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Symmetry analysis of self-written waveguides in bulk photosensitive media
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The dynamics of self-written waveguides in bulk photosensitive media is studied in detail and contrasted
with previous results for planar geometry. We investigate the symmetry and integrability properties of the
coupled nonlinear partial differential equations which describe this process. We derive similarity-reduced
differential equations and study some of these equations numerically.
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I. INTRODUCTION materials, andAn is the refractive index change. The first
term in Eq.(1) describes propagation, the second diffraction,
In recent years, considerable progress has been made @md the third accounts for how photosensitive refractive in-
understanding the dynamics of light-induced self-writtendex changes affect light propagation. Only the diffraction
waveguides both experimentally and theoreticilly-3]. A term differs from that considered in R¢L5] due to the extra
self-written waveguide is a waveguide that has evolved duéransverse dimension.
to a propagating beam while the beam is in turn guided by The second equation describes the refractive index evolu-
the evolving waveguide. For example, consider a beam aton. The most general form we consider here is
normal incidence onto the edge of a uniform, unexposed
photosensitive material. The beam initially diffracts in the
waveguide, while the maximum intensity over any transverse
section remains on the propagation axis. Consequently, the
maximum change in the refractive index is along the propawhereF is a function describing how the rate of change of
gation axis. If the refractive index increases due to exposurehe refractive index depends on the intensity and local refrac-
as would be the case for many materials, the modulated praive index.
file acts against the diffraction and confines the light more For the remainder of the paper we work with E@S.and
strongly. Over time this can lead to the formation of a narrow(2) in dimensionless form, by defining
channel around the axis, referred to as a self-written wave-

0An_
T—F(ISLAn), (2

guide. This waveguide can be used to guide light at other T=a§k§noF0t, (3a)
wavelengths as the change in index is long lasting.

Examples of media in which self-writing has been ob- X=xlag, (3b)
served include photosensitive glasses4], electro-optic
crystals[5] in planar geometries, photoresj$t7], photopo- Y=yla,, (30
lymerizable resin[8], uv-cured epoxy{9], and bulk silica
glass[10]. Similar effects are also observed in photorefrac- Z=z/(k0n0a3), (3d)
tive materials[11]. Recently, the interaction of self-written
waveguides has also been studied experimentally and nu- F=FIF,, (39
merically in photopolymerizable resii2]. Even though a
number of studies have been made in plaiséb materials NzagkgnoAn, (3f)

only few attempts have been made to understand the dynam-
ics in bulk materials. Recently Ljungstroand Monro stud-

ied the self-writing effects in bulk chalcogenide glass and
compared the results with their numerical modeling of thisHerea is a characteristic measure of the beam widiis
process. They performed the experiments in bulk Nd-doped 0 L T ) i l
Bk7 glass(Schott Optical, www.schott.com{13] and Ce- a characteristic electric field amplitude, aRg=F(|&|,0).
doped Ga-La-$14] ’ ' ' The normalized equations are thus

Mathematically two equations are used to describe the

E=¢&l&,. (39

. 2 _
self-writing process. One is the paraxial wave equation de- IEz+VIE+NE=0, (43
scribing the propagation of light through the material:
9 e propsd I ToRg Ny — | E[N)=0, (4b)
9 ? 5 ) o
ikghg——+5| —+— |+ kgneAn&E=0, (1)  where the transverse Laplacian is given by
0z 2 [9)(2 2
. i : . - ? 5
wheref is the electric field amplitudeny is the initial refrac- Vie—+— (53)
tive index,ko=2m/\ is the wave number in the unexposed axX?  gy?
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We start with the generic form of the self-writing equa-
tions (4) and introduce the transformation to the real func-
in Cartesian and cylindrical coordinates, respectively, withtions corresponding to amplitude and phase,

X=Rcos® andY=Rsin0.

_ id(X,Y,Z,T)

An important special case that we consider in detail is the E=A(X.Y,ZT)e ’ (8)

power law so that they can be written as
F(l&l,An)=F(|&))=A[&?, (6) Az + LAV D+ AyDy+ AyDy=0, (9a)

whereA is a constant describing the strength of the photo- S AD ALV AL D2+ PDA+NA=0 9b
sensitivity andp is the number of photons involved in the 2tz ViA=2 {Pict Oy} OB
process. For example, for a one-photon process we pave Ny— F(A,N)=0. (90)
=1 while for a two-photon procegs=2. In the normalized
system of equations, this function becomes Let us consider a one-parameter Lie group of infinitesimal

transformations,
F=|E[*. (7)
X—X+e EX(XY,Z,T,AP,N), (10)

All results and figures in this paper are in terms of the
dimensionless quantities defined in E¢(. wheree<1. Analogous transformations are defined for the

In this paper we explore the mathematical properties ofemaining dependent and independent variables. The associ-
the system of nonlinear partial differential equatisROEy  ated vector field is
(4) in detail. To date, theoretical studies of the self-writing
process in bulk geometry have been limited to numerical V:g(X)i+§(Y)i+§(2)i+g(T)i+§(A)i
simulations[4,14]. Using Painleveanalysis[16,17 it has X Y aZ aT dA
been shown that the equations for self-writing in planar ge- 3 s
ometry are nonintegrablel5] for the case of a power-law 4P N (1)
photosensitivity withp=1 or p=2. We have found that the P N
equations for bulk geometry are also nonintegrable with thi
photosensitivity. Since the calculations are virtually identica
to the planar case we do not reprint them here. In order t
construct some exact and physically interesting solutions for 2) _
this problem we use Lie group analy$is3,19, which is one PEEV(A)]3-0=0, (12

of the powerful methods to extract exact solutions for non\here P2V is the second prolongation of the vector field
linear PDEs. It is noted that similarity methods have beeny1) [18,19]. The solution of the resulting determining equa-
applied to Hill gratings[20], stimulated Raman scattering tions arising from Eq.(12) yields the infinitesimals. The
[21], and parabolic pulses in optical fibei22]. presence of free parameters and arbitrary functions deter-
~ The paper is organized as follows. In Sec. Il, we presenfnines the number and type of different symmetries the equa-
Lie symmetry analysis for these equations, discuss the physjions possess. We have used the computer progvamsTH
cal interpretation of the various symmetries uncovered, anth3] andmATHLIE [24] to determine the symmetries. Symme-
use these to construct similarity-reduced PDE involvingtries associated with finite dimensional subspaces are indi-
fewer independent variables. In Sec. lIl, we reduce the equaated with a capital letter, and infinite dimensional symmetry
tions further to obtain a system of ordinary differential equa-groups associated with arbitrary functions are denoted by a
tions (ODESs for which we find a class of self-similar modal |gwercase letter.
solutions. This is the first class of solutions presented for The most general photosensitivity equations support eight

36|f-Writing in a bulk material. In Sec. |V we present numeri- Symmetries and the associated vector f(éju can be writ-
cal analyses of both the full set of nonlinear PDES presenteghn as

above, and also of a particular reduced set of equations. The

numerical solutions are found to converge to the self-similar V=aVyx+bVy+cV,+dVi+eVy+fVy+gVy+V(h),

solution for a wide range of initial conditions, suggesting (13

that the self-similar solution is physically significant. Finally, i _

we give our conclusions in Sec. V. Wh_ere the first fpur symmetries correspond to the homoge-
In Appendix A we present numerical results for the planar"€ity of the spatial and temporal coordinates

case that complement previous studies. In Appendix B we

|sl'he invariance of Eq49) under the infinitesimal point trans-
(f)ormations(10) leads to the invariance condition

show an alternative special case of the similarity reductions Vx=i, Vy=i, (143
which, while having some interesting mathematical proper- X aY

ties, does not lead to physically interesting predictions. Fi-

nally, we discuss alternative similarity variables in Appendix _ 9

C Vz—ﬁ, (14b)
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J B. Power-law photosensitive growth
Vi=—. (140 L
oT We now further specialize to
The next three symmetries correspond to the isotropy of the F(EN)=|E[*, (16)

system and how it behaves under coordinate rotations: ) ) o ) )
wherep is arbitrary. Three new infinite dimensional symme-
J J d tries arise:
Vo=X—G—Y-—=—5. (140 ; ; 5
— — 4 ! -4 " .
; J 5 ; Vy(u)y=u(2) ox tu (Z)Xaq) u (Z)XaN’ (173
Vy=Z-—<+X—, W=Z-—5+Y—= (14e

oX FLON Y FLON J J J
The first symmetry above is a simple rotation about the axis Vy(v)=v(2) aY Tui(2)Y P v (Z)YaN » (179
of propagation. The next two symmetries correspond to tilt-
ing the axis of propagation and simultaneously adding a lin- d . d
ear phase variation to the wave front. The paraxial approxi- Vt(g)zg(T)ﬁ_ﬁ (T)Aﬁ- (179
mation to the wave equation has modified these symmetries
from the pure isotropic case. The first pair of symmetries corresponds to arbitrary stretch-

The last symmetry is an infinite dimensional symmetryjng of the transverse coordinates accompanied by corre-
(since it contains an arbitrary functipand corresponds to Sponding Changes to the phase and index. They contain as
adding an arbitrary function of time to the phase of the fieId:SpeCia| cases the pure translatidda and tilt (146 symme-

tries when the arbitrary functions are chosen to be constant

Vd)(h):h(T)i (14f) or linear, resp(_actively.. The I:_;lst symmetry C(_)rresponds Fo ar-
oP bitrary stretching of time with related scaling of the field

amplitude. It contains the time translation symmetry as a

The planar results can be easily obtained from the abovepecial case when the arbitrary function is taken to be con-
analysis by dis_carding any symmetries that included the ungignt. Wheng(T)=T this last symmetry can be combined
wanted Cartesian coordinate. with the scaling symmetry to yield an alternative scaling

symmetry,
A. Nonsaturating systems

We now assume that the photosensitive growth kw Vg =Zi + 1 Xi + yi} - iAi —N i_
does not depend on the refractive index distribution, ., gz 2 X ~adY] 2p dA 4N
=F(&). This implies that the changes do not depend on the (18)

current value of the index, which precludes effects such A% is symmetry is more convenient to work with in the
saturation. However, all real physical systems exhibit some . ,

form of saturation that prevents the refractive indeghang- power-law case because it commutes viiWg).

ing without bound. The maximum value & achievable ) _

depends both on the writing conditions and the material. An C. Special symmetries

analysis of the effect of saturation on the evolution of self- The power-law equations support a further symmetry
written systemg2] suggests saturation values as largdNas which only occurs for specific values of the parameter
~160 for photopolymers but onli{~ 15 for typical photo-
sensitive glasses. Nevertheless, the nonsaturating approxima-
tion is a physical model under a variety of situations and
provides useful understanding of the system even in cases
where it is not perfectly accurate. In addition, it is a good N f'(Z)[ ad g 1 4 i)

J R? J d
VZ(f):f(Z)ﬁnL T f”(2)5+f’”(2)m

model for the initial evolution of a photosensitive system, 2
since the effect of saturation is then weak.

When F= F(&) two new symmetries emerge: (19

This symmetry contain¥,; and Vg as special cases when

1 . S .

\/SzziJr - xi+yi] —Ti— Ni, (159 the arbitrary function is taken as constant and linear, respec-
0z 2| X Y a N tively. The above symmetry emerges from E&R) with the
condition

Vi, (H=1(Z i+I’ Z)i (15b)
W(D=12) -5 +1"(D) -5 (Dp—2).Af"(2)=0, (20)

The first is a scaling symmetry. The second symmetry allowsvhereD is the transverse dimensionality. Thus the special
an arbitrary function o to be added to the phase, provided values ofp=2/D emerge from the prolongation, and the two
its derivative is added to the index profile. special cases of the symmetry that sati$f{(Z)=0 are
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present for all values op. In the planar case the special tions of T andZ to the phase of the field do not yield inter-
symmetry exists whep=2, in the bulk case it exists when esting physics and are also discussed in Appendix B. We also
p=1. choose not to exploit any symmetry that destroys the sym-
metry in ®. Thus we retain the subgroup spanned by the
D. Commutators symmetries V=V,(g) +V,(f) with f(Z)=2s(Z—-Z2,) re-

Th tators bet th ¢ stricted to a linear function of as a consequence of Eq.
€ nonzero commutators between these symmetry OR'ZO). The relevant invariant surface condition is then
erators reveal how the symmetries can be exploited. Com-

muting symmetries can be exploited serially, because using dx dy dz dT
one to reduce the order of the equation leaves the other sym- —=—= =
metry intact. If the symmetries do not commute, then they SX sY 2s(Z=Zo) g(T)

must either be exploited together or one symmetry must be

" : 2pdA do dN
abandoned. For example, exploiting rotational symmetry re- - - - (23
quires abandoning transverse translational symmetry and (9(T)+254 O 2sN

vice versa. Even exploiting noncommuting symmetries si- ) )
multaneously usually leads to uninteresting results. For ex¥Ve see that we can take=1 without loss of generality.

ample, fields which are simultaneously rotationakyd Solving for a similarity variable gives
translationally symmetric are not very interestitiigey tend _
to be constant and thus not localize@ihe nonzero commu- X=¢(T)X, (24a
tators for the most general symmetries are given below. The
commutators for the special cases can be extracted directly Y= (MY, (24b)
from the general cases:
5_ 25
[Vi(U) V(U] =V (uaus—ujuy), (213 2= (D220, (249
., with the dependent variables scaling as
[Vy(02).Vy(02)]=Vy(vws—vivy), (21D P ?
’ ’ ~ T, \/g(T) 1/p
[Vo(f1),Vo(f2) 1=V, (f1f5—1f5), (219 AXN.2)=| ] AXY.ZT), (24d)
Vi(g1),V =V(919,— 9192), 21 I
[Vi(91),Vi(92)]=Vi(9192—09192) (210 BXIZ2)=DdX,Y.Z,T), (249
[Vx(u),Ve]=Vy(u), (219 )
[Vy(v),V@)]: _VX(U)1 (21f) N(X'Y'Z): ¢2(T) N(X’Y’Z’T)' (240
[Ve(u),Vo(F)]=V,(zuf’ —u’f), (219  where
=V, (:vf' —0v’ T dT’
[Vy(0),Vo()]=Vy (ot —v'f), (21h M):exp( s 25
. g
[Vi(9),V4(h)]=V4(gh'), (21i)
. or equivalently
[VA(5),Vy(D]=V,(171). (21))
BT
E. Reduced system 9(M)= &(T) ' (26)
Similarity variables can be obtained by solving the invari-
ant surface condition given by the equations The reduced PDEs are
dX _dY_dZ_dT_dA _dd _dN iE3+1V2E+NE=0, (273
0T E T fD g g @ e (22
2N+ XNy + YNy +2ZN3 — |[E|?P=0. (27b
These equations are difficult to solve in complete generality,
and moreover would yield expressions difficult to interpretNote that
physically. Thus, by carefully examining the commutator L
structure and the physical meaning of the various symmetries RNz=XNx+ YNy (28
we explore a particular subset of symmetries and similarity
variables. in cylindrical coordinates and thus the angular dependence

We defer discussion of the special symmetri@8) to  never explicitly appears in the photosensitivity equation.
Appendix B. The symmetries associated with adding funcEquations(27) are investigated numerically in Sec. IV.
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F. Scaling laws geometry, this would occur for a three-photon process, but in

Before we study the system further we discuss the physi@ PUlk geometry a singularity occurs for the two-photon pro-

cal significance of the transformations. The arbitrary function®®SS:
¢(T) produces a scaling of the transverse coordinates. While
the transverse coordinates shrink, the longitudinal coordinate G. Secondary Lie analysis

shrinks as the square gi(T) and the height of the refractive  The reduced PDEQ7) in three independent variables can
index profile grows correspondingly. The amplitude of thepe fyrther analyzed for symmetry properties by repeating the
field profile also grows but with a different dependence onje analysis. We represent the vector fields using tildes to
¢(T). This is precisely the kind of behavior seen in experi-gjstinguish them from the vector fields obtained in the first-
ments and numerical simulations once a waveguiding strugzye| analysis. The analysis uncovers a three-dimensional

ture has formed. _ . _ subspace of symmetries:
Experiments and numerical simulations have a constant

input field, usually with a Gaussian profile. Although it is not
possible to introduce this condition into the above solution, Vo=X—=—-Y==—7, (343
the total power can be required to be constant. Imposing this
condition leads to a specific form for the previously arbitrary
function ¢(T). ~ d

The total power in the original and reduced systems can Vq’_r@' (34b)
be written as, respectively,
2 Vy=logZ— + = (349
= E|“dA, 29 =100L—= + = —=, C
P f €l (299 NT9CE T 7 N
~ S and one more symmetry which only exists whHer- 1,
7?=f |E|“dA, (29b
- 1% X 0 X 9
where in both cases the integration is over the complete VX_\/ZWJFZ\E@_A'ZWW' (340
transverse cross section. Note tf¥%is a pure constant. Com-
paring the two power expressions yields We have not discovered any physically appealing similarity
reductions using these symmetries, apart from the restriction
P (¢(T)2) W q 30 to a circularly symmetric solution, which we discuss in Ap-
b —, 30 ix B.
%\ g(T) H(T)P pendix B
whereD is again the transverse dimensionality of the system. lll. SELF-SIMILAR MODAL SOLUTIONS

Rearranging Eq(30) and requiring the total power in the

- ' - | i In this section we restrict our attention to the bulk geom-
original system to be independent Diyield the differential

etry since the planar case has been dealt with previously

equation [25]. Our aim is to explain mathematically some of the fea-
b tures observed in experiments and numerical simulations. A

¢ _[P|" pp-1 careful investigation shows that when the self-written wave-
aT 7:; ¢ ' (31) guide evolves, its shape appears to remain approximately

constant even though its depth and width change. A modal
generalizing earlier work by Monret al. [25]. When p solution has the properties trlat the waveguide and the inten-
+2/D the scaling has a power-law behavior sity profile are independent &, and that the phase is inde-
pendent of any transverse coordinates and linear. idith-
out loss of generality we tak&=7Z. Furthermore, we only
consider cylindrically symmetrical modes. Inserting these as-
sumptions into the PDE from the preceding section yields the
ODE

(T-T) . (32

P p 1/(2—Dp)
¢(T)=[(2—Dp) ]

whereT, is a constant of integration. In the special c@se
=2/D the scaling law becomes exponential,

¢(T)=exp{ (7—3
P

We make the following general observations. The scaling S _ o _
function ¢(T) is always monotonically increasing. It reaches where the prime indicates differentiation with respect to the
a singularity within a finite timd; whenDp>2. In a planar  only remaining independent variabie

b +(N-1)A4=0, (359

1 “An 1""/
5 A +,§A

(T—Ti)]. (33
2N+RN’ — A2P=0, (35h)
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25 . . . . . .
—N
---A
2.
1.5¢ )
1 -
0.5} |
0
0 5 6
FIG. 1. Self-similar solutions of the self-writing problem for FIG. 2. As Fig. 1, but fop=2.
one-photon process. The dashed and solid lines represent the shapes '
of the field modeA and the refractive index profil, respectively. ®
All quantities in this and subsequent figures are in dimensionless V:f dR\/N. (39
0

units.

Given the asymptotic form of the index modulation, it is seen
that the waveguide has an infinkevalue, and according to
WKB theory would guide an infinite number of discrete
P guided modeg?27]. We have studied a number of these
N 1B al 6(T)%Z modes and found that they display unusual behavior. Starting
E(R.©,2,T) \/7;¢>(T)A(R)e ’ (363 from the fundamental mode, the modal profile of successive
guided modes are decreasingly well confined, while their
N(R,®,Z,T)=¢(T)2N(R). (36b) propagation constants are closer together and tend toward a
constant. This contrasts with a simple index profile, such as a

In this form we can identify the propagation constant inStep index waveguide, for which the modal fields have

To summarize, we used the following transformation to
transform Eq.(4) to an ODE(35):

terms of the scaling law: roughly similar levels of confinement, and the separation be-
tween propagation constants of successive modes increases
B(T)=(T)?. @7 [27].

These results are useful for understanding the properties
of a self-written waveguide that follows a self-similar evolu-
tion. From the perspective of the fundamental mode, all other

Solving Egs.(35) we can find the shapes of the mode andguided modes are poorly confined and have near identical
refractive index. We use a one-dimensional shooting methogropagation constants. One would therefore expect to ob-
to solve these coupled system of ODEs. We search for gerve behavior consistent with a single-mode waveguide
value of A(0) that gives a solution which vanishes at laRje rath'er thar) a multimode structure. This wou!d allow an ef-
and has finite poweP. The value of\/(0) follows automati- fect!vely single-moded waveguide to be written relatively

~ easily.
cally from A(0) through _Eq.(36b). We USeMATHEMATICA Previous work in this area has noted a beating process in
[26] to do so and solutions for the one- and two-photon

o S a numerical analysis of the growth of a self-written wave-
photosensitivity processes are shown in Figs. 1 and 2, reguide in the planar geometf2]. We can see from the dis-

spectively. The modal poweP in these reduced systems is tripution of the effective indices of guided modes that the
found by squaring and integrating the transverse shap&seat lengths would be practically identical for beating with
A(R). For the one- and two-photon processes we find any one of the other guided modes and also for the lowest
=14.0517 and 4.527 72, respectively. order radiation modes.

If we map the self-similar waveguide back to the original
coordinates, we find that it displays some unusual linear |v. NUMERICAL ANALYSIS OF FULL AND REDUCED
guidance properties. It has previously been shown for the SYSTEMS
planar case that the index profile in the tails decayRa$
[2], and it can be seen from Eq85) that this is the case for
bulk geometry also. We define thévalue of a fiber geom- The study of photosensitive materials can help understand
etry waveguide as follows: the growth dynamics of self-written optical waveguides. The

Modal and index profiles

A. Numerical confirmation of self-similar evolution
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self-similar solution derived above describes the evolution of 3
a waveguide from an initial condition that can be appropri-
ately rescaled in magnitude and in the transverse dimension |
to match the index modulation profile defined by the self-
similar solution itself, and which is independent of the lon-
gitudinal dimensionZ. The input field must also continu- 1
ously scale with the solution over time, starting from the
same scaling factor as the initial index modulation profile. g 4|
This is clearly a severely limiting set of conditions. 2
We are ultimately interested in the formation of a wave-
guide from an initially unexposed, uniform photosensitive [ _.
waveguide under illumination by a constant source. In this

system it would be particularly interesting to investigate o, - —pZ2) |
whether one can observe the stable formation of a waveguidi | ¢ - mf‘z"_(f;z)
and if so, how the evolution and features of the waveguide e rnax_(2=4)
compare with the self-similar solution obtained above. Such -3, 5 0 15 20 25 30 a5 40
analysis must be carried out numerically by integrating Egs. T

(4). We implemented a finite-difference scheme to do this. - . .
F ffici h d . i FIG. 3. Variation of the natural logarithm of numerically ob-
Qr N ICIenC.y reasons, we have express'e Bgsin cylin- tained transformed scaling factors vs time fior 1 and aZz=2 and

drical coordinates and assumed an azimuthally symmetrig ; ;

. . : - 4 along the propagation axis.

input condition, and therefore also azimuthally symmetric

solutions. The simulation is therefore no more computation

ally intensive for the bulk geometry than for the planar case
Studies of planar materials have revealed the remarkab

result that after an initial response period, the growth dynam-

ICS Of_ a self-wrlttgn wavegwde tend towards those of thqntensity within the simulation. It should be noted that the
self-similar evolution to a high level of accuracy fpr=1  y,a nower within the numerical domain is constant and de-
and 2[25]. We have carried out a similar analysis in the bulkﬁned by the excitation condition @&=0. This is because we
geometry case. - » have used a zero field boundary condition and there is no
The equations descnblng_ the self—V\_/ntlng system hav bsorption in the simulation. On the other hand, it is possible
been analyzed for a normalized domain of radius 20 andy egtimate the power contained within the waveguiding re-
length 4. An input condition of a Gaussian beam with W'dthgion by limiting the integration domain. We choose the inte-

1 unit at 1# field strength was used and the simulation wasg a+ion, |imits according to the width of the index modulation
conducted over a time period of up to 40 units. The '”de)?egion N, aS

profile was monitored aZ=2 andZ=4 (i.e., midpoint and

end face of the simulationThe data were analyzed by com- 3pn

paring profiles with the self-similar solution at each point in P“f 27RARE(R)[?. (40)
time. The evolution of the peak value and the width of the 0

profile are obtained at given timék and positionsZ, and
these converted into scaling factors by dividing by the ap
propriate quantities for the self-similar solution. A simple
numerical estimate of the width was obtained by taking th
point at which the index change drops to half of its peakt
value. (
We denote the two scaling factor quantities obtained in
this way asS;,,x andS,, where the subscriptsiax and p
refer to the maximum value and the width, respectively. Ac- _ _ o
cording to the self-similar solution, the evolution of these For p=1, the scaling functionj(T) of the self-similar
scaling factors should be related to a single funcgg(T),  Solution grows exponentially with time according to Eg.
whose form is related to the parameperand the ratioP/P., (33). If the numerical system behaves analogously, then a

L : L logarithmic plot of each of the numerically inferred scaling
fSogl)lisgc.:ally, the scaling factors should evolve with time aS:_tors SmadT) and ¢,(T) with time should follow a

straight line. Natural logarithms are used throughout this pa-
Smax= #(T)?, per. The gradient of this line should be the power r&i@®,
where the reduced modal power was given abovePas
=14.0517. Figure 3 shows such a plot. The behavior seems
to match that predicted in the self-similar solution well at
both the midpoint and end face of the simulation. The lines
The analysis of a given numerical system should yield theseonverge well around ~ 14 and follow a fairly straight line,

scaling factors, which can be transformed to estimates of the
scaling function, denoted by,,(T) and ¢,(T), respec-
ely.

The powerP can be estimated directly by integrating the

We analyze the numerical data in terms of these measures
‘of the scaling function and power fgg=1 andp=2, re-
spectively. It is noted that the self-written waveguide at all
imes in these simulations has a finitevalue, as opposed to
he fully self-similar solution which has an infinité value
Sec. ll)).

1. Numerical analysis—p=1

S,=1/¢(T). (39
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FIG. 4. Evolution of the refractive index with time normalized  FIG. 5. Plot of variation of the numerically obtained scaling
to a profile of constant width fop=1 atZ=4. Starting fromT factors as a function of time fqp=2 and atZ=2 and 4.
=0, the zero line, subsequent times at intervals of 2 units are char-
acterized by an increasing index at the origin. The thick line indi- B. Numerical analysis of reduced system of equations

cates the self-similar solution. The self-similar solution is essentially a mode of the re-

duced system of PDER7), so that its stability can be stud-

with a gradient of roughly 0.085. The straightness of thejed through numerical simulations of this system. It is noted,
lines is remarkable given that the scaling factor varies by &owever, that the self-similar solution presented in Sec. Ill is
factor of about 30 within this plot. We estimate the powerone of a family of modes that can be obtained depending on
using Eq.(40), and obtain the value 1.33, which leads to athe choice of the propagation constant in E86a. These
gradient of 1.33/14.05%70.094. This power ratio is consis- modes are simply scaled relative to one another, and can be
tent with the gradient of the lines given above. obtained from the self-similar solution in Sec. Ill by the sub-

We next observe the evolution of the index with time atstitutions
the end face. This illustrates the growth of the solution to-

wards a self-similar form. To demonstrate the evolution, we N—mN, (413
normalized the profile at each time to a constant width given
by that of the self-similar solution. The strength of the index A—mY2 4, (41b
profile is normalized by the inverse square root of the scaling
used on the width, to be consistent with the self-similar so- RoR/m, (410

lution. We lay the plots at different times on the same graph,

shown in Fig. 4 fromT'=0 to T=40 at intervals of 2 units. \yhere the propagation constant of the scaled solution is sim-
Successive curves converge upwards towards the self-S|m|I%|iy me(T)2. We now present the results of numerical simu-

solution. lations of Eqs.(27), and look for convergence of the field
and index modulation terms toward such a scaled self-similar
2. Numerical analysis—=2 solution.
For p=2, the scaling functions(T) of the self-similar Our simulations have been obtained using a pair of finite

solution evolves according to E32). In contrast to thep  difference schemes representing each of E2g. For each

=1 case, this solution collapses in finite time. Figure 5Propagation step, we iterate over both schemes to obtain a
shows the variation in the transformed scaling factors inSolution to both PDEs simultaneously. To confirm the stabil-

ferred from numerical analysis of the system o2 with ity and accuracy of this method we checked that the self-

time at the midpoint and end point of the simulation. We noSimilar solution presented in Sec. Ill propagates as a guided

longer observe convergence of the curves, however there [80de of the system. We then conducted simulations for
clearly an abrupt change in the system arodd7, at vyhlch the initial conditions differ from the self-similar solu-
which point the scaling factors for the index modulation 10N
grow rapidly and the scaling factors for the field profile fluc-
tuate wildly. This would appear to be the numerical repre-
sentation of the collapse of the self-similar solution. We consider an initial condition given by the self-similar
The lack of convergence of the curves prior to the col-field solution in combination with a zero index modulation.
lapse could be caused by the fact that the collapse occurs Rigure 6 shows a contour plot of the results of such a simu-
a relatively early time—in th@=1 case, convergence is not lation for the fiber geometry witp=1. It suggests the con-
observed until much later. vergence of the solution toward some mode. We compare

1. Fiber geometry—p=1

016608-8



SYMMETRY ANALYSIS OF SELF-WRITTEN . .. PHYSICAL REVIEW B9, 016608 (2004

FIG. 7. Ratio of scaling factors as a function offor the field
amplitude and the index modulation for fiber geometry amdl.

2. Fiber geometry—p=2

The fiber geometry witlp=2 displays a different behav-
ior, as seen in Figs. 8 and 9. No convergence toward a self-
similar solution is obvious from the plots, while the values of
both ratios remain below 1 at all times aft&=0. This
suggests some kind of instability of the self-similar solution.
This result is consistent with the simulations of the full sys-
tem of PDEs in Fig. 5.

The numerical results presented here are representative of
ZZ the wide range of input conditions that we have analyzed.
) ° 2 4 . 6 8 10 The stability of the system fop=1 and instability forp

=2 with fiber geometry can be observed as the initial index
profile varies over a broad range of strengths relative to the

FIG. 6. Contour plot ofa) field amplitude propagation arith) ~ self-similar solution. Equivalent results for the planar geom-
index modulation evolution in the reduced $27) for a fiber ge-  etry are included in Appendix A.

ometry andp=1, and with an initial condition for the field given
by the self-similar solution and a zero initial index. The brighter
areas represent higher values of the field or index.

V. CONCLUSIONS

this to a scaled self-similar solution as before by looking at e have presented a Lie symmetry analysis for the sys-

the maximum values and widths of the field and index modut€M of equations that describe self-writing in a bulk material.

lation. This is achieved by finding the appropriate scalimg '(Ij’_he phy(s;cal dlr][therg;e:wagl/oen b(;fe;hﬁs\égrlg)uioii?ﬂftgﬁiIaarrie i
relative to the self-similar solution from E(¢1) for both the Iscussed and the ty

peak value and width. The ratio of these two factars reduce_d _PDEs involvi_ng fewer independent variables. The
o ' . a analysis is presented in a general form so that the results are
:mm?X/_mP) |nd|_cates how well the 59'““_0” matches the also valid for a planar geometry. We have further reduced the
;elf-§|m|lar slolu.t|on. Ifm, <1 thg solution is too weak for equations to find, to our knowledge, for the first time a class
its width, while if m.,,>1 then it is too strong. of self-similar modal solutions for bulk materials with a
Figure 7 shows the variation of the ratiwg,, for both the  power-law photosensitivity. These solutions are analogous to

field and index modulation as a function &f The initial  the self-similar solutions that were previously obtained for
conditions set the initial values of the ratio for the field to bethe planar case. In contrast to these previous results, how-

1 while that for the index to be zero. The ratio for the indexever, we find that the self-similar solution in the bulk geom-
modulation then converges uniformly towards 1 while thatetry for p=2 collapses in finite time, and, more generally,
for the field remains close to 1 for all times. This indicatesthat the solutions collapseshifp>2, whereD is the number
that it is possible to join an unexposed section of materiabf transverse dimensions apds the order of the photosen-
with a self-similar waveguide in this case. This result is con-sitivity process. This collapse appears to be analogous to the
sistent with the simulations of the full system of PDEs in collapse of high-dimensional solitons. We also find that for
Fig. 3. p=1 the self-similar refractive index solution has/anum-
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FIG. 8. As Fig. 6, but fop=2.
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FIG. 10. Ratio of scaling factors as a functiondfor the field
amplitude and the index modulation for planar geometry and
=1.

similar solution for a wide range of initial conditions. These
results suggest that the self-similar solution in this case is
physically significant and in some sense stable. por2,
however, we do not observe such a convergence. This, in
addition to the collapse of the self-similar solution for a two-
photon process, would suggest that it is physically less inter-
esting.

As mentioned in Sec. Il A, saturation of the refractive
index change occurs in all physical systems, thus preventing
unlimited index growth and collapse. Saturated systems are
not described by the most interesting symmetries here, how-
ever the results in this paper still provide useful information
about the early dynamics of these systems before the onset of
saturation and a deeper conceptual understanding of the evo-
lution of self-written structures generally.

ber that diverges, but that the associated waveguide nonethe-
less effectively behaves as if it were single mode.

For p=1, numerical simulations of the full and reduced
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APPENDIX A: NUMERICAL ANALYSIS OF REDUCED
SYSTEM FOR PLANAR GEOMETRY

Previous studies of self-writing in a planar geometry do
not include the numerical analysis of the reduced system of
PDEs(27). We present the results of some numerical simu-
lations of these equations fgr=1 in Fig. 10. As for the
simulations presented for the fiber in Sec. IV B the initial
condition is given by the self-similar field solution with a
zero initial index modulation profile. It is seen that the ratio
for the index modulation grows to a value above 1 and re-
mains there. To study this further, we have conducted nu-
merical simulations of the full set of PDEs using the same
numerical domain and initial conditions as for the fiber ge-
ometry simulations presented in Sec. IV A. Figure 11 shows
the index profile at the end face of the simulation scaled to a
constant during the evolution of the waveguide. As in Fig.
10, the results reveal an overshoot of the self-written wave-
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3 ' ‘ ' ' ' ' ' dx dy dz  dT

tx ity 2 oM

dA

11 .
—E{Bf (Z)+9(T)]A

dd
 LE(Z)R2+1(Z)+h(T)

- dN -
C LemZ)R2+11(Z)— (2N

Solving the equations we obtain the similarity variables for
the three new independent variables

FIG. 11. Similar to Fig. 4, but for a planar geometry. ~ 1
X=—=X, (B2a)
. - : . Vi(2)
guide compared to the self-similar solution. This overshoot,
which is followed by a slow convergence back toward the 1
self-similar solution, was not noticed in previous studies Y=—=V, (B2b)
[2,25. Vi(2)
Finally, the simulation forp=2 in Fig. 12 converges
slowly towards the self-similar solution, with both values of 5 fz dz" J'T daT’ (820
m,5; approaching 1. f(z") g(T")
and the transformations for the new dependent variables
APPENDIX B: SPECIAL RESULTS FOR Dp=2 ~ o~~~
AXY,2)=\H@2)Pg(MAX,Y,ZT), (B2

1. Primary Lie symmetry analysis

D(X,Y,2)=d(X,Y,Z,T)— ¢(R,Z,T), B2
We start with all the symmetries including the special ( ) ( g ) (B2

symmetry in Eq.(19). If we forgo taking advantage of the N AVE I _
symmetries associated with,, V,, andVg the characteris- NXY.H=HDINXY.ZT) - «(R2)], - (82D
tic equations simplify to with

Z T
¢(R,Z,T)=f k(Z’)dZ’+f o(THdT + ¥(Z2)R?,

—A

Y (B3a)

1.2¢ |
K(R,Z)=K(Z)+{'(2)+2¥(2)*}R?, (B3b)

(L |

/\/\____.4 and

<Y SRS 1 @ o hm @
£ ol //”’ | ( )_f(z)aw( )_g(T)J’( )_ 4f(z) ( )

// Using the transformation82) and (B3) and reintroduc-
o4r ] ing the complex fieldE =_4e'® we obtain the reduced PDEs
oz ' system involving only three independent variables:

2
" I T
N iEz+ SVZE+NE=0, (B5a)
0 5 10 15 20 , 25 30 35 40 45
FIG. 12. Ratio of scaling factors as a functionsfor the field Nz+|E|?P=0, (B5h)
amplitude and the index modulation for planar geometry and -
=2. whereV? is the transverse Laplacian in the tilde coordinates.
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The form of Egs.(B2) now allows us to interpret the o 9
arbitrary functions that appeared initially in the Lie analysis. Vy=2—=+—=. (B6f)
The functionf(Z) represents arbitrary stretching or scaling gd oN

of the transverse and longitudinal coordinates, which then ) ] ) _
also manifests in a rescaling of the amplitude of the field and he final symmetry is a scaling symmetry:
the refractive index profile. Likewise, the functigT) rep-

resents arbitrary stretching or scaling of the time coordinates, ¢, _ 1/ 7 ¢ 7 +2£—Ni—£~i
which also scales the amplitude of the field. The variable S 2\ g% 4y 9z N P A
can then easily be interpreted as a traveling wave coordinate (B69)

in the stretched coordinates. . ) ) )
The functione represents the degree to which the phaselhis last symmetry is the one which we choose to exploit.
of the field is arbitrary and consists of different components.The invariant surface condition is
The corresponding wave-vector-like functieris closely re- L _ - _
lated to the spatial derivative of and represents how varia- dX dY dz  dA d® dN
tions in the phase affect the index profile. The scaling func- %X v 27 A N (B7)
tion f(Z) contributes to a quadratic variationfkacross both
the phase front and the index profile throug{Z). The ar- A set of similarity variables which are denoted by hats are
bitrary functionh(T) is proportional to a frequencylike func- given by
tion w(T) which contributes an arbitrary time dependence to
the phase of_ the field. through. Likewise, the; arbitrary K=XI\Z, (B8a)
function [ (Z) is proportional to a wave-vector-like function
k(Z) which contributes to the arbitrary longitudinal depen-
dence of the phase but also appears as an adjustment to the
refractive index profile.
This self-similar solution is quite different from the one in
the main body of the paper, since instead of the transverse -

Y=Y/\Z (B8h)

with new dependent variables given by

S o ST TS

coordinates scaling with time, they scale with the longitudi- AXY)=ZPAX,Y,2), (B80)

nal coordinate. Why this type of symmetry should only exist o

for special values op is not clear. O(X,Y)=d(X,Y,2), (B8d)
2. Secondary Lie symmetry analysis N(f(,\?) ='ZN(7(,?,'Z). (B8¢)

The reduced PDE$B5) in three independent variables The reduced PDE is
can be further analyzed for symmetry properties by repeating
the Lie analysis. We represent the vector fields using tildes to

P , . ; . [N R DA
distinguish them from the vector fields obtained in the first- — = (REg+DE)+=V2E+NE=0, (B9a)
level analysis. We discover a seven-dimensional subspace of 2 2
symmetries. The first four are basic coordinate symmetries: .
RN+ N—|E[?P=0, (B9b)
~ J
VXI&' (B6a  whereD is the transverse dimensionality of the system and
V2 is the transverse Laplacian in the hat coordinates. In two
9 dimensions R=\X2+ Y2, whereas in one dimensioR
VYZEy (B6b)  _ g
The system can be reduced to an ODE by considering
J only circularly symmetric solutions leading to
Vy=—, (B60)
" | Rerepe e[ Pt | Re=o
J 14 d E( ) 2 T B
Vo= S~V = —. B6 (8109
TN X o0 (869
RN’ +N-—|E|?P=0, (B10b)

The next two represent adding an arbitrary constant or a
linear function ofZ to the phase. The latter requires simulta-

neously adding constant to the refractive index: where the prime denotes differentiation with respecRto

We have been unable to find any bound modes of this set of

equations using the numerical methods used to find the self-

Vo=— (B6e) similar solution in Sec. Ill. We therefore do not study them in
Z100) detail.
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APPENDIX C: ALTERNATE SIMILARITY VARIABLES XI(Z~2Z,), (C1b)

We already discussed how the choice of symmetries that )
are exploited leads to the different results. However, even XN, (Cl9
from a specific set of invariant surface conditions, the choice ) o )
of similarity variables is not unique. For example, starting®" indeed any function and combination of the above vari-

from Egs.(23) we could have chosen instead variable com-2bles and more. For example, taY/X) rediscovers the
binations such as angular coordinate as a similarity variable. A tabulation of all

possible similarity variables would be difficult and physi-
Y/X, (Cla cally not necessarily productive or illuminating.
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