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Linear dispersive dielectrics as limits of Drude-Lorentz systems
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~Received 15 September 2003; published 29 January 2004!

We investigate the limiting case of the Drude-Lorentz model for the complex electric permeability«(v)
511x̂(v) as the damping tends to zero. We find that«~v! becomes real except for a number of discrete
frequencies. The Kramers-Kronig relations connecting the real and imaginary parts ofx̂(v) remain valid.
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I. BACKGROUND

In general linear dielectrics the polarizationP(x,t) and
electric fieldE(x,t) are related according to

P~x,t !5E dsx~x,t2s!E~x,s!, ~1.1!

wherex(x,t) is the electric susceptibility. Since there is n
polarization before the electric field is applied~causality!
x(x,t) vanishes fort,0 leading to the usual electric perm
ability ~permittivity, dielectric function!

«~x,v!511E
0

`

dt exp@ ivt#x~x,t !511x̂~x,v!.

~1.2!

Thus«~x,v!, which is in general complex, can be continu
analytically into the upper complex half-plane and the r
and imaginary parts ofx̂~x,v! are connected by a Kramers
Kronig relation~P indicates a principle value!

Rex̂~x,v!5
1

p
PE

2`

1`

dv8
Im x̂~x,v8!

v82v
,

Im x̂~x,v!52
1

p
PE

2`

1`

dv8
Rex̂~x,v8!

v82v
. ~1.3!

But it sometimes happens that in certain frequency inte
absorption is quite small, in which case it makes sense
neglect absorption, while retaining dispersive behavior. T
apparently violates the causality requirement, but, as
show below, this need not be the case.

An important example where absorption can be neglec
is that of small silver spheres. The latter more or less beh
as an absorptionless Drude metal~for Drude metals, see Re
@1#! in part of the optical range, where they still show app
ciable dispersion. Since in this regime

«~v!512
V2

v2
, V.0, ~1.4!
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can be small or even negative, there can be a large con
relative to a background like vacuum. A photonic crys
made up from such spheres can possess~photonic! band
gaps. This was verified numerically for the three-dimensio
~3D! case in Refs.@2# and @3# for the 2D situation. But if
absorption is present, the situation changes. In earlier w
@4# we showed rigorously that band gaps do not occur
absorptive frequency regions. Then the band spectrum is
longer real but consists of islands in the lower complex h
plane. This was confirmed numerically for the 2D absorpt
Drude case@5#, where we used

«~v!512
V2

v~v1 ig!
, V,g.0. ~1.5!

In this note we address the question as to what happens
absorptive Drude-Lorentz dielectrics, characterized by

«~v!511x̂~v!512(
j

V j
2

v22v j
21 ig jv

,

v j>0,g j ,V j.0 ~1.6!

in the limiting caseg↓0. In the literature derivations of Eq
~1.6!, at various levels of sophistication, can be found@6,7#.
The classical model for the simplest situation exists of
equation of motion

] t
2x~ t !1g] tx~ t !1v0

2x~ t !5
e

m
E~ t !, g.0 ~1.7!

for a classical charged particle~massm, chargee), subject to
a driving electric fieldE(t) and experiencing friction through
the termg] tx(t) and a harmonic restoring termv0

2x(t). Tak-
ing the Fourier transform of the corresponding polarizat
then givesx̂(v) as in Eq.~1.6! with a singlev j5v0. In Ref.
@7#, the standard derivation, based on a classical mode
given, together with an extension to a nonlinear situation

We are in particular interested in energy conservation,
Kramers-Kronig relations and quantization in the limitin
case above. Here we note in passing that in recent years
general, equivalent, quantization techniques have been
veloped for causal linear absorptive dielectrics@8–10#.
©2004 The American Physical Society10-1
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II. MAXWELL’S EQUATIONS

In the present case the set of macroscopic, classical, M
well’s equations for an isotropic, linear, absorptive dielect
is given by~we set«0 , m0, andc equal to 1 andH5B!

] tD~x,t !5]x3B~x,t !, ] tB~x,t !52]x3E~x,t !,

]x•D~x,t !50, ]x•B~x,t !50,

D~x,t !5E~x,t !1P~x,t !,

P~x,t !5E
t0

t

dsx~x,t2s!E~x,s!, ~2.1!

with t0 some initial time which can be taken ast052`. We
assume thatx(x,t)50 for t,0 ~causality! and alsox(x,0)
50 ~no instantaneous current surges at the initial timet0). In
addition we require thatx(x,t) and ] tx(x,t)5x8(x,t) are
finite. Denoting Laplace transforms with a hat,

f̂ ~z!5E
0

`

dt exp@ izt# f ~ t !, Im z>0, ~2.2!

so

x̂~x,z!5E
0

`

dt exp@ izt#x~x,t !, ~2.3!

we have for the complex electric permeability

«~x,v!511x̂~x,v1 i0! ~2.4!

and we note that, sincex(x,0)50,

x̂8~x,z!5 izx̂~x,z!. ~2.5!

We rewrite the first of Eqs.~2.1! as

] tE~x,t !5]x3B~x,t !2J~x,t !,

J~x,t !5E
t0

t

dsx8~x,t2s!E~x,s!. ~2.6!

The electromagnetic energy

Eem~ t !5
1

2E dx$E~x,t !21B~x,t !2% ~2.7!

satisfies

] tEem~ t !52E dx J~x,t !•E~x,t !

52E dxE
t0

t

dsx8~x,t2s!E~x,s!•E~x,t !.

~2.8!

Noting thatx8(x,t)50 for t,0, we obtain
01661
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Eem~ t !2Eem~ t0!

52E dxE
t0

t

dsE
t0

s

dux8~x,s2u!E~x,u!•E~x,s!

52E dxE
t0

t

dsE
t0

t

dux8~x,s2u!E~x,u!•E~x,s!.

~2.9!

Making the Fourier decomposition

x8~x,t !5E dv exp@2 ivt#r~x,v!

5E dv cos~vt !r~x,v!, t>0, ~2.10!

where the integral is overR andr(x,v) can be assumed to
be even inv, we then have

Eem~ t !2Eem~ t0!52E dxE
t0

t

dsE
t0

t

duE dvr~x,v!

3exp@ iv~s2u!#E~x,s!•E~x,u!

52E dxE dvr~x,v!

3U E
t0

t

dsexp@ ivs#E~x,s!U2

, ~2.11!

indicating a monotonous decay forr(x,v)>0, which is the
standard dissipativity requirement. We can express~see Ref.
@9#! x̂(x,z) in terms ofr~x,v! through

x̂~x,z!5
1

zE dv
r~x,v!

v2z
5E dv

r~x,v!

v22z2
. ~2.12!

Then

Im «~x,v!5
1

2i
$x̂~x,v1 i0!2x̂~x,v2 i0!%5

pr~x,v!

v
~2.13!

and

x8~x,0!5E dvr~x,v!, ~2.14!

which we assumed to be finite. Thus we arrive at the us
situation that for absorptive systems Im«~x,v!.0 for v.0
but note that Im«~x,v!,0 for v,0. Let now t052` and
t51`. Then, withẼ the Fourier transform ofE,

DEem5Eem~`!2Eem~2`!

52E dxE dvr~x,v!uẼ~x,v!u2. ~2.15!
0-2
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We see that this quantity can vanish ifr~x,v!50 on some
interval D and E(x,t) is such that it does not have Fouri
components in somev-interval D.

III. MATHEMATICAL PROPERTIES

We note thatx̂(x,z) as given by Eq.~2.3! is analytic in
the upper half plane, which, of course, is a direct con
quence of the causality condition

x~x,t !50, t,0. ~3.1!

Introducing the measurem(x,dv) according to

m~x,dv!5r~x,v!dv, ~3.2!

we have

f ~x,z![zx̂~x,z!52 i x̂8~x,z!5E m~x,dv!
1

v2z
,

~3.3!

which also has this analyticity property and moreover

Im zx̂~x,z!>0, Imz.0. ~3.4!

Also m(x,dv)5m(x,2dv)>0 and

E
R
m~x,dv!5x8~x,0!, finite. ~3.5!

Moreover, withy.0 and usingx(x,0)50, we have

supy.0u f ~x,iy !u5supy.0yu iy x̂~x,iy !u

5supy.0yUyE
0

`

dt exp@2yt#x~x,t !U
5supy.0yU E

0

`

dt$] texp@2yt#%x~x,t !U
5supy.0yU E

0

`

dt exp@2yt#x8~x,t !U
5supy.0U E

0

`

du exp@2u#x8S x,
u

yDU,`,

~3.6!

where sup indicates the supremum or least upper bound
function. We can ask whether or not Eq.~3.3! is the most
general form of such a functionf (x,z). In fact it is not. The
general form is a so-called Herglotz function~a useful sum-
mary of the properties of Herglotz functions can be found
Ref. @11#!. The actual theorem we have in mind states
following @11#.

Theorem: The functionf (z) with z in the open upper hal
planeC

ˆ
has the representation

f ~z!5E
R
s~dl!

1

l2z
01661
-
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for s a non-negative finite measure if and only iff is analytic
on C

ˆ
, Im f >0 and supy.0yu f ( iy)u,`.

We see that our system falls into this class~in mathemati-
cal termsm is an absolutely continuous measure! but more
general measures are allowed. Thusm can also have poin
measure and singular continuous contributions~for these no-
tions see Ref.@12#, p. 22!. We disregard the last. Point mea
suresmp(x,dl) can be represented in terms ofd functions

mp~x,dl!5(
j 50

`

mj~x!d~l2l j !dl

5m0~x!d~l!dl1(
j 51

`

mj~x!d~l2l j !dl,

~3.7!

where we have setl050 @som0(x)50 if this value does not
occur#. The corresponding contribution tox8(x,t) is then

xp8~x,t !5E
R
mp~x,dl!exp@2 ilt#

5m0~x!1(
j 51

`

mj~x!exp@2 il j t#. ~3.8!

Sincexp8(x,t) must be real, we have

xp8~x,t !5m0~x!1(
j 51

`

mj~x!cosl j t, ~3.9!

and again we can assumemp(x,2dl)5mp(x,dl), so we
can write

mp~x,dl!5m0~x!d~l!dl1
1

2 (
j 51

`

mj~x!

3$d~l2l j !1d~l1l j !%dl

5m0~x!d~l!dl1(
j 51

`

mj~x!ul j ud~l22l j
2!dl.

~3.10!

From this we see that we can assumel j.0 for j .0 as we
shall do in the following. We note further that ifm0 vanishes

xp~x,t !5(
j 51

`

mj~x!
sinl j t

l j
, m050. ~3.11!

Let us assume that we only have point measures and
m0(x)50. Then Eq.~2.15! becomes

DEem5Eem~`!2Eem~2`!

52E dxE m~x,dl!uẼ~x,l!u2

522E dx(
j 51

`

mj uẼ~x,l j !u2, m050, ~3.12!
0-3
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and we see thatDEem vanishes if we can produce a fie
E(x,t) such that its Fourier components vanish in the poi
l j for x inside the material. Instead of Eq.~2.13! we have

Im «~x,l!5
pl

ulu (
j 51

`

mj~x!d~l22l j
2!, m050,

~3.13!

which vanishes outside the pointsl j . We come back to the
casem0Þ0 in the discussion section.

In practical cases themj (x)’s are usually constant ove
specific space regions. For instance, for a photonic cry
with a vacuum background,«~x,l!51 andmj (x)50 for x in
the background, whereasmj (x)5m constant over the mate
rial outside the background.

IV. THE DRUDE-LORENTZ MODEL

A well-known model for the electric susceptibility is th
Drude-Lorentz model. Disregarding thex dependence for the
moment, we now have

x̂~v!52(
j

V j
2

v22v j
21 ig jv

, g j ,V j.0, ~4.1!

leading to

r~v!5
v2

p (
j

g jV j
2

~v22v j
2!21g j

2v2
. ~4.2!

Here theg j ’s determine the degree of absorption. The Dru
model is the special case where there is only a singlev j ,
which equals zero. Thus@see also Eq.~1.2!#

x̂Drude~v!52
V2

v~v1 ig!
,

rDrude~v!5
1

p

gV2

v21g2
. ~4.3!

Next we suppose that in Eq.~4.1!,

v j.
g j

2
.0. ~4.4!

Then we can write

v22v j
21 ivg j5S v2v̂ j1 i

g j

2 D
3S v1v̂ j1 i

g j

2 D ,v̂ jAv j
22g j

2 ~4.5!

and
01661
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x̂~v!52(
j

V j
2

2v1g j H 1

v2v̂ j1
ig j

2

1
1

v1v̂ j1
ig j

2
J .

~4.6!

We now take the limitg↓0, i.e., the ‘‘nonabsorptive’’ limit.
Then v̂ j→v j and ~P denotes a Cauchy principal value!

x̂~v!52(
j

V j
2H P

1

v22v j
2

1 ip
v

uvu (
j

V j
2d~v22v j

2!J .

~4.7!

Hence

r~v!5(
j

V j
2v jd~v22v j

2!. ~4.8!

Comparing this with Eq.~3.10! for l050, we can identify
l j with v j andmj with V j

2 ,

l j5v j , mj5V j
2 . ~4.9!

Thus we conclude that in the limitg↓0 we do not obtain a
purely dispersive system. It also follows from our results
Sec. III that this limiting system has the proper mathemati
behavior.

V. DISCUSSION

A. Results

We found that the Drude-Lorentz model has a limit
which «~v! is real, except for a number of discrete freque
ciesv j . Absorption can only take place at these frequenc
and the Kramers-Kronig relations are still valid. Howev
for v5v j the electric field vanishes inside the material,
absorption is absent. On the other hand, the fact that«(x,v)
has an imaginary part is crucial for the existence of
Lagrange-Hamilton formalism and its quantization.

In particular, band gaps can exist@2,3#. Note that in Ref.
@4# we found that the latter do not occur in absorptive
gions, i.e., regions where Im«~v!Þ0. More generally we can
have other situations wherem(x,D)50 and hence
Im «~v!50 in some intervalD. Then, according to the dis
cussion in Sec. III, the Kramers-Kronig relations can still
valid.

From a practical point of, view our results mean that w
do not have to be concerned about causality violations if
a finite interval,«(x,v) is real, dispersive.

In Ref. @9# we already discussed the quantization pro
dure for the point measure case but we did not make
connection with the limiting case of a Drude-Lorentz mod
There we concentrated upon the smooth case of Sec. II.
main difference is that there we obtain a coupling with
continuum of harmonic oscillator modes which now chang
into a coupling with a discrete set of harmonic oscillators
0-4
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B. The Drude case

The Drude case is somewhat special. Now Eq.~4.4! does
not hold but we can take the limitg↓0 in Eq. ~4.3!, resulting
in

r~v!5V2d~v!. ~5.1!

The Drude model is pathological in that«~v! becomes infi-
nite in the static limitv50. Note that if we had kept the
contributionm0(x)d(v) to m(x,dv), then the correspond
ing contribution to Im«~x,v! is undefined. But

lim
g↓0

v2x̂Drude~v!52V2, ~5.2!

which is finite and real. Here we note that the transve
Green’s function associated with the Helmholtz equation
a spatially homogeneous medium is

G~x,y,z!5
exp@ iAz2«~z!D#

4pD
, D5x2y, ~5.3!

which leads to

G~x,y,0!5
exp@2VD#

4pD
~5.4!

in the limit g↓0. Since the local density of states is propo
tional to ImG(x,y,v), taken inx5y, we see that it is actu
ally zero in v50. The situation is similar in the photoni
crystal case@4# although the proof is not trivial. Thus ther
are no particular problems with the Green’s function at f
quency zero in the limiting case. The whole issue is rat
academic since the Drude model is in practice only used
frequencies well above zero and we can setv0 small but
finite.
01661
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C. Outlook

It seems natural to consider a perturbative approach w
the g j ’s as a small parameter. In particular this is interest
for photonic crystals possessing a band gapD for g50. Then
the density of statesN(v) vanishes forv in the gap but this
changes for nonzerog. We expect that for smallg it is still
small and that perturbation theory to leading order ing will
give a fairly accurate result. We are at present investiga
this situation. Some preliminary results are given in R
@13#.

Another interesting issue is the corresponding nonlin
situation. In Ref.@7# the scalar version of Eq.~1.7!, extended
with a nonlinear term is discussed for finiteg. Thus, in our
notation,

] t
2x~ t !1g] tx~ t !1v0

2x~ t !5
e

m
E~ t !1kx~ t !2, ~5.5!

where the anharmonic termkx(t)2 is added. This is a rathe
ad hocapproach, in particular the damping term being line
An alternative is to calculate the quadratic~or higher! re-
sponse of a material system to a driving electric field a
study the limiting behavior of the ensuing nonlinear susc
tibility.
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@10# A. Tip, L. Knöll, S. Scheel, and D.-G. Welsch, Phys. Rev.

63, 043806~2001!.
@11# R. Carmona and J. Lacroix,Spectral Theory of Random Schro¨-

dinger Operators~Birkhäuser, Boston, 1990!.
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