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Pulse propagation in chains with nonlinear interactions
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Pulse propagation in nonlinear arrays continues to be of interest because it provides a possible mechanism
for energy transfer with little dispersion. Here we show that common measures of pulse dispersion might be
misleading; in strongly anharmonic systems they tend to reflect a succession of extremely narrow pulses
traveling at decreasing velocities rather than the actual width of a single pulse. We present analytic estimates
for the fraction of the initial energy that travels in the leading pulses. We also provide analytic predictions for
the leading pulse velocity in a Fermi-Pasta-Ulgnthain.
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The stability of localized energy, e.g., in the form of For the FPUB problemn=4, but we retaim as a general
breathers, in translationally invariant nonlinear arrays, angpower because a number of theories and simulations deal
the way in which localized energy packets can be transportedith other values of, and portions of our analysis do as
in these arrays, has been a topic of interest for several devell. The parameterk andk’ are the harmonic and anhar-
cades, and continues to be of great interest for a number ofionic force constants, respectively. The variables and the
reasons. One is that many of the ideas on the subject hat&gne can be scaled so that the only distinct cases of this
recently and increasingly been confirmed experimentallyproblem arek=0 (purely anharmonic chajnk’=0 (purely
Another is the possible importance of the subject in theharmonic chain andk,k’#0 (“mixed” chain; k=k’=1 is
transport of energy in biological systems. Third is the evera convenient choigeThe control parameter is then the initial
increasing numerical capability that allows simulations ofvelocity. The equation of motion for thgth particle in a
larger systems over longer times. A recent focus issue of Refnixed chain then is
[1] contains some of the most current contributions and re-
views_ of the subject, and covers the three topics just 5-<i=|Xi+1—Xi|”_159f(Xi+1—Xi)+(Xi+1—Xi)
mentioned.

While the advances of the past few years are exciting and —|xi—=xi—1|" " tsgnxi—Xi—1) = (Xi—Xi_1), (3
enormously instructive, the analytic understanding of these - )
phenomena has been made difficult by the fact that the sydvhere sgnf)=+1 for x=0. Initially all particles are at rest
tems are nonlinear. Many of the available res(itsluding ~ in their equilibrium positions except for one partiotéar
those obtained in our gromiare numerica'y and it is some- from any boundariéﬁhat haS |n|t|a| Veloc|ty10. We take-the
times difficult and even misleading to generalize from these¢chain to be sufficiently long and the boundaries sufficiently
resu|ts(for reviews Of the Subject preceding the Specia| issuéar from the initial eXCIta'FIOI’] that their preC|Se nature does
noted above, see Refi2,3], and references therginOur ~ Not matter for our analysis. o
contribution in this paper is an analytic understanding of In Ref.[4], Sarmientcet al.analyze the pulse evolution in
results previously obtained only numerically. terms of the mean distance from the initial sitpulse po-

Atypical set of questions that one can pose is the follow-Sition”) and its dispersiort“pulse width”),
ing: Suppose that a single unit in a nonlinear array is given

an initial velocity. How will this velocity/energy propagate S ilE S i%g,
through the array? Will some or all of the energy remain i ' , I ' )
localized, or will it spread? If a localized moving pulse does (x)= » 0= —(x)*. 4
develop, at what velocity will it propagate? These are some E E; E E;
I

of the signal propagation issues that we address analytically. :

We focus on the one-dimensional Fermi-Pasta—UIaml_h local is defined
(FPU)-type problem for unit mass particles described by the € local energy IS dehined as
Hamiltonian

X 1 1
2 Ei=2 + 5 V(X1 X) + 5 V(X Xi-y). )
=D > V(X —Xi_1) (1) : o . o
H = 2 4 Tma AimLh We begin by considering the spreading of the initial pulse.

The width of the pulse as time proceeds is often invoked as
wherex; is the displacement of particldrom its equilibrium  a measure of the ability of the nonlinearity to keep the en-
position andV(z) is the potential ergy localized. It is well known that in a harmonic lattice an

initial pulse spreads even as it moves. In a mixed chain, one
2 expects less spreading for a higher initial veloeitysince a _
more energetic pulse samples the more anharmonic portions

!

k k
Vn(z)=F|z|”+ 522.
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FIG. 1. Mean distance and dispersion of the pulse as defined ir [ 1 1 1 T ’
Egs. 4 for a purely quartic potentigtlashed ling and a mixed B 1o 1o 7]
potential withn=4 anduvy=1.0 (solid line). oLt | 0' ' 0' Cold i
02—+ 11— 02171 +1— 021
of the potential. Indeed, highly localized breathers have beer 1 - 1 r .
shown to be exact solutions for the purely anharmonic chain 0.1+ - 0.1F 4 0.1F -
in the limit n—o [5]. For a quartic anharmonicityn&4) 1 t - n A .
the contribution of the harmonic and anharmonic contribu- 011 ol L lLil | oLl
tions to the potential energy are equal at the maximum dis- 2T 02— 0.2 |
placement associated with kinetic enetgy2=4. Therefore I 1 01' 1 01' |
when vo<8 (vo>8) the dominant contribution to the i : ol |
potential energy of the pulse is the harmof@mharmonig¢ ol il ol diial 0 Ll

portion. 0 100 200 0 100 200 0 100 200

In Fig. 1 we show the pulse width as a function of pulse ()
pos't'on, for n%4 in two cases. "_] oneyo=1 so that the FIG. 2. Snapshots of the normalized local energy profile vs lat-
harmon'c portion of the pmem'?' is strongly S"?‘mf?'ed by theti(:e site for the mixed potential with=4 and initial pulse velocity
excitation. In the otheryo—, i.e., the potential is essen- , —1 () andv,— = (b). From left to right and top to bottom, time
tially a purely quartic potential. The pulse in the purely an-yyns from 0 to 80 in steps of tefadimensional units.
harmonic potential is more localized after traveling a given
mean distance than is the pulse in the mixed systnirhe  which the pulse width increases as the pulse travels away
inset shows the mean pulse position as a function of timgrom the site of origin. To see this, consider a low-velocity
(the pulses move at a constant speed pulse launched in a mixed chain. The harmonic portion of

We note that the lower energy pulse moves more rapidlthe potential here dominates the evolution of the pulse, as
than the higher energy pulse. This result may appear contrahown in Fig. 2a). Two symmetric fronts travel away from
dictory with those obtained earlier in R¢#] where,for a  the origin carrying part of the energy and spreading. The
given initial pulse energypulse velocities in purely har- remaining energy is progressively distributed among the par-
monic and purely anharmonic systems were compared. ficles between the pulses. Altogether one observes a gradual
pulse in a purely harmonic system moves at a speed that isroadening of the two pulses, exactly as one imagines a
independent of the initial velocity,, while the pulse speed pulse broadening to occur.
in a purely quartic system increases with increasigd4]. However, for a mixed potential with high initial pulse
Therefore, for sufficiently high initial pulse velocity, a pulse velocity the situation is quite different, as can be seen in Fig.
in a purely harmonic system movesore slowlythan in a  2(b). Now a portion of the energy travels symmetrically
purely anharmonic chaif#]. In a mixed chain, on the other away from the center in extremely localized pulses that in
hand, the pulse speed as a functiorvgfis boundedbelow  factremain highly localizedThe remaining energy is succes-
by the higher of the twdpurely harmonic and purely quar- sively “launched” from the origin in the form of secondary
tic), approaching the purely harmonic behavior at igpand  pulses of smaller and smaller amplitude which travel more
the purely quartic behavior at large. and more slowly(the low initial velocity or nearly harmonic

Alternatively but equivalently, one can say that the veloc-case can be thought of in these terms as well, but the sec-
ity of a pulse in a purely harmonic chain is independent of itsondary pulses travel at essentially the same speed as the pri-
amplitude while in an anharmonic chain the pulse speed demary pulses Hence, there is a series of narrow pulses of
creases with decreasing amplitude. This observation has imlecreasing amplitude that are getting further apart from one
portant implications in the understanding of the way inanother, giving rise to the apparent “dispersion.” Moreover,
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the maxima of the pulses oscillate; when the energy is more 0.5 - T - T - T - T
concentrated in one particle the maximum is higher than
when it is shared between two or more.

The extreme localization of the pulses suggests that ¢ 451 4
two- or three-particle approximation may capture the essenct o ©
of the physics of the problem, and it is this feature that we
use to arrive at analytic results. The point to stress here igy”
thatthe second moment’ is in fact a deceptive measure of m™
the dispersion of the pulsexcept in an essentially harmonic
system.

We begin by estimating the energy in the primary pulses  0.35
and, from this, the pulse velocity as determined by the pulse o)
energy. We assume that the only effects of the restoring I o
forces are to split part of the energy into two pulses, and to 03 s | s I s ! s |
keep the remainder of the energy at the origin, from where it 0 5 10 15 20
will create the secondary pulses. Therefore we need to cal-
culate how much energy is transmitted from the particle FIG. 3. Relative energy in the primary pulse as a function of the
ati=0 to the particles ai==+1, and how quickly it is nonlinearitynin the potential. Circles: purely anharmonic potential.
transmitted. Squares: mixed potential withy=10.

The first step is achieved by considering a three-particle ) )
system and neglecting the rest of the chain. This approximdhat as the harmonic component becomes more important the
tion presupposes that the potential is sufficiently steep sucRulSe occupies more than three sites. _
that the particles at=+2 barely move before the particles ~ Next we turn our attention to the calculation of the veloc-
ati==1 have acquired their full velocity. Obviously, this is Ity of the primary pulse when=4 (the FPU case For this
not strictly true for finiten; however, we will show that it ~calculation we simplify our model even further and consider
is a very good approximation, especially for high Iou|Seonl_y a two-particle system, one of whlch_ has the initial ve-
velocities. locity u=2v,/3. We then calculate the tim&(v,) for the

Initially, the three particles are in their equilibrium posi- Second particle to acquire the same velocity as the first, i.e.,
tions and all of the energfto:vg/z is concentrated in the the time atwhich the velocities of the two particles are equal.
middle particlej =0. Some of the energy is transferred to the e maintain that this is the time necessary for the primary

neighbors as the springs compress and stretch, and at sorﬂ\élse. t(.) travel from one particle to t.he next. To calcula_te this
time later the energy of the three particles is once again afime it is not necessary to actually integrate the“ equations of
kinetic. The symmetry of the system requires that this occupnotion. Definingz=x;—x,, we have forn=4, z=—27°
when the particles at= =1 acquire their maximum velocity —2z. This equation of motion is derived from a potential
u (equal by symmetty and the one at=0 its minimum  V(2)=2*/2+2% and the initial conditions are(0)=0 and
velocity ug. The three-particle system oscillates back andz(0)=u. From energy conservation we have that the final
forth between these two configurations, but we are only inenergy(kinetic plus potentialis equal to the initial energy
terested in this first portion of the cycle. Energy and momen<all kinetic),

tum conservation lead to

04

3224 V(2) =317, ®)
u=3vg, Up=—73vo. (6) .
from which it follows thatz=\Ju?—2z?—z*. Furthermore,
Each primary pulse therefore carries away an energy the two particles have the same velocity when0. It im-
L —_— mediately follows that the relative displacement at that mo-
Ep=§U2=§UOZ§EO. (7) . . 2 .
ment is given byz,,= Vy1+u“—1. Now we can integrate

Figure 3 shows simulation results for the primary pulseZ
energy as a function of the powarof the potential for two
. . . 1 11 d7]
cases. The circles correspond to an initial pulse velagity T(vg)= _f 9)
—oo (or, alternatively, a purely quartic potential with any " znlo (1= D) [cot’(412) + 7]
vo). The squares correspond to an initial pulse velooity . _
=10. Both lie in the regime where the dynamics is domi-where we have introduced the variablgs=2z/z,, and ¢

nated by the anharmonicity,,> 8, but our theory is ex- =sinh™*(u). This integral can be done analytica[l§:
pected to improve with increasing,. The asymptotic value 1

for the highv, case isE, /Eq=4/9, exactly as predicted. The _ 1 [coshi¢)—1]
agreement is very good even for=4, where our prediction J2cosiH? ¢) JV2cosiH?( ¢)

is already within a few percent of the correct value. For the
lower initial pulse velocity the energy ratio is asymptotically whereK(x) is the complete elliptic integral of the first kind
only about 7% smaller than predicted, a reflection of the fac{6]. The pulse velocity is just the inverse of this time:
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5 T L T have both harmonic and anharmonic contributions, and ar-
i gued that the behavior of a pulse launched by imparting an
al / initial velocity v, to a particle at one site in such a system
I é | depends strongly omy. For low velocities the harmonic
;{’ portions of the potential are primarily sampled, and the pulse
3r : A 7] behaves as it would in a harmonic system. For high veloci-
2 1 ties the anharmonic portions of the potential dominate the
_ behavior, and the pulse propagates as it would in a purely
anharmonic chain. It is in the anharmonic regime where one
must view traditional measures of pulse propagation with
some caution. In particular, we have shown that in the anhar-
: monic regime the usual second moment “pulse width” is not
il i L a measure of the way a single pulse spreads, but rather of the
0,1 1 10 100 span covered by a series of very narrow pulses of decreasing
Vo velocity. In a statistical measure this appears as a growing
_ o ) ) second moment. We have also presented analytic estimates
FIG. 4. Pulse velocity vs initial pulse velocity. The circles are {5, the energy and velocity of the leading pulse, and have
the simulatiqn results for a full chain and the broken line is &4). shown by comparison with numerical simulations that our
The dotted line corresponds ig= 8. estimates are extremely accurate in the anharmonic regime.
A number of extensions of our approach are possible, al-

C(v,)

C(vo)=T *(vo). (11 peit with some analytic complications. For example, the ap-
< . ) proach can be extended to the FRRUmodel that includes
For vo>1 (strongly anharmonic pots?tbabne finds from ¢ hic as well as quartic interactions. Some of the polynomial

dimensional analysi7] that C(vo) ~vo". solutions and integrations that we have carried out analyti-

_In Fig. 4, we compare the results of our approximation.qj might then have to be done numerically. The same
with the numerical simulation of the full chain as a function ;. ;14 be true were one to include dissipation. The model
of vy. The circles are the simulation results and the broken.on pe extended to include a local harmonic potential, and

line is our two-particle approximation, EL1). The agree- 154 1o higher dimensions. We are currently exploring these
ment is clearly excellent for initial pulse velocities above generalizations.

Vo> V8, the value that we offered as a limit for the validity
of this approach. This work was supported by the Engineering Research

In this paper we have shown that traditional measures oProgram of the Office of Basic Energy Sciences at the U. S.
pulse propagation in arrays with nonlinear interactions maypepartment of Energy under Grant No. DE-FGO03-
be misleading. We discussed systems with interactions th&6ER13606.
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