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Large phase shift of nonlocal optical spatial solitons
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In this paper, we discuss the evolution of the optical beam in nonlocal cubic nonlinear media, modeled by
the nonlocal nonlinear Schro¨dinger equation~NNLSE!. A different approximate model to the NNLSE is
presented for the strongly nonlocal media with arbitrary response functions. An exact analytical solution of the
model is obtained, and a spatial soliton is found to exist. A different phenomenon is revealed that the phase
shift of such a nonlocal optical spatial soliton can be very large comparable to its local counterpart. The
stability of the solution is rigorously proved. The comparisons of our analytical solution with the numerical
simulation of the NNLSE, as well as with Snyder-Mitchell~linear! model @A. W. Snyder and D. J. Mitchell,
Science276, 1538~1997!# are given.
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I. INTRODUCTION

Interest in properties of an optical spatial soliton in no
local nonlinear media, called a nonlocal optical spatial s
ton in this paper, has greatly grown during recent years b
theoretically@1–8# and experimentally@9#. The nonlocal op-
tical spatial soliton is modeled by the nonlocal nonline
Schrödinger equation~NNLSE! @1,4,6# that the nonlinear
term assumes a nonlocal form~convolution integral! with a
symmetric and real-valued response kernel, while
NNLSE also describes several other physical situations@7,8#.
According to the degree of the nonlocality determined by
relative width of the response kernel and the optical beam~or
the other wave packets for more general cases!, there are
four categories of the nonlocality@6,8#: local, weakly nonlo-
cal, generally nonlocal, and strongly nonlocal. Snyder a
Mitchell @1# simplified the NNLSE to a linear model in th
strongly nonlocal case, and found an exact Gaussian-sh
stationary solution to the model called as an accessible
ton. Their work was highly appreciated by Shen@10#. So far,
more properties of solitons modeled by NNLSE and the
lated phenomena have theoretically been opened out. A s
by a variational approach was carried out with respect to
specific power-law response kernel@3#, and a tractable mode
of the logarithmic nonlocal nonlinear media with the Gau
ian response kernel was presented@4#. Subwavelength non
local spatial solitons were also studied@5#. Exact soliton so-
lutions in the limit of weak nonlocality@7# were obtained,
modulational instabilities were analyzed@6#, and the proper-
ties of soliton stabilization with arbitrary degree of nonloc
ity @8# were investigated. Following these achievements,
present here a model to simply the NNLSE in the stron
nonlocal case, and an exact analytical solution to the mo
is found, which reveals a phenomenon that the phase shi
the strongly nonlocal optical spatial soliton, the spatial so
ton in the strongly nonlocal media, can be very large.

*Electronic address: guoq@scnu.edu.cn
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Structurally, the paper develops the thesis in the follow
way. In Sec. II, we present an approximate model to
NNLSE with arbitrary response function by means of t
Taylor’s expansion of the response function, and obtain
exact analytical solution to the model. We also show
equivalence of the evolution equation for the beam width
Newton’s second law for the motion of a particle in class
mechanics. Section III is concerned with the discussion
the solution. The analytical solution is compared with t
numerical propagation of the NNLSE, and a phenomenon
a large phase shift of the strongly nonlocal optical spa
soliton is explored. The result about a rigorous proof for t
stability of the solution is given in Sec. IV. In Sec. V
comparison is made of our model with Snyder-Mitchell~lin-
ear! model. Section VI is conclusion.

II. SIMPLIFIED MODEL OF THE NNLSE AND ITS
ANALYTICAL SOLUTION

The propagation of the optical beam in the nonlocal cu
nonlinear media is modeled by the NNLSE@1,4,6#

i
]c

]z
1mn'c1rcE R~x2x8!uc~x8,z!u2dDx850, ~1!

wherec(x,z) is a paraxial beam,m51/2k, r5kh, k is the
wave number in the media without nonlinearity~that is, k
5vn0 /c, andn0 is the linear refractive index of the media!,
h is a material constant (h.0 or ,0 corresponds to a fo
cusing or defocusing material!, z is the longitudinal~propa-
gation direction! coordinate,x andx8 are theD-dimensional
transverse coordinate vectors (x,x8PRD, D51 or 2!, dDx8
is a D-dimensional volume element atx8, n' is the
D-dimensional transverse Laplacian operator, and the i
gration limits are2` and `. Here,R is normalized sym-
metrical real spatial response of the media such t
*R(x8)dDx851.

For the strongly nonlocal case, we havew/wm,1, where
w andwm are the beam width and the width of the respon
©2004 The American Physical Society02-1
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function, i.e., the characteristic length of the material, th
the response functionR(x) can be expanded in Taylor’s se
ries. Concretely, we first expand the responseR(x2x8) with
respect tox8 about x850 ~the beam center in the prime
coordinate system! to the second order in the first integr
overx8, then expand again the functionsR( j )(x) in the result
of the first integrand, where R( j )(x) denotes
] jR(x)/]x1

j 2 i]x2
i (x1 and x2 are the transverse coordinate

j 50,1,2, i 50,j ), with respect tox aboutx50 till all of the
R(2)(0) terms appear before evaluation of the second inte
over x. In this way, the NNLSE can be deduced as@11#

i
]c

]z
1m¹'

2 c1rcE FR01
1

2
R09~x2x8!2G uc~x8,z!u2dDx8

50, ~2!

whereR05R(x8)ux850, andR095]x1

2 R(x8)ux850, which turns

out to be forz-axial symmetrical solutionc(r ,z):

i
]c

]z
1

m

r D21

]

]r S r D21
]

]r
c D2

1

2
rgP0r 2c1rR0P0c

2
1

2
rgcE uc~r 8,z!u2r 82dDx850, ~3!

wherer 5uxu is the transverse distance from the beam cen
in the coordinate system without the prime,g52R09.0
@R09,0 because R0 is a maximum of R(x)], P
5* uc(x,z)u2dDx is the beam power@12#, andP0 is the input
power atz50. The substitution ofP0 for P in the third and
fourth terms above follows the fact that powerP is conserved
@13#. Equation~3! is our model for solutions.

We search for a solution to Eq.~3! of the Gaussian func
tion form

c~r ,z!5
AP0 exp@ iu~z!#

@Apw~z!#D/2
expF2

r 2

2w~z!2
1 ic~z!r 2G ,

~4!

whereu is the phase of the complex amplitude of the so
tion, w is beam width,c represents the phase-front curvatu
of the beam, and they are all allowed to vary with propa
tion distancez. The real amplitude of the solution has th
form AP0 /@Apw#D/2, owing to the conservation of th
power. Inserting the trial function above into Eq.~3!, and
from the coefficient of the zero-order term ofr, we obtain a
first-order ordinary differential equation foru

du

dz
1

Dm

w2
2

1

4
rP0~4R02Dgw2!50. ~5a!

In the same way, the real and imaginary parts of the coe
cient of r ’s quadratic term yield the two equations for th
parametersw andc, respectively,
01660
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dw

dz
24mcw50, ~5b!

dc

dz
2

m

w4
14mc21

1

2
rgP050. ~5c!

The combination of Eq.~5c! with the derivative form of Eq.
~5b! yields

1

m

d2y

dz2
2

4m

w0
4y3

12rgP0y50, ~6!

where the normalization thatw(z)/w05y(z) is introduced,
andw05w(0).

Equation~6! is equivalent to Newton’s second law in cla
sical mechanics for the motion of an one-dimensional p
ticle with the equivalent mass 1/m acted by the equivalen
force F54m/w0

4y322rgP0y, while y and z are equivalent
to the spatial and temporal coordinates of the particle,
spectively. The first term ofF makes the particle accelerate
and has the particle’s velocitydy/dz becoming bigger and
bigger, which means that the beam is being expanded or
a trend to be expanded, depending upon the initial velo
dy/dzuz50>0 or ,0. It is obvious that this term is the effec
of diffraction. By contrast, the second term ofF, which acts
as an elastic force following Hooke’s law that always driv
the particle back to its initial state ifr.0 ~i.e., h.0), de-
celerates the particle, and presents the compression effe
nonlinearly induced refraction. When the diffractive forc
and the refractive force have the same amplitude, the t
force will be zero, and the particle will keep its velocit
unchangeable. Then the particle with initial zero veloc
keeps rest, and its spatial coordinatey is always 1: this is a
spatial soliton state. Letting the two forces equal andy51,
we obtain the critical~input! power for the soliton propaga
tion

Pc5
2m

grw0
4

5
1

gw0
4k2h

. ~7!

It is observed thatF is a conservative force, becauseF can
be expressed asF(y)52dV(y)/dy, and the equivalent po
tential V(y) is given by

V~y!5
2k~y221!~y22L!

mw0
2y2

, ~8!

wherek5mrgP0w0
2/25w0

2hgP0/4, andL5Pc /P0. There-
fore, the total energy of the equivalent particle that equ
E5T1V is a constant of the motion, whereT
5(dy/dz)2/2m is its kinetic energy~It is reminded here tha
1/m is the mass of the particle.!. Assuming that the beam a
z50 hasdw(z)/dzuz5050 @14# such that the particle’s ini-
tial total energy is zero, thenT1V50 gives the following
equation
2-2
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FIG. 1. Comparison of analytical solutio
~solid curves! with numerical simulation~dashed
curves! for the ~111!-dimensional beam propa
gation in the Gaussian-shaped response mate
when P0,Pc . The initial conditions are~a!
w0 /wm50.1, ~b! w0 /wm50.2, ~c! w0 /wm

50.3, ~d! w0 /wm50.4, ~e! w0 /wm50.5, ~f!
w0 /wm50.6, andP0 /Pc'0.7 for all cases.
1 dy 2 2k~y221!~y22L! AP r 2

xact

e-

s
lly
a

pre-

a-
cal

re-

ical

res.
in
en
2 S dzD 1
w0

2y2
50. ~9!

As a matter of fact, direct one-time integration of Eq.~6! also
yields Eq.~9! mathematically.

For the materials with positiveh, we havek.0 andL
.0. Then integration of Eq.~9! reads

w25w0
2Fcos2~b0z!1

Pc

P0
sin2~b0z!G , ~10!

where b052Ak/w05(ghP0)1/2. The substitution of Eq.
~10! into Eq. ~5a! and Eq.~5b! yields, respectively,

u52
D

2
arctanFAPc

P0
tan~b0z!G

1
D~12P0 /Pc!

16kw0
2b0

sin~2b0z!1rR0P0z

2
D~P0 /Pc11!z

8kw0
2

, ~11!

and

c5
b0k~Pc /P021!sin~2b0z!

4@cos2~b0z!1~Pc /P0!sin2~b0z!#
. ~12!

Then by the substitution of Eqs.~10!–~12! into Eq. ~4!, we
obtain the exact solution of Eq.~3!:

c~r ,z!5
AP0

~Apw!D/2
expS 2

r 2

2w2D exp@ i ~cr21u!#,

~13!

which satisfies the initial condition atz50
01660
c~r ,0!5
0

~Apw0!D/2
expS 2

2w0
2D , ~14!

wherew, u, andc are given by Eqs.~10!, ~11!, and~12!.

III. DISCUSSION ABOUT THE SOLUTION: LARGE
PHASE SHIFT

The Gaussian-shaped solution derived here is the e
solution to Eq.~3!, but the approximate one to Eq.~1! for the
strongly nonlocal case. Equation~10! shows that whenP0
,Pc , beam diffraction initially overcomes beam-induced r
fraction, and the beam initially expands, withw2/w0

2 vibrat-
ing between a maximumPc /P0 and a minimum 1; wherea
when P0.Pc , the reverse happens and the beam initia
contracts, withw2/w0

2 breathing between a maximum 1 and
minimum Pc /P0. WhenP05Pc , diffraction is exactly bal-
anced by nonlinearity, and the Gaussian-shaped beam
serves its width as it travels in the straight path alongz axis.
This is a soliton. These features of the (11D)-dimensional
beam (D51 or 2! are shown in Figs. 1–6, where the an
lytical solutions are compared with the results of numeri
propagation of Eqs.~1! and~14! for differentw0 /wm andP0.
To simulate the propagation, we assume the material
sponse is the Gaussian function@4,6#

R~r !5
1

~A2pwm!D
expS 2

r 2

2wm
2 D . ~15!

Tables I and II give the exact numerical results, the analyt
results, and their relative errors for the maximums~or mini-
mums! of the on-axis normalized amplitudeuc(0,z)u/c(0,0)
for the parameters given in these six corresponding figu
Clearly the~111!-dimensional analytical predictions are
agreement with the exact numerical simulations wh
w0 /wm<0.1, and still close approximation~the absolute val-
ues of the relative errors are within 10%! to the simulations
till w0 /wm reaches 0.4 for theP0,Pc case, and 0.5 for the
2-3
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FIG. 2. Comparison of analytical solutio
~solid curves! with numerical simulation~dashed
curves! for the ~111!-dimensional beam propa
gation in the Gaussian-shaped response mate
when P05Pc . The initial conditions are~a!
w0 /wm50.1, ~b! w0 /wm50.2, ~c! w0 /wm

50.3, ~d! w0 /wm50.4, ~e! w0 /wm50.5, and~f!
w0 /wm50.6.
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P05Pc andP0.Pc cases. For the samew0 /wm , the higher
the input power, the better the approximation. The appro
mations of the~112!-dimensional analytical results to th
corresponding numerical ones are a little bit worse than
~111!-dimensional cases.

WhenP05Pc , Eq. ~13! is simplified to a soliton expres
sion

cs~r ,z!5
exp~ ifz!

pD/4w0
21D/2~gh!1/2k

expS 2
r 2

2w0
2D , ~16!

wheref53D(4s/3D21)/(4w0
2k), s5R0 /gw0

2, andfz is
the phase shift after propagating a distancez. The spatial
soliton of this kind existing in the strongly nonlocal media
called the strongly nonlocal optical spatial soliton. A strong
nonlocal optical spatial soliton with any width can propag
in the media as long as its powerP0 equals exactly the
critical powerPc defined in Eq.~7!. It should be paid atten
tion that s is a parameter determined by the initial bea
width and the material property. To illuminate this, we u
01660
i-

e

e

the relationg52R09;R0 /wm
2 , thens5nwm

2 /w0
2 , where the

proportional coefficientn is determined only by the materia
property, andunu has an order of 1. For example, if the r
sponse of the material is assumed to be the Gaussian f
tion ~15!, it can be shown thatn51 independent ofD. For
the strong nonlocality, we havewm /w.1. Supposing we
take wm /w0>5, then it is observed thatfz'nwm

2 z/w0
4k.

For local Kerr soliton, it has been shown that the phase s
f lz5z/(2kw0

2) for ~111!-dimensional case@15#. Comparing
the results between the strongly nonlocal and the local ca
we observe that the phase shift for the former is (wm /w0)2

times ~about two order! larger than that for the latter pro
videdwm /w0>10. Figures 7 and 8 are the comparison of t
phase evolutions from our model and the numerical simu
tion, and Table III gives the relative error between the n
merical and analytical results of the on-axis phase slope.
viously our phase solution is in very close agreement w
the numerical simulation whenw0 /wm is much smaller than
1; while our result is still closely approximate to the nume
cal simulation whenw0 /wm becomes gradually bigger, ap
n

-
rial
FIG. 3. Comparison of analytical solutio
~solid curves! with numerical simulation~dashed
curves! for the ~111!-dimensional beam propa
gation in the Gaussian-shaped response mate
when P0.Pc . The initial conditions are~a!
w0 /wm50.1, P0 /Pc51.37, ~b! w0 /wm50.2,
P0 /Pc51.63, ~c! w0 /wm50.3, P0 /Pc51.55,
~d! w0 /wm50.4, P0 /Pc51.91, ~e! w0 /wm

50.5, P0 /Pc52.04, and ~f! w0 /wm50.6,
P0 /Pc52.44.
2-4
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LARGE PHASE SHIFT OF NONLOCAL OPTICAL . . . PHYSICAL REVIEW E 69, 016602 ~2004!
proaching but being less than 1, no matter thatD51 or 2.
We, therefore, conclude that the phase shift of the Gauss
shaped spatial soliton can be very large during it propag
in strongly nonlocal media comparable to its local count
part.

In the same way, the phase shift for nonsoliton case
be obtained by analyzing Eq.~11!.

The physical origin of the phenomenon can qualitativ
be understood from the term ‘‘nonlocality.’’ Nonlinear non
locality means that the nonlinear polarization of media wit
small volume of radiusr 0 (r 0! any wavelength involved!
depends not only on the value of the electric field inside t
volume ~at the present time and in the past!, but also on the
electric field outside the volume under consideration. T
stronger the nonlocality, the more fields are involved to c
tribute to the polarization, hence the larger phase shif
obtained.

The effective generation of a large phase shift is v
important for the modification, manipulation, and control
optical fields based on the principle of interference, es
cially in the optical switching@16#, hence the finding abou

FIG. 4. Comparison of analytical solution~solid curves! with
numerical simulation~dashed curves! for the ~112!-dimensional
beam propagation in the Gaussian-shaped response material
P0 /Pc50.7. For the numerical result, the parameterw0 /wm is 0.1,
0.2, 0.3, and 0.4, respectively from down to up.

FIG. 5. Comparison of analytical solution~solid curves! with
numerical simulation~dashed curves! for the ~112!-dimensional
beam propagation in the Gaussian-shaped response material
P0 /Pc51. For the numerical result, the parameterw0 /wm is 0.1,
0.2, 0.3, and 0.4, respectively, from down to up.
01660
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the large phase shift of the strongly nonlocal optical spa
solitons might be found to be of potential value in applic
tions.

IV. PROOF OF THE STABILITY OF OUR MODEL

An important content of the solution search for nonline
equations is the stability analysis of their solutions. The s
bility property of the particular solution~13! to Eq. ~3! for
the initial condition~14! has been obtained. The mathema
cal prerequisites for this stability demonstration are only c
culus, specially Schwarz inequality, as well as the other th
inequalities in elementary mathematics@17#, and no more
advanced mathematical knowledge is needed. Only the c
clusion is given here; details about the formal proof will
given elsewhere.

hen

hen

FIG. 6. Comparison of analytical solution~solid curves! with
numerical simulation~dashed curves! for the ~112!-dimensional
beam propagation in the Gaussian-shaped response material
P0 /Pc52.5. For the numerical result, the parameterw0 /wm is 0.1,
0.2, 0.3, and 0.4, respectively, from down to up.

TABLE I. The exact numerical results, the analytical resul
and their relative errors for the maximums~or minimums! of the
on-axis normalized amplitudeuc(0,z)u/c(0,0) in the ~111!-
dimensional case.

w0 /wm 0.1 0.2 0.3 0.4 0.5 0.6

For the parameters in Fig. 1 (uc(0,z)u has the minimum!
ERa 0.919 0.894 0.869 0.837 0.799 0.750
ARb 0.922 0.910 0.911 0.911 0.912 0.906
RE~%!c 20.3 21.8 24.8 28.8 214.1 220.8

For the parameters in Fig. 2
ER 0.996 0.985 0.967 0.941 0.910 0.864
AR 1.000 1.000 1.000 1.000 1.000 1.000
RE~%! 20.4 21.5 23.4 26.3 29.9 215.7

For the parameters in Fig. 3 (uc(0,z)u has the maximum!
ER 1.078 1.116 1.082 1.118 1.111 1.134
AR 1.082 1.131 1.115 1.176 1.195 1.250
RE~%! 20.4 21.3 23.0 25.2 27.6 210.2

aER: exact numerical results to Eqs.~1! and ~14!.
bAR: analytical approximate results to Eq.~1!,
uc(0,z)umax@ uc(0,z)umin#/c(0,0)5(P0 /Pc)

1/4.
cRE: relative errors, RE5(ER2AR)/ER.
2-5
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QI GUO et al. PHYSICAL REVIEW E 69, 016602 ~2004!
Assume thatC(x,z) is the solution of the following
Cauchy problem:

i
]C

]z
1m¹'

2 C1rCE FR02
g

2
~x2x8!2G uC~x8,z!u2dDx8

50, x,x8PRD, z.0 ~17a!

C~x,0!5C05c01 f ~x!, xPRD, ~17b!

wheref (x) is the random perturbation andc05c(r ,0) given
by Eq. ~14!.

Let u(x,z)5C(x,z)2c(r ,z). We have rigorously dem
onstrated thatu(x,z) satisfies the inequality

E ~ uuu21uuu2r 21u¹'uu2!dDx

<PE ~ u f u21u f u2r 21u¹' f u2!dDx, ~18!

TABLE II. The exact numerical results, the analytical resul
and their relative errors for the maximums~or minimums! of the
on-axis normalized amplitudeuc(0,z)u/c(0,0) in the ~112!-
dimensional case.

w0 /wm 0.1 0.2 0.3 0.4

For the parameters in Fig. 4 (uc(0,z)u has the minimum!
ER 0.846 0.791 0.747 0.655
ARa 0.851 0.827 0.829 0.830
RE~%! 21.1 24.3 210.9 226.7

For the parameters in Fig. 5
ER 0.990 0.960 0.913 0.846
AR 1.000 1.000 1.000 1.000
RE~%! 21.0 24.0 29.5 218.1

For the parameters in Fig. 6 (uc(0,z)u has the maximum!
ER 1.159 1.234 1.147 1.208
AR 1.170 1.279 1.244 1.383
RE~%! 20.9 23.6 28.3 214.4

auc(0,z)umax@ uc(0,z)umin#/c(0,0)5(P0 /Pc)
1/2.
01660
whereP is a finite constant. Then we have the fact that
long asf→0, u will be trend 0, i.e.,C(x,z)→c(r ,z).

V. COMPARISON OF OUR MODEL WITH
SNYDER-MITCHELL MODEL

In the case where the characteristic length of the mate
wm is much larger than the beam widthw, in the other words,
that mathematicallywm trends to infinite or relativelyw
trends to zero,uc(r 8,z)u2 within the integration of Eq.~3!
can be considered to bed function of the variabler 8 such
that the last term of Eq.~3! equals zero. If the last secon
term of Eq.~3! is considered to be zero, it can be droppe
Therefore, for the conditions under consideration, witho
taking its last two terms, i.e., zero-order terms ofr, into
account, Eq.~3! can be simplified to the linear model sug
gested by Snyder and Mitchell@1#

i
]c

]z
1

m

r D21

]

]r S r D21
]

]r
c D2

1

2
rgP0r 2c50. ~19!

As mentioned in the foregoing, the evolution of the bea
width and the phase-front curvature is determined by
quadratic term ofr, while the phase’s evolution comes from
the zero-order term ofr. Hence it is obvious that the result
aboutw andc from our model are the same with that fro
Snyder-Mitchell model. Because they emphasized on
evolution of the beam width, however, Snyder and Mitch
did not discuss the phase evolution in Ref.@1#.

Except the difference in form, there is another differen
between two models in methodology. Our model is obtain
by direct expansion ofR within the integration, butR is first
taken out from the integration and then expanded to yi
Snyder-Mitchell model. As has been mentioned, this requ
mathematicallywm tends to infinite or equivalentlyw tends
to zero. As a result, degree of nonlocality in our model

,

e

n-

ves

d

FIG. 7. Comparison of the results about th
phase from our model~solid curves! and the nu-
merical simulation~dashed curves! for the~111!-
dimensional beam propagation in the Gaussia
shaped response material whenP05Pc . Another
initial condition is ~a! w0 /wm50.1, ~b! w0 /wm

50.2, ~c! w0 /wm50.3, ~d! w0 /wm50.4, ~e!
w0 /wm50.5, and~f! w0 /wm50.6. For simula-
tion results, there are included three phase cur
corresponding to the on-axis and two-side atx
56w0 phases, which are a little bit different an
cannot be distinguished by eye.
2-6
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FIG. 8. Comparison of the results about th
phase from our model~solid curves! and the nu-
merical simulation~dashed curves! for the~112!-
dimensional beam propagation in the Gaussia
shaped response material whenP05Pc . Another
initial condition is ~a! w0 /wm50.1, ~b! w0 /wm

50.2, ~c! w0 /wm50.3, ~d! w0 /wm50.4, ~e!
w0 /wm50.5, and ~f! w0 /wm50.6. There are
three numerical phase curves a little bit differe
from each other corresponding to the on-axis a
two-side at6w0, which cannot be distinguished
by eye.
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weaker than that in Snyder-Mitchell model, and our mo
confirms the results about the beam width and phase-f
curvature for a single beam obtained from Snyder-Mitch
model in more extensive degree of nonlocality.

VI. CONCLUSION

We discuss the evolution of the optical beam in t
strongly nonlocal cubic nonlinear media with the arbitra
symmetric and real-valued response functions. A mode
presented, and its exact analytical solution is obtained.
stability property of the solution is rigorously obtained. W
show the equivalence of the evolution equation for the be
width to Newton’s second law for the motion of a particle
classic mechanics, and the optical spatial soliton is equ
lent to the rest state of the particle. A phenomenon is p
dicted that the phase shift of the strongly nonlocal opti

TABLE III. The exact numerical results, the analytical resul

and their relative errors for the normalized on-axis phase slopf̄
5fLR , whereLR5w0

2k is the Rayleigh distance.

w0 /wm 0.1 0.2 0.3 0.4 0.5 0.6

D51
ER 99.25 24.26 10.38 5.53 3.29 2.09
ARa 99.25 24.25 10.36 5.50 3.25 2.03
RE~%! 0.0 0.0 0.2 0.5 1.2 2.9

D52
ER 98.382 23.459 9.653 4.823 2.614 1.41
ARb 98.500 23.500 9.611 4.750 2.500 1.27
RE~%! 20.12 20.17 0.44 1.51 4.36 9.75

af̄5wm
2 /w0

223/4.
bf̄5wm

2 /w0
223/2.
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spatial soliton should be large to maintain its propagati
Our analytical results are confirmed by the numerical sim
lation of the NNLSE. The comparison of our model wi
Snyder-Mitchell~linear! model shows that our model con
firms the results about the beam width and phase-front
vature for a single optical beam from Snyder-Mitchell mod
in more extensive degree of nonlocality.

Note added.Recently we were happy to have read t
latest paper~Ref. @18#!. In this paper, it was claimed that th
nematic liquid crystals are indeed one of the strongly non
cal nonlinear media, hence the observed optical spatial s
tons in the nematic liquid crystals~see Ref.@19#! are the
accessible solitons suggested by Snyder and Mitchell. Be
this work, it would be considered that the strongly nonloc
nonlinear media had not been discovered~see, for example,
Ref. @10#!. Representing the second milestone in nonlo
optical spatial soliton investigations~the first one is Snyder
and Mitchell’s!, this work ~Ref. @18#! would stimulate more
both theoretical and experimental activities towards a th
ough understanding of the nonlocal optical spatial solitons
would be possible, therefore, that the large phase shift of
strongly nonlocal optical spatial solitons would be observ
in the nematic liquid crystals.
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