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Nonlinear surface waves in left-handed materials
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We study both linear and nonlinear surface waves localized at the interface separating aleft-handed~LH!
medium~i.e., a medium with both negative dielectric permittivity and negative magnetic permeability! and a
conventional@or right-handed~RH!# dielectric medium. We demonstrate that the interface can support both
TE- and TM-polarized surface waves–surface polaritons, and we study their properties. We describe the
intensity-dependent properties ofnonlinear surface wavesin three different cases, i.e., when both the LH and
RH media are nonlinear and when either of the media is nonlinear. In the case when both media are nonlinear,
we find two types of nonlinear surface waves, one with the maximum amplitude at the interface, and the other
one with two humps. In the case when one medium is nonlinear, only one type of surface wave exists, which
has the maximum electric field at the interface, unlike waves in right-handed materials where the surface-wave
maximum is usually shifted into a self-focusing nonlinear medium. We discuss the possibility of tuning the
wave group velocity in both the linear and nonlinear cases, and show that group-velocity dispersion, which
leads to pulse broadening, can be balanced by the nonlinearity of the media, so resulting in soliton propagation.
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I. INTRODUCTION

Novel physical effects in dielectric media with both neg
tive permittivity and negative permeability were first an
lyzed theoretically by Veselago@1# who predicted a numbe
of unusual phenomena including, for example, negative
fraction of waves. Such media are usually known asleft-
handed~LH! media since the electric and magnetic field
form a left-handed set of vectors with the wave vector. T
physical realization of such LH media was demonstra
only recently@2# for a novel class of engineered compos
materials, now called LHmetamaterials~LHM !. Such LH
materials have attracted attention not only due to their rec
experimental realization and a number of unusual proper
observed in experiment, but also due to the expanding
bates on the use of a slab of a LH metamaterial as a pe
lens for focusing both propagating and evanescent waves@3#.

The concept of a perfect lens was first introduced
Pendry@4#, who suggested the idea that a slab of a loss
negative-refraction material can be used for creating a
fect image of a point source. Although the concept of a p
fect lens is a result of an ideal theoretical model employed
the analysis@4#, the resolution limit of a LH slab was show
to be independent of the wavelength of the electromagn
wave ~but can be determined by other factors includi
losses, spatial dispersion, and others!, so that the resolution
can be indeed much better than the resolution of a conv
tional lens@5#.

*URL:http://wwwrsphysse.anu.edu.au/nonlinear/
1063-651X/2004/69~1!/016617~9!/$22.50 69 0166
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The improved resolution of a LH slab and the correspo
ing amplification of evanescent modes even in a lossy
material, can be understood from simple physics. Indeed,
near field of an image, which cannot be focused by a nor
lens, can be transferred through the slab of a LH material
to the excitation ofsurface waves~or surface polaritons! at
both interfaces of the slab. Therefore, as the first major s
in the understanding of the amplified transmission of
evanescent waves, as well as other unusual properties o
LH materials, it is important to study the properties of d
ferent types of surface wave that can be excited at the in
faces between LH and conventional~or right-handed, RH!
media. Some preliminary studies in this direction includ
calculation of thelinear dispersion properties of modes lo
calized at a single interface or in a slab of LH mater
@6–10#.

In this paper, we present a comprehensive study of
properties of bothlinear and nonlinear surface wavesat the
interface between semi-infinite materials of two types, le
and right-handed ones, and demonstrate a number of un
features of surface waves in LH materials. In particular,
show the existence of surface waves of both TE and
polarizations, a specific feature of the RH/LH interfaces. W
study in detail TE-polarized nonlinear surface waves a
suggest an efficient way for engineering the group veloc
of surface waves using the nonlinearity of the media. T
dispersion broadening of the pulse can be compensate
the nonlinearity, thus leading to the formation of surfac
polariton solitons at the RH/LH interfaces with a distinctiv
vortexlike structure of the energy flow. We must note he
that the presented study is based on the effective med
©2004 The American Physical Society17-1
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approximation, which treats the LH materials as homo
neous and isotropic. It can be applied to the manufactu
metamaterials, which possess negative dielectric permitti
and negative permeability in the microwave frequency ran
when the characteristic scale of the variation of the elec
magnetic field~e.g., a field decay length and a wavelength
radiation! is much higher than the period of the metama
rial. The possibility of preparing isotropic LH materials wa
studied in Ref.@11#, where the isotropy of the composite
two dimensions has been shown. To obtain a negat
refraction material in optics it is suggested that meta
nanowires are used Ref.@12#. Also, we note that losses is a
intrinsic feature of LHM. However, the study of the effect
losses on the guided waves is not in the scope of the pre
paper.

The paper is organized as follows. In Sec. II we study
properties of surface waves in the linear regime. We cons
the most general case of an interface between linear RH
LH media, and present a classification of TE- and T
polarized surface waves localized at the interface. Section
is devoted to the study of the structure and general prope
of nonlinear surface waves. We describe the intens
dependent properties of TE-polarized surface waves in th
possible cases. In the first case, we assume that both th
and RH media are nonlinear. In the second case, the
medium is nonlinear, but the RH medium is assumed to
linear. In the third case, the RH medium is considered to
nonlinear while the LH medium remains linear. In all the
cases, we take the nonlinear medium to have an inten
dependent Kerr-like dielectric permittivity. In Sec. IV, w
study the frequency dispersion of nonlinear surface waves
particular, we demonstrate that the group velocity of surf
waves can effectively be engineered by using the intens
dependent dispersion. A detailed analysis is carried out
the example of nonlinear RH and linear LH media. Fina
in Sec. V we describe the properties of nonlinear localiz
modes propagating along the interface, and predict the e
tence of surface-polariton solitons.

II. LINEAR SURFACE WAVES

A. Model

Linear surface waves are known to exist, under cert
special conditions, at an interface separating two differ
isotropic dielectric media. In particular, the existence of T
polarized surface waves requires that the dielectric const
of two dielectric materials separated by an interface h
different signs, whilst for TE-polarized waves the magne
permeability of the materials should be of different sig
~see, e.g., Refs.@13,14#, and references therein!. Materials
with negativee are readily available~e.g., metals excited
below a critical frequency!, whilst materials with negativem
were not known until recently. This explains why only TM
polarized surface waves have been of interest over the
few decades.

In this paper, we consider an interface between the
~medium 1! and LH ~medium 2! semi-infinite media, as
shown in the inset of Fig. 1. The propagation of monoch
matic waves with the frequencyv is governed by the scala
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wave equation, which for the case of the TE waves is writ
for the y component of the electric field,

F ]2

]z2
1

]2

]x2
1

v2

c2
e~x!m~x!2

1

m~x!

]m~x!

]x

]

]xGEy50.

~1!

In the case of the TM waves, the scalar wave equation
written for they component of magnetic field,

F ]2

]z2
1

]2

]x2
1

v2

c2
e~x!m~x!2

1

e~x!

]e~x!

]x

]

]xGHy50.

~2!

In Eqs.~1! and ~2!, the functionse(x) andm(x) are dielec-
tric permittivity and magnetic permeability in a bulk me
dium, respectively;v is the angular wave frequency, andc is
the speed of light in vacuum. The nonzero components of
magnetic field and of the electric field are found from t
Maxwell’s equations, i.e., for TE waves

Hz52
ic

vm

]Ey

]x
, Hx5

ic

vm

]Ey

]z
, ~3!

and for TM waves

Ez5
ic

ve

]Hy

]x
, Ex52

ic

ve

]Hy

]z
, ~4!

respectively. Solutions of Eqs.~1! and~2! in each linear me-
dium for localized modes, i.e., those propagating along
interface and decaying in transverse direction, have the f

~Ey ,Hy!5A0eihz2k1,2uxu, ~5!

whereA0 is the wave amplitude at the interface,h is a propa-
gation constant,

k1,25Fh22e1,2m1,2S v

c D 2G1/2

FIG. 1. Existence regions of surface waves on the param
plane (X,Y), whereX5ue2u/e1 andY5um2u/m1. The inset shows
the problem geometry.
7-2
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is the transverse wave number which characterizes the
verse decay length of the surface wave in the correspon
medium.

It follows from Eqs.~1! and ~2! that the tangential com
ponents of the electric and magnetic fields change cont
ously at the interface between two media. These conditi
give the dispersion relations for surface waves@6#,

k1

m1
1

k2

m2
50 ~6!

and

k1

e1
1

k2

e2
50, ~7!

for the cases of the TE- and TM-polarized surface wav
respectively.

B. Properties of surface waves

For the analysis presented below, it is convenient to
write the dispersion relations~6! and ~7! in the following
form:

h25e1m1S v

c D 2Y~Y2X!

~Y221!
~8!

and

h25e1m1S v

c D 2X~X2Y!

~X221!
, ~9!

respectively, where we introduced the dimensionless norm
ized ratiosX5ue2u/e1 and Y5um2u/m1 which characterize
the relative properties of the media creating the interfa
The existence regions for surface waves can be determ
from the condition of surface wave localization, i.e., wh
the transverse wave numbersk1,2 are real, h
.max$ve1m1 /c,ve2m2 /c%. Existence regions for both pola
izations of surface wave are presented on the param
plane (X,Y) in Fig. 1. Along with the polarization, we dete
mine the type of the wave asforward or backward, as dis-
cussed below in Sec. II C. We note that there exist no reg
where both TE- and TM-polarized waves coexist simul
neously, but both types of surface wave can be supporte
the same interface for different parameters, e.g., for differ
frequencies.

One of the distinctive properties of the LH materia
which has been demonstrated experimentally is their spe
frequency dispersion. To study the dispersion of the co
sponding surface waves, it is necessary to select a partic
form of the frequency dependence of the dielectric perm
tivity and magnetic permeability of the LH medium. A neg
tive dielectric permittivity is selected in the form of the com
monly used function for plasmon investigations@14# and a
negative permeability is constructed in an analogous fo
~see, e.g., Ref.@6#!, i.e.,
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e2~v!512
vp

2

v2
, m2~v!512

Fv2

v22v r
2

, ~10!

where losses are neglected, and the values of the param
vp , v r , andF are chosen to fit approximately to the expe
mental data@2#: vp/2p510 GHz, v r /2p54 GHz, andF
50.56. For this set of parameters, the region in which p
mittivity and permeability are simultaneously negative
from 4 GHz to 6 GHz.

The dispersion curves of the TE-polarized surface wa
~or surface polariton! calculated with the help of Eq.~10! are
depicted in Fig. 2 on the plane of the normalized parame
v̄5v/vp and h̄5hc/vp . We note that the structure of th
dispersion curves for surface waves depends on the rela
between the values of the dielectric permittivities of the tw
media at the characteristic frequencyv1, at which the abso-
lute values of magnetic permeabilities of two media co
cide, m15um2(v1)u. The corresponding curve in Fig. 2 i
monotonically decreasing fore1.ue2(v1)u, but it is mono-
tonically increasing otherwise, i.e., fore1,ue2(v1)u. Only
the first case was identified in the previous analysis repo
in Ref. @6#. The change of the slope of the curve~the slope of
the dispersion curve represents the group velocity! with the
variation of the dielectric permittivity of the RH medium ca
be used for group-velocity engineering, which we discuss
Sec. IV.

The critical value of dielectric permittivityue2(v1)u for
the case of a nonmagnetic RH medium (m151) is found
from the dispersion relations~6! and~10!, and it has the form

ec5ue2~v1!u5S 12
F

2 D S vp

v r
D 2

21. ~11!

For the parameters specified above, this critical value isec
53.5.

The change of the dispersion curve from monotonica
increasing to monotonically decreasing, shown in Fig. 2
connected with a change in the direction of the total pow
flow in the wave, as discussed below.

FIG. 2. Dispersion curves of the TE-polarized surface wav
for different values ofe1, shown for the normalized valuesv̄

5v/vp are h̄5hc/vp . Dotted curves mark the dependenceh̄
5v̄Ae2m2. The dashed line is the critical frequencyv1.
7-3
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C. Energy flow near the interface

The energy flow is described by the Poynting vect
which defines the energy density flux averaged over the
riod T52p/v, and can be written in the form

S5
c

8p
Re@E3H* #, ~12!

whereE,H are the complex envelopes of the electric fie
and magnetic field of a surface wave, respectively, and
asterisk stands for the complex conjugation.

A uniform surface wave propagating along the interfa
has only one nonzero component of the averaged Poyn
vectoruSu5uSzu. The energy flux in the RH and LH media
an integral of the Poynting vector over the correspond
semi-infinite spatial region,

P15E
2`

0

Szdz5
Bh

k1
H 1/m1 for TE,

1/e1 for TM,
~13!

P25E
0

`

Szdz5
Bh

k2
H 1/m2 for TE,

1/e2 for TM,
~14!

where the constantB5c2A0
2/16pv. We note that the elec

tromagnetic energy flow is in opposite directions at eith
side of the interface, as was also predicted in Ref.@13# for
TM polarized waves. The total energy flux in the forwardz
direction is defined as the sumP5P11P2, and it is found as

P5~12XY!
Bhv2e1m1

k1k2c2 H ~11Y2!/@Y~m1k12m2k2!#,

~11X2!/@X~e1k12e2k2!#,
~15!

for the TE and TM waves, respectively. The total energy fl
is positive forXY,1, and negative forXY.1. The surface
waves are forward or backward, respectively. The co
sponding types of surface waves determined from this an
sis are labeled in Fig. 1.

III. NONLINEAR SURFACE WAVES

A. Nonlinear LH ÕRH interface

Nonlinear surface waves at an interface separating
conventional dielectric media have been analyzed ex
sively for several decades starting from the pioneering pa
@15#. In brief, one of the major findings of those studies
that the TE-polarized surface waves can exist at the inter
separating two RH media provided thatat least one of these
is nonlinear, but thatno surface waves exist in the linea
limit.

In this section, we study TE-polarized nonlinear surfa
waves assuming that both media are nonlinear, i.e., they
play a Kerr-type nonlinearity in their dielectric propertie
namely,

e1,2
NL5e1,21a1,2uEu2, ~16!
01661
,
e-

e

e
ng

g

r

x

-
y-

o
n-
er

ce

e
is-

where the first term characterizes the linear properties,
those in the limit of vanishing wave amplitude.

First, we should mention that the recent systematic st
of nonlinear properties of metallic composites@16# suggested
the possibility of hysteresis-type nonlinear effects in a str
ture consisting of arrays of split-ring resonators~SRRs! and
wires embedded in a nonlinear dielectric medium. Such
fects can also be caused by a nonlinear dielectric mate
placed in the slits of the SRRs, which results in an intens
dependent capacitance of the slit. These hysteresis ef
can be avoided if the structure is filled by a nonlinear diel
tric material except in the SRR slits. In what follows, w
consider such composite structures for which the nonlin
properties can be characterized by Eq.~16! valid far from the
resonances.

For a conventional~or right-handed! dielectric medium,
positivea1 corresponds to a self-focusing nonlinear mater
whilst negativea1 characterizes defocusing effects in th
beam propagation. However, this classification becomes
versed in the case of LH materials and, for example, a s
focusing LH medium corresponds to negativea2. Indeed,
taking into account relation~16!, we rewrite Eq.~1! for the
case of the TE-polarized wave in nonlinear media as follo

]2E

]z2
1

]2E

]x2
1S v

c D 2

~em1mauEu2!E50. ~17!

According to Eq.~17!, the sign of the productma determines
the type of nonlinear self-action effects which occur. The
fore, in a LH medium with negativem2 all nonlinear effects
are oppositeto those in RH media with positivem1 for the
samea. Below, we assume for definiteness that both LH a
RH materials possess self-focusing properties, i.e.,a1.0
anda2,0.

We look for the stationary solutions of Eq.~17! in the
form E1,2(x,z)5C1,2(x)exp(ihz). Then, the profiles of the
spatially localized wave envelopesC1,2(x) are found as@17#

C1,2~x!5~h1,2A2/a1,2m1,2!sech@h1,2~x2x1,2!#, ~18!

where h1,25k1,2c/v are normalized transverse wave num
bers,x1,2 are centers of the sech functions which should
chosen to satisfy the continuity of the tangential compone
of the electric and magnetic fields at the interface. Th
conditions can be presented in the form of two transcend
tal equations,

tanh2~h1x1!5S 12
a1m1h2

2

a2m2h1
2D S 12

a1m2

a2m1
D 21

~19!

and

h2

m2
tanh~h2x2!5

h1

m1
tanh~h1x1!. ~20!

Note, that if the parameters (x1 ,x2) correspond to one of the
solutions of the equation, then (2x1 ,2x2) gives another
solution. Two waves described by these solutions have
same wave number, but they correspond to different tra
7-4
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verse structures of the surface wave, one of which ha
maximum of the intensity at the interface, and the other o
that has two humps shifted into the media.

In a degenerate case, when (a1 ,m1 ,e1)
5(ua2u,um2u,ue2u), the system has an infinite number of s
lutions. Indeed, any (x,2x) pair will describe a stationary
solution for the surface wave. Such waves have a zero t
energy flux because of the symmetry of the solution.

The energy flow in this wave can be written in the form

P5P0gFh1a2m2

a1m1
2

1
h2

m2
1

h1

m1
S 12

a2m2

a1m1
D tanh~h1x1!G ,

~21!

where P05c2/4pva2m2, and g5hc/v is the normalized
wave number. We now consider the surface waves in
nondegenerate case when onlya15ua2u. The dependence o
the normalized energy fluxP/P0 on the parameterg is
shown in Fig. 3 for the cases when linear waves are forw
or backward, respectively. Corresponding transverse w
structures are shown in the insets.

FIG. 3. Normalized energy flux vs normalized wave numbeg
5hc/v for the nonlinear surface waves in two cases:~a! XY,1,
Y.1; and ~b! XY.1, Y,1. The solid curve corresponds to
one-humped structure; dashed, double-humped structure. The i
show the structure of the surface waves at the points indicate
arrows. Dotted lines denote the linear surface wave wave num
01661
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The linear limit corresponds to the caseP→0 whenx1
→1` andx2→2`. Moving along the curves, the cente
of the sech functions move toward the interface and at
point with dP/dg5`, x15x250, and from that point along
the dashed linex1→2`,x2→1`, thus revealing the two-
humped transverse structure of the surface wave. Note
the forward~backward! wave in the linear case remains fo
ward ~backward! in the nonlinear case, i.e., the type of th
mode is determined by the linear parameters of the sys
and can be found using the diagram in Fig. 1.

B. Nonlinear LH Õlinear RH interface

Next, we consider surface waves propagating along
interface between a linear RH and a nonlinear LH media~see
the inset in Fig. 4! having a nonlinear coefficienta2 which is
negative and, thus, displaying the self-focusing propert
The transverse structure of the stationary surface wave
the form

C~x!5H E0 exp~h1x!, x,0

~2/a2m2!1/2h2 sech@h2~x2x0!#, x.0,
~22!

whereE0 andx0 are two parameters which should be det
mined from the continuity conditions at the interface for t
tangential components of the electric and magnetic fields

tanh~h2x0!5m2h1 /~m1h2!,

E05~2/a2m2!1/2h2 sech~h2x0!. ~23!

Analyzing the relations~23!, we find that a surface wave
always has the maximum of field intensity at the interfa
This is in a sharp contrast to the nonlinear surface wa
excited at the interface separating two RH media, when
electric field has maximum shifted into a self-focusing no
linear medium@18#.

The corresponding nonlinear dispersion relation of
surface waves is found in the form

ets
by
r.

FIG. 4. Normalized energy flux vs normalized wave numberg
5hc/v for the nonlinear surface waves at the nonlinear LH/line
RH interface. Surface waves can be both forward~positive energy
flux! and backward~negative energy flux!. The inset shows the
geometry of the problem. The solid line shows the transverse w
profile, the dotted line shows the continuation of the solution
nonlinear medium~22! to the linear medium, and the dashed lin
indicates the position of the centerx0 of the sech function.
7-5
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h1

m1
1

h2

m2
S 12

A1
2

h2
2D 1/2

50, ~24!

where A15E0(a1m1/2)1/2 is the normalized electric field
amplitude at the interface. Equation~24! reduces to the linea
dispersion relation~6! in the small-amplitude limit, i.e.,
whenA1→0.

The energy fluxP associated with the nonlinear surfa
wave can be calculated in the form

P5P0gh2S 11
m2h1

m1h2
D F 2

m2
1

h2

h1m1
S 12

m2h1

m1h2
D G ,

whereP0 is defined above.
As an example, we consider the caseXY,1 for which, as

we have shown above, only forward surface waves can e
at the interface between two linear media. However, non
ear surface waves can be either forward or backward
demonstrated in Fig. 4. ForY,1, there existsno linear limit
for the existence of the surface waves, while in the other
regions the results for linear surface waves are recovere
the limit P→0. The point on the curve corresponding toP
50 in the caseY,1 describes the wave of finite amplitud
in which the energy flows on the two sides of the interfa
are balanced. Such a wave does not exist in the linear li

C. Linear LH Õnonlinear RH interface

Finally, we consider the case when the LH material
linear, while the RH medium is nonlinear. In such a geo
etry, the dispersion relation for the TE-polarized waves
the form

h2

m2
1

h1

m1
S 12

A2
2

h1
2D 1/2

50, ~25!

whereA25E0Aa2m2/2 is the normalized amplitude of th
electric field at the interface.

The dependence of the normalized energy flux on
wave number of the surface wave is shown in Fig. 5

FIG. 5. Normalized energy flux vs normalized wave numbeg
5hc/v for the nonlinear surface waves at the linear LH/nonline
RH interface. Surface waves can be either forward~positive energy
flux! or backward~negative energy flux!. The inset shows the ge
ometry of the problem.
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XY.1. In contrast to the linear waves, the nonlinear surfa
waves can be either forward or backward~see Fig. 1!. In
analogy with the caseY,1 for the nonlinear LH/linear RH
interface, it can be shown that there exists no sm
amplitude limit for the nonlinear surface waves forY.1.
For XY,1 only forward traveling waves exist whenY.1,
reproducing the property of the corresponding linear wav

IV. FREQUENCY DISPERSION OF NONLINEAR
SURFACE WAVES

We have demonstrated in Sec. II B that the frequency d
persion of surface waves depends on the dielectric permi
ity of the RH medium~see Fig. 2!. These results suggest th
the dispersion type can be switched between normal
anomalous if the RH medium is nonlinear.

To demonstrate this property, we study the properties
nonlinear surface waves near the critical point and selece1
53.4, in order to stay just below the critical valueec corre-
sponding to the linear case. It should be mentioned here
although the negative permeability of the LH composite m
terial is necessary for the existence of TE surface wave
the present model, it has been shown@19# that TE surface
waves do exist at the interface between a RH nonlin
plasma and a RH nonlinear dielectric medium with a co
stant zero-field permittivity, provided that the nonlinear p
rameter in the plasma exceeds that in the dielectric medi
In that case, sincem51 in both media, it has also bee
shown@19# that the relation for wave intensity at the boun
ary and the frequency are independent of the wave num
In the present case, where the LH composite material h
permeability not equal to unity, this result is no longer val
In our problem, Eq.~25! provides a dependence between t
three variablesh, A2, andv, so that the wave intensity at th
boundary depends on bothh andv.

As was shown for the case of linear surface waves
change of the slope of the dispersion curve takes place a
critical value of dielectric permittivity of the RH medium
~11!. In the nonlinear case, the dielectric permittivity of th
RH medium depends on the field intensity and, in particu
it exceeds the critical value when the wave amplitudeA2
becomes larger than the threshold valueA2c given by the
equation

A2c
2 5S vp

v r
D 2S 12

F

2 D2~11e1!. ~26!

For the media parameters corresponding to Fig. 2, Eq.~26!
gives:A2c50.3162. Figure 6 shows the dispersion curves
three different wave amplitudes. As was shown in Sec. II
the frequency dispersion is normal for the wave amplitud
below the critical value~26!, and it is negative, otherwise
One can also note from Fig. 6 that the existence region
surface waves depends on the wave amplitudeA2. In Fig. 7
we present this region of wave existence on the plane of
wave amplitude and normalized frequency. The existence
gion of the backward surface waves below the critical va
collapses atA2c , and it expands in the region of the forwar

r
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surface waves above the threshold. Note, that the forw
and backward waves exist at different frequencies only.

The existence regions of the surface wave can be
plained from the viewpoint of the physics of wave localiz
tion. The wave localization is determined by the normaliz
transverse wave numbersh1,2, which define the inverse de
cay length of the surface wave in the corresponding medi
The conditionsh150 andh250 correspond to the deloca
ized waves, and determine the boundary of the existe
region. Figure 8 shows the dependence of the normal
wave number on the wave amplitude for different freque
cies. These curves represent the horizontal cross sectio
the region of the wave existence shown in Fig. 7. The das
line in Fig. 8 shows the boundary of localization of the wa
in the LH material. Comparing Fig. 8 and Fig. 7, we come
the conclusion that in Fig. 7 the upper boundary for the
istence of the forward waves~below A2c) and the lower
boundary for the backward wave existence~aboveA2c) are
determined by the wave localization in the LH material.

The power flow in the linear LH composite medium
given by the result

P25
c2g

16pvm2h2
E0

2 ~27!

and, using the boundary value technique@18#, the power flow
in the nonlinear half space~RH medium! can be obtained in
the following form

FIG. 6. Normalized frequency vs normalized wave number
different values of the amplitudeA2. The dashed line correspond
to the linev1 in Fig. 2; the dotted line ish250.

FIG. 7. Existence region of nonlinear surface waves~shaded!.
The curves show the amplitudeA2 vs normalized frequency fo
different values of the normalized wave number~marked at the
curves!. All curves intersect at the critical pointA25A2c .
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P15
c2g

4pvm1
2a1

S h12Ah1
22E0

2 a1m1

2 D . ~28!

We note here that, although the nonlinear coefficienta1 ap-
pears as a factor in the denominator of Eq.~28!, the reduc-
tion to the linear case~whena1→0) can be performed in a
straightforward way by expanding Eq.~28! as for smalla1
as follows,

P15
c2g

16pvm1h1
E0

21O~a1
2!, ~29!

which has the same form as Eq.~27!.
The absolute value of the ratio of the power flow in t

RH nonlinear medium to the power flow in the LH compo
ite medium is depicted in Fig. 9. Above the critical valueAc ,
there exists a value of the wave number at which the po
flow is positive. In this region, there exists a forward trav
ing surface wave. Note that no matter what the value of
field intensity at the boundary is, there always exists so
value of the wave number where the flow is negative a
there exists a backward traveling surface wave. This can

FIG. 8. Normalized wave number vs normalized field amplitu
A2 for different frequencies. The dashed line ish250. The curves
on the left ofA2c meet the wave number axis at the values cor
sponding to the linear case. There exist no linear solutions to
right of the critical vertical lineA25A2c .

r

FIG. 9. The absolute value of the ratio of the power flow in t
nonlinear dielectric to that in the LH material. Above the critic
value Ac , the power flow in the nonlinear half space dominat
giving a forward traveling wave. Ask2 approaches zero towards th
left-hand side of the curves, the power in the left-handed med
dominates.
7-7
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seen by reference to Eq.~27!. The presence ofh2 in the
denominator of Eq.~27! means that ash approaches a valu
that makesh250 ~i.e., a dispersion curve in Fig. 6 ap
proaches the dashed line! the negative power flow in the LH
material dominates the total power flow. Conversely, ash2
increases from zero, the negative power flow in the LH m
dium decreases so that, provided the intensity of the elec
field at the boundary is high enough, the positive power fl
in the nonlinear dielectric dominates.

V. NONLINEAR PULSE PROPAGATION
AND SURFACE-WAVE SOLITONS

Envelope equation

Propagation of pulses along the interface between RH
LH media is of particular interest, since it was shown befo
@13# for TM modes that the energy fluxes aredirected oppo-
sitelyat either side of the interface. Therefore, we can exp
that the energy flow in a pulse with finite temporal and s
tial dimension has a nontrivial form@10# and, in particular, it
can be associated with a vortexlike structure of the ene
flow.

We analyze the structure of surface waves of both tem
ral and spatial finite extent that can exist in such a geome
To obtain the equation describing the pulse propaga
along the interface, we look for the structure of a broad el
tromagnetic pulse with carrier frequencyv0 described by an
asymptotic multiscale expansion with the main terms of
general form

C~z,x,t !5eih0z2 iv0tFC0~x!A~j,t !2 iC1~x!
]A~j,t !

]j

1C2~x,j,t !1•••G , ~30!

where j5z2vgt is the pulse coordinate in the referen
frame moving with the group velocityvg5]v/]h, the field
C stands for the components (Ey ,Hx ,Hz) of a TE-polarized
wave, the first termC05(Ey0 ,Hx0 ,Hz0) describes the struc
ture of the mode at the carrier frequencyv0 , C1 is the
first-order term of the asymptotic series which can be fou
asC15]C0 /]h, andC2 is the second-order term. HereA is
the pulse envelope,h0 is the wave number corresponding
the carrier frequencyv0. Substituting Eq.~30! into Eq. ~17!
and using the Fredholm alternative theorem@20#, one can
obtain the equation for the evolution of the field envelope

i
]A

]t
1

d

2

]2A

]j2
2v2~h!uA2uA50, ~31!

where the coefficientd5]2v/]h2 stands for the group
velocity dispersion ~GVD! which determines the puls
broadening and can be calculated from the dispersion r
tions, v2(h)5(]vNL /]A2)uA50 is the effective nonlinear
coefficient calculated with the help of the nonlinear disp
sion relation. The nonlinear Schrodinger equation has a
lution in the form of a bright soliton localized at the inte
face, provided the GVD (d) has the opposite sign to the sig
01661
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of the nonlinear coefficient (v2) ~see, e.g., Ref.@21#, and
references therein!. The existence of the surface polarito
solitons has been predicted in a number of structures s
porting nonlinear guided waves~see, e.g., Ref.@22#, and ref-
erences therein!.

The effective nonlinear coefficient for the case of an
terface between the nonlinear LH medium and the linear
medium can be found using Eq.~23!,

v2~h!52
am1k1k2v2

4hc2~e2m22e1m1!

dv

dh
. ~32!

The signs of the group velocitydv/dh and of the paramete
d can be determined from the Fig. 2. As a result, for a
reasonable values of dielectric permittivity and magnetic p
meability of the RH medium, there exists a range of frequ
cies for whichv2d,0, indicating the possibility of exciting
surface polariton solitons.

To study the energy flow in such a surface-polariton so
ton, we use the asymptotic expansions~30! for the field com-
ponents, and from Eq.~12! we obtain the energy flow struc
ture described by their components

Sz5
c2h0

8pv0m
E0

2uAu2, ~33!

Sx5
c2

8pv0m F]E0

]h

]E0

]x
2E0S ]2E0

]h]x
2

vgr

v0

]E0

]x D G
3ReS A

]A*

]j D . ~34!

The structure of the Poynting vector in the surface-wa
pulse is shown in Fig. 10, where it is clearly seen that
energy rotates in the localized region creating a vortex-t
energy distribution in the wave. The difference between
Poynting vectoruSzu integrated over the RH medium and th
calculated for the LH medium determines the resulting gro
velocity of the surface wave packet.

We note the distinctive vortexlike structure of the surfa
waves at the interface separating RH and LH media follo

FIG. 10. A vortexlike distribution of the Poynting vector in
surface-wave soliton propagating along the LH/RH interface.
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as a result of the opposite signs of the dielectric permittiv
for the TM-polarized waves and the magnetic permittiv
for the TE-polarized waves. These conditions coincide w
the conditions for the existence of the corresponding surf
waves and, therefore, surface polaritons should always h
such a distinctive vortexlike structure.

VI. CONCLUSIONS

We have presented a systematic study of both linear
nonlinear surface waves supported by an interface betwe
left-handed metamaterial and a conventional dielectric m
dium. For the linear regime, we have extended some ea
theoretical results and analyzed different types of surf
waves and their existence regions. In particular, we h
demonstrated that the structure of the energy flow in a s
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tially localized wave packet of the surface waves propaga
along the interface has a vortexlike structure. For the cas
nonlinear surface waves, we have demonstrated that w
only one of the media is nonlinear the maximum amplitu
of the spatially localized wave does not shift away from t
interface. This result is in sharp contrast to the case of
interface between linear and nonlinear right-handed mate
where the maximum of a surface wave is always shifted i
a self-focusing nonlinear medium. We have demonstra
that the group velocity of nonlinear surface waves can
controlled by changing the intensity of the electromagne
field and, in particular, the surface wave can be switch
from the forward propagating one to the backward propag
ing one by varying the field intensity only. In addition, w
have obtained conditions for the existence of the surfa
polariton solitons at the metamaterial interface.
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