dielectric permittivity and magnetic per-
, (30) meability of the RH medium, there exists a range of frequen-
cies for whichw, <0, indicating the possibility of exciting
: . . surface polariton solitons.
where §=Z.—vgt. is the pulse coor@mate in the refgrence To study the energy flow in such a surface-polariton soli-
frame moving with the group velocity,=dw/dh, the f!eld ton, we use the asymptotic expansi@86) for the field com-
¥ stands f(_)r the component&,Hy,H) of a_TE-poIarlzed ponents, and from Eq12) we obtain the energy flow struc-
wave, the first termb o= (Eq,Ho,H0) describes the struc- ture described by their components
ture of the mode at the carrier frequenay, ¥, is the
first-order term of the asymptotic series which can be found 2
asW¥,=9¥,/dh, and¥, is the second-order term. Hekes S,
the pulse envelopdy, is the wave number corresponding to
the carrier frequency,. Substituting Eq(30) into Eq.(17)

W(z,x,t)= ei“oziwot[\lfo(x)A(g,t) —i1W4(X)

+W,(x, &)+ -

- 87mwou

ESIAIZ, (33

X ) C2 0-'E0 ﬁEO O”ZEO Ugr 0-'E0
and using the Fredholm alternative theorg2®], one can S":8 “n ox Bl Phax o ax
obtain the equation for the evolution of the field envelope TWok X X @ X
& *
,&A+5&2A A2 A0 ar XRe(A a§>. (34
e 5_&§2_w2( )|A%|A=0, 3D

The structure of the Poynting vector in the surface-wave
where the coefficientd=d?w/dh? stands for the group- pulse is shown in Fig. 10, where it is clearly seen that the
velocity dispersion(GVD) which determines the pulse energy rotates in the localized region creating a vortex-type
broadening and can be calculated from the dispersion relaenergy distribution in the wave. The difference between the
tions, w,(h)=(dwn /dA%)|a—o is the effective nonlinear Poynting vectolS,| integrated over the RH medium and that
coefficient calculated with the help of the nonlinear disper-calculated for the LH medium determines the resulting group
sion relation. The nonlinear Schrodinger equation has a sorelocity of the surface wave packet.
lution in the form of a bright soliton localized at the inter-  We note the distinctive vortexlike structure of the surface
face, provided the GVDJ) has the opposite sign to the sign waves at the interface separating RH and LH media follows
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as a result of the opposite signs of the dielectric permittivitytially localized wave packet of the surface waves propagating
for the TM-polarized waves and the magnetic permittivity along the interface has a vortexlike structure. For the case of
for the TE-polarized waves. These conditions coincide withnonlinear surface waves, we have demonstrated that when
the conditions for the existence of the corresponding surfacenly one of the media is nonlinear the maximum amplitude

waves and, therefore, surface polaritons should always haw the spatially localized wave does not shift away from the
such a distinctive vortexlike structure. interface. This result is in sharp contrast to the case of an

interface between linear and nonlinear right-handed materials
where the maximum of a surface wave is always shifted into
a self-focusing nonlinear medium. We have demonstrated
We have presented a systematic study of both linear anthat the group velocity of nonlinear surface waves can be
nonlinear surface waves supported by an interface betweencantrolled by changing the intensity of the electromagnetic
left-handed metamaterial and a conventional dielectric mefield and, in particular, the surface wave can be switched
dium. For the linear regime, we have extended some earlidfrom the forward propagating one to the backward propagat-
theoretical results and analyzed different types of surfacéng one by varying the field intensity only. In addition, we
waves and their existence regions. In particular, we havéave obtained conditions for the existence of the surface-
demonstrated that the structure of the energy flow in a spgsolariton solitons at the metamaterial interface.
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