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Soliton of modified nonlinear Schrödinger equation with random perturbations

V. M. Lashkin*
Institute for Nuclear Research, Prospect Nauki 47, Kiev 03680, Ukraine

~Received 23 June 2003; published 29 January 2004!

Soliton of the modified Schro¨dinger equation which describes the propagation of femtosecond optical pulses
in nonlinear optical fibers is studied in the presence of random perturbations. Two cases are considered—an
initial random perturbation and a multiplicative noise. A perturbation theory based on the inverse scattering
transform is used. Spectral distribution of the emitted radiation and statistical characteristics of the soliton
parameters are obtained.
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I. INTRODUCTION

The propagation of ultrashort pulses in nonlinear me
has become a topic of intense research, stimulated by
rapid progress of femtosecond laser sources. As is w
known @1,2#, the classical, mathematical model for nonline
pulse propagation in the picosecond time scale in an iso
pic, homogeneous, lossless, nonamplifying, single mode
tical fiber is the nonlinear Schro¨dinger equation~NLSE!,
which is integrable by an inverse scattering transform~IST!
@3#. This equation models the effects of group velocity d
persion and Kerr nonlinearity. As a result of the balance
tween them, a special class of pulses~solitons! can propagate
in optical fibers without changing their forms. Optical so
tons are therefore expected to be suitable information car
in optical communication systems. However, experime
and theories on the propagation of ultrashort pulses in
long monomode fibres have shown that dynamics of fem
second pulses~<100 fs! is not well governed by the NLSE
The spectral width of the pulses becomes comparable
the carrier frequency and additional effects should be ta
into account: the Kerr nonlinearity dispersion~self-
steepening!, the Raman stimulated scattering~soliton self-
frequency shift!, third-order linear dispersion, etc. The a
count for only the nonlinearity dispersion leads to the
called perturbed modified NLSE~MNLSE! @4#

i ] tu1
1

2
]x

2u1 ia]x~ uuu2u!1buuu2u1p@u,u* #50, ~1!

whereu(x,t) is the normalized slowly varying amplitude o
the complex field envelope,t is the normalized propagatio
distance along the fiber,x is the normalized time measured
a frame of reference moving with the pulse at the gro
velocity ~the retarded time!, real parametersb anda govern
the effects of the Kerr nonlinearity and Kerr nonlinear
dispersion, respectively, andp@u,u* # accounts for effects
which we will consider as a perturbation. Equation~1! with
p@u,u* #50 is still integrable by the IST@5–8# though the
associated spectral problem is different from the Zakhar
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Shabat one. Namely, the initial value problem for t
MNLSE can be solved within the framework of the Wada
Konno-Ichikawa problem@9#.

The aim of this paper is twofold. First, for the unperturb
MNLSE we investigate evolution of the soliton paramete
when initial ~launching, in the optical fiber literature! soliton
pulse contains a small additional random part. Several fo
of the noise spectrum are considered. We also determin
spectral distribution of radiation accompanying the solit
into the fiber. The importance of this problem is evide
since practical lasers cannot be designed to excite only
pure soliton mode, but also excite an entire continuum
linearlike dispersive~radiative! waves, so that the input puls
always contains a small noise additive part. Second, on
basis of the ‘‘classical’’ formulation of the IST we develop
perturbation theory for Eq.~1! with p@u,u* #Þ0 and then
consider a perturbation in the form of a multiplicative noi
p5«(x,t)u, where«(x,t) is a random Gaussian field. Thi
case corresponds to fluctuating part of the refractive ind
We obtain the averaged power spectral density of radia
emitted by the moving soliton. Note that a variant of t
perturbation theory for the MNLSE, based on the Riema
Hilbert formulation of the IST, had been suggested in R
@10#, but explicit expressions for the nonsoliton~radiative!
part of the scattering data had not been written. On the b
of the results obtained in Ref.@10#, influence of the additive
d-correlated Gaussian noise on the MNLSE soliton was st
ied in Ref. @11#. A direct, independent of the IST, perturba
tion theory for the MNLSE was developed in Ref.@12#,
where some results of Ref.@10# were confirmed, and, in ad
dition, perturbation-induced radiation in the physical spa
was obtained. We obtain the radiative part in the spec
~natural for the IST! form that can be more preferable from
the practical point of view.

The paper is organized as follows. Section II begins w
a review of the theory of the scattering transform for t
corresponding linear eigenvalue problem. A simple meth
for finding N-soliton solutions and corresponding Jost fun
tions is also suggested. Evolution of randomly perturbed
tial soliton pulse is considered in Sec. III. Then, in Sec.
we present the perturbation theory for the MNLSE and
Sec. V study the influence of an external multiplicative no
on the MNLSE soliton.

Regarding notations, we will use stars for complex co
jugation, and matrices will be written with bold letters, e
cept for the Pauli matrices
©2004 The American Physical Society11-1
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s15S 0 1

1 0D , s25S 0 2 i

i 0 D , s35S 1 0

0 21D .

II. INVERSE SCATTERING THEORY FOR THE MNLSE

A. Scattering data

When p@u,u* #50, Eq. ~1! can be represented as th
compatibility condition

Ut2Vx1@U,V#50 ~2!

of two linear matrix equations

]xM5L~l!s3M12ilQM[UM , ~3!

] tM5V~l!s3M1l~2ils3Q222L~l!Q

22iaQ31s3]xQ!M[VM , ~4!

wherel is a spectral parameter, the 232 matrix Q5(u*
0

0
u)

corresponds to the potential of the linear spectral prob
Eq. ~3!, and

L~l!52~2i /a!~l22b/4!, ~5!

V~l!52~4i /a2!~l22b/4!2. ~6!

This means@13#, in particular, that Eq.~1! with p@u,u* #
50 is integrable in the sense of the IST.

Further in this section we assume, generally speak
p@u,u* #Þ0. In this case Eq.~1! is not integrable~and there
is no anycompatibilitycondition!, but it can be cast in ma
trix form

Ut2Vx1@U,V#1P50, ~7!

whereP5(22lp*
0

0
lp2), and matricesU andV are the same

as in Eqs.~3! and ~4!. It is assumed thatu(x) andp@u,u* #
for some fixedt are vanishing fast enough asx→6`. Let us
consider Eq.~3!. For l2PR denote byM 6(x,t,l) the 2
32 matrix Jost solutions of Eq.~3!, satisfying the boundary
conditions

M6→E~x,l![exp„L~l!s3x… ~8!

asx→6`. Since TrU50, these boundary conditions gua
antee that detM651 for all x. The symmetry properties o
M6 follow from Eq. ~3!,

M6* ~x,t,l!5s2M6~x,t,l! s2 , ~9!

M6~x,t,l!5s3M6~x,t,2l! s3 . ~10!

For eachl2 there can only be two linearly independent co
umns ofM6(x,t,l); therefore there is a matrixS(t,l), l2

PR, thescattering matrix, such that

M2~x,t,l!5M1~x,t,l!S~ t,l! ~11!

with the symmetry properties

S* ~ t,l!5s2S~ t,l! s2 , ~12!
01661
m
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S~ t,l!5s3S~ t,2l! s3 . ~13!

It follows from Eq. ~11! that the coefficientsS11 andS12 are

S11~ t,l!5det„M1
2~x,t,l!,M2

1~x,t,l!…, ~14a!

S12~ t,l!5det„M2
2~x,t,l!,M2

1~x,t,l!…, ~14b!

whereM j
6 means thej th column ofM6. The corresponding

integral equations forM6 can be obtained from Eqs.~3! and
~8!

M6~x,t,l!5E~x,l!72ilE
x

6`

E~x2y,l!Q~y,t !

3M6~y,t,l! dy. ~15!

The standard analysis of these Volterra-type integral eq
tions yields the expressions for the Jost solutions atl50,

M1~x,t,0!5M2~x,t,0!5E~x,0!, ~16!

and the asymptotics atl→`,

M6~x,t,l!5E~x,l!exp$7 is3u6~x,t !%F I1
1

4l
Q~x,t !G

3F11OS 1

l2D G , ~17!

where we have introduced the notations

u1~x,t !5aE
x

`

uu~y,t !u2 dy, ~18!

u2~x,t !5aE
2`

x

uu~y,t !u2 dy. ~19!

The vector functionsM1
2(x,t,l), M2

1(x,t,l) turn out to be
analytically continuable to sgna Im l2.0, while M2

2 , M1
1

are analytically continuable to sgna Im l2,0. It then fol-
lows from Eq.~14a! that the coefficientS11(l) as a function
of l is analytically continuable to sgna Im l2.0 with the
asymptotic atl→`,

S115exp~2 iu0!F11OS 1

l2D G , ~20!

whereu05u21u1. LikewiseS22(l) is analytically continu-
able to sgna Im l2,0. It follows from Eqs.~12! and ~13!
that

S22~l!5S11* ~l* !, S21~l!52S12* ~l* ! ~21!

and

S11~l!5S11~2l!, S12~l!52S12~2l!. ~22!

Also, for l2PR the fact that detS51 implies the normaliza-
tion conditionuS11(l)u21sgnl2uS12(l)u251.
1-2
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The analytic function S11(t,l) may have zeros
l1(t), . . . ,lN(t) in the region of its analyticity
sgna Im l2.0. The determinant equation~14a! then shows
that the columnsM2

1 and M1
2 are linearly dependent an

there exist complex numbersg1(t), . . . ,gN(t) such that

M2
1
„x,t,lk~ t !…5gk~ t !M1

2
„x,t,lk~ t !… ~23!

for k51, . . . ,N. At the complex conjugate pointslk* (t) we
have

M1
1
„x,t,lk* ~ t !…52gk* ~ t !M2

2
„x,t,lk* ~ t !… ~24!

for k51, . . . ,N.
Since S11exp(iu0)→1 as l→` with sgna Im l2.0 and

S11(l)5S11(2l), standard methods of the Hilbert tran
form theory@13# can be used in conjunction with the norma
ization condition to expressS11(t,l) for sgna Im l2.0 in
terms of its zeros and the values ofuS12(t,l)u on the contour
G5$l;Im(l2)50% ~oriented as in Fig. 1!,

S11~ t,l!5)
k51

N
l22lk

2~ t !

l22lk*
2~ t !

expH 2 iu01
1

2p i

3E
G

m ln„12sgn~m2!uS12~ t,m!u2…

m22l2
dmJ .

~25!

From Eqs.~16! and~14a! we haveS11(t,0)51, then, setting
l50 in Eq. ~25!, one can findu05a*2`

` uu(x,t)u2 dx in
terms of the scattering data

u054(
k51

N

arg~lk!2
1

2pEG

ln„12sgn~l2!u S12~l!u2
…

l
dl,

~26!

where 0,arg(lk),p/2 if a.0, and2p/2,arg(lk),0 if
a,0.

Dynamics of the scattering data turns out to be triv
whenp50

S12~ t !5S12~0!exp„2V~l!t…, ~27!

FIG. 1. Integration contourG for a.0 ~reverse direction is
implied for a,0).
01661
l

lk~ t !5lk~0!, ~28!

gk~ t !5gk~0!exp„2V~lk!t…. ~29!

B. The Jost functions and the potential
in the reflectionless case

Whenp50, the Jost functionsM6(x,t,l) and the poten-
tial u(x,t) can be recovered for each fixedt from the scat-
tering data, namely, the reflection coefficientS12(t,l) for
lPG, the eigenvalues$lk(t)% with sgnaIml2.0, and the
proportionality constants$gk(t)%. An important particular
case is that of the reflectionless~solitonic! potentialsu(x)
whenS12(t,l)[0 as a function ofl for some fixedt. It then
follows from Eq.~25! that

S11~ t,l!5)
k51

N
lk*

2~l22lk
2!

lk
2~l22lk*

2!
, ~30!

which extends to sgna Im l2,0 as a meromorphic function
One also sees thatS22(t,l)51/S11(t,l) and thatS21(t,l)
[0. SinceS(t,l) is diagonal in this case, it can be facto
ized in such a wayS2(t,l)5S1(t,l)S(t,l) that the Jost
solution matricesM6 is expressed through a common sol
tion matrix A(x,t,l),

M6~x,t,l!5A~x,t,l!S6~ t,l!, ~31!

where

S15diagS )
k51

N
lk

lk* ~l22lk
2!

,)
k51

N
lk*

lk~l22lk*
2!
D ~32!

and

S25s1S1s1 . ~33!

The columns ofA(x,t,l) necessarily satisfy the relations

A2„x,t,lk~ t !…5gk~ t !A1„x,t,lk~ t !…, ~34a!

A1„x,t,lk* ~ t !…52gk* ~ t !A2„x,t,lk* ~ t !… ~34b!

for all k51, . . . ,N. SinceA(l) is analytical in thel plane,
it follows from Eqs. ~17! and ~31! that diagonal and off-
diagonal elements of the matrixA(l)E21(l) are polynomi-
als inl of degrees 2N and 2N21, respectively. In addition,
from Eqs.~10! and ~31! one sees that the diagonal elemen
are even inl, while the off-diagonal ones are odd. Th
means that

A~x,t,l!E21~x,l!5S A11
(0) 0

0 A22
(0)D

1 (
p51

N

l2p21S lA11
(p) A12

(p)

A21
(p) lA22

(p)D .

~35!
1-3
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Setting herel50, we readily get from Eqs.~16! and~31!—
~33! the expressions for the functionsA11

(0)(x,t) and
A22

(0)(x,t),

A11
(0)5A22

(0)52)
k51

N

ulk~ t !u2. ~36!

The remaining unknown matrix coefficientsA(p)(x,t) with
p51, . . . ,N are determined uniquely from Eqs.~34!. In-
deed, the first row of Eqs.~34! is a linear algebraic system o
2N equations in 2N unknowns, the coefficientsA12

(p) andA11
(p)

with p51, . . . ,N. Likewise, the second row of Eqs.~34! is
the system for determiningA21

(p) and A22
(p) with p

51, . . . ,N. By direct substitution one can check that E
~35! is compatible with Eqs.~3! and ~31! if and only if

u~x,t !5
2 A12

(N)~x,t !

a A22
(N)~x,t !

. ~37!

This formula reconstructsu(x,t) from the discrete scatterin
data $lk(t)%, $gk(t)% in the case whenS12(t,l)[0 and it
gives N-soliton solution of Eq.~1!. An explicit form of the
solution can be easily written in terms of the determinants
corresponding matrices. Equations~31! and ~35! determine
the N-soliton Jost functions. This treatment of the solit
solutions follows the ideas of Refs.@14–16#.

In conclusion of this section we note that eleme
Ai j (x,t,l) of the matrixA and the potentialu(x,t) satisfy
the important relations

2il~uA21A221u* A11A12!5]x~A12A21!, ~38!

2il~uA22
2 1u* A12

2 !5]x~A12A22!, ~39!

which we will use below. These relations can be easily ve
fied by taking the derivative and using]xA5UA.

C. Changing the scattering data under the variation
of the potential

The variations of the reflectiondS12 and transmission
dS11 coefficients under the small variations of the potenti
du(x,t), du* (x,t) for some fixedt are

dS11~l!5E
2`

` H dS11

du
du~x!1

dS11

du*
du* ~x!J dx, ~40!

dS12~l!5E
2`

` H dS12

du
du~x!1

dS12

du*
du* ~x!J dx. ~41!

From Eqs.~14! we have

dS11

du
5

d

du
~M11

2 M22
1 2M12

1 M21
2 !, ~42!

dS12

du
5

d

du
~M12

2 M22
1 2M12

1 M22
2 !, ~43!
01661
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and similar expressions fordS11/du* , dS12/du* . The varia-
tional derivatives in the right-hand side~rhs! of Eqs.~42! and
~43! can be found from the integral equations~15!. As a
result we obtain~l dependence inM6 is omitted!

dS11~l!52ilE
2`

`

$M22
1 ~x!M21

2 ~x!du~x!

1M12
1 ~x!M11

2 ~x!du* ~x!% dx, ~44!

dS12~l!52ilE
2`

`

$M22
1 ~x!M22

2 ~x!du~x!

1M12
1 ~x!M12

2 ~x,l!du* ~x!% dx. ~45!

III. ONE-SOLITON PULSE WITH A RANDOM INITIAL
PERTURBATION

The reflectionless scattering data with the single (N51)
zero l1

2[¸5j1 ih of the function S11(l) correspond to
one-soliton solution. It can be found from Eqs.~34!–~37!

us~x,t !5
ik0

ul1u
cosh~k0z2 iw!

cosh2~k0z1 iw!
eic, ~46!

where we have introduced the notations

z5x02x1vt, c5c01vx1
1

2
~k0

22v2!t, ~47!

k05
4h

a
, v5

b24j

a
, ~48!

w5arg~l1!5
1

2
arctan~h/j!. ~49!

Parametersx0 and c0 determine initial position and initia
phase of the soliton. The parameterh is, up to the multiplier
4/a, the soliton inverse widthk0 ~note thath/a.0), andj
is, up to constant multiplier and shift, the soliton velocityv.
An explicit expression forus in terms of the soliton ampli-
tude and phase is

us5
ik0

ul1u
exp$ ic23iarctan@ tanh~k0z!tanw#%

Acosh2~k0z!2sin2w
. ~50!

Some of the properties of the MNLS soliton differ from
those of the NLS soliton. First, the MNLS soliton has no
zero phase difference at its limits

arg„us~x→`!…2arg~us„x→2`!…56w. ~51!

Second, the number of particles or the optical energy of
soliton is

Es5E
2`

`

uus~x,t !u2 dx54aw, 0,wsgna,
p

2
, ~52!
1-4
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and, therefore, has an upper limit 2p/uau. These properties
of the MNLSE soliton resemble those of the NLSE solit
with condensate~nonvanishing at the infinity! boundary con-
ditions ~dark NLSE soliton!.

The one-soliton Jost functions and the corresponding s
tering data are given in the Appendix.

Suppose now that the soliton input is randomly perturb
so that a pulseu(x)5us(x)@11«(x)# is injected into the
fiber. We assume that the noise«(x) is a zero mean, rea
Gaussian process with correlation function

^«~x!«~x8!&5D~x2x8!, ~53!

where^•••& means statistical averaging. It is assumed that
intensity of the noise is small,D(x)!1. The presence o
«(x) will modify the soliton eigenparameterl1 in a random
way, and, aside from this, will result in a continuum~radia-
tive! contribution duc accompanying the modified solito
into the fiber. As was shown in Ref.@17#, the only asymptotic
(t→`) effect of the radiation on the soliton solution~with
the modified eigenparameter! of the MNLSE is, as usual, a
shift ~random in our case! in phasec0 and positionx0 of the
soliton.

The corresponding variation of the parameter¸ can be
written as

d¸5S ]S11~l2!

]l2 U
l5l1

D 21

dS11~l1!, ~54!

wheredS11, given by Eq.~44!, is the variation of the trans
mission coefficientS11(l) induced by the given realizatio
of du. Using the perturbative approach, we substitute
unperturbed soliton eigenparameterl1 and one-soliton Jos
functions into the rhs of Eq.~54!. Thus, we have

d¸5
2il1

¸2¸*
E

2`

`

«~x!~usA21A221us* A11A12! dx, ~55!

whereA11, A12, A21, andA22 are defined in Eqs.~A4!–~A7!
and evaluated atl5l1. One can see thatd¸ is Gaussian
random value witĥ d¸&50. Therefore, in this approxima
tion the averaged soliton velocityv and the inverse widthk0
remain unchanged. Using the relation~38!, one can simplify
Eq. ~55!. Then, writing down expression forud¸u2, perform-
01661
t-

d

e

e

ing averaging over«(x) with the aid of Eq.~53!, and intro-
ducing Fourier transform ofD(x) in the form D(x)
5*2`

` D̃(q)exp(2iqx) dq, we get

^ud¸u2&5
1

4h2E2`

`

D̃~q!uI ~q!u2 dq, ~56!

where I (q)5*2`
` exp(2iqx)]x(A12A21)dx. Integrating by

parts gives for the averagedud¸u2,

^ud¸u2&5p2a2~111/m2!k0
2G~j,h!, ~57!

wherem5h/j and we have introduced the function

G~j,h!5k0E
2`

`

y2D̃~k0y!
sinh2~arctan~m!y/2!

sinh2~py/2!
dy,

~58!

which depends on the specific form of the noise correlat
function. Note that the integral in Eq.~58! is always conver-
gent, sinceuwu5uarctan(m)/2u,p/2. Similarly, for ^d¸d¸&
one can find

^d¸d¸&5p2a2~1/m22122i /m!k0
2G~j,h!. ~59!

Splitting real and imaginary parts, we obtain variances of
~normalized! soliton velocityj and inverse widthh,

^dj2&5~1/m2!^dh2&, ^dh2&5p2a2k0
2G~j,h!, ~60!

and the cross correlation

^dj dh&5^dh2&/m. ~61!

The functionG(j,h) can be explicitly calculated in two lim-
iting cases—zero and infinite noise correlation time.

If the noise isd correlated in time~zero correlation time!,
so that

D~x!5D0d~x!, ~62!

the functionG takes the form

G~j,h!5
8p2D0k0m2

11m2
F~w!, ~63!

where
F~w!5
2sinfcos2f~cosf22!2cosf~5sinf212f!28sinf13f

24sin5f~cosf21!
~64!
and we have introduced the notationf52w. The function
F(w) increases monotonically withw andF(0)51/35.

Consider now the case when the random function«(x)
has the form

«~x!5«0cos~q0x1q!, ~65!
where the random amplitude«0 is a zero mean, normally
distributed value with variances2, and the random phaseq
is uniformly distributed between 0 and 2p. The correlation
function of such a process isD(x)5(s2/2)cos(q0x) or, in the
frequency domain
1-5
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D̃~q!5
s2

4
@d~q2q0!1d~q1q0!#. ~66!

In this case the noise has an infinite correlation time an
concentrated at the frequencyq0. For G we have

G~j,h!5
s2b2sinh2

„arctan~m!b/2…

2sinh2~pb/2!
, ~67!

whereb5q0 /k0.
To take into account a finite correlation time we consid

an important particular case, when the noise spectrum h
Lorenzian shape

D̃~q!5
D0

ptc@q21~1/tc!
2#

, ~68!

whereD0 is the integral intensity of the noise. Inx space this
corresponds to the correlation functionD(x)5D0exp
(2uxu/tc), where tc is a correlation time. In this case, th
function G(j,h) takes the form

G~j,h,a!5
D0a

p E
2`

` y2sinh2
„arctan~m!y/2…

~y21a2!sinh2~py/2!
dy, ~69!

where the parametera51/(k0tc) is the ratio of the soliton
width to the correlation time. In Fig. 2 the dependence
variance of the inverse widthh on the parameterm is shown
for different values ofa at h51, D050.025, a51. The de-
pendence of the variance ofh on a for different m at the
sameh, D0 , a is presented in Fig. 3. One can see that
influence of the noise~under the fixed integral intensity! on
the soliton parameters becomes larger ata;1, that is, when
the soliton width is comparable with the noise correlati
time.

Consider now the radiative contribution Eq.~1! with p
50 conserves the ‘‘optical energy,’’

E5E
2`

`

uu~x,t !u2 dx, ~70!

FIG. 2. The dependence of the variance ofh on the parameter
m5h/j for different values ofa.
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which, as it follows from Eq.~26!, can be explicitly ex-
pressed in terms of the continuum (l2PR) and discrete scat
tering data

E5E
2`

`

Nrad~l2! dl21
4

a
w, ~71!

where

Nrad~l2!52
ln„12sgn~l2!uS12~l!u2

…

2puaul2
. ~72!

In Eq. ~71! the soliton contribution is separated from that
the radiative component (* dl2) of the wave field described
by the continuous-spectrum scattering data. The disper
relation corresponding linearized version of Eq.~1! is p5
2q2/2. If we consider the radiative component as a sup
position of free waves governed by the linear Schro¨dinger
equation, the spectral parameterl2, as it follows from Eq.
~27!, is connected with the frequency of the emitted line
wavesq by

q5
4

a S l22
b

4 D . ~73!

The quantityNrad(l2) can be regarded as spectral density
the optical energy carried by the radiation.

The reflection coefficient is no longer zero and, for
given realization of«(x), we haveuS12(l)u5udS12(l)u!1.
It then follows from Eq.~72! that the averaged spectral de
sity nrad(l)5^Nrad(l)& is

nrad~l!5
^udS12~l!u2&

2pual2u
. ~74!

Inserting the unperturbed one-soliton Jost functions into
~45!, one obtains

dS12~l!5
2il

~l22¸!~l22¸* !
E

2`

`

«~x!@usA22
2 ~l!

1us* A12
2 ~l!#dx. ~75!

FIG. 3. The dependence of the variance ofh on the parametera
for different values ofm.
1-6
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Writing down expression forudS12(l)u2, performing averag-
ing over«(x), calculating integrals with the aid of Eq.~39!,
and substituting the result into Eq.~74! one can find for the
spectral distribution of radiation

nrad~l!5
8ph3

a2ul1u2@~l22j!21h2#2
R~l!, ~76!

where we have introduced the function

R~l!5E
2`

`

@y1c~l!#2D̃„k0y1k0c~l!…

3
~l2e2wy2ul1u2ewy!2

cosh2~py/2!
dy, ~77!

with the notationc(l)5v/k01(l22b/4)/h. For the noise
correlator of the form Eq.~68! we have

R~l!5
D0a

pk0
E

2`

` ~y1c!2~l2e2wy2ul1u2ewy!2

@a21~y1c!2#cosh2~py/2!
dy.

~78!

The spectral distribution of radiation in this case is shown
Fig. 4 for different values of the parametera. The distribu-
tion has one peak and exponentially decaying tails. T
maximum of the distribution shifts to higher frequenci
with decreasing the ratio of the soliton width 1/k0 to the
correlation timetc .

If «(x) is a white noise in time, with the aid of Eq.~62!
one can find an explicit expression for^uS12(l)u2& and the
spectral density is

nrad~l!5
16D0h3@~l41j21h2!F12l2ul1u2F2#

pa2ul1u2@~l22j!21h2#2
,

~79!

where

F1~w!5
f2sin~2f!1fcos2~f!

sin3~f!
, F2~w!5

cos~2f!

6
.

~80!

FIG. 4. The spectral distribution of radiation for different valu
of the parametera.
01661
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In this case the spectral density decays algebraic
(;1/l4) with increasing oful2u. This slow decay is con-
nected with the fact that the spectrum of thed-correlated
noise contains Fourier harmonics of all frequencies w
equal amplitudes. Having determined the reflection coe
cient S12(l) in a closed form, we can evaluate the averag
position Dx0 and phaseDc0 shifts of the soliton due to
interaction with the radiation. As was shown in Ref.@17#,
these shifts~in the deterministic case! are expressed throug
the coefficientS12 in the following way~the 6 signs corre-
spond tox,t→6`):

Dx0[x0
12x0

252
a

4
lnS ud1~l1 ;l0!u

ud2~l1 ;l0!u
D , ~81!

Dc0[c0
12c0

25
a

4
argS d1~l1 ;l0!

d2~l1 ;l0!
D , ~82!

where

d1~l;y!5expH 1

2p i E0

y ln~11uS12~m!u2!dm2

~m22l2!

2
1

2p i E0

` ln~12uS12~ im!u2!dm2

~m21l2!
J , ~83!

d2~l;y!5expH 1

2p i Ey

` ln~11uS12~m!u2!dm2

~m22l2!
J , ~84!

and l05x/t2b/a. Taking into account̂ uS12u2&!1, inte-
grals in Eqs.~83! and~84! can be calculated analytically fo
the case of ad-correlated noise, but appearing formulas f
the averaged shifts~81! and ~82! turn out to be too cumber
some and are omitted here.

IV. PERTURBATION THEORY

In this section we derive evolution equations for the sc
tering data of the MNLSE in the presence of a perturbati
These equations replace the well-known corresponding e
tions @2,16,18–21# of the NLSE.

Let us consider dynamics of the scattering data whep
Þ0. From Eq.~7! and the fact thatM6 satisfies Eq.~3! one
can get

~]x2U!~] t2V!M61PM650. ~85!

Introducing a new unknownJ6(x,t,l) defined through
the relation (] t2V)M65M6J6, one finds that J6

satisfies ]xJ
652M621PM6. Integrating and taking

into account the boundary conditions~8! and the fact that
V→V(l)s3 as uxu→`, one can obtainJ652V(l)s3

1*x
6`M621PM6dx8 and, hence, the following equations o

motion for M6:
1-7
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~] t2V!M65M6S 2V~l!s31E
x

6`

M621PM6dx8D .

~86!

Equation~86! makes sense only for Iml250. For l2PR,
the columnsM1

2 and M2
1 are the boundary values of func

tions analytic for sgna Im l2.0, and we also need equation
for them that hold for sgna Im l2.0. Introducing the matrix
M (x,t,l)5(M1

2 ,M2
1), and as before defining the new u

known J(x,t,l)5(J1 ,J2) through the relation (] t2V)M
5MJ , and then integrating, we obtain

J15S 2V~l!

0 D 2E
2`

x

M21PM1
2dx8, ~87!

J25S 0

V~l!
D 1E

x

`

M21PM2
1dx8. ~88!

As before, these expressions are used in (] t2V)M5MJ to
yield the equation of motion forM , valid for sgna Im l2.0
except atlk , where M fails to be invertible. Making the
natural assumption that the zerosl5lk are simple, one can
show @13,16#, however, that each singularity is removab
since detM5S11. Hence, the evolution equation forM
makes sense asl→lk(t), and one can introduce

Hk~x,x8,t !5 lim
l→lk(t)

M ~x,t,l!M ~x8,t,l!21, ~89!

where the limit can be calculated by using Hˆ opital rule.
The equation of motion forM6 and M determine the

evolution of the scattering data. Differentiating Eq.~11! with
respect tot and using Eq.~86! yields for reall2,

] tS~ t,l!2V~l!@s3 ,S~ t,l!#

52E
2`

`

M1~x8,t,l!21PM2~x8,t,l!dx8.

~90!

Note that sinceP is off diagonal, the equation forS11(l,t)
only involves quantities analytic for sgnaIm l2.0.

The equation of motion for the reflection coefficie
S12(l,t) is contained in that forS,

] tS1222V~l!S12522lE
2`

`

~pM22
1 M22

2 1p* M12
1 M12

2 !dx8.

~91!

The expression defining the zeroslk
2(t) of S11(t,l) is

S11„t,lk(t)…50. Differentiating with respect tot gives

] tS11„t,lk~ t !…1
dlk

2

dt
]l2S11„t,lk~ t !…50. ~92!

Using the equation of motion forS, one therefore finds
01661
dlk
2

dt
5

2lk

]l2S11~lk ,t !
E

2`

`

~pM22
1 M21

2 1p* M12
1 M11

2 !dx8.

~93!

The integrand here is evaluated atx8, t, andl5lk(t). Dif-
ferentiating Eq.~23! with respect tot and using the evolution
equation forM taken in the limitl→lk(t) yields the equa-
tion for gk(t)

Fdgk

dt
22V~l!gkGM1

2~x,t,l!

52gkE
2`

`

Hk~x,x8,t !PM1
2~x8,t,l!dx8

5@]lM2
1~x,t,l!2gk]lM1

2~x,t,l!#
dlk

dt
~94!

with l5lk(t). Equations~91!, ~93!, and ~94! describe the
evolution of the scattering data, but are coupled to the eq
tions forM andM6. The coupling disappears forP50, as a
result we have Eqs.~27!–~29!.

If p@u,u* # is a small perturbation, one can substitute t
unperturbedu, u* , and Jost functionsM6 into the right-hand
side of Eqs.~91!, ~93!, and~94!. This yields evolution equa-
tions for the scattering data in the lowest approximation
perturbation theory. This procedure can be iterated to y
higher orders of perturbation theory. The appearing hierar
of Eqs.~91!, ~93!, and~94! are applied to arbitrary number o
solitons and, in particular, describe nontrivial many-solit
effects in the presence of perturbations. Here we restrict
selves to the case of one-soliton pulse.

Evolution equations for the parameters¸ and g1 can be
derived from the general equations~93! and ~94! for the
discrete-spectrum scattering data with the use of the o
soliton Jost functions given in the Appendix. After substitu
ing these Jost functions into Eqs.~93! and ~94! we obtain

d¸

dt
5

2l1

~¸2¸* !
E

2`

`

~pA21A221p* A11A12! dx ~95!

and

Fdg1

dt
22V~l1!g1GA11

522g1l1E
2`

`

~pH11A218 2p* H12A118 ! dx8

5~S11
2 !21@]l~S11

2 A12!2g1]l~S11
2 A11!#

dl1

dt
,

~96!

where@writing Ai j8 for Ai j (x8,t,l)]

H115
i

2h
]l~A11A228 2A12A218 !, ~97!
1-8
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H125
i

2h
]l~A12A118 2A11A128 ! ~98!

S11
2 5

l1*

l1~l22l1*
2!

, ~99!

whereA11, A12, A21, andA22 are defined in Eqs.~A4!–~A7!
and evaluated atl5l1(t), g15g1(t), andp, p* are evalu-
ated at the soliton solution Eq.~46! with time dependent
parameters. Similarly, for the reflection coefficientS12(l,t)
we find from Eq.~91!,

dS12~l!

dt
1 ik~l!S12~l!5

2l

~l22¸!~¸* 2l2!

3E
2`

`

„pA22
2 ~l!1p* A12

2 ~l!…dx,

~100!

where we have introduced the notationk(l)5(8/a2)(l2

2b/4)2.

V. INFLUENCE OF MULTIPLICATIVE NOISE
ON THE SOLITON

In this section we consider the MNLSE equation with
external multiplicative noise. We take a perturbation term
the form

p5«~x,t !u, ~101!

where«(x,t) is a zero mean real Gaussian field with cov
riance

^«~x,t !«~x8,t8!&5D~x2x8!B~ t2t8!. ~102!

This form of perturbation corresponds to a random additio
part of the refractive index.

Substituting the perturbation term of Eq.~101! into Eq.
~95! we find after some calculations the following evolutio
equations:

dw

dt
50, ~103!

dh

dt
58hsin~2w!E

2`

` «~x,t !sinh~2y! dy

@cosh~2y!1cos~2w!#2
, ~104!

wherex5x0(t)1v(t)t2y/k0. As is seen from Eq.~103!, the
noise term in the first approximation does not affect
quantity w. This can be easily understood from the expr
sion for the integral of motion Eq.~71!. The perturbation of
the form ~101! still exactly conserves the optical energy E
~70!, which is, neglecting the radiative degrees of freedo
proportional tow. Thus,w(t)5w(0)[w0 is a deterministic
01661
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constant which is determined by the deterministic initial co
ditions. Note that if« is a function oft only ~space irregu-
larities! we have alsodh/dt50. In the general case, as
follows from Eq. ~104!, the parameterh will be a random
function of t with a complicated strongly non-Gaussian s
tistics. We will assume therefore that the intensity of t
noise is small enough, so thath can be regarded as a con
stant int and will concern of the radiative effects.

According to Eq.~72!, the spectral density of the radiatio
energy may be expanded as follows:

Nrad~l2!5
uS12~l!u2

2pual2u
1O~ uS12~l!u4!, ~105!

provided thatuS12(l)u2!1. The emission intensity is char
acterized by its power, i.e., the energy emission rate. T
emission power spectral densityw(l)[dNrad /dt is

w~l!5
1

pual2u
ReH S12*

dS12

dt J . ~106!

Inserting the perturbation Eq.~101! into the general
perturbation-induced evolution equation~100! for the reflec-
tion coefficient S12(l,t), one can obtain for s(l,t)
5S12(l,t)exp@ik(l)t#

ds~l!

dt
5

2lE
2`

`

«~x,t !@usA22
2 ~l!1us* A12

2 ~l!#dx

~l22¸!~¸* 2l2!
eik(l)t.

~107!

Let us integrate Eq.~107!, the rhs of which should be mul
tiplied by exp(nt) with an infinitely smalln.0. As usual, this
trick implies adiabatically turning on a perturbation that w
absent att52`. Thus, we get

s~l,t !5

E
2`

t E
2`

`

«~x,t!F~x,t,l!eik(l)t1ntdt dx

i ~l22¸!~¸* 2l2!
,

~108!

where

F~x,t,l!5]x„A12~x,t,l!A22~x,t,l!…, ~109!

and we have used the relation~39!. Multiplying Eq. ~107! by
the complex-conjugate expression~108! and averaging yield
1-9
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K s*
ds

dt L 5
2` 2` 2`

@~l22j!21h2#2
. ~110!
-
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Introducing Fourier transforms ofB(t) and D(x) through
B(t)5*2`

` B̃(p)exp(2ipt) dp, D(x)5*2`
` D̃(q)exp

(2iqx) dq, making the change of variablesy5k0(vt2x),
y85k0(vt2x8), calculating integrals overy, y8, we can
perform then the integration overt2t and obtain

K s* ~l!
ds~l!

dt L 5
1

@~l22j!21h2#2

3E
2`

` E
2`

` iB̃~p!D̃~q!q2I ~l,q! dp dq

in1K~l!2p2qv
,

~111!

where K(l)5k(l)1v(l)v1(k0
21v2)/2, v(l)5(4l2

2b)/a and

I ~l,q!5
p2a2l2@l2e2wh(l)2ul1u2ewh(l)#2

4ul1u2cosh2@ph~l!/2#
~112!

with h(l)5(q2v(l)2v)/k0. Then, making use of the re
lation limn→0(y2 in)215P(1/y)1 ipd(y), whereP is the
symbol of the principal value, one can find

K ReH s*
ds

dtJ L 5

pE
2`

`

B̃~K~l!2qv !D̃~q!q2I ~l! dq

@~l22j!21h2#2
.

~113!

Substituting Eq.~113! into Eq. ~106! gives the averaged
power spectral densitŷw(l)& emitted by the soliton.

First we consider the case when« is a random function of
time only, so that for the space correlator we haveB̃(p)
5d(p). Then the averaged emission power spectral den
is

^w~l!&5
K2~l!D̃~K~l!/v !I ~l,K~l!/v !

al2@~l22j!21h2#2v2
~114!

and can be explicitly written for the arbitrary form of th
frequency correlatorD̃(q). In particular, in the case of a
noise spectrum of Lorenzian shape we substitute Eq.~68!
into Eq. ~114!. The spectral composition of emitted power
shown in Fig. 5 for different values ofh/j ~with a50.2,
b51., D050.1, a50.2, j51.! The emitted power decay
exponentially with increasing of the frequency. For ‘‘ligh
soliton ~h/j!1! the distribution has two maxima and left o
them ~for a.0! disappears with increasingh/j.
01661
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Second, we consider the case when the noise is con
trated at the frequencyq0, so that the frequency correlato
has the form Eq.~66!. Then, the spectral density of the em
ted power is

^w~l!&5
s2q0

2

4al2@~l22j!21h2#2
$B̃~K2q0v !I ~l,q0!

1B̃~K1q0v !I ~l,2q0!% ~115!

and can be written in a closed form for the arbitrary spa
correlatorB̃(p). In particular, if « depends only onx, Eq.
~115! becomes

^w~l!&5
s2q0

2 d„K~l!2q0v…I ~l,q0!

4al2@~l22j!21h2#2
. ~116!

It follows from Eq.~116! that the emission is concentrated
two points of the spectrum

l6
2 5@b1a~6A2q0v2k0

2!#/4 ~117!

and takes place provided that the soliton velocity satisfies
conditionv.k0

2/2q0. The total quanta number emission ra
is

W[E
2`

`

^w~l!& dl25W11W2 , ~118!

where

W65
s2q0

2I ~l6 ,q0!

16l6
2 @~l6

2 2j!21h2#2A2q0v2k0
2

. ~119!

FIG. 5. Spectral density of radiation emitted by the soliton
different values ofh/j.
1-10
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Since the total optical energyE5Erad1Es defined in Eq.
~71! is conserved, the rate of soliton energy loss due to
diation can be evaluated from the balance equation

dEs

dt
52W. ~120!

It then follows from Eq.~71! that the ratioh/j decreases
with t.

VI. CONCLUSION

In conclusion we describe how the MNLSE soliton E
~46! with b.0 can be reduced@10# to a bright NLSE soliton
at a→0. To carry out this limit one should take into accou
that the Lax pair for the NLSE should be produced ata→0
from the Lax pair~3! and~4! for the MNLSE. This condition
implies that the spectral parameterl depends ona and gives
the following prescription: 2(lMNLS

2 2b/4)/a→2lNLS at
a→0 or

j5b/42aj0/2, h5ah0/2, ~121!

where lMNLS
2 5j2 ih and lNLS5j01 ih0. These formulas

transform the MNLSE soliton Eq.~46! to the NLSE soliton
us5(2ih0 /Ab)sech(z)exp(ic), where z5x022h0(x
22j0t), c5c012j0x22(j0

22h0
2)t.

In this paper we have studied the influence of a rand
perturbation on the MNLSE soliton. First, we have sho
that if the initial one-soliton pulse of the MNLSE has a sm
additional random component, the average asymptotic s
ton width and velocity remain unchanged. Variances of
soliton inverse width and velocity, and the average shifts
the soliton position and phase have been determined ana
cally. The spectral distribution of radiation accompanying
soliton has also been obtained. Second, equations for
soliton eigenparameters and for the reflection coefficient
scribing nonsoliton~radiative! effects were derived for the
h.
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perturbed MNLSE. The case when the perturbation ha
form of multiplicative noise has been analyzed. This cor
sponds to additional random part of the refractive index. T
averaged power spectral density emitted by the soliton
found for different forms of the noise correlator.

APPENDIX: ONE-SOLITON JOST FUNCTIONS

The scattering data corresponding to the one-soliton s
tion ~46! are

S11~l!5
~j1 ih!~l22j1 ih!

~j2 ih!~l22j2 ih!
, ~A1!

S12~l,t !50 ~l2 is real!, ~A2!

l1
25j2 ih, g1~0!5exp~k0x01 ic0! ~A3!

and the corresponding Jost functions are given by Eq.~31!
with

A11~x,t,l!5eL(l)x~l2A11
(1)2ul1u2!, ~A4!

A12~x,t,l!5e2L(l)xlA12
(1) , ~A5!

A21~x,t,l!5eL(l)xlA21
(1) , ~A6!

A22~x,t,l!5e2L(l)x~l2A22
(1)2ul1u2!, ~A7!

where

A12
(1)~x,t !52

2ih

ul1u
exp~ ic!

cosh~k0z1 iw!
, ~A8!

A22
(1)~x,t !5

cosh~k0z1 iw!

cosh~k0z2 iw!
, ~A9!

A11
(1)5A22

(1)* , A21
(1)52A12

(1)* . ~A10!

In Eqs. ~A8! and ~A9!, z, c, k0, andw are the same as in
Eqs.~47! and ~48!.
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