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Spatial and temporal structures of ultrawide-band high-frequency fields can be appreciably affected by
random changes of the medium parameters characteristic of almost all geophysical environments. The disper-
sive properties of random media cause distortions in the propagating signal, particularly in pulse broadening
and time delay. Theoretical analysis of pulsed signal propagation is usually based on spectral decomposition of
the time-dependent signal and the analysis of the two-frequency mutual coherence function. In this work we
present a new reference-wave method and apply it to solving the equation of the two-frequency mutual
coherence function propagator. This method is based on embedding the problem into a higher-dimensional
space and is accompanied by the introduction of additional coordinates. Choosing a proper transform of the
extended coordinate system allows us to emphasize “fast” and “slow” varying coordinates which are conse-
guently normalized to the scales specific to a given type of problem. Such scaling usually reveals the important
expansion parameter defined as a ratio of the characteristic scales and allows us to present the equation being
solved as a hierarchy of terms having a decreasing order of expansion with respect to this parameter. We
present an analytical result for the two-frequency mutual coherence function propagating in a random medium
with arbitrary refractive index fluctuations and show that when approximating the transverse structure function
of the medium by a quadratic form, the solution reduces to the exact result derived previously. Extension of the
reference-wave method to the analysis of the pulse distortion effects is considered.
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[. INTRODUCTION tistical moments of the wave field for different frequencies
and different positions. For example, the second-order space-
Attempts to improve the resolving abilities of modern ra-time statistical moment and the average intensity of pulsed
dar, sonar, and other wave-based remote sensing systemignal can be expressed as a spectral integral of the spatial
have stimulated the ongoing trend of the exploitation oftwo-frequency mutual coherence functiofFMCF).
ultrawide-band signal$§l]. This trend also finds extensive In order to describe the time evaluation of pulses of
support in communication engineering because of the exsimple form, the mean arrival time and average pulse width
panding demands for high-data-rate communication charare sufficient. The temporal moments can be estimated with-
nels. The spatial and temporal structures of ultrawide-bandut needing to solve the equation for the TFMCF by using
high-frequency fields can be appreciably affected by changethe technique commonly used in quantum mechaf®s
of the medium parameters characteristic of almost all geowhich has also been adopted for random propagation prob-
physical environments. For example, the propagation of eledems [4—6]. This technique is based on knowledge of the
tromagnetic waves is influenced by scattering and absorptioderivatives of the TFMCF for zero-frequency separation. It
induced by the prevailing meteorological conditions, espehas, however, a limited applicability and is suitable only for
cially precipitation, by the effects of fluctuations in the re- the description of a simple form of pulse. In general, a de-
fractivity of the atmosphere, and by the electronic concentrascription based on the mutual two-frequency coherence func-
tion in the ionosphere. The occurrence of most such changd®n is required.
is unpredictable, requiring the application of stochastic The exact solutions for the TFMCF have been obtained
analysis. for only two limiting cases. The first is valid for the regime
The dispersive properties, characteristic of random mediagf weak intensity fluctuationg2], and the second is based on
cause distortions in the propagating signal, particularly inthe approximation of the transverse structure function by a
pulse broadening and time delf3]. Theoretical analysis of quadratic forn{7—-10]. A quantitative extension of the strong
pulsed signal propagation, especially in a dispersive mediunfluctuation case can be made by using the extended
must be based on spectral decomposition of the timeHuygens-Fresnel principlgll]. A two-scale asymptotic ex-
dependent signal in order to solve a reduced equation for thgansion procedure has been efficiently applied to solving the
time-harmonic field. Consequently, the space-time correlatwo-point coherence equations in complicated environments
tion properties are expressed as spectral integrals of the std@2—15. This method has also been extended to the case of
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the bichromatic coherence equatigdk6]. It was shown that [l. FORMULATION OF THE PROBLEM

although the approach does not lead to a universal solution, it We consider a constant-background medium on which is
provides a good approximation for limited propagation d's'superimposed a weak random pfr,o). Such a random
tances and over a narrow frequency separation range. 0. i m'is represented by the refractive index

some cases the TFMCF equation can be transformed into a

separable form and solved by using the modal expansion for N(r,o)=1+T7(r,o). 1)
various source excitatiod7-19. The similarity between
the equation for the parabolic-wave amplitude and Sthro The §tatistical properties of the medium are.assumed to be
inger’s equation describing the movement of a quantum pa,desqubgd by the&corr_elated correlation function of the re-
ticle lead to the possibility of a description of wave propa- ractive index fluctuations:
gation in random media by using the Feynman path-integral
solutions[20—-23. The path-integral solutions have been ap-
plied for construction of the expression of the TFMCF andwe start with a pulsed-wave source that radiates in some
evaluated using the cumulant technigl@4]. The path- preferred direction a pulse
integral expression of the TFMCF has been also evaluated by )
using the variational principl§25]. In the Ref.[26] the f(t)=Tfo(t)expliwot), (33
TFMC_F has been cpmputed by using the iterative eXpanSiOR/ith the spectrum envelope
of an integral equation.

This work is based on a reference-wave method previ- F (o) f

w)=

Bn(ri—rp,01—02)=A(r1—r3) (01— 03). (2

ously developed for solving parabolic-type wave equations
[27]. Here we apply it to solving the equation of the two-
frequency mutual coherence function. This method is basedentered around the frequeney, which determines the im-
on embedding the problem into a higher-dimensional spacportant frequency band. We assume that the high-frequency
and is accompanied by the introduction of additional coordi-propagation conditions are satisfied—i&£o < wq, with Aw
nates. Choosing a proper transform of the extended coordbeing the radiation bandwidth of the time-dependent signal
nate system allows us to emphasize “fast” and “slow” vary- (3), andk¢,,> 1, wherek= w/c is the radiation wave number.
ing coordinates which are subsequently normalized to the When the dispersive contributions of the background me-
scales specific to a given type of problem. This scaling usudium are weak, propagation of high-frequency time-
ally reveals the important expansion parameter defined as armonic signals in spatially inhomogeneous media is intu-
ratio of the characteristic scales and allows us to present thiévely related to the geometrical ray trajectories representing
equation being solved as a hierarchy of terms having a ddhe paths of energy fI_ux transfer. We _base our solution on the
creasing order of expansion with respect to this parameter. Rarabolic approximation along a straight background ray in a
similar approach has been taken in the two-scale expansid@y-centered coordinate systéw{r,o}, wherec measures
procedurd 12—15. An equation for the paired field measure the range along the preferred direction and{x,y} is a
was derived by using the parabolic-wave equation in a ranfWo-dimensional radius vector in the transverse plane per-
dom medium for the field component and its complex conlPendicular to that d|r_ect|on. Extrgct_lng from the high-
jugate, so that both components appear in the resulting equi€guency field the main phase variation along some refer-
tion symmetrically. This symmetry is preserved further when€"Ce ray,
new transverse sum and difference coordinates are defined. ;
We emphasize that in this work a nonsymmetric paired field Ur.o)=u(r,o)exp(~ika). @
function is defined. The first component is a solution of theThe spatial distribution of the source is assumed to be speci-
equation governing propagation in a perturbed mediumfieq at some initial plane-, perpendicular to the propagation
while the second is a solution of a nonperturbed determinisgjrection and characterized by the field functiag(ro, o).
tic equation. A solution of the deterministic equation, in prin- |, order to perform the analysis of the propagation of the
ciple, can be found. Application of the embedding methodsjme.dependent signals by taking into account the dispersive
here, because of a lack of symmetry, requires that the trangyoperties of the random medium, it is suitable to decompose
forms of the coordinate system will also be asymmetric.  the jnitial excitation into the spectral form and to consider
The outlllne of this work is as follows. The problem is {ne propagation of each time harmonic compongnt | w)
formulated in Sec. II. In Sec. Ill, we present the referencesgparately.
wave method and apply it to the equation of the two-  Tpe total field at an arbitrary timeand location{r,o} can
frequency mutual goherence functhn. We show tha.t in thg)e represented as a superposition
case of a quadratic structure function, the expressions de-
rived by the reference-wave method are identical to the re- 1 (= _
sults obtained from an exact analytic solution of the equation ¥ (r.o,t)= z_j mF(‘*’)U(r*UW)qu' wt—k(w)oldw.
of the mutual two-frequency coherence function. In Sec. IV, (5)
we propose extending the reference-wave method to the
analysis of the intensity fluctuations of time-dependent sig-The space-time correlation properties of the propagating sig-
nals. nal are determined from the correlation function

" Hhex — i wt)dt (3b)
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(W(ry,o,0)W*(ry,0,t)) is the structure function of the medium’s fluctuations which
are assumed to bé correlated along the main propagation
1 (= * direction.
:Wj, dwlj, dw,P(wq,ws,0),
Il. REFERENCE-WAVE SOLUTION

Fadrarz.o)exdi(o = wz)t], © In order to solve Eq(10) governing the propagation of
where the two-frequency coherence function it is convenient to
transfer to the center of mass and difference coordinates
D(wy,w5,0)=F(w)F* (wy)exp{ —i[k(w1) —k(wy)]o}

6 ri+r
(63 p= 12 y S=Irp—r;. (12

is the bilinear spectrum of the transient plane wave propa-
gating in a homogeneous medium and measured at a distang€ine new coordinates EG9) becomes
o from the source. The function

TyAre r2.0)=(U(ty,olw)U* (folw))  (7) Mpso) _1ktks

Vo VJI(p,so)

Jdo —E klk2
is the mutual two-frequency coherence functi®j. The i ki—k
mean intensity variation is obtained from E&) by taking __ zvgr(p,s, o)
the same location for both signal components: 8 kikz
i ki—ks
1 o0 ) _ 2
<I(r’0't)>:WJ dwlf dw, (w1, 05,0) 2 kiky ViI'(p.s,o)
—F(sky, k) (p,s,0), 13
XTI Ar,1,0)exi (01— wp)t]. ® (Slatelpse) 49
I'(p,s,00)=T0(p,s). (13a

According to Eqs(6) and(8), the mean shape of the propa-
gating signal is determined by two factors. The fII’S.t, thg mu'Next, we introduce the average wave numkgthe differ-
tual spectrum®(w;,w,,0), accounts for the distortion

. . ence wave numbekk,
caused by the dispersive character of the unperturbed me-
dium. The second, represented by the TFMCF, describes the Ko +k
loss of coherence between different spectral components be- k= g, Ak=Kk;—kj, (14)
cause of the scattering of the random refractive index fluc- 2
tuations. In this work we concentrate on the second factor. . . )
We neglect completely the influence of the dispersive prop@nd the relative frequency mistuning parameter
erties of the medium on the strength of random scattering

because of the above narrow-band assumption. It has been _ ki—ks _ A_k (15)
shown thafl";(r;,r,, o) is a solution of the following equa- kitky, 2K
tion:
Using these parameters and a point source boundary condi-
ary,rp,0) [0, [ tion, Eq.(14) reduces to the following form:
B Y—— 2—ler1—2—k2Vr2 [1Ary,rp,0) '
ar(p,s,o) i
—F(ry—r,,k k)T 1o(r1,r2,0), (9) o ki—ozVeVdipso)
Tinry,r,00)=T9r1,15), (93 L L
K 1_QZVSF(D,S,O')
with
i Q v2r )
1 - ﬂ 1_ QZ p p1syo-
F(ski k)= S[(Ki+K5)An(0) — 2kikzAn(s)] (103
—k?Fy(s,Q)T(p,s0), (16)
1
:E[(kl_kZ)ZAn(O)+k1k2Dn(S)]u I'(p,s,00) = 8(p—Po) 5(5~ %), (16a
(10b) with the scattering function
where 1
_ 2 T 102
D.(8)=2[A(0)—A(S)] 1 F(s,0)=|20°A,(0)+ 5 (1-Q?)Dy(s)|. (17
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We consider in parallel the following equation for the func-

tion:

¥ (py,8;,0) i
Jo :_El_QZVpl'VS_L\I’(pl!Sl!O-)

i o
t 1=z Ve Y (P1s0)

i Q )
+E1_QZV51\P(p1,Sl,O'), (18@

W(p1,S1,00) = (P1—P10) (S~ S10)- (18b)

Next, we define a product
H(p,s,p1,81,0)=T'(p,s,0)¥(p1,5;,0). (19
The equation fodl(p,s,p;,S;,0) IS

AL L R .
g0 k1—az Ve Ve Ve Vol g g2
2 2 I Q 2 2
X(Vp—Vpl)H—Emg(Vs—Vsl)H
—K2F4(s, )T, (20

with

IT(p,s,p1,S1,00) = (P—Pg) 5(S— S) (P1— P10) H(S;— S10)-
(209

Now we introduce the following new coordinates:
u=s, w=p—p;. (21

q=S—%, V=pPq,

In the new coordinates E@R0) for the function
ﬁ(u,q,v,w,cr)=l'[(w+v,q+ u,v,u,o) (22

becomes

i1 —
= g2 (Ve Vut Vo Vo= V- VI

i Q —
—ﬂ—1_Qz(VW-V\,+4Vq-VU)H+E—l_ﬂz
X (V2+4V2) 1 — K2 (q+u,O)II, (23)
with
I1(u,q,v,wW,0q) = 8(W+V—pg) 8(q+U—S) 5(V—P10)
X &(U—$;0). (233

The next step is a transfer to the spectral domain with respect
to theu andv coordinates. Such a transfer is realized by the

following transformations:

PHYSICAL REVIEW E69, 016607 (2004

A(p,q,n,w,a)=f f d2ud? I, (u,q,v,w, o)

xexp{—ik(1-Q2)[p-u+ n-v]},

(243
— k(1-Q2?))*
I14(u,q,v,w,0)= %1 ffdzpdzn/\
X (p,q, p,w,o)explik(1—Q3?)
X[ p,u+y-v]}. (24b
The equation forA (p,q, ,w, o) is
JA Q
o TP~ 5 Vut(7=20p)- V4 A
) Q
=Ik(1—92){p‘ n—z(n2+4p2)}/\
—K2 i
KR a0+ gz Ve 2 A (25)

A(p,q, p,W,00) = (W P10~ Po) 80+ S10— )
X exp{ —ik(1— Q%) p- siot 7-P1ol}-
(25a

Equations (24) and (25) can be solved by applying
asymptotic analysis. Such analysis assumes coordinate scal-
ing with respect to the radiation wavelength and the length
scales characteristic of the refractive index spatial variation.
The characteristic scales help us to expose the “fast” and
“slow” variables with consequent ordering of terms and pre-
senting the equation as an expansion into the power series of
the expansion parameter= 1/(k{) that represents the order

of the single-scattering angle. Formally, this also can be done
to the nonscaled equation by expanding it into the inverse
power series of the wave numberExpanding the scattering
function operator

Fs

i
o+ g Ve

into the power series Qi/k(l—Qz)]Vp leads to the follow-
ing first-order partial differential equation:

—+

JA
Jo

Q

—En}-vw+(n—29p)~vq]A
—ikVAn(q)- VA

k(1= 0D 0 e X 2t 207 | A k2
k(1=Q% p- = 7 (77 +4p%) |A—KFy(q,Q)A,

(26)
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A(p,q,n,W,00) = (W P10~ Po) 9(d+ S0~ S)

) 2 dé« _iquAn(Q)- p(gza):pal (27b)
X exp —ik(1—-Q)[p- Siot 7 P1ol},
(263 dw Q
. . d_é,:p_fn! W(é’:a’):WU, (27(:)
where we have used the explicit form of the scattering func-
tion in Eq.(170). The third term in the left-hand side of Eq.
(26) is of a smaller order of magnitude than the other terms.
We retain it because it represents the phase information g“ _0 ME=0)= 1, 279
along the rays and can be very important in the exponential
phase terms of the solution. However, it is less important in dA 5 Q 5 )
the amplitude terms, and there it can be neglected. ac =11k@=0% p- n= 7 (n°+4p%) —kFs(a,Q) 1A
Equation(26) can be solved by the method of character- (270

istics. Its characteristic equation are
q The boundary condition for Eq27e is the same as in Eq.
q B N (26a. When the solutions of the characteristic equations
d{ =n7-20p, q(¢=0)=0g, (279 (279—-(27d are known, Eq(27¢ can be expressed as

2
A=A (p(00),0(50), 770) W) oo>exp[ a-09 " d/:[p@) wo-0l 0+ “))H
xexp[ —kZJ(’dng(q(g),Q)]. 28

The expression presented by E88) can be simplified by using the explicit solutions for the characteristics:

APy Uy s By Wer , T, 00) = S(W(070) — Po) 8(d( o70) — Sp)exXp — iK(1— Q?)[p( 7o) - Sio+ 7 Tg) - P1ol}

e YA
xexp[ik(14§ )[(1—Qz)ﬂi_(ﬂa—29pa)2]Aa]

Xex% —K(1+0%)A(0)+(1- QA (a,) JA T+ 2k2(1—92)f0d§An(Q(€))}, (29

whereAo=o0— 0. In order to find the desired solution we perform the inverse transf@gh) and setu=0 andv=0:

k(1—Q2)]*

ﬁl(u=0,q(,,v=0,w,,,a)= oy

f f d%p,d27,8(W(a) —Po)8(G(op) — Sp)

.

xexp[ —K2(1-0?) J ”ngn[qm]]. (30

L (1-0? , 1
><eXp{ kg —[(1-0?) n(,—m,—znpf,)Z]Ao] exp[ 2k Q2A,(0) ~ 7 (1-0?)Dy(q,)

The solution forw({) and () can be obtained directly from the characteristic equati@@s This leads to

e YA

1
W0 = 5[0 W+ oo (e ), (313

=17, (31b

Performing they,. integration in Eq(30) and changing the integration variablege 5,—2(Qp,, we obtain
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— k2(1—0?))? 1-Q?
IM;(u=04,,v=0W,,0)= %Wr,) ffdzpé(q(ao)—%)exn[ik( a0 )[(1—92)n§—p2]Aa
1
Xexp{ —2k2[92An(0)— Z(l—QZ)Dn(qg) Av]
><exp{ CKY(1-0?) fangn(q(g))} , 32)
(J'O
with
1
1]0':(1_QZ)AO_{[qU_&)]+ZQ(Wo'_pO)}' (323)

The desired solution for the mutual two-frequency coherence function can, in principle, be obtained directly fi@®).Eq.
This requires the extraction of the solution for the reference wave propagating along characte@isticsn Eqg. (32). The
modulus of the amplitude of this reference wave can be obtained as a square root of the expressig@2nvitpout the
scattering term:
k?(1—0Q?) ikAo(1—Q?)p?]|¥?
- 7 2 - R
ey f f d* pd(a(oo))ex 70

¥(p=0,5=0u=0yv=0,0)= (33

For =0, the result of Eq(33) with Eq. (32) reduces to the It must be noted tha¥ (u,v, o) represents an amplitude term

exact solution of the second-order coherence function equapecified by the transport of the initial condition along the

tion [2]. characteristics. In most of the practical cases, the scattering
Generally speaking, the reference-wave amplitude is &rm in the characteristic equatig@7b) is very small and

complex function and can be retrieved only in some particucan be neglected. In such a case, the solutions of @3s.

lar cases. Then the expression for the two-frequency propaind(35) are straight rays, and E(3) for IT is factorized as

gator can be extracted directly: i.e., a product of two reference waves. Then the reference-wave
amplitude can be determined directly from E@8) and is
914AP,S,0/Po, S, 00) equal to
=II,(u=0, +=Sv=0w,=p,0)/¥(u=0,v=0,0).
1 a p.o)/ W ( o) K(1-02)
(34) Y (u=0,v=0,0)= A2AG2 (37)

For a source having an arbitrary spatial distribution o
I'; {Po.S,00), the two-frequency response at the observa-The above approximation becomes even more relevant for

tion planeo can be obtained directly from the propagation large values ofg exceeding the correlation length,, for
relation which the scattering term in Eq$27b) and (36) vanishes

because of the rapid decay of the correlation funchigfx).

The correction fog<¢,, can be estimated by expanding
I'iAp,so)= f f dzpodzsogl,z( P,S.a|Po,S0,T0) the scattering functioA,(s) into the power series of Then
the structure functio®,(s) in Eq.(12) can be approximated
XT'1 APo:S0:00)- (35 by a quadratic term

In order to obtain an approximate result for the solution r\2
W¥(u,v,0), we note that it can be obtained by solving Egs. Dn(r)=2A0(€—) : (38)
(25) and/or(26) without the scattering term along the char- "
acteristicg27), which leads to the solutio(28) in which the . ) ) ]
scattering term is omitted. In principle, Eq&7a and(27b)  This structure function allows us to obtain analytical solu-
can be solved by direct differentiation of EQ7a with re-  tions for the characteristic equatiof@7). This solution for
spect to the coordinaté Then the use of Eq27b) leads to  the coordinatey({) is given by the following formula:
the equation
o a($)=a,coda({~ o) ]+ (p,/a)sia({~0)], (39

q

———2ikQVA(q)=0. (36)

dz? where
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a=2\ikQA/(,,. (40 This quantity has been extensively investigated in the fre-
quency domain, but there are no results applicable for time-
Now, substituting the solutiog(o) from Eq.(39) into Eq.  domain propagation.

(33), we can extract the exact expression for the reference 1N€ average intensity can be obtained from the two-
wave: frequency mutual coherence function investigated in the pre-

vious sections. The second-order intensity moment can be
k2(1—Q3?) o computed from the space-time domain fourth-order statisti-
> _ : (41)  cal moment of the field:
47°Ao  sin(aAo)

Y(u=0y=0,0)=

O(re, 0% (ry,HU(r3,t) 0% (r,,1)
For the limit «—0, the expression in Eq39) approaches (U(ry 2 3 4.1))

that of a homogeneous medium. 1 o Ao deosd o
The expression for the two-frequency propagator can be - WJ?W”'J w10 dwsdo,(w;,02)
deduced directly from Eq32):
XD (wz,wa)T4(r1,12,3,14,0|wq,0,,03,04)
glyz(p,s,0'|po,§),0'0)

Xexg —i(w;— wy+ wz3— wy)t]. (45
k? \? aAc . . . .
=(1-0? A T~ This leads us to the requirement of solving the equation for
2wl sin(ado) the fourth-order multifrequency statistical moment

2 |k 1—‘4("11r21r31"410-|(1)]_1('()21(1)31(1)4):
Xexp — 2k QA A o)ex 4Qg—DO'[(S_ %)

al, i 1VZ 1V2 1VZ 1V2 r 1HF
1 [ ike(1-0?) Go 2k R e i kg e e g el
+20(p=po)] ]eXW’m sin(ado) o, 46
><[(32+s§)cos{ aha)—2(s. So)]]- (42) with the scattering function

Ha(r1,r2.73,1a) = (K{+ K3+ k3+k5)Aq(0)
Integrating Eq(34) with Eq. (42) and the plane-wave initial B B B
condition, we obtain the following result: 2KikoAn(r1=r2) + 2KiKaAn(ry—T3)

— 2K1K4An(r1—r4) — 2KoksAn(ro—r3)

1
d(s,0)= mexp[ —2k?Q%A A0 + 2K K4 An(ro— 1 4) — 2K3ksAn(r3—r4).
46
ik(1—Q2?) 5 (469
+ 40 s‘atan(ado) . (43 Solving Eq.(46) is beyond the scope of the present paper

and will be addressed in our future works. It can be noted
This result coincides with the exact solution for the mutualthat_the reference-wave methOd as has been d(_aveloped for
coherence function obtained for the two-frequency plan olving the TFMCF equation can be directly applied also to
wave propagating in a quadratic medifim8]. g. (46).
We note that the solution&?2) and (43) are exact solu-
tions of Eq.(17), which gives us confidence that there is no V. SUMMARY
additional phase term in the expressi¢89) and(41) for the

In this work, we have presented a reference-wave method
reference wave.

and demonstrated its performance by solving the parabolic
equation governing the propagation of the two-frequency
IV. INTENSITY FLUCTUATIONS OF TIME-DEPENDENT mutual coherence function. According to the spirit of the

SIGNALS method, we defined a nonsymmetric paired field function as

a product of two components. The first component of this

The sgcondforder statistical moments provide us with .th‘?unction is a solution of the equation governing the propaga-
average intensity of the propagating signal. In many practicafio, of the mutual two-frequency coherence function in a

situations it is important to know the distortion of such sig- randomly inhomogeneous medium, while the second is a so-
nals and the higher-order correlation effects. Such informa, j

futi f lex-conjugat tion d ibi -
tion can be obtained by studying the behavior of the normal ion o1 a comp ex-conjugare equation destriving propaga

ed | ; : h led i . intillati tion in a medium in the absence of fluctuations. The differ-
:ige):r[‘tzﬁ_ns'ty variance or the so-called intensity scintillationg oo petween these equations is in the scattering term

described by the functiofr in Eq. (170. Because of the
5 5 lack of symmetry in the product equation, we applied the
_(E(r,o, ) —(I(r, o)) (a4 asymmetric transform of the coordinate system in order to
(I(r,o,1))? extract the possible difference in the phase and scattering

BE(r,o1)
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information tracked along the characteristic trajectories. Af-coherence equation without any loss of phase information.
ter the product equation is solved, the desired solution for th&or weak medium fluctuations, the “quadratic” approxima-
mutual two-frequency coherence function can be found pretion result also reduces to the expression for the reference
suming that the solution of the nonperturbed equation for thgvave in a free space. Therefore, for most of the important
reference wave is known. Here we found, however, two dif-sjtuations, the expression for the reference wave can be re-
ficulties. The first arises from the fact that the reference Comtrieved as a So|uti0n of an unperturbed two_frequency Coher_
ponent is being tracked along perturbed characteristic trajegsnce equation.

tories, instead of the straight homogeneous background rays, Comparing the result of the reference-wave method with

tical characteristics of time-dependent signals propagating in
a random medium. It is hard to compare the final formulas,
gcause different tasks have been addressed and different
athematical methods have been used. However, in our

nents.
In order to solve the first discrepancy, we note that th
product measure in the absence of scattering represen

mainly the amplitude term even when being propagate

along the perturbed characteristic trajectories. Moreover, th8P!NON apphcanq of the rgference-wave method has sevs
perturbation term in the characteristic equatiaib) is neg- eral advantages. First of all, it allows presenting an analytical

ligibly small for most practical situations, because of ther®Sult, justified on the grounds of asymptotic expansion, for
strength of the scattering of the medium and, in addition,arb'trary spectra of the refractive _|ndex fluctuations. Second,
because of the rapid decay of the medium’s correlation funcalthough all the procedures mentioned above lead to the ex-
tion with an increase in the separation coordinatén this  act result in the case of the “quadratic” approximation of the
case the solution of the product measure decouples into twigfractive index structure function, only the expression in Eq.
two-frequency coherence functions in the absence of scattef32) solved along the dynamic characteristi@y) allows

ing, and the expression for the reference wave can be olanalysis of the frequency correlation along the propagation
tained from the unperturbed equati¢iB). In the case of a path for arbitrary fluctuations spectra.

small separation argumeit in Eq. (27b), the correlation As noted above, the reference-wave procedure can be di-
function can be approximated by a quadratic expansion termiectly extended to obtaining solutions for higher-order statis-
which allows one to obtain an exact analytical solution of thetical moments.
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