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Nonlinear optics in a birefringent optical fiber
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We extend the perturbation theory of the nonlinear Sdimger equation for the study of perturb@ubnin-
tegrable forms of the vector equation. We derive a set of linear equations that describe the radiation field shed
by the soliton as it propagates down a bhirefringent optical fiber. The formalism is applied to the case when
strong birefringence and higher-order dispersion are present in the fiber and to the study of polarization mode
dispersion. Finally we discuss an analytical treatment of the mechanism that generates the soliton shadow.
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[. INTRODUCTION soliton parameters in the perturbed birefringent system, but
did not give full consideration to the generation of the radia-
The nonlinear Schidinger equationNSE) is the model tion field. Further work is reported in Reflsz—12], initiated
equation best suited to describe the propagation of an opticarimarily by a need to address the problem of PMD. PMD is
pulse in weakly nonlinear and dispersive media. A basidiscussed explicitly in Ref[13]; it is shown first that a
property of this equation is complete integrability by meanschange in the polarization state of the soliton results in a
of the inverse scattering transforfiST) [1], with the  change in the soliton velocity. A random change in the bire-
soliton—a localized optical pulse—one the fundamental sofringent axes along the fiber necessarily results in a random
lutions. Refinements to the basic model equation—such agariation in the polarization state of the soliton pulse propa-
the addition of further dispersive terms—produces an equagation along the fiber, with a resulting stochastic fluctuation
tion which is generally not integrable, but is susceptible tojn the pulse velocity. This is the origin of PMD. Further work

analysis using a perturbative theory developed around thgy Ref.[14] compares PMD jitter with that arising from other
IST [2,3]. Studies to date have tended to concentrate on theg rces of stochasticity within the fiber.

scaler form of the perturbed NSE, implicitly ignoring the
influence of the polarization of the optical pulse. When thed
optical fiber along which the soliton propagates is birefrin-
gent, the effects of polarization are importéiur example, a

change in the polarization state of the pulse results in

The article is structured as follows: in Sec. Il we intro-
uce the perturbed VNSE while in Sec. Ill a formal pertur-
bation theory centered around IST is developed. In particular,
%volution equations for the scattering data associated with

change in the speed of propagation of the sojitand we e Manakov system are derived for the general case when

must then introduce a model equation: the vector nonlinea‘?lrbitrary pertyrbation .ter.ms are qdded to the .VNS.E' apd we
Schralinger equatiofVNSE). show how this data is linked with the radiation field in a

When an ultrashort pulse propagates down an ar]Omé{nanner'which 'bearsac'lose resemblance to the Fourier trans-
lously dispersive birefringent optical fiber, complex featuresform pair obtained for linear systems. The conserved quan-
develop which require explanation. The object of this articlefities for the VNSE are then introduced aforiefly) dis-
is to describe a formalism, developed within the frameworkcussed, and evolution equations for those are obtained for the
of inverse scattering theory based on the Manakov systerieneral case of an arbitrary perturbation, which need not be
[4], which admits useful application to the study of many ofsmall; this is an exact result. Some features of inverse scat-
these observed features. One such feature is polarizatidaring theory for the Manakov system are also included in
mode dispersioliPMD) which is one of the most important the Appendixes. Different applications of the perturbation
considerations in transmission systems; this is discussed futheory are then discussed in Sec. IV. An associate field for-
ther below. The theory developed in this article is a directmalism analogous to that introduced for the scalar problem
extension of one developed previously for the scaler problem15] is first introduced and a connection is established be-
[2,4]. Several authors have addressed the problem of the d@veen thesetwo) components and the components of the
velopment of a perturbation theory for application to theradiation field. Three problems by way of application are
study of perturbed forms of théntegrable VNSE. An ear-  then discussed: we consider first the case when strong bire-
lier study of this problem utilizes a perturbation theory de-fingence is the only perturbation in the fiber, and then when
rived from a direct linearization of the VNSEB]. This is @ pjrefringent and third-order dispersion are both present. We

complementary approach to that developed here, but doggnclude with a detailed discussion of the generation of the
not, we contend, use the best mathematical framework—thalg|iton shadow.

based on the IST. The present analysis extends that published
by Midrio et al. [6] who computed the change in the vector

Il. THE PERTURBED VECTOR SYSTEM

*Electronic address: theodore.horikis@imperial.ac.uk Ultrashort pulse propagation down an anomalously dis-
"Electronic address: j.elgin@imperial.ac.uk persive, birefringent optical fiber is described by VNSE
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i(Qyxt 4 Q1+t BY2) + k01— 01— 9a(]02] >+ Al da]?) corresponding soliton solution fay(x,t), which we denote
. () s found by inverting the transformatids), to yield
—~Baga =iFy, 1a ® Y J Y
. exp(i ut/2)cosé
1 — — — — — 2—A 2 (1) — i, 2
(Q2x— 024~ BA1) — KOz~ A2t~ 2|2 *— Alda| %) gl (x,t) = exp(i u X/4)<exp(—i,ut/2)sin0 ds, (6)
+Bdias =iF,, (1b)

with scalarqgg defined in Eq.(4). This approach has been
with A+B=1. Here,« is the weak birefringence parameter, discussed in Ref§10,11] and will not be repeated here. In
corresponding to a difference in the phase velocities betweeany case, this transform is not applicable when other effects,
the two polarization modes, andis the strong birefringence such as higher order dispersion, are present in the fiber.
parameter representing one half of the modal group velocity

difference. The functiorB(t) describes the twisting of the IIl. PERTURBATION THEORY
birefringence axis with distance down the fiber. The param-
eterA is the normalized cross-phase modulation coefficient. A. The evolution equations

The equations describe the coupling of two linearly polarized general evolution equation for the VNSE family can be
modes, withq, and g, the complex amplitudes in each expressed in the form

mode, in which casé&=2/3, B=1/3. A simple transforma-
tion to circularly polarized modes results in a similar set of ig—k(—=1D)g=0, 7
equations where now the subscripts “1" and “2” correspond
to differently circularly polarized modes anii=2, B=0.  wherek(w) is an arbitrary function of the operat®y, which
Finally, F, andF, represent the higher-order effects for eachis defined by the action
mode, which may include higher-order dispersion, Brillouin
scattering, and so on. We rearrange E4$.so that the per- e ,
turbing terms containing the parameteus 8, and « are Df_ft_jt {a".ffadt'q(t)
taken over to the right hand side and thereafter considered as
special choices of = (F1,F,)", namely we take this system on any vector functionf. Here {,}» denotes the anti-
in the form Hermitian anticommutator operation, so tHat',f}, =h'f
0 — o —2gtageiF @ +fh"—f"h—hf' for any vector functiond and h. Further,
&G <0749 ' k(w) is the dispersion function derived from the linearized
whereq=(q;,q,)". Deviations ofA from the valueA=1, form of the _appropriate member of the VNSE fa|2'nil_y, with
and the term with the parametBr are also subsumed infa 4~ €XPlwt—ikx). For example, the choidgw) = — o gives
WhenF is set to zero the VNSE equation is known to bethe® VNSE equation. Note the simplicity of the operafar

integrable using the techniques of inverse scattering theor};‘e prescriptionw— —id,— —iD takes us from dispersion
[1]. In particular, it has the single soliton solution unction, to linearized form of the NSE equation, to the

VNSE equation.

cosé The spectral transform is a mapping from a potential
0=0s=| .., |0s: (3 q(x,t) into a set of scattering dat§;(x,{), i,j=1,2,3,
sing : . ) .
where( is the eigenparameter. The inverse transform permits
where(scalay g is defined by construction of the “potential’q from a limited set of the

dataS;; . Formally, we have16]
Os=2m18XH — 2i &1t+4i (&5~ 7)x]sechi 2 (t— 4§1t>]( 3
4 T . q
sﬂ=f ¢<J>Aw<'>< ) *>dt, ®
The solution, Eq(3) is hereafter denoted ag, the vector o d

soliton. The parameter§; and 5, characterize the soliton,
. o > _where
and @ is the projection angle of the pulse onto each polariza-

tion mode. Without loss of generality, we hereafter §et 1
=0 and 2p;=1. ( g ): _f (ild,(z)v;p(mr %11#3)\/'&,(1))(1@'
CommentWith F=— po3q,, the transformation —q*) wJlc\Su Sn
=exp(—ipost/2—iu?x/4 5 11 (A ~2 Qa1 ~
p=exp(—ipost/2—iu’x/4)q (5) _;fg SO g oz
removes the birefringent term, producing the Manakov evo-
lution equation forp(x,t) ©
ip,— pu—2p pp=0. Here, @A YA and g\ /¢4 are four component row and

column vectors, respectively, whose components are made of
This, of course, has the soliton solution quoted on the righproducts between Jost function components for the forward
hand side of Eq(3), which we temporarily denote 5. The  and adjoint scattering problems. Namely,
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SN AT AW () f+°°( sz< T sy (0|
R RUUU N N 8y)  m) o\ Su\ y@3D ] S| g3
SO D = (gIFD DY) — DT — OGN, i P15
© (1)77,(2) (1)77.(3)
The quantities;; are cofactors of the matrix elemersg, _i " (A_Zl 4! fz >+A_31< 4 fz )) .
while C (C) is a contour running from-<+ie (—%—ie) ) | Au gy@ ) Aual g{MyLY
to +o+ie (+o—ie€) passing abovébelow all zeros ofS;; (11)

(Aq7). A summary of the spectral transform and some re-
marks for these quantities can also be found in the Appe”Again wj(i) , :,/J(i) are components of Jost functions, whgg

dixes; see Ref.16] for further details. ;
’ . - . andA;;, which depend orf andx, are elements of the scat-
For a perturbed system, EQ7) is modified by adding tering data. For first order in perturbation theoq);f,') etc.

iF,—iF*) to the right hand side, whei is the perturba- : . . P ;

§ion e.q. )strong bi?efringence in the fiber. Wi p(MQlt will be approximated by th§|r solitonic exprsssml(lall

—u0y) ", etc. This modified form for E¢(7) can be substi- known, see the appendixwhile S; and A;;=S; evolve
v from an initial valueS;;(x=0,{)=0 in accordance with a

tuted into soliton input to the fiber.
Note that Eqs(8) and (9) are the direct extension of the
application of the Fourier transform to linear systems, as

Sijx— f f:¢<j>Atb<i>( _qg;)dt,

which expresses the evolution of the scattering data to giv

the final result

+o0 F
Sjx=S{kt f_w ¢(”/\T#‘)( _F*)dt, (10

appropriate to the integrable VNSE equation. Indeed, in the
limit where the pulsey(x,t) has no soliton component and
gimply represents a weak radiation field(x,t) say, EQs.

(8) and(9) reduce to

— o0

S21) f*‘”( 5q;>
=— exp—iwt)dt,
(531 503 3

where the ternSfﬁ’X represents the evolution for the unper- .

turbed system. In particulag{)=—4i¢?S;;,i=2,3, while (5Q1)__i +°°(321) expli ot)dt
S0, sz~ 2m) sy '
where * denotes complex conjugation, an@=2¢
— * * x5 H

We are interested in the case when a pulse comprising EZRG{G' Each componentqy , 4q; of &q™ is here linked

soliton and a radiation field propagates down the fiber. Then?h?gesi?g;i?;?ncge fc; fa?ﬁ?ét?snrllgs??c?ﬂtﬁgijﬁ#c)ﬁi?\%gtg;sl)—k

g(x,t) =gs(x,t) + ég(x,t). Expressing the integrals in E(Q) tem
in terms of their discrete and continuum contributions gives — _, . . . . .
The intention here is the following: for a choice of per-

as 1 [+=[ S, w(12)"l‘p(21) Sy lp(13)’(‘/‘l(21) turb:?\tionsF', thg integral in I(E;q.(lO) ls(i)evaluated first, as-
=— = - ~ _ suming solitonic forms for¢"!) and ¢!, after which the
d2)  mJ—w | Sul| PP ) Sul Py

differential equation is solved to yiel§;(x,{). This is then

B. The radiation fields

1~ (1 1~(3 substituted into Eq(11), yielding the required forms for the
LAz il )) N A_al( s )> ) radiation fieldssq, and 5q,, namely, Eqs(20).
m)oe | Bl g | Sl g )
C. The conserved quantities
N D) T
o b1 (L (L) Any member of the vector NSE family has infinitely
1\ oW P02 many conserved quantities. The conserved quantities are ob-
&7 (L5 (Lk _ . . )
_ o tained by examining the asymptoucs(ﬁfl ast— +x [spe-
N (zp(ll)(gk)cﬁ(zl)(gk)) cifically, we examine I6p{Vexp(ét))=InS,;, cf. Eq.(15),
—4l — ~ 1y | as a formal asymptotic expansion in inverse powers,of
E PG00 (0 ymptote exp power

taken in limit £— + ], together with the result th&,,; does
not vary with x. Denoting the conserved quantities by

The eigenparametef appears in the scattering equations C. n=012....itisthus found that

(see the Appendjxwhile ¢, and{, are the zeroes &,;, and
A4, respectively. We identify the radiation field as the inte- B fﬂo

grals of the above equation. The discrete sum gives the con- Chn=
tribution toq(x,t) from a generaN-soliton state. From sym-

metries associated with VNSE, it follows th&=N, {  where

=[*. Since hereN=1 the latter contribution is simplys,

while 8q(x,t)=(45q;,69,)" is obtained from

(q"po)dt, (12

—o0

Po= q* ’
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— dc +o
Pr=0 dX”zZ(—i)“Re{J F*(—iD)“th].

and
_— Note that the evolution of eaclE, is determined by the
ot Z T projection of the perturbing terfi' onto thenth flow of the
Poe1= P 2 PG Prmi-a VNSE family, i.e., onto iD)"q.
With F corresponding to strong birefringence, i.&,
Note thatp, are two-component vectors. In particular, =— o0 (or strong birefringence plus third-order disper-

sion whereF = — po30+ 6y, it iIs easy to show that both
+oe Cy and C, are conserved implying in turn that the soliton
_ T % T\ 2 0 1
Co= fﬁw [9'cii +(a'g)7]dt parameters:; and 5, are similarly constants of the motion.
That is, throughout this article, any perturbatidaswill be

is the Hamiltonian functional for Eq2), when the ternF is ~ considered smallD(e) say. Then from Eq(10), the inho-

set to zero. mogeneous term generatig(x) is O(e) so, if §;(x=0) is
As for the scalar problem, it is possible to introduce a se#€r0—as appropriate for soliton input to the flbéﬁqu) is
of trace formulas for the VNSE. Introduce the integral O(e). The integral term in Eq(16) is thereforeO(e?), as
are changes im, and¢; whenevelC, andC, are conserved
+=S], dé +eAl déE quantities.
I( )=f S.E-¢ ALE=C (13 Using the results of a related perturbation theory devel-
—=Su =l Jo=An&-d oped elsewhergl3], we can similarly show that the above

) . ) choices forF result ind#/dx=0, whered is the polarization
where the prime denotes a derivative with respegttand{  gngle. n other words, the polarization state of the pulse is
has a positive imaginary part, i.e., {g}>0. Then, sincé&S1; ot altered. With no loss of generality we assume that pulses

H 2
and Ay, are known to behave like 40(1/0%) as|{|—%*,  are |inearly polarized with polarization angte within the
Eq. (13 can be evaluated by the usual techniques of contoufipar.
integration, by considering semicircular paths in the upper
half plane for the first term, and the lower half plane for the
second, giving IV. APPLICATIONS

A. The associate field formalism

+ 2 imsn( 0). We are interested in the equation

N 1
|(g)=2win§_‘,l< —— iz

1
¢y ¢4

(14) io— 0 —20"dg=iF, (17)

where F= — no30; represents the effect of strong birefrin-
gence within the fiber. The intention is to analyze ELj)
using the perturbation theory developed in the preceding sec-

Again, ¢, and?n are the zeroes @&,;; andA 4, respectively.
Now consider Eq.(14) in the limit Im{{}—0, R}
— + oo, ldentifying C, as the coefficients of a formal expan-

. £l ’ tion.
sion of InSy,, 1.e., Evaluating the integrals in Eq10) produces
s _ G S, S, Su | i
InS;= >, ———, 15 S TS I NPT E B _
NSy HZO i (15) ( J 4|g<831) 2icu| g |+ gsin20)2e-i)
we find ( siné )A*
N —cosé Gs - (18
anmz:l (20w = (20m™ ] The additional contribution
L o an S
[ iena-ls-sahde. a9 ~aizu 7|

The discrete sum gives the contribution@q from an arbi- has been introduced as derived in Appendix B. This is pre-
trary N-soliton state, whereas the integral denotes the contrieisely the additional term required to ensure t8atandS;;
bution from the continuum radiation modes. The equivalenfollow their respective characteristics. We now getée R
form for C,,, Eqgs.(12) and(16), constitute the trace formu- to generate the continuum field. More details about the origin

las for the VNSE. of this term can be found in the appendix.

For the unperturbed system, eaCly satisfies the evolu- The evolution of the spectral data is now governed by Eg.
tion equationdC,,/dx=0. With the introduction of the per- (18), subject to the initial condition the®,,(0,£) = S31(0,¢)
turbing termiF, these become =0. As for the scalar problerfil5], it is useful to introduce
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two quantities related t&,; and S3;, namely, theassociate
fields f;(x,t) andf,(x,t). Define

2 S51(X,€)
f =
6= 5
i3 Sgl(xag)
f ) = ]
(8=

where f(x,&)=Ff(x,t)}=/Zexp(-2i&)f(xt)dt is the
Fourier transforms of (x,t). Then, Eq.(18) becomes

f f f
—i(f) —48| M| +26u f)
fa), fa —f;
2usin(26) [ sind |\ .
2E+i —cosa| I
or int space
.(f1> (f1 . fl)
—i = +i
fal o \faly g —fa/,
oo O laeh o
—sin2o)| __Jaeh, (19

whereq; is the (scalaj soliton expression Eq4),

expt), t<O0
h(t)= 0, t>0

and ® denotes convolution product. From E@.1), using
solitonic expressions foryl"), Sy(&)=(2&—i)/(2¢+i)

PHYSICAL REVIEW B9, 016603 (2004

now straightforward since both, andf, satisfylinear dif-
ferential equations, and can be easily obtained using standard
(Fourien transform methods. We finéiq, and 5g, simply by
using Eqgs(20). This is, again, relatively straightforward re-
quiring only differentiation of the known functionf; and

f2.

Using the fact that the Manakov system in invariant under
rotation we project Egs(20) onto the soliton polarization
states. By introducing the quantitis= f,sin §—f,cos6 and
fj="f,cosé+f;sing, the projections of the vectorf {,f,) T
onto the polarization modes orthogonel J and parallel §)
to the soliton pulse, respectively, we obtain

f, w—(tanht+1)f, +tanhtf

=—(46q, sinf— éq, cosh)=—4q, ,

fH,tt_z tanhtf||,t+tank?tfH—secﬁtfﬁ‘ eXF(—Zix)
=—(8q,c080+ 6q, Sinh) = — 5qH ]

Both modes contribute to the radiation field, unlike observa-
tions made elsewhel&,8] (also see Sec. IV AR

When 6 is 0 or 7/2, the source term in E¢19) vanishes
and hence both; andf, remain at their initial value of zero;
in consequenc&q, and 6q, are both zero. Simply setting
6=0, then w/2, in Egs.(20) produces the relationgq,
=Mf,—q2f} andsq,=Mf,—q2f% , from the first and sec-
ond equations, respectively; these are just the expressions
obtained for the scalar problefi5].

Projecting the evolution Eq€19) onto the polarization
vectors (co®,siné)" and (—sin#,cosé)’ results in evolution
equations where the source term is first zero, then
(i sin(20)/2)gs® h, respectively. In other words, the source
generates radiation orthogonally polarized to the soliton

— A%,(£), and then evaluating the various integrals, the fol-PulSe[to O(e)]. There is an interesting asymmetry in the

lowing expressions are obtained fé6g; and 4q.,:

—89,=(M—Nsir?g)f,+3sin(26)Nf,

—q2cos(f¥ cosf+ f5sing) (20a
—80,=(M—Ncog6)f,+ 3sin(20)Nf,
—q2sing(f3sin 6+ ¥ coso). (20b)

source term. The terms® h peaks at a slightly larger value
of t than doesgs. At first sight this appears odd; there is
nothing in the formulation of this problem nor in our choice
of perturbation(strong birefringenceto have allowed one to
anticipate this loss of symmetry in the perturbing term.
However, we believe it may be related to the generation of
the shadow, which in turn is related to the fast polarization
mode instability reported elsewhelr&s].

The qualitative features of Eq6l9) and(20) are straight-
forward: dispersive radiation is generated, which then propa-

To make these awkward expressions more manageable, Wees along the characteristics ut. Both these contribute

have introduced the operators

3 d
M = — — 2 tanht — + tanit,
o2 ot

Jd
N=(1—tanht) i + tanift—tanht.

The algorithm for findingsq, and 895 is first to solve Egs.
(19) for f,(x,t) andf,(x,t) subject to the initial condition
thatf,(0,t) andf,(0t) are both zerdso that the limitations
of the method derived in Reff17] do not apply here This is

to the generation of botldq, and 6q,, in accordance with
Egs.(20). Near the solitongq; and 9, have a complicated
structure with no readily discernable features. Away from the
soliton—that is, at large values ¢fi—we expect the radia-
tion field to evolve in accordance with the linear theory: that
is, a predominance afqg; should appear in the slow polar-
ization mode,dq, in the fast, with each field propagating
away from the(source soliton pulse at a group velocity de-
termined by the frequency shiftho = = /2. At large values

of |t|, the cross terms proportional tf can be ignored in
Egs.(20), and we may approximate tatl+1 as appropri-
ate. Then,

016603-5



T. P. HORIKIS AND J. N. ELGIN PHYSICAL REVIEW E59, 016603 (2004

J 2 [q(w)]
Mz 5—0—1 3.0
ast— *x o, while
0 ast—0, 2.0
N=
2 t+1 ast— — o

1.0
Hence, ag— +»

60 92 17 fq
~ 2 0
5q2) (atz 2ot +1) ( fo) @Y

[@(w)|
fl —sing 5
f2 cosé

3.0
We have an interesting asymmetry with no ready explana-
tion. For large values of the paramejer(let us assume, for
the moment, that the perturbation theory continues to)hold 1.0
one expect$, to dominatef, ast— +o0, since the charac-
teristic for f, is t— ux, and hence we expedq; to domi-
nate 6q,; this would be in accord with simple intuition. The o
same intuition—with f, now dominating f,—fails at
t— — oo because of the presencefofin Eq. (22); here, now, R )
(large f, will also contribute tosq,. If the latter terms were ~ FIG: 1. Pulse spectrurit(w)| vs » at “distances”x=5 (top)
missing, the other difference between E@4) and(22) can ~ @ndx=7.5 (bottom down the fiber withu=0.1, §=0.2, andg
be explained in terms of the phase shift induced by the pres = /4. All variables are dimensionless. The dashed line is the soli-
ence of the soliton pulse: i.e.,d 1)%/(ot+1)>—(w
+i)?/(w—1)? in frequency space, which is the phase shift

and ast— —

(22t
e a2 ot

L
(22 2.0

w

experienced by a linear plane wave éxt) on passing from _gisg? Sz
t— +o to t— — o through a soliton pulsgl5]. S3)
1. Third-order dispersion This is obtained in a similar manner as the one described in

We shall now add an additional perturbing term in thethe appendix for the strong birefringence term. Also recall
birefringent VNSE system, which represents the effect ofthat toO(e) the soliton parameters remain constants of the
third-order dispersion. The total effect will be mathemati- motion.

cally modeled byF= — o+ a; . The second term repre- Using the associate field formalism we obtain
sents third-order dispersion and the parameteof O(e), R R
suggests that this term is of the same order as the birefrin- f1=i(0’—po—dw)if;
genceu term. 5 P
Evaluating the integrals in Eq10) gives +( '“j'J':(I ) SiNO+ 2i So cos&)qs, (233
(Sﬂ) ——4i§(sz> 2i¢ ( S +ipsin(260)({—inq)
Sul, Sul T Hl-sn T " Fumi(o?t po—s0)i,
sing cosf 2ipsin(26)
X(—c qs+4|5§(§2+771) sm&)q: +( Tcose+2|5w siné|qs,
23b
—8i 5g3( 521) =
Sa1)’ where w=—2¢ is the frequency(recall that we set/=¢

A € R to generate the continuynThese simple equations will
where g} = mexp(x)sech¢r{) and again we set 2,=1. be shown to account for all features noted in the numerically
Note the “extra” term produced spectra of Fig. 1.
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The explicit x dependance represented by the factor +oo . +oo .
exp(—ix) contained ings is easily removed by At(x)=R f_m t5q2q25dt] -R j_m t60,07dt

. (fl) (T‘l) =Aty(X) = Aty(x).
f=| . | —expix) : |
2

2 Recall that the soliton is in one polarization stgtewhereas
the radiation field is in two polarization modes, (e, ) or-

then Eqs(23) become thogonal to each other. For that we introdut®; andAT,
o in order to have the two orthogonal modes in the integrals, so
. . 2ipsin(26) that
f1x=ID_(w)f;+seclimw) Tsma
AT,=At tanfd— At, cot¥,
+2idw cosa), (243
AT2:At1+ Atz,
X - 2iusin(26 th
f21X=iD+(w)f2—secmww)<l;—+n(i) cosé en
At(x)=—sin(20) AT;—cog26) AT,.
—2low sin 0)' (24b) Using Egs.(11), it can be shown that\T,=0 and finally
where At(x)=sin(20) AT,=sin(20)
_ +oo
D:(0)=0’F pw—dw’+1. xRe[exp(ix)f exp(—t) secRtF(x,t)dt}.
The most prominent feature are the resonance peaks in the (25)

pulse spectrum, which are observed to occuD at=0; this
is the origin of these resonance peaks. For any value Offar using the identity

propagation distance, f will be returned to zero at those

frequency components satisfyind) - (w)=2n, wheren +o0 1 [+,

e?. J f(Hg* (dt=5— J f(@)3* (w)do,
The addition of further dispersive terms will not alter o o

things in any significant way. One then must find the newh lative time disol b d
dispersion function and the zergserhaps more than two the relative time displacement, E@5), can be expressed as

will be on the points where secular growth occurs. ) )
) iexpix) [+ )
At(x)=sin(20)R > f (w—1)

2. Polarization mode dispersion

Polarization mode dispersigPMD) is a factor that must A
be taken into account when transmitting over long fiber dis- xsecmfrw/Z)fL(x,w)dw}, (26)
tances. In fibres, PMD is caused by the refractive index not
exhibiting perfect rotational symmetry around the fiber axis.
As a result, the two possible polarization states of the fibekvhere
propagate light with slightly different speeds. This difference )
in propagation speed between the slow and fast fiber axis & (Xow) = 2pmsin(20)sechimw/2)
leads to a broadening of the transmitted bits. PMD is cur- LA@ w—Ii
rently a research topic attracting much attention. Its analyti-

cal treatment is quite complex in general because of its sta- sin6 . Lo

tistical nature[19]. X 1+ o2 [exp(—ix) —expliw’ X)]
Birefringence creates differing optical axes that generally *

correspond to the fast and slow propagation mode axes. It co26

causes one polarization mode to travel faster than the other, + [exp(—ix)—exp(iwz_x)] , (27

resulting in a difference in the propagation time. In a linear +o?
system, pulse broadening can be estimated from the time

delay At between the two polarization components duringand wi=0’* po.
propagation of the pulse. We discuss here the complementary Figure 2 shows the relative time displacement obtained

effect for soliton systems. using Eqgs.(26) and (27) versus normalized distance with
We define the relative time displacement between the tw@arameter®)= /3 and x=0.01. The graph shows a rapid
polarization modes as decay at first and theAt approaches a {k behavior, as
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. L(+=(by , B ,
0.02 oq==——| | g¥et a—*llll dé¢, (293
0.01 1 [+ b¥
L .
5QL:_;J — exp(—iét)yde. (29b)
— o0 a
0
Here, we have introduced
—oo b= S, cosf+ Sy sind, (309
—0.02 b, =—S,; sinf+ Sz cosa, (30b)
0 20 40 60 80 T
a=95;, (300)
FIG. 2. Time displacemenit corresponding to Eq26), with
birefringence parameten=0.01 and polarization anglé= /3. while
All quantities are dimensionless.
exp—igt) .
observed in Ref[7]. This can now be verified by approxi- 'ﬂl:—g_im [§—iny tani(27,t)], (31a
mating Eq.(26) for large values ofx using the method of
steepest descents. iy
Comment. These results do not imply that the continuum o= — 1 exp(i ét—4i p2x)secti2y,t).  (31b)
is zero at the orthogonal polarization stae as argued in E+im

Ref. [8]. Recall that
(8] Note that Eq.(28) resolvesdq into components polarized

5q“:_|\/|f”+q§f|’|" ' parallel and orthogonal to the soliton pulse. Moreover, the
reconstruction formula, Eq293, for scalardq is precisely
sincef; andf, are nonzerdcf., Eq. (19)], so iséq;. The  that obtained for the scalar problem, with and ¢, the
interesting feature here is that radiation generated parallel tappropriate scalar Jost function components quoted in Egs.
the vector soliton is nonoscillatorin the sense discussed (31a@ and (31b). Of course, the evolution equations foy
above, evolving very much in the manner of the radiation andb, have no counterpart in the scalar problem: these now
field associated with the scalar probl¢h®]. Conversely, the read[cf. Egs.(18), (30a, and(30b) abovg
perpendicular componendq, exhibits strong oscillatory
motion. by x= —4i £%b—2i £u[ by cog26) —b, sin(26)],
In a “real” optical fiber, the birefringence axes vary along (3239
the fiber length in a random manner, giving rise to a similar
random variation in the pulse velocity. This is the origin of b, x=—4i&b, +2iulby sin(26) +b, cog26)]
PMD jitter, an important consideration in the design of a . A
soliton based communication system. The problem is ana- —iusin(20)(E=im1)qs. (32b
lyzed in detail in Refs[13,14], and references therein. .
Here, qs=exp(—4i 77x) sech¢ré/27,) is the Fourier trans-
B. The soliton shadow form of (scalay qs=27,exp(—4i2X)sech(2;t). Note that

. L ) the inhomogeneous term is in the equationtor, which in
Equations(11) and(18) describe in full the properties of - generatessq, , the radiation field orthogonally polar-

the radiation field generated as a result of birefringence in afL o4 1o the soliton pulse. The above equations uncouple for
optical fiber. This is clearly a complicated system to analyze, 5 ,es ofg= 0,7/2, where the VNSE similarly reduces to the
so we begin with some preliminary comments. Consider Edscalar form for one or other of the componegisandd,.
(18 first.: we see here that bo®y,; and S;; contribute to t.he When writing Egs.(9), an important assumption was
generation of bottbq, and 4q,, contrary to what one might  \5qe which was not discussed then, but which is appropriate
have anticipated. A simple rearrangement of &) permits 1, mention now. Namely, it was assumed that the potentials
it to be written in the form g, andq, are on compact support: that is, they vanish faster
&= 8+ &, (29) than expE\|t|) as|t|—c for any positive value ok. When
this assumption is not appropriate—such as wy@ht) has
with the sech profile of the soliton pulse, E§) must be modified
by moving the contour€ andC onto the real axis, collect-
cosd —sing ing discrete contributions from the polésssumed simp)eof
cosd |’ S; andA;t in the upper and lower half planes in the pro-
cess. These discrete terms are of course the soliton contribu-

where tion to g (here assumed to be a single solitowhile the

sing

el mcal
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remaining integral along the real axis is the continuum conshedding radiation in the manner discussed in preceding sec-
tribution (i.e., the radiation fielj see Ref[16] for details tions evolves towards its asymptotic soliton state, ).
and further comment. Note that, the sense of the early tibward smaller values of

We now return to Eq(9) and, before taking the contours #6) is consistent with the findings of studies on the polariza-
C and C down to the real axis as discussed above, we firstion fast mode instabilitf18]. Some final comments on the
project the right hand side of the equation onto the orthogonature of the soliton shadow are in order. First, there is no
nal polarization modes (cassiné) and (—siné,cosé) (i.e., ~ concise definition of the soliton shadow in the literature. It
parallel to and orthogonal to the polarization state of thehas been identified as the small orthogonal complement of a
soliton pulsé. WhenSy; has a single zero af=i/2 in the Pulse close to a polarization mog20], a second eigenpa-
upper half plandrecall we have set 4,=1), then the par- rameter in the scattering data which appears when the param-

allel contribution from the discrete terms is just eteru exceeds some critical val§i20,11], or associated with
soliton collisions[20]. In his article, Malomed discusses the
g)=0s, VNSE for the case when=(q;,dq,) obtains a linearized

evolution equation fobq,, and finds an eigenmode solution
as one might expect. Therthogonal contribution is not  to this which is effectively our Eq(33), but without the
equal to zero, but rather is given by appearance of X,” that is, without the secular growth. We
would like to propose that the term “soliton shadow” be

&9, = —b*|,__psecht Bl reserved for the localized mode orthogonal to, and resonant
Llg=-ie 0s6 with, the vector soliton discussed above.
Here, we have used, rather tharg, to emphasize that this V. CONCLUSIONS

is a small quantity. For this to make sense, of course, .
b, |,~ i, must have meaning, which it will not have unless ~We have developed a perturbation theory to analyze per-
we reintroduce the assumption of compact support. If we ddéurbed forms of the VNSE, as appropriate to studies on pulse

this, then the evolution equation foF |, _, is readily ob- ~ Propagation down an anomalously dispersive, birefringent
tained from Eqgs(18) and (32b), optical fiber. We described the radiation shed by the soliton

as it propagates down the fiber as a set of linear differential
. _ no ) equations. These equations uncouple when projected on the
bY e=—i=— |bJ_|§:—i/2_;Sm(2'9)qu_|X)- soliton polarization states. Moreover, unlike other ap-
proaches, we have shown that both modes contribute to the
To obtain this, we note that generation of this field. The theory was finally applied to
different examples, namely, the study of third-order disper-
i exp(—ix) sion and polarization mode dispersion. We also proposed an
- - analytical treatment for the study of the effect of the soliton
shadow.

l +i/2)04(0) =
;Jrﬂm@ i12)04(2) -

This has the solution
APPENDIX A: INVERSE SCATTERING FOR THE

MANAKOV SYSTEM

Mo .
b, (X)=——xsin(20)exp —ix), , , . .
(%) T n(26)exp ) The linear eigenvalue problem associated with the unper-

turbed form E=0) of Eq. (2) is

and so
, Uge+idus=0Up+Qaus, (Ala)
Mmoo —sing
&, =x—sin(26)qs cosd | (33 Up—i{Uy=—07 Uy, (Alb)
where q; is the scalar soliton, Eq4), with £&,=0, 27, Uz —i{Us=—q3U;. (Alc)
=1.

We define the fundamentalor Josj solutions ¢! and

The interesting feature here is the linear growth with ), i=1,2,3, for realz= ¢ by the requirements that

which indicates &ecularinteraction of the soliton pulse with

the birefringence medium. Expressi@g) is valid only for dD~e, exp—iét),
propagation distancesx<<1. We propose that the contribu-

tion (33) is a true description of the early evolution of the PP ~e, expliét),
soliton shadow. It is in a polarization direction perpendicular

to the soliton pulsey, is a “true” radiation mode in the ¢ ~ey expliét),

sense that it does not arise from a simple “tilt” of the polar-

ization angle# (actually d9/dx=0 for the choice of the ast——, and

perturbation F taken herg and is a resonant—and ¥D~e exp—iét),
localized—contribution to the radiation field in the sense that
growth is secular. Moreover, the composite pujse 69, on YP~e, expitt),
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PO~e; expliét),
ast— +o, wheree;=(1,0,0) etc. Since") and 4! are
independent sets of solutions, we can write

3
¢<‘>:j§1 Si (O, (A2)

which defines the scattering de8g(¢{). For{= ¢ real,Sis a
3X 3 unitary unimodular matrix.

We also require an adjoint scattering problem which is

taken to be
vy~ i{v1=0qivta5vs, (A3a)
Vo tilv,=— vy, (A3b)
V3 +idvz=— 0o, (A3c)

where the symbot- is used to denote solutions of the ad-
joint problem. As with the direct problem, we define the

fundamental solutiongh®) and ¥4 of the adjoint problem

by the requirement that
dD~e expliét),
$D~e exp—iét),
I ~e; exp(—igt),
ast— —o, and
PH~e expligt),
P~ exp(—igt),
PI~e; exp(—igh),

ast— +. Since, by constructiogd) Tyl = A, , it follows

ijo

that S;;= ¢V Tp). The scattering data;; for the adjoint
scattering problem are introduced in an analogous manner to

Eq. (A2) by

3
2?5“)=]§1 Aji(Z);lf(j)-

By virtue of the unitary nature d, it is easily demonstrated

thatA;i () is the cofactor of the elemeg;({), and that
Aij(H)=S5(0),
where * denotes complex conjugate.

APPENDIX B

It is required to evaluate the integral

+ o . . q
|= _“f_m (¢<J>/\¢A'>)TU3( (;* ) dt.

Y

PHYSICAL REVIEW E69, 016603 (2004

Introduce the quantities and B8 so that the scattering equa-
tions (Ala)—(Alc) and their adjointgA3a)—(A3c) become,
respectively,

atifa=q'p,
B—i{B=—aq",
and
a—ila=q'B,
B—i¢{B=—1aq.

We then write the integrdl as

|:—MJ+w(|T,mT)ag( _Z*)dt,

—o

wherel=aB andm= aB. Integrating by parts and evaluat-

ing the derivatived; andm;, gives

+ oo
| = —2i ng (ITo3q+ mTo3q* ) dt.

—o0

Finally introduce the quantitk=8"o3B. Evaluate its de-
rivative

ki=—1To30—mTo3q*,
so that

Sa
| =2i k| %+ other terms= —2i fu + other terms.

1

The “other terms” correspond to the rest of the term in Eq.
(18) which are obtained directly from Eq10) as discussed
in the text.

APPENDIX C: THE JOST FUNCTIONS

‘We will list here the components for the Jost functions
) and V). These are obtained by direct solution of the
scattering problem with appropriate boundary conditions as
t— * oo, with solitonic expressions fogs. The adjoint Jost
functions are obtained from the relationships(Z,t)
=¢0(z,0)* and P(Z,)=y)(L,1)*, where * denotes
complex conjugate,

exp —ift)
(H_"7 > e
o i [{—intanh(27,t)],
7, . :
¢(21)= e e exp(—ilt+4i nix)secMth)COS&
(1>—_iiexp(—i t+ 4i n2x)sechi27,t)sin 6
S gFip s " '
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¢>(12):_ gl 7]177 exp(i{t—4i nlx)sechjznlt)cosﬁ
$§2)= e;p(g)(§+|n1[cosz0tanr(2nlt) sirfa)),
¢(32):§'_7i717] exp(i £t)[ 1+ tanh( 2 7,t) ]sin 6 cos,
1
¢(13)__ |7 exp(i {t—4i n?x)secti2 7,t)sin 6,
{—imy
‘75(23):5—?177 exp(i t)[ 1+ tank(2 7;t)]sin 6 cosé,
1
3= egp(g)(§+|n1[sm20tanl"(2771t) cogd)),
ex
Y= f U =i pytant 2,01,
(D= — (e exp( —i{t+4i n2x)sechi2 7;t)cosb,
{—im

PHYSICAL REVIEW B9, 016603 (2004

Yy =— g T exq—|§t+4|nlx)secm2n1t)sm6
(12) g—l|—7|7 exp(i ft—A4i nlx)sechant)COSH
exp(i{t) . i
(22):§f—i7;1(§+| ni[coghtani(2 7t) + sir4]),
52)_g+| exp(i{t)[ —1+tani27,t)]sin 6 cosé,
(3)_ _ i £t— 4i p°x)sechi2 n,t)sin 6
) §+imexm§ 71 71 ,
(23) §+| exp(|§t)[ 1+tanh(274t)]sin 6 cosé,

exp(i{t) . .
(33):§f—inl(§+|7;1[3|n20tani'(2771t)+00529])-
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