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Symmetry analysis of self-written waveguides in bulk photosensitive media
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The dynamics of self-written waveguides in bulk photosensitive media is studied in detail and contrasted
with previous results for planar geometry. We investigate the symmetry and integrability properties of the
coupled nonlinear partial differential equations which describe this process. We derive similarity-reduced
differential equations and study some of these equations numerically.
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I. INTRODUCTION

In recent years, considerable progress has been mad
understanding the dynamics of light-induced self-writt
waveguides both experimentally and theoretically@1–3#. A
self-written waveguide is a waveguide that has evolved
to a propagating beam while the beam is in turn guided
the evolving waveguide. For example, consider a beam
normal incidence onto the edge of a uniform, unexpo
photosensitive material. The beam initially diffracts in t
waveguide, while the maximum intensity over any transve
section remains on the propagation axis. Consequently,
maximum change in the refractive index is along the pro
gation axis. If the refractive index increases due to expos
as would be the case for many materials, the modulated
file acts against the diffraction and confines the light m
strongly. Over time this can lead to the formation of a narr
channel around the axis, referred to as a self-written wa
guide. This waveguide can be used to guide light at ot
wavelengths as the change in index is long lasting.

Examples of media in which self-writing has been o
served include photosensitive glasses@1,4#, electro-optic
crystals@5# in planar geometries, photoresist@6,7#, photopo-
lymerizable resin@8#, uv-cured epoxy@9#, and bulk silica
glass@10#. Similar effects are also observed in photorefra
tive materials@11#. Recently, the interaction of self-writte
waveguides has also been studied experimentally and
merically in photopolymerizable resin@12#. Even though a
number of studies have been made in planar~slab! materials
only few attempts have been made to understand the dyn
ics in bulk materials. Recently Ljungstro¨m and Monro stud-
ied the self-writing effects in bulk chalcogenide glass a
compared the results with their numerical modeling of t
process. They performed the experiments in bulk Nd-do
Bk7 glass~Schott Optical, www.schott.com! @13# and Ce-
doped Ga-La-S@14#.

Mathematically two equations are used to describe
self-writing process. One is the paraxial wave equation
scribing the propagation of light through the material:

ik0n0

]E
]z

1
1

2 S ]2

]x2
1

]2

]y2D E1k0
2n0DnE50, ~1!

whereE is the electric field amplitude,n0 is the initial refrac-
tive index,k052p/l is the wave number in the unexpose
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materials, andDn is the refractive index change. The fir
term in Eq.~1! describes propagation, the second diffractio
and the third accounts for how photosensitive refractive
dex changes affect light propagation. Only the diffracti
term differs from that considered in Ref.@15# due to the extra
transverse dimension.

The second equation describes the refractive index ev
tion. The most general form we consider here is

]Dn

]t
5F~ uEu,Dn!, ~2!

whereF is a function describing how the rate of change
the refractive index depends on the intensity and local refr
tive index.

For the remainder of the paper we work with Eqs.~1! and
~2! in dimensionless form, by defining

T5a0
2k0

2n0F0t, ~3a!

X5x/a0 , ~3b!

Y5y/a0 , ~3c!

Z5z/~k0n0a0
2!, ~3d!

F5F/F0 , ~3e!

N5a0
2k0

2n0Dn, ~3f!

E5E/E0 . ~3g!

Herea0 is a characteristic measure of the beam width,E0 is
a characteristic electric field amplitude, andF05F(uE0u,0).
The normalized equations are thus

iEZ1¹'
2 E1NE50, ~4a!

NT2F~ uEu,N!50, ~4b!

where the transverse Laplacian is given by

¹'
2 5

]2

]X2
1

]2

]Y2
~5a!
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5
]2

]R2
1

1

R

]

]R
1

1

R2

]2

]Q2
~5b!

in Cartesian and cylindrical coordinates, respectively, w
X5R cosQ andY5R sinQ.

An important special case that we consider in detail is
power law

F~ uEu,Dn!5F~ uEu!5AuEu2p, ~6!

whereA is a constant describing the strength of the pho
sensitivity andp is the number of photons involved in th
process. For example, for a one-photon process we hap
51 while for a two-photon processp52. In the normalized
system of equations, this function becomes

F5uEu2p. ~7!

All results and figures in this paper are in terms of t
dimensionless quantities defined in Eqs.~3!.

In this paper we explore the mathematical properties
the system of nonlinear partial differential equations~PDEs!
~4! in detail. To date, theoretical studies of the self-writi
process in bulk geometry have been limited to numer
simulations @4,14#. Using Painleve´ analysis @16,17# it has
been shown that the equations for self-writing in planar
ometry are nonintegrable@15# for the case of a power-law
photosensitivity withp51 or p52. We have found that the
equations for bulk geometry are also nonintegrable with
photosensitivity. Since the calculations are virtually identi
to the planar case we do not reprint them here. In orde
construct some exact and physically interesting solutions
this problem we use Lie group analysis@18,19#, which is one
of the powerful methods to extract exact solutions for no
linear PDEs. It is noted that similarity methods have be
applied to Hill gratings@20#, stimulated Raman scatterin
@21#, and parabolic pulses in optical fibers@22#.

The paper is organized as follows. In Sec. II, we pres
Lie symmetry analysis for these equations, discuss the ph
cal interpretation of the various symmetries uncovered,
use these to construct similarity-reduced PDE involv
fewer independent variables. In Sec. III, we reduce the eq
tions further to obtain a system of ordinary differential equ
tions ~ODEs! for which we find a class of self-similar moda
solutions. This is the first class of solutions presented
self-writing in a bulk material. In Sec. IV we present nume
cal analyses of both the full set of nonlinear PDEs presen
above, and also of a particular reduced set of equations.
numerical solutions are found to converge to the self-sim
solution for a wide range of initial conditions, suggesti
that the self-similar solution is physically significant. Final
we give our conclusions in Sec. V.

In Appendix A we present numerical results for the plan
case that complement previous studies. In Appendix B
show an alternative special case of the similarity reducti
which, while having some interesting mathematical prop
ties, does not lead to physically interesting predictions.
nally, we discuss alternative similarity variables in Append
C.
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II. LIE SYMMETRY ANALYSIS

We start with the generic form of the self-writing equ
tions ~4! and introduce the transformation to the real fun
tions corresponding to amplitude and phase,

E5A~X,Y,Z,T!eiF(X,Y,Z,T), ~8!

so that they can be written as

AZ1 1
2 A¹'

2 F1AXFX1AYFY50, ~9a!

2AFZ1 1
2 ¹'

2 A2 1
2 $FX

21FY
2%A1NA50, ~9b!

NT2F~A,N!50. ~9c!

Let us consider a one-parameter Lie group of infinitesim
transformations,

X→X1« j (X)~X,Y,Z,T,A,F,N!, ~10!

where«!1. Analogous transformations are defined for t
remaining dependent and independent variables. The as
ated vector field is

V5j (X)
]

]X
1j (Y)

]

]Y
1j (Z)

]

]Z
1j (T)

]

]T
1j (A)

]

]A

1j (F)
]

]F
1j (N)

]

]N
. ~11!

The invariance of Eqs.~9! under the infinitesimal point trans
formations~10! leads to the invariance condition

Pr(2)V~D!uD5050, ~12!

where Pr(2)V is the second prolongation of the vector fie
~11! @18,19#. The solution of the resulting determining equ
tions arising from Eq.~12! yields the infinitesimals. The
presence of free parameters and arbitrary functions de
mines the number and type of different symmetries the eq
tions possess. We have used the computer programsMUMATH

@23# andMATHLIE @24# to determine the symmetries. Symm
tries associated with finite dimensional subspaces are i
cated with a capital letter, and infinite dimensional symme
groups associated with arbitrary functions are denoted b
lowercase letter.

The most general photosensitivity equations support e
symmetries and the associated vector field~11! can be writ-
ten as

V5aVX1bVY1cVZ1dVT1eVQ1 f VU1gVV1Vf~h!,
~13!

where the first four symmetries correspond to the homo
neity of the spatial and temporal coordinates

VX5
]

]X
, VY5

]

]Y
, ~14a!

VZ5
]

]Z
, ~14b!
8-2
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VT5
]

]T
. ~14c!

The next three symmetries correspond to the isotropy of
system and how it behaves under coordinate rotations:

VQ5X
]

]Y
2Y

]

]X
5

]

]Q
, ~14d!

VU5Z
]

]X
1X

]

]F
, VV5Z

]

]Y
1Y

]

]F
. ~14e!

The first symmetry above is a simple rotation about the a
of propagation. The next two symmetries correspond to
ing the axis of propagation and simultaneously adding a
ear phase variation to the wave front. The paraxial appro
mation to the wave equation has modified these symme
from the pure isotropic case.

The last symmetry is an infinite dimensional symme
~since it contains an arbitrary function! and corresponds to
adding an arbitrary function of time to the phase of the fie

Vf~h!5h~T!
]

]F
. ~14f!

The planar results can be easily obtained from the ab
analysis by discarding any symmetries that included the
wanted Cartesian coordinate.

A. Nonsaturating systems

We now assume that the photosensitive growth lawF
does not depend on the refractive index distribution, i.e.F
5F(E). This implies that the changes do not depend on
current value of the index, which precludes effects such
saturation. However, all real physical systems exhibit so
form of saturation that prevents the refractive indexN chang-
ing without bound. The maximum value ofN achievable
depends both on the writing conditions and the material.
analysis of the effect of saturation on the evolution of se
written systems@2# suggests saturation values as large asN
;160 for photopolymers but onlyN;15 for typical photo-
sensitive glasses. Nevertheless, the nonsaturating approx
tion is a physical model under a variety of situations a
provides useful understanding of the system even in ca
where it is not perfectly accurate. In addition, it is a go
model for the initial evolution of a photosensitive syste
since the effect of saturation is then weak.

WhenF5F(E) two new symmetries emerge:

VS5Z
]

]Z
1

1

2 H X
]

]X
1Y

]

]YJ 2T
]

]T
2N

]

]N
, ~15a!

Vc~ l !5 l ~Z!
]

]F
1 l 8~Z!

]

]N
. ~15b!

The first is a scaling symmetry. The second symmetry allo
an arbitrary function ofZ to be added to the phase, provide
its derivative is added to the index profile.
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B. Power-law photosensitive growth

We now further specialize to

F~ uEu!5uEu2p, ~16!

wherep is arbitrary. Three new infinite dimensional symm
tries arise:

Vx~u!5u~Z!
]

]X
1u8~Z!X

]

]F
1u9~Z!X

]

]N
, ~17a!

Vy~v !5v~Z!
]

]Y
1v8~Z!Y

]

]F
1v9~Z!Y

]

]N
, ~17b!

Vt~g!5g~T!
]

]T
2

1

2p
ġ~T!A ]

]A . ~17c!

The first pair of symmetries corresponds to arbitrary stret
ing of the transverse coordinates accompanied by co
sponding changes to the phase and index. They contai
special cases the pure translation~14a! and tilt ~14e! symme-
tries when the arbitrary functions are chosen to be cons
or linear, respectively. The last symmetry corresponds to
bitrary stretching of time with related scaling of the fie
amplitude. It contains the time translation symmetry as
special case when the arbitrary function is taken to be c
stant. Wheng(T)5T this last symmetry can be combine
with the scaling symmetry to yield an alternative scali
symmetry,

VS85Z
]

]Z
1

1

2 H X
]

]X
1Y

]

]YJ 2
1

2p
A ]

]A 2N
]

]N
.

~18!

This symmetry is more convenient to work with in th
power-law case because it commutes withVt(g).

C. Special symmetries

The power-law equations support a further symme
which only occurs for specific values of the parameterp:

Vz~ f !5 f ~Z!
]

]Z
1

R2

4 H f 9~Z!
]

]F
1 f-~Z!

]

]NJ
1

f 8~Z!

2 H X
]

]X
1Y

]

]Y
2

1

p
A ]

]A 22N
]

]NJ .

~19!

This symmetry containsVZ and VS8 as special cases whe
the arbitrary function is taken as constant and linear, resp
tively. The above symmetry emerges from Eq.~12! with the
condition

~Dp22!Af 9~Z!50, ~20!

where D is the transverse dimensionality. Thus the spec
values ofp52/D emerge from the prolongation, and the tw
special cases of the symmetry that satisfyf 9(Z)50 are
8-3
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present for all values ofp. In the planar case the speci
symmetry exists whenp52, in the bulk case it exists whe
p51.

D. Commutators

The nonzero commutators between these symmetry
erators reveal how the symmetries can be exploited. C
muting symmetries can be exploited serially, because u
one to reduce the order of the equation leaves the other s
metry intact. If the symmetries do not commute, then th
must either be exploited together or one symmetry mus
abandoned. For example, exploiting rotational symmetry
quires abandoning transverse translational symmetry
vice versa. Even exploiting noncommuting symmetries
multaneously usually leads to uninteresting results. For
ample, fields which are simultaneously rotationallyand
translationally symmetric are not very interesting~they tend
to be constant and thus not localized!. The nonzero commu
tators for the most general symmetries are given below.
commutators for the special cases can be extracted dire
from the general cases:

@Vx~u1!,Vx~u2!#5Vc~u1u282u18u2!, ~21a!

@Vy~v1!,Vy~v2!#5Vc~v1v282v18v2!, ~21b!

@Vz~ f 1!,Vz~ f 2!#5Vz~ f 1f 282 f 18 f 2!, ~21c!

@Vt~g1!,Vt~g2!#5Vt~g1ġ22ġ1g2!, ~21d!

@Vx~u!,VQ#5Vy~u!, ~21e!

@Vy~v !,VQ#52Vx~v !, ~21f!

@Vx~u!,Vz~ f !#5Vx~
1
2 u f82u8 f !, ~21g!

@Vy~v !,Vz~ f !#5Vy~
1
2 v f 82v8 f !, ~21h!

@Vt~g!,Vf~h!#5Vf~gh8!, ~21i!

@Vz~ f !,Vc~ l !#5Vc~ l 8 f !. ~21j!

E. Reduced system

Similarity variables can be obtained by solving the inva
ant surface condition given by the equations

dX

j (X)
5

dY

j (Y)
5

dZ

j (Z)
5

dT

j (T)
5

dA
j (A)

5
dF

j (F)
5

dN

j (N)
. ~22!

These equations are difficult to solve in complete genera
and moreover would yield expressions difficult to interp
physically. Thus, by carefully examining the commuta
structure and the physical meaning of the various symme
we explore a particular subset of symmetries and simila
variables.

We defer discussion of the special symmetries~19! to
Appendix B. The symmetries associated with adding fu
01660
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tions of T andZ to the phase of the field do not yield inte
esting physics and are also discussed in Appendix B. We
choose not to exploit any symmetry that destroys the sy
metry in Q. Thus we retain the subgroup spanned by
symmetries V5Vt(g)1Vz( f ) with f (Z)52s(Z2Z0) re-
stricted to a linear function ofZ as a consequence of Eq
~20!. The relevant invariant surface condition is then

dX

sX
5

dY

sY
5

dZ

2s~Z2Z0!
5

dT

g~T!

52
2p dA

~ ġ~T!12s!A 5
dF

0
52

dN

2sN
. ~23!

We see that we can takes51 without loss of generality.
Solving for a similarity variable gives

X̃5f~T!X, ~24a!

Ỹ5f~T!Y, ~24b!

Z̃5f~T!2~Z2Z0!, ~24c!

with the dependent variables scaling as

Ã~X̃,Ỹ,Z̃!5SAg~T!

f~T!
D 1/p

A~X,Y,Z,T!, ~24d!

F̃~X̃,Ỹ,Z̃!5F~X,Y,Z,T!, ~24e!

Ñ~X̃,Ỹ,Z̃!5
1

f2~T!
N~X,Y,Z,T!, ~24f!

where

f~T!5expS ET dT8

g~T8!
D , ~25!

or equivalently

g~T!5
f~T!

ḟ~T!
. ~26!

The reduced PDEs are

iẼ Z̃1 1
2 ¹̃'

2 Ẽ1ÑẼ50, ~27a!

2Ñ1X̃ÑX̃1ỸÑỸ12Z̃ÑZ̃2uẼu2p50. ~27b!

Note that

R̃ÑR̃5X̃ÑX̃1ỸÑỸ ~28!

in cylindrical coordinates and thus the angular depende
never explicitly appears in the photosensitivity equatio
Equations~27! are investigated numerically in Sec. IV.
8-4
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F. Scaling laws

Before we study the system further we discuss the ph
cal significance of the transformations. The arbitrary funct
f(T) produces a scaling of the transverse coordinates. W
the transverse coordinates shrink, the longitudinal coordin
shrinks as the square off(T) and the height of the refractiv
index profile grows correspondingly. The amplitude of t
field profile also grows but with a different dependence
f(T). This is precisely the kind of behavior seen in expe
ments and numerical simulations once a waveguiding st
ture has formed.

Experiments and numerical simulations have a cons
input field, usually with a Gaussian profile. Although it is n
possible to introduce this condition into the above soluti
the total power can be required to be constant. Imposing
condition leads to a specific form for the previously arbitra
function f(T).

The total power in the original and reduced systems
be written as, respectively,

P5E uEu2dA, ~29a!

P̃5E uẼu2dÃ, ~29b!

where in both cases the integration is over the comp
transverse cross section. Note thatP̃ is a pure constant. Com
paring the two power expressions yields

P
P̃ 5S f~T!2

g~T! D 1/p 1

f~T!D
, ~30!

whereD is again the transverse dimensionality of the syste
Rearranging Eq.~30! and requiring the total power in th
original system to be independent ofT yield the differential
equation

]f

]T
5S P

P̃D p

fDp21, ~31!

generalizing earlier work by Monroet al. @25#. When p
Þ2/D the scaling has a power-law behavior

f~T!5H ~22Dp!S P
P̃D p

~T2Ti !J 1/(22Dp)

, ~32!

whereTi is a constant of integration. In the special casep
52/D the scaling law becomes exponential,

f~T!5expH S P
P̃D p

~T2Ti !J . ~33!

We make the following general observations. The scal
functionf(T) is always monotonically increasing. It reach
a singularity within a finite timeTi whenDp.2. In a planar
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geometry, this would occur for a three-photon process, bu
a bulk geometry a singularity occurs for the two-photon p
cess.

G. Secondary Lie analysis

The reduced PDEs~27! in three independent variables ca
be further analyzed for symmetry properties by repeating
Lie analysis. We represent the vector fields using tildes
distinguish them from the vector fields obtained in the fir
level analysis. The analysis uncovers a three-dimensio
subspace of symmetries:

ṼQ5X̃
]

]Ỹ
2Ỹ

]

]X̃
5

]

]Q̃
, ~34a!

ṼF5
]

]F̃
, ~34b!

ṼN5 log Z̃
]

]F̃
1

1

Z̃

]

]Ñ
, ~34c!

and one more symmetry which only exists whenD51,

ṼX5AZ
]

]X
1

X

2AZ

]

]F
2

X

4Z3/2

]

]N
. ~34d!

We have not discovered any physically appealing simila
reductions using these symmetries, apart from the restric
to a circularly symmetric solution, which we discuss in A
pendix B.

III. SELF-SIMILAR MODAL SOLUTIONS

In this section we restrict our attention to the bulk geo
etry since the planar case has been dealt with previo
@25#. Our aim is to explain mathematically some of the fe
tures observed in experiments and numerical simulation
careful investigation shows that when the self-written wa
guide evolves, its shape appears to remain approxima
constant even though its depth and width change. A mo
solution has the properties that the waveguide and the in
sity profile are independent ofZ̃, and that the phase is inde
pendent of any transverse coordinates and linear inZ̃. With-
out loss of generality we takeF̃5Z̃. Furthermore, we only
consider cylindrically symmetrical modes. Inserting these
sumptions into the PDE from the preceding section yields
ODE

1

2 S Ã91
1

R̃
Ã8D 1~Ñ21!Ã50, ~35a!

2Ñ1R̃Ñ82Ã2p50, ~35b!

where the prime indicates differentiation with respect to
only remaining independent variableR̃.
8-5
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To summarize, we used the following transformation
transform Eq.~4! to an ODE~35!:

E~R,Q,Z,T!5AP
P̃f~T!Ã~R̃!eif(T)2Z, ~36a!

N~R,Q,Z,T!5f~T!2Ñ~R̃!. ~36b!

In this form we can identify the propagation constant
terms of the scaling law:

b~T!5f~T!2. ~37!

Modal and index profiles

Solving Eqs.~35! we can find the shapes of the mode a
refractive index. We use a one-dimensional shooting met
to solve these coupled system of ODEs. We search fo
value ofÃ(0) that gives a solution which vanishes at largeR̃

and has finite powerP̃. The value ofÑ(0) follows automati-
cally from Ã(0) through Eq.~36b!. We useMATHEMATICA

@26# to do so and solutions for the one- and two-phot
photosensitivity processes are shown in Figs. 1 and 2,
spectively. The modal powerP̃ in these reduced systems
found by squaring and integrating the transverse sha
Ã(R̃). For the one- and two-photon processes we findP̃
514.0517 and 4.527 72, respectively.

If we map the self-similar waveguide back to the origin
coordinates, we find that it displays some unusual lin
guidance properties. It has previously been shown for
planar case that the index profile in the tails decays asR22

@2#, and it can be seen from Eqs.~35! that this is the case fo
bulk geometry also. We define theV value of a fiber geom-
etry waveguide as follows:

FIG. 1. Self-similar solutions of the self-writing problem fo
one-photon process. The dashed and solid lines represent the s

of the field modeÃ and the refractive index profileÑ, respectively.
All quantities in this and subsequent figures are in dimension
units.
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`

dRAN. ~38!

Given the asymptotic form of the index modulation, it is se
that the waveguide has an infiniteV value, and according to
WKB theory would guide an infinite number of discre
guided modes@27#. We have studied a number of thes
modes and found that they display unusual behavior. Star
from the fundamental mode, the modal profile of success
guided modes are decreasingly well confined, while th
propagation constants are closer together and tend towa
constant. This contrasts with a simple index profile, such a
step index waveguide, for which the modal fields ha
roughly similar levels of confinement, and the separation
tween propagation constants of successive modes incre
@27#.

These results are useful for understanding the prope
of a self-written waveguide that follows a self-similar evol
tion. From the perspective of the fundamental mode, all ot
guided modes are poorly confined and have near iden
propagation constants. One would therefore expect to
serve behavior consistent with a single-mode wavegu
rather than a multimode structure. This would allow an
fectively single-moded waveguide to be written relative
easily.

Previous work in this area has noted a beating proces
a numerical analysis of the growth of a self-written wav
guide in the planar geometry@2#. We can see from the dis
tribution of the effective indices of guided modes that t
beat lengths would be practically identical for beating w
any one of the other guided modes and also for the low
order radiation modes.

IV. NUMERICAL ANALYSIS OF FULL AND REDUCED
SYSTEMS

A. Numerical confirmation of self-similar evolution

The study of photosensitive materials can help underst
the growth dynamics of self-written optical waveguides. T

pes

ss

FIG. 2. As Fig. 1, but forp52.
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self-similar solution derived above describes the evolution
a waveguide from an initial condition that can be approp
ately rescaled in magnitude and in the transverse dimens
to match the index modulation profile defined by the se
similar solution itself, and which is independent of the lo
gitudinal dimensionZ. The input field must also continu
ously scale with the solution over time, starting from t
same scaling factor as the initial index modulation profi
This is clearly a severely limiting set of conditions.

We are ultimately interested in the formation of a wav
guide from an initially unexposed, uniform photosensiti
waveguide under illumination by a constant source. In t
system it would be particularly interesting to investiga
whether one can observe the stable formation of a waveg
and if so, how the evolution and features of the wavegu
compare with the self-similar solution obtained above. Su
analysis must be carried out numerically by integrating E
~4!. We implemented a finite-difference scheme to do th
For efficiency reasons, we have expressed Eqs.~4! in cylin-
drical coordinates and assumed an azimuthally symme
input condition, and therefore also azimuthally symmet
solutions. The simulation is therefore no more computati
ally intensive for the bulk geometry than for the planar ca

Studies of planar materials have revealed the remark
result that after an initial response period, the growth dyna
ics of a self-written waveguide tend towards those of
self-similar evolution to a high level of accuracy forp51
and 2@25#. We have carried out a similar analysis in the bu
geometry case.

The equations describing the self-writing system ha
been analyzed for a normalized domain of radius 20
length 4. An input condition of a Gaussian beam with wid
1 unit at 1/e field strength was used and the simulation w
conducted over a time period of up to 40 units. The ind
profile was monitored atZ52 andZ54 ~i.e., midpoint and
end face of the simulation!. The data were analyzed by com
paring profiles with the self-similar solution at each point
time. The evolution of the peak value and the width of t
profile are obtained at given timesT and positionsZ, and
these converted into scaling factors by dividing by the
propriate quantities for the self-similar solution. A simp
numerical estimate of the width was obtained by taking
point at which the index change drops to half of its pe
value.

We denote the two scaling factor quantities obtained
this way asSmax and Sr , where the subscriptsmax and r
refer to the maximum value and the width, respectively. A
cording to the self-similar solution, the evolution of the
scaling factors should be related to a single functionf(T),
whose form is related to the parameterp, and the ratioP/P̃.
Specifically, the scaling factors should evolve with time
follows:

Smax5f~T!2,

Sr51/f~T!. ~39!

The analysis of a given numerical system should yield th
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scaling factors, which can be transformed to estimates of
scaling function, denoted byfmax(T) and fr(T), respec-
tively.

The powerP can be estimated directly by integrating th
intensity within the simulation. It should be noted that t
total power within the numerical domain is constant and
fined by the excitation condition atZ50. This is because we
have used a zero field boundary condition and there is
absorption in the simulation. On the other hand, it is poss
to estimate the power contained within the waveguiding
gion by limiting the integration domain. We choose the in
gration limits according to the width of the index modulatio
region,rN , as

P'E
0

3rN
2pRdRuE~R!u2. ~40!

We analyze the numerical data in terms of these meas
of the scaling function and power forp51 and p52, re-
spectively. It is noted that the self-written waveguide at
times in these simulations has a finiteV value, as opposed to
the fully self-similar solution which has an infiniteV value
~Sec. III!.

1. Numerical analysis—pÄ1

For p51, the scaling functionf(T) of the self-similar
solution grows exponentially with time according to E
~33!. If the numerical system behaves analogously, the
logarithmic plot of each of the numerically inferred scalin
factors fmax(T) and fr(T) with time should follow a
straight line. Natural logarithms are used throughout this
per. The gradient of this line should be the power ratioP/P̃,
where the reduced modal power was given above asP̃
514.0517. Figure 3 shows such a plot. The behavior se
to match that predicted in the self-similar solution well
both the midpoint and end face of the simulation. The lin
converge well aroundT'14 and follow a fairly straight line,

FIG. 3. Variation of the natural logarithm of numerically ob
tained transformed scaling factors vs time forp51 and atZ52 and
4 along the propagation axis.
8-7
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with a gradient of roughly 0.085. The straightness of
lines is remarkable given that the scaling factor varies b
factor of about 30 within this plot. We estimate the pow
using Eq.~40!, and obtain the value 1.33, which leads to
gradient of 1.33/14.051750.094. This power ratio is consis
tent with the gradient of the lines given above.

We next observe the evolution of the index with time
the end face. This illustrates the growth of the solution
wards a self-similar form. To demonstrate the evolution,
normalized the profile at each time to a constant width giv
by that of the self-similar solution. The strength of the ind
profile is normalized by the inverse square root of the sca
used on the width, to be consistent with the self-similar
lution. We lay the plots at different times on the same gra
shown in Fig. 4 fromT50 to T540 at intervals of 2 units.
Successive curves converge upwards towards the self-sim
solution.

2. Numerical analysis—pÄ2

For p52, the scaling functionf(T) of the self-similar
solution evolves according to Eq.~32!. In contrast to thep
51 case, this solution collapses in finite time. Figure
shows the variation in the transformed scaling factors
ferred from numerical analysis of the system forp52 with
time at the midpoint and end point of the simulation. We
longer observe convergence of the curves, however the
clearly an abrupt change in the system aroundT'7, at
which point the scaling factors for the index modulati
grow rapidly and the scaling factors for the field profile flu
tuate wildly. This would appear to be the numerical rep
sentation of the collapse of the self-similar solution.

The lack of convergence of the curves prior to the c
lapse could be caused by the fact that the collapse occu
a relatively early time—in thep51 case, convergence is no
observed until much later.

FIG. 4. Evolution of the refractive index with time normalize
to a profile of constant width forp51 at Z54. Starting fromT
50, the zero line, subsequent times at intervals of 2 units are c
acterized by an increasing index at the origin. The thick line in
cates the self-similar solution.
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B. Numerical analysis of reduced system of equations

The self-similar solution is essentially a mode of the
duced system of PDEs~27!, so that its stability can be stud
ied through numerical simulations of this system. It is not
however, that the self-similar solution presented in Sec. II
one of a family of modes that can be obtained depending
the choice of the propagation constant in Eq.~36a!. These
modes are simply scaled relative to one another, and ca
obtained from the self-similar solution in Sec. III by the su
stitutions

Ñ→mÑ, ~41a!

Ã→m1/2pÃ, ~41b!

R̃→R̃/Am, ~41c!

where the propagation constant of the scaled solution is s
ply mf(T)2. We now present the results of numerical sim
lations of Eqs.~27!, and look for convergence of the fiel
and index modulation terms toward such a scaled self-sim
solution.

Our simulations have been obtained using a pair of fin
difference schemes representing each of Eqs.~27!. For each
propagation step, we iterate over both schemes to obta
solution to both PDEs simultaneously. To confirm the stab
ity and accuracy of this method we checked that the s
similar solution presented in Sec. III propagates as a gui
mode of the system. We then conducted simulations
which the initial conditions differ from the self-similar solu
tion.

1. Fiber geometry—pÄ1

We consider an initial condition given by the self-simil
field solution in combination with a zero index modulatio
Figure 6 shows a contour plot of the results of such a sim
lation for the fiber geometry withp51. It suggests the con
vergence of the solution toward some mode. We comp

r-
-

FIG. 5. Plot of variation of the numerically obtained scalin
factors as a function of time forp52 and atZ52 and 4.
8-8
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SYMMETRY ANALYSIS OF SELF-WRITTEN . . . PHYSICAL REVIEW E69, 016608 ~2004!
this to a scaled self-similar solution as before by looking
the maximum values and widths of the field and index mo
lation. This is achieved by finding the appropriate scalingm
relative to the self-similar solution from Eq.~41! for both the
peak value and width. The ratio of these two factors (mrat

5mmax/mr) indicates how well the solution matches th
self-similar solution. Ifmrat,1 the solution is too weak fo
its width, while if mrat.1 then it is too strong.

Figure 7 shows the variation of the ratiosmrat for both the
field and index modulation as a function ofZ. The initial
conditions set the initial values of the ratio for the field to
1 while that for the index to be zero. The ratio for the ind
modulation then converges uniformly towards 1 while th
for the field remains close to 1 for all times. This indicat
that it is possible to join an unexposed section of mate
with a self-similar waveguide in this case. This result is co
sistent with the simulations of the full system of PDEs
Fig. 3.

FIG. 6. Contour plot of~a! field amplitude propagation and~b!
index modulation evolution in the reduced set~27! for a fiber ge-
ometry andp51, and with an initial condition for the field given
by the self-similar solution and a zero initial index. The brigh
areas represent higher values of the field or index.
01660
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2. Fiber geometry—pÄ2

The fiber geometry withp52 displays a different behav
ior, as seen in Figs. 8 and 9. No convergence toward a s
similar solution is obvious from the plots, while the values
both ratios remain below 1 at all times afterZ50. This
suggests some kind of instability of the self-similar solutio
This result is consistent with the simulations of the full sy
tem of PDEs in Fig. 5.

The numerical results presented here are representativ
the wide range of input conditions that we have analyz
The stability of the system forp51 and instability forp
52 with fiber geometry can be observed as the initial ind
profile varies over a broad range of strengths relative to
self-similar solution. Equivalent results for the planar geo
etry are included in Appendix A.

V. CONCLUSIONS

We have presented a Lie symmetry analysis for the s
tem of equations that describe self-writing in a bulk mater
The physical interpretation of the various symmetries
discussed and these have been used to construct simila
reduced PDEs involving fewer independent variables. T
analysis is presented in a general form so that the results
also valid for a planar geometry. We have further reduced
equations to find, to our knowledge, for the first time a cla
of self-similar modal solutions for bulk materials with
power-law photosensitivity. These solutions are analogou
the self-similar solutions that were previously obtained
the planar case. In contrast to these previous results, h
ever, we find that the self-similar solution in the bulk geom
etry for p52 collapses in finite time, and, more general
that the solutions collapses ifDp.2, whereD is the number
of transverse dimensions andp is the order of the photosen
sitivity process. This collapse appears to be analogous to
collapse of high-dimensional solitons. We also find that
p51 the self-similar refractive index solution has aV num-

FIG. 7. Ratio of scaling factors as a function ofZ for the field
amplitude and the index modulation for fiber geometry andp51.
8-9
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POLADIAN et al. PHYSICAL REVIEW E 69, 016608 ~2004!
ber that diverges, but that the associated waveguide none
less effectively behaves as if it were single mode.

For p51, numerical simulations of the full and reduce
systems of PDEs are presented that converge to the

FIG. 8. As Fig. 6, but forp52.

FIG. 9. As Fig. 7, but forp52.
01660
he-

lf-

similar solution for a wide range of initial conditions. Thes
results suggest that the self-similar solution in this case
physically significant and in some sense stable. Forp52,
however, we do not observe such a convergence. This
addition to the collapse of the self-similar solution for a tw
photon process, would suggest that it is physically less in
esting.

As mentioned in Sec. II A, saturation of the refractiv
index change occurs in all physical systems, thus preven
unlimited index growth and collapse. Saturated systems
not described by the most interesting symmetries here, h
ever the results in this paper still provide useful informati
about the early dynamics of these systems before the ons
saturation and a deeper conceptual understanding of the
lution of self-written structures generally.
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APPENDIX A: NUMERICAL ANALYSIS OF REDUCED
SYSTEM FOR PLANAR GEOMETRY

Previous studies of self-writing in a planar geometry
not include the numerical analysis of the reduced system
PDEs~27!. We present the results of some numerical sim
lations of these equations forp51 in Fig. 10. As for the
simulations presented for the fiber in Sec. IV B the init
condition is given by the self-similar field solution with
zero initial index modulation profile. It is seen that the ra
for the index modulation grows to a value above 1 and
mains there. To study this further, we have conducted
merical simulations of the full set of PDEs using the sa
numerical domain and initial conditions as for the fiber g
ometry simulations presented in Sec. IV A. Figure 11 sho
the index profile at the end face of the simulation scaled t
constant during the evolution of the waveguide. As in F
10, the results reveal an overshoot of the self-written wa

FIG. 10. Ratio of scaling factors as a function ofZ for the field
amplitude and the index modulation for planar geometry andp
51.
8-10
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guide compared to the self-similar solution. This oversho
which is followed by a slow convergence back toward t
self-similar solution, was not noticed in previous stud
@2,25#.

Finally, the simulation forp52 in Fig. 12 converges
slowly towards the self-similar solution, with both values
mrat approaching 1.

APPENDIX B: SPECIAL RESULTS FOR DpÄ2

1. Primary Lie symmetry analysis

We start with all the symmetries including the spec
symmetry in Eq.~19!. If we forgo taking advantage of th
symmetries associated withVx , Vy , andVQ the characteris-
tic equations simplify to

FIG. 11. Similar to Fig. 4, but for a planar geometry.

FIG. 12. Ratio of scaling factors as a function ofZ for the field
amplitude and the index modulation for planar geometry andp
52.
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dX
1
2 f 8~Z!X

5
dY

1
2 f 8~Z!Y

5
dZ

f ~Z!
5

dT

g~T!

5
dA

2
1

2 H 1

p
f 8~Z!1ġ~T!JA

5
dF

1
4 f 9~Z!R21 l ~Z!1h~T!

5
dN

1
4 f-~Z!R21 l 8~Z!2 f 8~Z!N

. ~B1!

Solving the equations we obtain the similarity variables
the three new independent variables

X̃5
1

Af ~Z!
X, ~B2a!

Ỹ5
1

Af ~Z!
Y, ~B2b!

Z̃5EZ dZ8

f ~Z8!
2ET dT8

g~T8!
~B2c!

and the transformations for the new dependent variables

Ã~X̃,Ỹ,Z̃!5Af ~Z!1/p g~T!A~X,Y,Z,T!, ~B2d!

F̃~X̃,Ỹ,Z̃!5F~X,Y,Z,T!2w~R,Z,T!, ~B2e!

Ñ~X̃,Ỹ,Z̃!5 f ~Z!@N~X,Y,Z,T!2k~R,Z!#, ~B2f!

with

w~R,Z,T!5EZ

k~Z8!dZ81ET

v~T8!dT81g~Z!R2,

~B3a!

k~R,Z!5k~Z!1$g8~Z!12g~Z!2%R2, ~B3b!

and

k~Z!5
l ~Z!

f ~Z!
,v~T!5

h~T!

g~T!
,g~Z!52

f 8~Z!

4 f ~Z!
. ~B4!

Using the transformations~B2! and ~B3! and reintroduc-
ing the complex fieldẼ5Ãei F̃ we obtain the reduced PDE
system involving only three independent variables:

iẼ Z̃1
1

2
¹̃'

2 Ẽ1ÑẼ50, ~B5a!

ÑZ̃1uẼu2p50, ~B5b!

where¹̃'
2 is the transverse Laplacian in the tilde coordinat
8-11



is
ng
e
n

te

na

s
ts

-
nc

-
t

n
n-
o

in
er
di
is

s
tin
s
st
e
es

r
a

oit.

re

nd

two

ring

t of
elf-
in

POLADIAN et al. PHYSICAL REVIEW E 69, 016608 ~2004!
The form of Eqs.~B2! now allows us to interpret the
arbitrary functions that appeared initially in the Lie analys
The function f (Z) represents arbitrary stretching or scali
of the transverse and longitudinal coordinates, which th
also manifests in a rescaling of the amplitude of the field a
the refractive index profile. Likewise, the functiong(T) rep-
resents arbitrary stretching or scaling of the time coordina
which also scales the amplitude of the field. The variableZ̃
can then easily be interpreted as a traveling wave coordi
in the stretched coordinates.

The functionw represents the degree to which the pha
of the field is arbitrary and consists of different componen
The corresponding wave-vector-like functionk is closely re-
lated to the spatial derivative ofw and represents how varia
tions in the phase affect the index profile. The scaling fu
tion f (Z) contributes to a quadratic variation inRacross both
the phase front and the index profile throughg(Z). The ar-
bitrary functionh(T) is proportional to a frequencylike func
tion v(T) which contributes an arbitrary time dependence
the phase of the field throughw. Likewise, the arbitrary
function l (Z) is proportional to a wave-vector-like functio
k(Z) which contributes to the arbitrary longitudinal depe
dence of the phase but also appears as an adjustment t
refractive index profile.

This self-similar solution is quite different from the one
the main body of the paper, since instead of the transv
coordinates scaling with time, they scale with the longitu
nal coordinate. Why this type of symmetry should only ex
for special values ofp is not clear.

2. Secondary Lie symmetry analysis

The reduced PDEs~B5! in three independent variable
can be further analyzed for symmetry properties by repea
the Lie analysis. We represent the vector fields using tilde
distinguish them from the vector fields obtained in the fir
level analysis. We discover a seven-dimensional subspac
symmetries. The first four are basic coordinate symmetri

ṼX5
]

]X̃
, ~B6a!

ṼY5
]

]Ỹ
, ~B6b!

ṼZ5
]

]Z̃
, ~B6c!

ṼQ5X̃
]

]Ỹ
2Ỹ

]

]X̃
5

]

]Q̃
. ~B6d!

The next two represent adding an arbitrary constant o
linear function ofZ to the phase. The latter requires simult
neously adding constant to the refractive index:

ṼF5
]

]F̃
, ~B6e!
01660
.

n
d

s,

te

e
.

-

o

the

se
-
t

g
to
-
of
:

a
-

ṼN5Z̃
]

]F̃
1

]

]Ñ
. ~B6f!

The final symmetry is a scaling symmetry:

ṼS5
1

2 S X̃
]

]X̃
1Ỹ

]

]Ỹ
D 1Z̃

]

]Z̃
2Ñ

]

]Ñ
2

1

p
Ã ]

]Ã .

~B6g!

This last symmetry is the one which we choose to expl
The invariant surface condition is

dX̃

X̃
5

dỸ

Ỹ
5

dZ̃

2Z̃
52p

dÃ
2Ã 5

dF̃

0
52

dÑ

2Ñ
. ~B7!

A set of similarity variables which are denoted by hats a
given by

X̂5X̃/AZ̃, ~B8a!

Ŷ5Ỹ/AZ̃ ~B8b!

with new dependent variables given by

Â~X̂,Ŷ!5Z̃1/pÃ~X̃,Ỹ,Z̃!, ~B8c!

F̂~X̂,Ŷ!5F̃~X̃,Ỹ,Z̃!, ~B8d!

N̂~X̂,Ŷ!5Z̃Ñ~X̃,Ỹ,Z̃!. ~B8e!

The reduced PDE is

2
i

2
~R̂ÊR̂1DÊ!1

1

2
¹̂'

2 Ê1N̂Ê50, ~B9a!

1
2 R̂N̂R̂1N̂2uÊu2p50, ~B9b!

whereD is the transverse dimensionality of the system a

¹̂'
2 is the transverse Laplacian in the hat coordinates. In

dimensions R̂5AX̂21Ŷ2, whereas in one dimensionR̂
5X̂.

The system can be reduced to an ODE by conside
only circularly symmetric solutions leading to

2
i

2
~R̂Ê81DÊ!1

1

2 S Ê91
D21

R̂
Ê8D 1N̂Ê50,

~B10a!

1
2 R̂N̂81N̂2uÊu2p50, ~B10b!

where the prime denotes differentiation with respect toR̂.
We have been unable to find any bound modes of this se
equations using the numerical methods used to find the s
similar solution in Sec. III. We therefore do not study them
detail.
8-12
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APPENDIX C: ALTERNATE SIMILARITY VARIABLES

We already discussed how the choice of symmetries
are exploited leads to the different results. However, e
from a specific set of invariant surface conditions, the cho
of similarity variables is not unique. For example, starti
from Eqs.~23! we could have chosen instead variable co
binations such as

Y/X, ~C1a!
L.

J

in
.D

.

pt

01660
at
n
e

-

X/~Z2Z0!, ~C1b!

X2N, ~C1c!

or indeed any function and combination of the above va
ables and more. For example, tan21(Y/X) rediscovers the
angular coordinate as a similarity variable. A tabulation of
possible similarity variables would be difficult and phys
cally not necessarily productive or illuminating.
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