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Linear dispersive dielectrics as limits of Drude-Lorentz systems
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We investigate the limiting case of the Drude-Lorentz model for the complex electric permeabili}y
=1+ y(w) as the damping tends to zero. We find tké&b) becomes real except for a number of discrete
frequencies. The Kramers-Kronig relations connecting the real and imaginary paitspfemain valid.
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I. BACKGROUND can be small or even negative, there can be a large contrast
relative to a background like vacuum. A photonic crystal
In general linear dielectrics the polarizati®{x,t) and made up from such spheres can possgé®tonig band
electric fieldE(x,t) are related according to gaps. This was verified numerically for the three-dimensional
(3D) case in Refs[2] and[3] for the 2D situation. But if
absorption is present, the situation changes. In earlier work
P(x,t):J dsy(x,t—s)E(x,s), (1D [4] we showed rigorously that band gaps do not occur in
absorptive frequency regions. Then the band spectrum is no
where x(x,t) is the electric susceptibility. Since there is no longer real but consists of islands in the lower complex half
polarization before the electric field is appli¢dausality plane. This was confirmed numerically for the 2D absorptive
¥(x,t) vanishes fot<0 leading to the usual electric perme- Drude cas¢5], where we used
ability (permittivity, dielectric function
QZ

g(w)= Q,y>0. (1.5

oo 1- ———,
e(X,w)=1+ fo dtexgiot]y(x,t)=1+ x(X, o). o(w+iy)

1.2
(1.2 In this note we address the question as to what happens with

Thuss(x,), which is in general complex, can be continued absorptive Drude-Lorentz dielectrics, characterized by
analytically into the upper complex half-plane and the real

and imaginary parts of(x,w) are connected by a Kramers- 0?2
Kronig relation(P indicates a principle vallie e(0)=1+}(0)=1-> ———F—,
I 0"~ ejtlyjw
R 1 [+  Imy(Xe' i=0,y,,0,>0 1.6
Rex(X,w)=— Pf da)'L), i Vit (1.6
T ) o' —w

in the limiting casey|0. In the literature derivations of Eq.

+o Rex(X,®') (1.6), at various levels of sophistication, can be fod7].
Imx(x,0)=—— Pf do'——— (1.3  The classical model for the simplest situation exists of the

o w o equation of motion

But it sometimes happens that in certain frequency interval
absorption is quite small, in which case it makes sense to
neglect absorption, while retaining dispersive behavior. This
apparently violates the causality requirement, but, as we

show below, this need not be the case.

An important example where absorption can be neglectefP" @ classical charged partiolsassm, chargee), subject to
is that of small silver spheres. The latter more or less behav@ driving electric fielde(t) and experiencing friction through
as an absorptionless Drude meffar Drude metals, see Ref. the termydix(t) and a harmonic restoring teragx(t). Tak-
[1]) in part of the optical range, where they still show appre-ing the Fourier transform of the corresponding polarization

(?tzx(t)+y(?tx(t)+ng(t)=%E(t), y>0 (1.7

ciable dispersion. Since in this regime then givesy(w) as in Eq.(1.6) with a singlew; = wq. In Ref.
[7], the standard derivation, based on a classical model, is
2 given, together with an extension to a nonlinear situation.
e(w)=1-—, Q>0 (1.4 We are in particular interested in energy conservation, the
® Kramers-Kronig relations and quantization in the limiting

case above. Here we note in passing that in recent years two
general, equivalent, quantization techniques have been de-
*Electronic address: tip@amolf.nl veloped for causal linear absorptive dielectfigs-10).
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IIl. MAXWELL'S EQUATIONS Eermlt) — Eenlto)

In the present case the set of macroscopic, classical, Max- t s
well's equations for an isotropic, linear, absorptive dielectric = —f dxf ds| duy’(x,s—u)E(x,u)-E(X,s)
is given by(we sete,, o, andc equal to 1 andH=B) o o

t t
dD(x,t) =, X B(X,t), B(X,t)=—dXE(X,t), =—fdxf dsf duy’(x,s—Uu)E(x,u)-E(x,s).
to to
dy-D(X,t)=0, dy-B(x,1)=0, (2.9
D(x,t) =E(x,t) + P(x,t), Making the Fourier decomposition
t
P(x,t)=ft dsx(x,t—s)E(x,s), 2.1 X’(x,t)=J dw exd —iot]p(X,»)
0
with to some initial time which can be taken gs= — . We :f do cog wt)p(x,w), t=0 (2.10
assume thag(x,t)=0 for t<0 (causality and alsoy(x,0) s '

=0 (no instantaneous current surges at the initial tig)e In _ )
addition we require thag(x,t) and dox(x,t)=x'(x,t) are  Where the integral is ovek andp(x,®) can be assumed to

finite. Denoting Laplace transforms with a hat, be even inw, we then have
o0 t t
f(z):f dtexfgizt]f(t), Imz=0, (2.2) 5en{t)—5en{to>=—f d><ft d5ft dUJ dop(X,w)
0 0 0
so Xexgio(s—u)]E(X,s)-E(X,u)

5((X,Z)=J:dteX}:{izt]X(x,t), (2.3 =_f de dwp(X,®)

2
J’tdsex;{iws]E(x,s)
to

. (211

X

we have for the complex electric permeability
e(X,w)=1+x(X,0+i0) (24 indicating a monotonous decay fpx,»)=0, which is the
standard dissipativity requirement. We can expissge Ref.

and we note that, sincg(x,0)=0, [9]) X(x,2) in terms ofp(X,w) through

X' (X,2)=iz¥(x,2). (2.5 1
ciw oL px0) p(x )
We rewrite the first of Eqs(2.1) as xx2)= zf do== _f dwwz_ZZ' (212
HE(X, 1) = 9, X B(X,1) — J(X,t1), Then
t
, 1 ,
0= [ a5 U-SEXS. @O e o {ixe +10)- fixw-10)= T2
(2.13
The electromagnetic energy
and
1
Eer()= Ef dx{E(x,t)%+B(x,1)%} (2.7
X’(X,0)=f dwp(X,w), (2.19

satisfies
which we assumed to be finite. Thus we arrive at the usual
0Eenft) = _f dx J(x,t)-E(x,t) situation that for absorptive systems $x,w)>0 for »>0
but note that Inz(x,w)<0 for ©<0. Let nowty=— and

t t=+o. Then, withE the Fourier transform of,
=—f dxj dsy'(x,t—s)E(x,s)-E(x,t).

0 A o= Eenf®) = Eanl =)
(2.8

— = 2
Noting thaty’(x,t) =0 for t<0, we obtain - f dxf dop(x,@)[E(x.@)[*.  (2.19
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We see that this quantity can vanishpifx,w)=0 on some
interval A and E(x,t) is such that it does not have Fourier
components in some-interval A.

Ill. MATHEMATICAL PROPERTIES

We note thaty(x,z) as given by Eq(2.3) is analytic in
the upper half plane, which, of course, is a direct conse
qguence of the causality condition

x(x,t)=0, t<O0. (3.1
Introducing the measuna(x,dw) according to
m(x,dw)=p(X,0)dw, (3.2
we have
f(x,z)Ezj((x,z)=—i;}’(x,z)=f m(x,dw)ﬁ,
(3.3

which also has this analyticity property and moreover

Imzy(x,z)=0, Imz>0. (3.9

Also m(x,dw)=m(x,—dw)=0 and
fm(x,dw):)(’(x,O), finite. (3.5
R

Moreover, withy>0 and usingy(x,0)=0, we have

sup-ol f(X,iy)|=sup~oyliy x(x.iy)|

=sup=qY yfo dtexg —yt]x(x,t)‘

=sup-oY f :dt{ﬁtexr{—yt]}x(x,t)

=sup-oY f:dtexq—yt]x’(x,t)

o u
f duexq—u]x’(x,—)‘<oo,
0 y

(3.6)

= SUR,>0

where sup indicates the supremum or least upper bound of
function. We can ask whether or not E@®.3) is the most
general form of such a functiof(x,z). In fact it is not. The
general form is a so-called Herglotz functitam useful sum-
mary of the properties of Herglotz functions can be found in

Ref. [11]). The actual theorem we have in mind states the

following [11].
Theorem: The functiorfi(z) with zin the open upper half

planeC has the representation

2= fuag(

4 1
)\))\—z
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for o a non-negative finite measure if and only i§ analytic

onC, Imf=0 and sup.oy|f(iy)|<.

We see that our system falls into this cldassmathemati-
cal termsm is an absolutely continuous measubeit more
general measures are allowed. Thugan also have point
measure and singular continuous contributi¢fos these no-
tions see Ref[12], p. 22. We disregard the last. Point mea-
suresm,(x,d\) can be represented in terms &functions

mp(x,d)\)=j20 m;(x) (A —\j)dA

[

=mg(X) S(\)d\ + 21 m;(X) S(A—\;j)dX,
=

(3.7)

where we have sety=0 [somy(x) =0 if this value does not
occur. The corresponding contribution 3 (x,t) is then

XF’)(X,t)Imep(x,d)\)exp:—i)\t]

=my(X) + _21 mi(x)exgd —izt]. (3.9
=

Since xp(x,t) must be real, we have

[

XF’,(x,t)=m0(x)+E m;(X)CosAjt, (3.9
i=1

and again we can assunmg,(x, —d\)=my(x,d\), so we
can write

©

1
> m(x)

My(X,dN) =mg(X) S(N)dN+
2=

X{E(N=Nj)+ S(N+Nj)}dN
=mo(X) S\ )d\ + _21 mj(x)| Nl (N2 =AP)dX.
=

(3.10

From this we see that we can assune-0 for j>0 as we
shall do in the following. We note further thatrify vanishes

a

Xp(X,t)= 21 m;(x) (3.1

i

Let us assume that we only have point measures and that

my(x)=0. Then Eq.(2.15 becomes
A= Een( ) = Eenl — )
=—J' dxf m(x,d\)|[E(x,\)]?

[

=—2| dx2X, m|E(x\)[% me=0, (3.12
=1
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and we see thah &, vanishes if we can produce a field 02 1 1

E(x,t) such that its Fourier components vanish in the points y(w)= —2 5 ji —t .

\; for x inside the material. Instead of E(.13 we have T w— o)+ L o+ !
2 2

5()\2 ) mozoy

(3.13

Ime(X,\)= WTZ

which vanishes outside the points. We come back to the

(4.9

We now take the limity|0, i.e., the “nonabsorptive” limit.
Then®;— w; and (P denotes a Cauchy principal value

casemy# 0 in the discussion section. S0 N 2 2

In practical cases then;(x)’s are usually constant over Xw)= ; oe w2_wj +I7T 2 Q ow wi)
specific space regions. For instance, for a photonic crystal 4.7
with a vacuum backgrouna(x,\)=1 andm;(x) =0 for x in
the background, whereams;(x) =m constant over the mate- Hance
rial outside the background.

- 2 2_ 2
IV. THE DRUDE-LORENTZ MODEL p(w)—; Qjwjé(0°— wj). (4.8

A well-known model for the electric susceptibility is the

Drude-Lorentz model. Disregarding thelependence for the  comparing this with Eq(3 10 for Aog=0, we can identify

moment, we now have

0?2

o)== —————, 7.0;>0, 4.)D
I o —a)j+|'ij
leading to
w2 ’}/JQZ
w)=— (4.2
plw) ™ El: (wz_wj2)2+712 2

Here they;’s determine the degree of absorption. The Drude
model is the special case where there is only a single

which equals zero. Thusee also Eq(1.2)]

QZ
Xorudd @)= — w(—a)-i-iy) )
1 Q2
Porudd @) = > 5 4.3
T wty
Next we suppose that in E¢.1),
o; >%>o (4.4
Then we can write
2 2. Vi
0w Tloyj=| w— w+|§

0+ oy +i %) opel— (45

and

\j with o; andm; with QJ ,
)\J:w]-, mJ:QJZ (49)

Thus we conclude that in the limiz]0 we do not obtain a
purely dispersive system. It also follows from our results in
Sec. Il that this limiting system has the proper mathematical
behavior.

V. DISCUSSION
A. Results

We found that the Drude-Lorentz model has a limit in
which e(w) is real, except for a number of discrete frequen-
ciesw; . Absorption can only take place at these frequencies
and the Kramers-Kronig relations are still valid. However,
for o= wj the electric field vanishes inside the material, so
absorption is absent. On the other hand, the factdfatw)
has an imaginary part is crucial for the existence of a
Lagrange-Hamilton formalism and its quantization.

In particular, band gaps can ex[&,3]. Note that in Ref.

[4] we found that the latter do not occur in absorptive re-
gions, i.e., regions where laiw)#0. More generally we can
have other situations wherem(x,A)=0 and hence
Im e(w)=0 in some intervalA. Then, according to the dis-
cussion in Sec. lll, the Kramers-Kronig relations can still be
valid.

From a practical point of, view our results mean that we
do not have to be concerned about causality violations if, in
a finite interval,e (X, w) is real, dispersive.

In Ref. [9] we already discussed the quantization proce-
dure for the point measure case but we did not make the
connection with the limiting case of a Drude-Lorentz model.
There we concentrated upon the smooth case of Sec. Il. The
main difference is that there we obtain a coupling with a
continuum of harmonic oscillator modes which now changes
into a coupling with a discrete set of harmonic oscillators.
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B. The Drude case C. Outlook
The Drude case is somewhat special. Now &) does It seems natural to consider a perturbative approach with
not hold but we can take the limit|0 in Eq.(4.3), resulting  the y;’s as a small parameter. In particular this is interesting
in for photonic crystals possessing a band gajpr y=0. Then
) the density of statell(w) vanishes forw in the gap but this
pl0)=Q%6(w). (5.1) changes for nonzerg. We expect that for smaly it is still

small and that perturbation theory to leading ordetyiwill
give a fairly accurate result. We are at present investigating
this situation. Some preliminary results are given in Ref.

The Drude model is pathological in thatw) becomes infi-
nite in the static limitw=0. Note that if we had kept the
contribution my(x) 8(w) to m(x,dw), then the correspond-

) o . , [13].
ing contribution to Ime(x,w) is undefined. But Another interesting issue is the corresponding nonlinear
lim 0% prad @) = — Q2 (5.2  situation. In Ref[7] the scalar version of Eq1.7), extended
yl0 with a nonlinear term is discussed for finige Thus, in our
notation,

which is finite and real. Here we note that the transverse
Green'’s function associated with the Helmholtz equation for
a spatially homogeneous medium is

exdivz%e(2)A]
47A

e
&ﬂw+w¢m+w§m:aEm+mmﬂ,(53

G(x,y,2)= . A=X—vy, (5.3

where the anharmonic terax(t)? is added. This is a rather
ad hocapproach, in particular the damping term being linear.
which leads to An alternative is to calculate the quadratior highep re-
sponse of a material system to a driving electric field and
exd —QA] (5.4) study the limiting behavior of the ensuing nonlinear suscep-

G(x,y,0)=
(*%y0=—773 tibility.

in the limit v]0. Since the local density of states is propor-

tional to ImG(x,y,w), taken i_nx='y, we see that it is actu- ACKNOWLEDGMENTS
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