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Soliton of modified nonlinear Schradinger equation with random perturbations
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Soliton of the modified Schoinger equation which describes the propagation of femtosecond optical pulses
in nonlinear optical fibers is studied in the presence of random perturbations. Two cases are considered—an
initial random perturbation and a multiplicative noise. A perturbation theory based on the inverse scattering
transform is used. Spectral distribution of the emitted radiation and statistical characteristics of the soliton
parameters are obtained.
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[. INTRODUCTION Shabat one. Namely, the initial value problem for the
MNLSE can be solved within the framework of the Wadati-
The propagation of ultrashort pulses in nonlinear medid<onno-ichikawa problen9]. _
has become a topic of intense research, stimulated by the The aim of this paper is twofold. First, for the unperturbed
rapid progress of femtosecond laser sources. As is weMNLSE we investigate evolution of the soliton parameters
known[1,2], the classical, mathematical model for nonlinearWhen initial (launching, in the optical fiber literatursoliton
pulse propagation in the picosecond time scale in an isotrgulse contains a small addmona[ random part. Several f(_)rms
pic, homogeneous, lossless, nonamplifying, single mode of the noise spectrum are considered. We also determine a
tical fiber is the nonlinear Schdinger equation(NLSE), spectral distribution of radiation accompanying the soliton

which is integrable by an inverse scattering transforgm) ~ "to the fiber. The importance of this problem is evident
[3]. This equation models the effects of group velocity dis-Since practical lasers cannot be designed to excite only the

ersion and Kerr nonlinearity. As a result of the balance bef " ¢ soliton mode, but also excite an entire continuum of
p . Y. ; linearlike dispersivéradiative waves, so that the input pulse
tween them, a special class of pul¢sslitong can propagate

. . ) . ! . , . always contains a small noise additive part. Second, on the
in optical fibers without changing their forms. Optical soli- |y4qis of the “classical” formulation of the IST we develop a
tons are therefore e_xpe_cted to be suitable information _Ca"ierﬁerturbation theory for Eq(1) with p[u,u*]+#0 and then
in optical communication systems. However, experimentgonsider a perturbation in the form of a multiplicative noise
and theories on the propagation of ultrashort pulses in thg— . (x tyu, wheree(x,t) is a random Gaussian field. This
long monomode fibres have shown that dynamics of femtocase corresponds to fluctuating part of the refractive index.
second pulseé<100 fg is not well governed by the NLSE. e obtain the averaged power spectral density of radiation
The spectral width of the pulses becomes comparable witBmitted by the moving soliton. Note that a variant of the
the carrier frequency and additional effects should be takef)erturbation theory for the MNLSE, based on the Riemann-
into account: the Kerr nonlinearity dispersiofself-  Hilbert formulation of the IST, had been suggested in Ref.
steepening the Raman stimulated scatterittgoliton self-  [10], but explicit expressions for the nonsolitéradiative
frequency shift, third-order linear dispersion, etc. The ac- part of the scattering data had not been written. On the basis
count for only the nonlinearity dispersion leads to the sopf the results obtained in RdfL0], influence of the additive
called perturbed modified NLSBVINLSE) [4] s-correlated Gaussian noise on the MNLSE soliton was stud-
ied in Ref.[11]. A direct, independent of the IST, perturba-
tion theory for the MNLSE was developed in Rgfl2],
where some results of Rgfl0] were confirmed, and, in ad-
dition, perturbation-induced radiation in the physical space
was obtained. We obtain the radiative part in the spectral
(natural for the IST form that can be more preferable from
whereu(x,t) is the normalized slowly varying amplitude of the practical point of view.
the complex field envelopé,is the normalized propagation  The paper is organized as follows. Section Il begins with
distance along the fibex,is the normalized time measured in g review of the theory of the scattering transform for the
a frame of reference moving with the pulse at the groupcorresponding linear eigenvalue problem. A simple method
velocity (the retarded time real parameterg and @ govern  for finding N-soliton solutions and corresponding Jost func-
the effects of the Kerr nonlinearity and Kerr nonlinearity tions is also suggested. Evolution of randomly perturbed ini-
dispersion, respectively, anp[u,u*] accounts for effects tial soliton pulse is considered in Sec. Ill. Then, in Sec. IV
which we will consider as a perturbation. Equatidy with  we present the perturbation theory for the MNLSE and in
p[u,u*]=0 is still integrable by the IST5-8] though the  Sec. V study the influence of an external multiplicative noise
associated spectral problem is different from the Zakharoven the MNLSE soliton.
Regarding notations, we will use stars for complex con-
jugation, and matrices will be written with bold letters, ex-
*Electronic address: vlashkin@kinr.kiev.ua cept for the Pauli matrices

1
i ou+ §a§u+ia(9x(|u|2u)+,8|u|2u+ p[u,u*1=0, (1)

1063-651X/2004/6@)/01661111)/$22.50 69016611-1 ©2004 The American Physical Society



V. M. LASHKIN PHYSICAL REVIEW E 69, 016611 (2004

0 1 0 —i 1 0 S(t,\)=03S(t,—\) o3. (13
71701 o) %27\ o) o 1) .

It follows from Eq. (11) that the coefficient$,; andS,, are
Il. INVERSE SCATTERING THEORY FOR THE MNLSE Si(t,N)=detM 7 (X,t,N),M5 (X,t,\)), (143
A. Scattering data Su(tA)=detMy (x,t,A), M5 (x,t\),  (14b

When p[u,u*]=0, Eg. (1) can be represented as the .

compatibility condition whereM;” means thgth column ofM *. The corresponding
integral equations foM * can be obtained from Eqé3) and
U=Vt [U,V]=0 @ (9

+

of two linear matrix equations

M=(x,t,\)= E(x,)\)IZi)\j ocE(x—y,)\)Q(y,t)

X

IM=A(N)osM+2INQM=UM, 3)

M =0 (\)osM+\(2iN3Q%— 2A(\)Q XM=(y,t.\) dy. (15)

—2iaQ%*+ 030,Q)M=VM, (4)  The standard analysis of these \olterra-type integral equa-
tions yields the expressions for the Jost solutions=a0,
where is a spectral parameter, the<x2 matrix Q:(S* o)

+ — - —
corresponds to the potential of the linear spectral problem M7 (L0 =M"(x,1,0)=E(x,0), (16)

Eq. (3), and and the asymptotics at—oo,
A(N)=—(2ila) (N~ Bl4), (5) 1
M= (x,t,N)=E(x,\N)exp[Fioz65 (X,t)} 1+ —Q(x,t)
Q)= — (4ila?)(\2— BI4)2. () Hlos " a
This meang[13], in particular, that Eq(1) with p[u,u*] L
=0 is integrable in the sense of the IST. x|1+0 22| (7
Further in this section we assume, generally speaking,
plu,u*]#0. In this case Eq(l) is not integrablgand there where we have introduced the notations
is no anycompatibility condition), but it can be cast in ma-
trix form 0+(X,t)=af |u(y,t)|2dy, (18)
U;—V,+[U,V]+P=0, (7 "
whereP=(22xp* 5P?), and matriced) andV are the same 0‘(x,t)=afx lu(y,t)|2dy. (19

as in Egs(3) and(4). It is assumed that(x) andp[u,u* ]

for some fixed are vanishing fast enough as» +«. Let us . _ "

consider Eq.(3). For A2c R denote byM *(x,t,\) the 2  TN€ Vector functiony (x,t,A), MZZ(X't*)‘) turn out to ?e
X 2 matrix Jost solutions of Eq3), satisfying the boundary @nalytically continuable to sgnimA“>0, while M, , My
conditions are analytically continuable to sgnm\?<0. It then fol-

lows from Eq.(14a that the coefficiens;;(\) as a function

M* —E(x,\)=exp(A(\)o3X) (8)  of \ is analytically continuable to sgnim \?>0 with the

] N asymptotic al—»,
asx— * o, Since T=0, these boundary conditions guar-

antee that dé1~=1 for all x. The symmetry properties of 1
M= follow from Eq. (3), Sp=exp(—ifp)| 1+0 2| (20
M=*(X,t,\) = 0,M = (x,t,)) o, 9 _ oo : , .
wheref,= 60"+ 6*. LikewiseS,,(\) is analytically continu-
M*(X,t,\)=0sM*(X,t,—\) o3. (100 able to sgaIm A2<0. It follows from Egs.(12) and (13)
that

For each\? there can only be two linearly independent col-
umns of M= (x,t,\); therefore there is a matrig(t,\), \? SoAN)=S11(A*), Su(N)=—S(\*") (21)

e R, the scattering matrix such that
and

M~ (6t ) =M (X,t,N)S(t,\) (1D
S1i(M)=S1(=N),  SpN)=—=S(—\). (22
with the symmetry properties
Also, for \2e R the fact that d&&=1 implies the normaliza-
S*(t,\)=0,S(t,\) o5, (12 tion condition|S;;(\)|%+sgm?|S;,(\)|?=1.
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FIG. 1. Integration contouf’ for a>0 (reverse direction is
implied for @<0).

The analytic function Si;(t,\) may have zeros
N(D), ... A\n(t) in the region of its analyticity
sgrnw Im\2>0. The determinant equaticii4a then shows
that the columnsv; and M; are linearly dependent and
there exist complex numberng (t), . .. ,yn(t) such that

M3 (%t A (1) = (DM (X, t, A (1)) (23

for k=1, ... N. At the complex conjugate poinis; (t) we
have

MT (X EAF (D)= — Yk (DM (B (D) (29)

fork=1,... N.

Since S;exp(d)—1 as A— with sgre Im\?>>0 and
S11(N)=S41(—N\), standard methods of the Hilbert trans-
form theory[13] can be used in conjunction with the normal-
ization condition to expresS;;(t,\) for sgnx ImA2>0 in
terms of its zeros and the values|&,(t,\)| on the contour
I'={\;Im(\?) =0} (oriented as in Fig. 1

xp{ —i 6+

pIn(L—sgr(u?)|Spp(t, 1)) q
12— \2

N

sutn) =11

k=1

N2=N2(1) .
N2=NEA()

“J,

From Egs.(16) and(148 we haveS;4(t,0)=1, then, setting
A=0 in Eq. (25), one can findfy=af” |u(x,t)|>dx in
terms of the scattering data

)

where O0<arg(\) <w/2 if «>0, and — w/2<arg(\,)<<O if
a<0.

Dynamics of the scattering data turns out to be trivial
whenp=0

1

2mi

|

(29

1

2

In(1—sgr(A?)| Sp(\)|
A

2
)d)\,
(26

N
60:42 arg\y) —
k=1

Sia(t) =S 0)exp(2Q2(NM)t), (27)
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A () =N(0), (28)

k() = 7(0)exp(2Q (N )1). (29

B. The Jost functions and the potential
in the reflectionless case

Whenp=0, the Jost function® =(x,t,\) and the poten-
tial u(x,t) can be recovered for each fix¢édrom the scat-
tering data, namely, the reflection coefficie®f,(t,\) for
NeT, the eigenvalue$\ (1)} with sgrwlmr2>0, and the
proportionality constantgy,(t)}. An important particular
case is that of the reflectionlegsolitonic) potentialsu(x)
whenS;,(t,A)=0 as a function ok for some fixed. It then
follows from Eq.(25) that

N

Sut,n) =11

k=1

NEOPAD)
NICEVER (30

N (M=)

which extends to sgnim \?><0 as a meromorphic function.
One also sees tha,,(t,\)=1/S;4(t,\) and thatS,;(t,\)
=0. SinceS(t,\) is diagonal in this case, it can be factor-
ized in such a wayS (t,\)=S"(t,\)S(t,\) that the Jost
solution matricesV = is expressed through a common solu-
tion matrix A(x,t,\),

M= (X,t,N)=A(X,t,A)S"(t,\), (3D
where
N N *
Ay Ay
St=dia , 32
4L )
and
S = 0'18+(Tl. (33)

The columns ofA(x,t,\) necessarily satisfy the relations

AZ(X!tl)\k(t)):’}/k(t)Al(Xlt!)\k(t))v (343)

ALEAE (D)= =75 (DA(GEAE (D) (34b)
for all k=1, ... N. SinceA(\) is analytical in thex plane,

it follows from Egs. (17) and (31) that diagonal and off-
diagonal elements of the matr(\)E~1(\) are polynomi-
als in\ of degrees Bl and 2N— 1, respectively. In addition,
from Eqgs.(10) and(31) one sees that the diagonal elements
are even in\, while the off-diagonal ones are odd. This
means that

) AQ 0
AXELANE (X N)=
0 A9
N (p) (p)
+2 )\prl )\All A12
~ AP AP
p=1 21 22

(39
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Setting here\ =0, we readily get from Eqg16) and(31)—  and similar expressions f&S;,/5u*, §S;,/ Su*. The varia-
(33) the expressions for the functioné\ﬁ)(x,t) and tional derivatives in the right-hand sidehs) of Eqs.(42) and
AQ(x,1), (43) can be found from the integral equatiofis5). As a

result we obtain\ dependence iM~ is omitted

O-AQ= 2 *
Alr= H MO (36 5sll(x)=2i>\f_w{M2+2(x)M2‘1(x)5u(X)

The remaining unknown matrix coefficients™ (x,t) with
p=1,... N are determined uniquely from Eq§34). In-
deed, the first row of Eq$34) is a linear algebraic system of .
2N equations in & unknowns, the coefficien&{?) andA{P 5512()\):2i)\f IM£(X) M 5(X) 8U(X)
with p=1, ... N. Likewise, the second row of Eq&34) is —

the system for determiningA$) and A®) with p
=1,... N. By direct substitution one can check that Eq.
(35) is compatible with Eqs(3) and (31) if and only if

+M {H(X)M 5(x) du* (x)} dx, (44)

+ M (X)M (X,N) 8u* (x)} dx. (45)

IIl. ONE-SOLITON PULSE WITH A RANDOM INITIAL
2 A (x,1) PERTURBATION

T em— 3
a AN (x,t) 37 The reflectionless scattering data with the sindie=(1)

zero )\fsngﬂn of the function S;;(\) correspond to

This formula reconstructg(x,t) from the discrete scattering one-soliton solution. It can be found from Eq84)—(37)
data{\ (1)}, {y«(t)} in the case wherg;5(t,\)=0 and it
gives N-soliton solution of Eq(1). An explicit form of the ikg coshkoz—io)
solution can be easily written in terms of the determinants of us(X,
corresponding matrices. Equatiof®l) and (35) determine
the N-soliton Jost functions. This treatment of the soliton
solutions follows the ideas of Refsl4-1§.

In conclusion of this section we note that elements 1
Aij(x,t,\) of the matrixA and the potentiali(x,t) satisfy Z=Xg—X+vt, =iy tux+ —(kg—vz)t, (47)
the important relations 2

u(x,t)=

=0 T el 46
N4l cosH’-(koz+i<p)e (48

where we have introduced the notations

2IN(UAZ A+ U* ApiA L) = 0y (ArA L), (39 4n B—4¢&
k0=;, v=""—, (48
2N (UAZ,+U* ATy = dy(ArAg)), (39
1
which we will use below. These relations can be easily veri- p=arghy) = zarctar 7l §). (49

fied by taking the derivative and usirgA = UA.

_ _ o Parameterx, and ¢, determine initial position and initial
C. Changing the scattering data under the variation phase of the soliton. The parametgis, up to the multiplier
of the potential 4/a, the soliton inverse widtlk, (note thaty/a>0), andé

The variations of the reflectiodS;, and transmission IS, Up to constant multiplier and shift, the soliton veloaity
8Sy; coefficients under the small variations of the potentialsAn explicit expression fous in terms of the soliton ampli-
Su(x,t), su*(x,t) for some fixedt are tude and phase is

iko exp{i y—3iarctaftanh(kqoz)tanp]}

5S (x)zr E“5u(x)+ Ell5u*(x) dx, (40) Ug=r—r (50
ll —w| OU Su* ’ * N Jeost(kyz) — sirfe '

= {8y, 5S1, Some of the properties of the MNLS soliton differ from
5812()\)=f 5 5u( )+ —5u (x);dx. (41) those of the NLS soliton. First, the MNLS soliton has non-
—=| o zero phase difference at its limits

S _ ¢ Second, the number of particles or the optical energy of the
wu_ aM 1Mz~ MMz, 42 oliton is

S é * ™
WH:E(MIZMQZ—MIZMZ‘Z), (43 Es= f_ us(x,t)[? dx=4ap, 0<gsgrr<z, (52
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and, therefore, has an upper limitrd «|. These properties ing averaging ovee(x) with the aid of Eq.(53), and intro-
of the MNLSE soliton resemble those of the NLSE solitonducing Fourier transform ofD(x) in the form D(x)
with condensaténonvanishing at the infinifyboundary con- = 1= B (q)exp(-igx) dg, we get
ditions (dark NLSE soliton.
The one-soliton Jost functions and the corresponding scat- 1 (= _
tering data are given in the Appendix. (|6%]%)= —Zf D(a)|1(q)|*da, (56)
Suppose now that the soliton input is randomly perturbed 4n°) ==
so that a pulsai(x)=ug(x)[1+e&(x)] is injected into the _r= a ;
fiber. We assume that the nois¢x) is a zero mean, real g:ﬁ;egilv(qu fo{gﬁcee );?/(erggggﬁzl?p\m)dx' Integrating - by
Gaussian process with correlation function

2N_ 2.2 2\ 2
(e()e (X)) =D(x=X"), (53 (| 6x|%) = m?a*(1+ Uu?)k5G (&, ), (57

. . . where u= n/ ¢ and we have introduced the function
where(- - -) means statistical averaging. It is assumed that the w=nl€

intensity of the noise is smalD(x)<<1. The presence of o sin?(arctari 1 )y/2)

e(x) will modify the soliton eigenparametar; in a random G(§,77)=kof y2D(koy) . ,
way, and, aside from this, will result in a continuunadia- —o sint?(my/2)

tive) contribution Su, accompanying the modified soliton (58)

into the fiber. As was shown in R€fL7], the only asymptotic \yhich depends on the specific form of the noise correlation

(t—c0) effect of the radiation on the soliton solutidwith  fnction. Note that the integral in E¢58) is always conver-
the modified eigenparamejesf the MNLSE is, as usual, a gent, sincel | =|arctang)/2| < m/2. Similarly, for { 5x5x)
shift (random in our cagen phasey, and positionx, of the  Jhe can find
soliton.

The corresponding variation of the parameiecan be (6x8xy=m2a?(Un?—1-2ilw)k3G(&,7). (59

written as o ) ) ) )
Splitting real and imaginary parts, we obtain variances of the

(normalized soliton velocity ¢ and inverse widthy,
(88%)=(LUp>)(on%), (6n°)=ma’ksG(&m), (60)

and the cross correlation

9S14(\2
5%: 11( )
IN?

1
) 6S11(N 1), (54
A=),

where S, given by Eq.(44), is the variation of the trans-
mission cqefficienisll()\) induced by the given reaIi;ation (88 87)=(57") . (62)
of éu. Using the perturbative approach, we substitute the

unperturbed soliton eigenparameter and one-soliton Jost The functionG(¢, ) can be explicitly calculated in two lim-

functions into the rhs of E¢54). Thus, we have iting cases—zero and infinite noise correlation time.
If the noise isé correlated in timgzero correlation timg
2iNg (= so that
5%: . f S(X)(USA21A22+ U: A11A12) dX, (55)
xX— X —

D(x)=Dgd(x), (62)

whereA;4, Az, Ayq, andA,, are defined in EqSA4)—(A7)  the functionG takes the form

and evaluated ak=\;. One can see thadx is Gaussian

random value with{ 8x)=0. Therefore, in this approxima- 87°Dokou?

tion the averaged soliton velocityand the inverse widtk, G(&m= 14 02 Fle), (63
remain unchanged. Using the relati(88), one can simplify H

Eq. (55). Then, writing down expression fd6x|?, perform-  where

F (o) 2singcos ¢(cos¢p—2) — cose(5sing— 12¢) —8sing+ 3¢
@)=

24sir¢(cos¢p—1) (64

and we have introduced the notati@®=2¢. The function where the random amplitude, is a zero mean, normally

F(¢) increases monotonically with andF(0)=1/35. distributed value with variance?, and the random phasg

Consider now the case when the random funcégr) s uniformly distributed between 0 andw2The correlation

has the form function of such a process B(x) = (?/2)cosfX) or, in the
g(X)=£0c0g goX+ V), (65  frequency domain
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FIG. 2. The dependence of the variancezobn the parameter for di;f;erint vzlgsse(\)rfl(jence of the variancezosn the parametex
= nl & for different values of. '

which, as it follows from Eq.(26), can be explicitly ex-

0'2 . . 2 .
27 g+ n _ pressed in terms of the continuum“e R) and discrete scat-
D(q)=—[8(a—0o)+8(q+0o)] (66) tering data
In this case the noise has an infinite correlation time and is [ o 2. A
concentrated at the frequenqgy. For G we have E= J_wMad()\ ) AN+ —o, (71
a?b?sintt(arctari 1) b/2) where
Gl = R (ab2) (67
a
o In(@—sgr(n?)|S;(M)]?)
Nrag(N9) = — - (72)

whereb=q/ko. 27| a|\?

To take into account a finite correlation time we consider

an important particular case, when the noise spectrum hasla Eq. (71) the soliton contribution is separated from that of

Lorenzian shape the radiative componentf (d\?) of the wave field described
by the continuous-spectrum scattering data. The dispersion
relation corresponding linearized version of Ed) is p=

(68)  —qg?2. If we consider the radiative component as a super-
position of free waves governed by the linear Sclimger

. . . . . _equation, the spectral parametet, as it follows from Eq.

whereDy is the integral intensity of the noise. ¥space this (27), is connected with the frequency of the emitted linear

Do
T Q2+ (L)%’

D(q)=

corresponds to the correlation functio®(x)=Dyexp wavesq by
(—[xl/7;), where 7. is a correlation time. In this case, the
function G(¢, ) takes the form 4 B

qzz<)\2— Z) (73)

G(&na)= Yo (69 e quantityNV;,4(\?) can be regarded as spectral density of

the optical energy carried by the radiation.

where the parameter=1/(ko7.) is the ratio of the soliton The reflec'qon coefficient is no longer zero and, for a
width to the correlation time. In Fig. 2 the dependence ofdiven realization of(x), we have|S;(\)|=[5S;(A)[<1.
variance of the inverse width on the parametes is shown 't then follows from Eq.(_72) that the averaged spectral den-
for different values ofa at 7=1, Dy=0.025, a=1. The de-  SIY Nrag(\) =(Nad(N)) is
pendence of the variance af on a for different . at the 5
samen, Dg, « is presented in Fig. 3. One can see that the Nrag(N)= ([0S M) >_ (74)
influence of the noiséunder the fixed integral intensityn " 2| aN?|
the soliton parameters becomes largeaatl, that is, when
the soliton width is comparable with the noise correlationinserting the unperturbed one-soliton Jost functions into Eq.
time. (45), one obtains

Consider now the radiative contribution E@) with p
=0 conserves the “optical energy,”

Doafoc y2sint?(arctari ) y/2)
T )= (y?+a?)sintt(mwy/2)

2i\ *
SN | sooruazon

(N2 ) (N2 o) S o

E:f _Jupfrdx, (70 u* AZ(\) Jdx. 75
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FIG. 4. The spectral distribution of radiation for different values
of the parametea.

Writing down expression fofdS;,(\)|?, performing averag-
ing overe(x), calculating integrals with the aid of E(B9),
and substituting the result into E(Z/4) one can find for the
spectral distribution of radiation

o) ik RN, (76)
n = 1
R Q2N (- 92+ 2
where we have introduced the function
ROO= [ Iy +e00TB ey +koo0)
Ne™ ¥ — |\ |%e®)?
( INq]%€®Y) dy, 7

costt(my/2)

with the notationc(\)=v/ko+ (\2— B/4)/7. For the noise
correlator of the form Eq(68) we have

Doa (= (y+c)’(\%e™ #—|\|%e?)?
mKoJ —= [a%+ (y+c)?]cosH(mwy/2)

R(N) =
(79

The spectral distribution of radiation in this case is shown in

Fig. 4 for different values of the parametar The distribu-

tion has one peak and exponentially decaying tails. The

PHYSICAL REVIEW E 69, 016611 (2004

In this case the spectral density decays algebraically
(~1/\*% with increasing of|\?|. This slow decay is con-
nected with the fact that the spectrum of thecorrelated
noise contains Fourier harmonics of all frequencies with
equal amplitudes. Having determined the reflection coeffi-
cientS;5(\) in a closed form, we can evaluate the averaged
position Ax, and phaseA ¢, shifts of the soliton due to
interaction with the radiation. As was shown in REL7],
these shiftgin the deterministic cageare expressed through
the coefficientS;, in the following way(the + signs corre-
spond tox,t— *x):

Axosxg—x():—%n(m—i;iz;:), (81)
Awozw3—¢5=%arg(§ii—m>, (62
where
5+()\:y)=exp{ ziwijoy |n(1+(|§;z£ﬁ;)2|)2)dﬁt2
R
5()\;y):exp{%fywln(lJr(I;z_(;;)zl)z)duz]’ 4

and \o=x/t— B/a. Taking into accoun{|S;,?)<1, inte-
grals in Egs(83) and(84) can be calculated analytically for
the case of a-correlated noise, but appearing formulas for
the averaged shift81) and(82) turn out to be too cumber-
some and are omitted here.

IV. PERTURBATION THEORY

In this section we derive evolution equations for the scat-

maximum of the distribution shifts to higher frequenciestering data of the MNLSE in the presence of a perturbation.

with decreasing the ratio of the soliton widthkd/to the
correlation timer, .

If e(x) is a white noise in time, with the aid of E¢62)
one can find an explicit expression f@iS;,(\)|?) and the
spectral density is

16D [ (N E7+ 9P F1— N2\ 4| °F ]

Mred M) = T\ L (N2= &%+ 77] ’
(79
where
Fi(p)= 22520 $COS(h) | 042¢)
1\¢ sin3(d>) AN 6 .
(80)

These equations replace the well-known corresponding equa-
tions[2,16,18-2] of the NLSE.

Let us consider dynamics of the scattering data when
#0. From Eq.(7) and the fact thaM = satisfies Eq(3) one
can get

(9= U)(d,—V)M*+PM*=0. (85)

Introducing a new unknownl*(x,t,\) defined through
the relation ¢,—V)M*=M=J*, one finds thatJ*
satisfies 4,J°=—M*"!PM~. Integrating and taking
into account the boundary conditiori8) and the fact that
V—Q(\)o; as |x|—w, one can obtaind*=—Q(\)o;
+ [ *M=~PM=dx’ and, hence, the following equations of
motion forM*:
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+oo

(at—V)Mi=Mi< —Q()\)0'3+f Mi‘lPMidx’).
(86)

Equation (86) makes sense only for Inf=0. For\?eR,

PHYSICAL REVIEW E 69, 016611 (2004

d\f 26 oc

—=————| (pMLM,,+p*M M )dX .
dt 2SO ) PMo M5+ P MM

(93

The integrand here is evaluatedxdt t, and\ =\ (t). Dif-

the columnsM; andM; are the boundary values of func- ferentiating Eq(23) with respect td and using the evolution
tions analytic for sgar Im \*>0, and we also need equations equation forM taken in the limit\ —\(t) yields the equa-

for them that hold for sgm Im A?>0. Introducing the matrix

M(x,t,\)=(M; ,M3), and as before defining the new un-

known J(x,t,\)=(J;,J2) through the relation {—V)M
=MJ, and then integrating, we obtain

—Q(\ X
J1=< o( ))—f_wlvl—lpml‘dx', (87)
0 oc
_ -1 + ’
JZ—(Q(M +L M~ PM;dx'. (89

As before, these expressions are useddin-)M=MJ to
yield the equation of motion foM, valid for sgrw Im A>>0
except at\,, whereM fails to be invertible. Making the

natural assumption that the zenos-\ are simple, one can

tion for vy, (t)

d
{%—mmm}ml(x,t,x)

== 7kf Hi (X, x",t)PM ¢ (X’,t,N)dX’

+ - dhg
:[ﬁhMZ (thi)\)_ Yk(?AMl (X,t,)\)]F (94)

with N =\ (t). Equations(91), (93), and (94) describe the
evolution of the scattering data, but are coupled to the equa-
tions forM andM =. The coupling disappears f&*=0, as a
result we have Eqg27)—(29).

If p[u,u*] is a small perturbation, one can substitute the

show[13,16], however, that each singularity is removable unperturbeds, u*, and Jost functiond! = into the right-hand

since deM=S;;. Hence, the evolution equation favl
makes sense as— \,(t), and one can introduce

He (X", )= lim M(x,t,\)M(x',t,A) "L,
A= Ng(1)

(89

where the limit can be calculated by usingital rule.

The equation of motion foM* and M determine the
evolution of the scattering data. Differentiating E#jl) with
respect tat and using Eq(86) yields for real\?,

HS(t,N) = Q(N)[o3,S(t,N)]

=— f M (x",t,N) " 2PM~(x",t,\)dx’.

(90

Note that sinceP is off diagonal, the equation fdB;;(\,t)
only involves quantities analytic for segam \?>0.

The equation of motion for the reflection coefficient

Six(\,t) is contained in that fof,

atslz—zn(x)slzz—zxﬁ (PMaM oo+ p* MM 1) dX'.
(91

The expression defining the zeroi(t) of Sj(t,\) is
S;1(t,A(1))=0. Differentiating with respect tb gives

2

N2
3:S1a(t, N (1)) + — 9\2S11(t, A (1)) =0.

dt 92

Using the equation of motion fd8, one therefore finds

side of Egs(91), (93), and(94). This yields evolution equa-
tions for the scattering data in the lowest approximation of
perturbation theory. This procedure can be iterated to yield
higher orders of perturbation theory. The appearing hierarchy
of Egs.(91), (93), and(94) are applied to arbitrary number of
solitons and, in particular, describe nontrivial many-soliton
effects in the presence of perturbations. Here we restrict our-
selves to the case of one-soliton pulse.

Evolution equations for the parametetsand y; can be
derived from the general equatiorf83) and (94) for the
discrete-spectrum scattering data with the use of the one-
soliton Jost functions given in the Appendix. After substitut-
ing these Jost functions into Eq®3) and (94) we obtain

d%_ 2)\1
dt (2= 2*)

fﬁ (PA2 AT P*AA) dX - (95
and
dy,
{W_ZQ(Al)Vl}All
=- ZVlklfiw(lelAél_ p*HA ) dX’

- _ _ di
=(S1) [0\ (StAw) ~ 1 (SiAw ;-

(96)

!

where[writing Aj; for Ajj(x’,t,\)]

i
Hq= 27 W (A1AR—ALA), (97)
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i constant which is determined by the deterministic initial con-
lezﬂﬂx(Aleil—AuAiz) (98 ditions. Note that ife is a function oft only (space irregu-
larities) we have alsadz/dt=0. In the general case, as it
follows from Eg.(104), the parameter; will be a random
B AT function oft with a complicated strongly non-Gaussian sta-
Sll:m’ (99 ftistics. We will assume therefore that the intensity of the
1 1 noise is small enough, so thgtcan be regarded as a con-
: ; stant int and will concern of the radiative effects.
\;v:g r:éﬁt’aféé'g - )\?(rl()in/zlirild(g I’n:gdlgiiiigg e(\'/Aa7IE|- According to Eq(72), the spectral density of the radiation
ated at the soliton solution Eq46) with time dependent ©€N€rdy may be expanded as follows:
parameters. Similarly, for the reflection coefficiehb(\,t)
we find from Eq.(92),

2 |512()\)|2 4
NiagM)=———+0(Sp(M)[%), (109
dle()\)+.k()\)S M) 2\ 27| aN?
| =
dt P (N x) (e =02
" provided that|S;,(\)|?<1. The emission intensity is char-
xf (PAS(N)+p* A2, (\))dX, acterized by its power, i.e., the energy emission rate. The
- emission power spectral density(\)=dN,,q/dt is
(100
Whﬂelze)zwe have introduced the notatid\) = (8/a?)(\? o 1 e{ ) ds_l_2] 05
- . W(N)= R .
77|a7\2| 12 dt

V. INFLUENCE OF MULTIPLICATIVE NOISE

ON THE SOLITON Inserting the perturbation EQq(101) into the general

In this section we consider the MNLSE equation with ar1perturbatio_n_—induced evolution equati@t00) for the reflec-
external multiplicative noise. We take a perturbation term infion  coefficient S;5(\,t), one can obtain fors(\,t)

the form =S\, t)exdik(n)t]
p=e(x,t)u, (101 .
2 * A2
whereg(x,t) is a zero mean real Gaussian field with cova- ds(\) 2\ J7w8(x,t)[USA22()\)+US ArN)Jdx Kot
i = e .
riance T 2 D)

(107)
(e(x,1)e(x',t"))=D(x—x")B(t—t"). (102

This form of perturbation corresponds to a random additionalet us integrate Eq(107), the rhs of which should be mul-
part of the refractive index. tiplied by expgt) with an infinitely smallv>0. As usual, this

Substituting the perturbation term of E(LOD into Eq. trick implies adiabatically turning on a perturbation that was
(95 we find after some calculations the following evolution absent at=—<. Thus, we get

equations:
%—f:o, (103 - jimffws(X,T)F(X,T,)\)eik()‘)7+wd7'dx
0= i(N2= ) (* —\?) ’
dy _ = g(x,t)sinh(2y) dy (108
—-—=8 2 , (10
gt ~ 07 (P)f—w[cosf(Zy)Jrcos{Zcp)]z (109
where

wherex=xy(t) +v (t)t—y/ky. As is seen from E¢103), the

noise term in the first approximation does not affect the

quantity ¢. This can be easily understood from the expres- F(X,7,0) = dy (Ago( X, 7, M) Ags X, 7,\)), (109
sion for the integral of motion Eq71). The perturbation of

the form(102) still exactly conserves the optical energy Eq.

(70), which is, neglecting the radiative degrees of freedomand we have used the relati@@). Multiplying Eq. (107) by
proportional tog. Thus, ¢(t) = ¢(0)=¢q is a deterministic the complex-conjugate expressitk08) and averaging yield
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J f f B(t— 7)D(x—x")F(x,t)F*(x’,7)e* M=+ r7d rdxdx

dt

|

Introducing Fourier transforms d8(t) and D(x) through

B(t)=/"..B(p)exp(-ipt) dp, D) =/7.D(q)exp
(—igx)dg, making the change of variables=kgy(vt—x),
y'=ko(vT—Xx"), calculating integrals ovey, y', we can
perform then the integration ovér 7 and obtain

1

>:m2—§>2+ 7T

S

ds>
S —_—
[(\?

ds(\)
dt

<S*(x)

p)D(a)g?(\,q) dp dg
iv+K(N)—p—qu '

(111
where  K(\)=k(A\)+o(\)v+(ki+0v2)/2, w(\)=(4\?
—B)a and

ZaZ)\Z[)\Ze—tph()\)_|)\1|26<ph()\)]2
I(\,Q)= (112

4|\ 4|?cosi[ wh(\)/2]
with h(\)=(q— w(\) —v)/kq. Then, making use of the re-

lation lim,_o(y—iv) 1=P(1l)+imw(y), whereP is the
symbol of the principal value, one can find

wf:E(Km—qv)b(q)qu(x) dq

[(N2=§)%+n*)?
(113

Substituting Eq.(113 into Eq. (106 gives the averaged
power spectral densityw(\)) emitted by the soliton.
First we consider the case whers a random function of

time only, so that for the space correlator we h&/®)

=(p). Then the averaged emission power spectral density

is

K2(MD(K(\)/v) (N K(N)/v)
aN’[(N= €)%+ )%

(W(n))= (114

and can be explicitly written for the arbitrary form of the

frequency correlatoD(q). In particular, in the case of a
noise spectrum of Lorenzian shape we substitute (68
into Eq.(114). The spectral composition of emitted power is
shown in Fig. 5 for different values off/¢ (with «=0.2,
B=1., Dy=0.1, a=0.2, £=1.) The emitted power decays
exponentially with increasing of the frequency. For “light”
soliton (7/£<1) the distribution has two maxima and left of
them (for a>0) disappears with increasing/é.

— &%+ 7 o

Second, we consider the case when the noise is concen-
trated at the frequencyy, so that the frequency correlator
has the form Eq(66). Then, the spectral density of the emit-
ted power is

o%d3
4aN[(N?= )%+
+B(K+dov)l (N, —do)} (119

and can be written in a closed form for the arbitrary space

correlatorES(p). In particular, ife depends only orx, Eq.
(115 becomes

(W(N))= 772]2{~B(K_QOU)|()\,QO)

a2q3 5(K(N) —qou)l (N, o)
4aN [(\2= )%+ 212

(W(\))= (116

It follows from Eq.(116) that the emission is concentrated at
two points of the spectrum

=[B+a(=\2qev —kj)1/4 (117)
and takes place provided that the soliton velocity satisfies the
conditionv>k§/2qo. The total quanta number emission rate
is

WEF (W(N)) dNZ=W, +W_, (118

where

- a?dgl (N ,qp)
160N2[(N2— €)%+ 212\ 2qo0 — K3

(119

x10

FIG. 5. Spectral density of radiation emitted by the soliton for
different values ofyp/¢.
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Since the total optical energi=E, 4+ Eg defined in Eq. perturbed MNLSE. The case when the perturbation has a
(71) is conserved, the rate of soliton energy loss due to raform of multiplicative noise has been analyzed. This corre-

diation can be evaluated from the balance equation sponds to additional random part of the refractive index. The
dE, averaged power spectral density emitted by the soliton was
T —W. (120 found for different forms of the noise correlator.
It then follows from Eq.(71) that the ration/¢ decreases APPENDIX: ONE-SOLITON JOST FUNCTIONS
with t. The scattering data corresponding to the one-soliton solu-
tion (46) are
VI. CONCLUSION N (E+i 77)()\2—§+i 7) A1
In conclusion we describe how the MNLSE soliton Eq. 1a(M) = (E—im(N2—é—ip)
(46) with >0 can be reducedL0] to a bright NLSE soliton
at «—0. To carry out this limit one should take into account Si(\,t)=0 (A\Zisreal, (A2)
that the Lax pair for the NLSE should be producedvat0 2. _ .
from the Lax pain3) and(4) for the MNLSE. This condition Ni=¢&—im, y1(0)=exp(KoXo+io) (A3)

implies that the spectral parametedepends o and gives o4 the corresponding Jost functions are given by (B
the following prescription: 2>(§,|NLS—ﬁ/4)/a—>—)\NLS at  \with

N
o At =M OAD N D), (Ad)
E=BlA—a&pl2, n=anyl2, (121

A(x,t,\)=e AONARD (A5)
where )\ﬁANLS=§—i 7 and Ay s=&oting. These formulas
transform ttl/g MNLSE soliton Eq46) to the NLSE soliton Agi(x,t,N)=e INALD, (AB)
us=(2i po/\B)sech@)exply), where z=xy—27q(X o AOOX N 2AL) |y |2
“260), U= o+ 260—2(E5— L. padxth)me OGRS, AT

In this paper we have studied the influence of a randonwhere

perturbation on the MNLSE soliton. First, we have shown 2 expli )
that if the initial one-soliton pulse of the MNLSE has a small AL (x,t)=— 2n R — (A8)
additional random component, the average asymptotic soli- IN1| costikoz+ie)
ton width and velocity remain unchanged. Variances of the costikez+i¢)
soliton inverse width and velocity, and the average shifts of A(zlz)(x,t)z é_, (A9)
the soliton position and phase have been determined analyti- coshtkoz—i¢)
cally. The spectral distribution of radiation accompanying the A(111)=A(zlz)* ' A(211)= —A(llz)* _ (A10)

soliton has also been obtained. Second, equations for the
soliton eigenparameters and for the reflection coefficient deln Egs. (A8) and (A9), z, #, kg, and ¢ are the same as in
scribing nonsoliton(radiative effects were derived for the Eqgs.(47) and(48).
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