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Large phase shift of nonlocal optical spatial solitons
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In this paper, we discuss the evolution of the optical beam in nonlocal cubic nonlinear media, modeled by
the nonlocal nonlinear Schidinger equation(NNLSE). A different approximate model to the NNLSE is
presented for the strongly nonlocal media with arbitrary response functions. An exact analytical solution of the
model is obtained, and a spatial soliton is found to exist. A different phenomenon is revealed that the phase
shift of such a nonlocal optical spatial soliton can be very large comparable to its local counterpart. The
stability of the solution is rigorously proved. The comparisons of our analytical solution with the numerical
simulation of the NNLSE, as well as with Snyder-Mitché@lhean model[A. W. Snyder and D. J. Mitchell,
Science276, 1538(1997)] are given.
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[. INTRODUCTION Structurally, the paper develops the thesis in the following
way. In Sec. I, we present an approximate model to the
Interest in properties of an optical spatial soliton in non-NNLSE with arbitrary response function by means of the
local nonlinear media, called a nonlocal optical spatial soli-Taylor’s expansion of the response function, and obtain an
ton in this paper, has greatly grown during recent years botgxact analytical solution to the model. We also show the
theoretically[1—8] and experimentally9]. The nonlocal op- €quivalence of the evolution equation for the beam width to
tical spatial soliton is modeled by the nonlocal nonlinearNewton’s second law for the motion of a particle in classic
Schradinger equation(NNLSE) [1,4,6] that the nonlinear mechanics. Section Il is concerned with the discussion of
term assumes a nonlocal forfnonvolution integr3| with a the solution. The analytical solution is Compared with the
symmetric and real-valued response kernel, while théumerical propagation of the NNLSE, and a phenomenon of
NNLSE also describes several other physical situati@ig]. & large phase shift of the strongly nonlocal optical spatial
According to the degree of the nonlocality determined by thesoliton is explored. The result about a rigorous proof for the
relative width of the response kernel and the optical beam stability of the solution is given in Sec. IV. In Sec. V a
the other wave packets for more general cpstieere are  comparison is made of our model with Snyder-Mitchéti-
four categories of the nonlocalif,8]: local, weakly nonlo- ~ €a) model. Section VI is conclusion.
cal, generally nonlocal, and strongly nonlocal. Snyder and

Mitchell [1] simplified the NNLSE to a linear model in the Il. SIMPLIFIED MODEL OF THE NNLSE AND ITS

strongly nonlocal case, and found an exact Gaussian-shaped ANALYTICAL SOLUTION

stationary solution to the model called as an accessible soli- i i , ,
ton. Their work was highly appreciated by SHa]. So far, The propagation of the optical beam in the nonlocal cubic

more properties of solitons modeled by NNLSE and the renonlinear media is modeled by the NNL$E4,6

lated phenomena have theoretically been opened out. A study o

by a_v_arlatlonal approach was carried out with respect to the i— + uA, ¢+Plﬁf R(x—x")|(x',2)|2d°x’ =0, (1)
specific power-law response kerfigl, and a tractable model Jz

of the logarithmic nonlocal nonlinear media with the Gauss-

ian response kernel was presenfdll Subwavelength non- wherey(x,z) is a paraxial beamu=1/2k, p=k#, Kk is the
local spatial solitons were also studigs]. Exact soliton so- wave number in the media without nonlinearitat is, k
lutions in the limit of weak nonlocality7] were obtained, =wng/c, andny is the linear refractive index of the meglia
modulational instabilities were analyzg6l], and the proper- 7 is a material constantz>0 or <0 corresponds to a fo-
ties of soliton stabilization with arbitrary degree of nonlocal- cusing or defocusing materjak is the longitudinal(propa-
ity [8] were investigated. Following these achievements, wegation direction coordinatex andx’ are theD-dimensional
present here a model to simply the NNLSE in the stronglytransverse coordinate vectons,X’ € R°, D=1 or 2), dPx’
nonlocal case, and an exact analytical solution to the modet a D-dimensional volume element at’, A, is the
is found, which reveals a phenomenon that the phase shift d-dimensional transverse Laplacian operator, and the inte-
the strongly nonlocal optical spatial soliton, the spatial soli-gration limits are— ande. Here,R is normalized sym-

ton in the strongly nonlocal media, can be very large. metrical real spatial response of the media such that
SR(x")dPx' =1.
For the strongly nonlocal case, we havév,,<1, where
*Electronic address: guog@scnu.edu.cn w andw,, are the beam width and the width of the response

1063-651X/2004/64)/0166028)/$22.50 69 016602-1 ©2004 The American Physical Society



QI GUO et al. PHYSICAL REVIEW E 69, 016602 (2004

function, i.e., the characteristic length of the material, then dw

the response functioR(x) can be expanded in Taylor’s se- dz  Amcw=0, (5b)
ries. Concretely, we first expand the respoRér—x’) with

respect tox’ aboutx’=0 (the beam center in the primed

coordinate systemto the second order in the first integral dC_ L
overx’, then expand again the functioR§’(x) in the result dz  w*
of the first integrand, where RU)(x) denotes

J'R(x)/9xy"' 9%y (X andx, are the transverse coordinates, The combination of Eq(5¢) with the derivative form of Eq.
j=0,1,2,i=0,), with respect tox aboutx=0 till all of the  (5p) yields
R(2)(0) terms appear before evaluation of the second integral

overX. In this way, the NNLSE can be deduced[a4]

1
+4uc?+ EpyPOZO. (50

1d% 4u

mdZ woy®

+2pyPoy=0, (6)
lp(x',2)|%dPx’

1 " "2
Ro+ ERO(x—x )

Y 2
IE_FMVLI'/H—I)I’[IJ o o
where the normalization that(z)/wy=y(2) is introduced,
=0, (2) andwy=w(0).
Equation(6) is equivalent to Newton’s second law in clas-
whereRy,=R(X) |, o, andR},=d2 R(X')|, —o, Which turns s_ical rr_lechanics f_or the motion of an one-dimensipnal par-
1 ticle with the equivalent mass /[/acted by the equivalent
force F=4,ulwéy3—2pyP0y, while y and z are equivalent
to the spatial and temporal coordinates of the particle, re-
b1 ? 5 spectively. The first term df makes the particle accelerated,
r E‘ﬂ B Em’Por ¥+ pRoPoy and has the particle’s velocitgty/dz becoming bigger and
bigger, which means that the beam is being expanded or has
1 212D a trend to be expanded, depending upon the initial velocity
- §P7¢f lib(r",2)|*r"“d°x’ =0, (3 dy/dz,_,=0 or<O0. Itis obvious that this term is the effect
of diffraction. By contrast, the second term 6f which acts
cas an elastic force following Hooke’s law that always drives
fhe particle back to its initial state >0 (i.e., >0), de-
b _ ) celerates the particle, and presents the compression effect of
[Ro<0 because R, is a maximum of R(\)], P nopjinearly induced refraction. When the diffractive force

— 24Dy, i i i

= J1¢(x,2)[*dx is the beam powe12], andPy is the input 4 the refractive force have the same amplitude, the total
power atz=0. The substitution oP, for P in the third and  force will be zero, and the particle will keep its velocity
fourth terms above follows the fact that poweis conserved  nchangeable. Then the particle with initial zero velocity

[13]. Equation(3) is our model for solutions. _ keeps rest, and its spatial coordingtés always 1: this is a

~ We search for a solution to E(B) of the Gaussian func- spatial soliton state. Letting the two forces equal grel,

tion form we obtain the criticalinput) power for the soliton propaga-
tion

out to be forz-axial symmetrical solution)(r,z):

oy w9

0z erl ar

wherer = x| is the transverse distance from the beam cent
in the coordinate system without the prime=—Rj>0

¥(r,z) 24 1

ypwg  yWok?7

_ 2
_wex;{ ' +iC(Z)rzl'

S Wmw@1P? T 2w(z)? p.—

@ "

where 6 is the phase of the complex amplitude of the solu- |t is observed thaF is a conservative force, becausean

tion, w is beam widthc represents the phase-front curvaturepe expressed as(y) = —dV(y)/dy, and the equivalent po-
of the beam, and they are all allowed to vary with propagatential \V(y) is given by

tion distancez. The real amplitude of the solution has the

form Po/[V7mw]P?, owing to the conservation of the 2k(y?—1)(y>— A)
power. Inserting the trial function above into E@®), and V(y)= s , (8)
from the coefficient of the zero-order term igfwe obtain a KWWY

first-order ordinary differential equation fa&r
wherex= upyPowa/l2=w37yPo/4, andA =P./P,. There-
d0 Du 1 fore, the total energy of the equivalent particle that equals
d—+ — = ZpPO(4R0—D'yWZ)=O. (589 E=T+V is a constant of the motion, wherel
Z w = (dy/d2)?/2u is its kinetic energyt is reminded here that
1/u is the mass of the particle Assuming that the beam at
In the same way, the real and imaginary parts of the coeffiz=0 hasdw(z)/dz|,—,=0 [14] such that the particle’s ini-
cient of r’'s quadratic term yield the two equations for the tial total energy is zero, theii+V=0 gives the following
parametersv andc, respectively, equation
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As a matter of fact, direct one-time integration of E8g). also
yields Eq.(9) mathematically.

For the materials with positivey, we havex>0 andA
>0. Then integration of Eq9) reads

w2=w3 , (10)

cog(Boz) + Pe Sirt(Boyz)
Po

where Bo=2kIwy=(y7P)¥2 The substitution of Eq.
(10) into Eq. (58 and Eq.(5b) yields, respectively,

D P,
Y arcta P_o tan(Bg2)

D(1-Py/P
L DA=Po/Po)

6=

la(wgﬂo Sin(2,802)+pR0POZ
D(Po/Pc+1)z
-, 11
8kwj; )
and
Bok(Pc/Po—1)sin(2842) (12

© 4[c02(Boz)+ (PeIPo)SIP(Boz)]

Then by the substitution of Eq$10)—(12) into Eq. (4), we
obtain the exact solution of E¢3):

P 2
y(r,z)= (J}ijm exp( — ﬁ) exdi(cr?+0)],
(13

which satisfies the initial condition at=0

wherew, 0, andc are given by Eqgs(10), (11), and(12).

I1l. DISCUSSION ABOUT THE SOLUTION: LARGE
PHASE SHIFT

The Gaussian-shaped solution derived here is the exact
solution to Eq.(3), but the approximate one to E@.) for the
strongly nonlocal case. Equatigi0) shows that wherP
<P., beam diffraction initially overcomes beam-induced re-
fraction, and the beam initially expands, w'mﬁ-/wé vibrat-
ing between a maximurR./Py and a minimum 1; whereas
when Py>P., the reverse happens and the beam initially
contracts, withw?/w3 breathing between a maximum 1 and a
minimum P./Py. WhenPy=P_, diffraction is exactly bal-
anced by nonlinearity, and the Gaussian-shaped beam pre-
serves its width as it travels in the straight path alarexis.

This is a soliton. These features of theXD)-dimensional
beam D=1 or 2 are shown in Figs. 1-6, where the ana-
lytical solutions are compared with the results of numerical
propagation of Eqgl) and(14) for differentwg/w,, andP,.

To simulate the propagation, we assume the material re-
sponse is the Gaussian functiph6]

R ! r* 15

O e N ) P
Tables | and Il give the exact numerical results, the analytical
results, and their relative errors for the maximugos mini-
mums of the on-axis normalized amplitudes(0,z)|/(0,0)
for the parameters given in these six corresponding figures.
Clearly the(1+1)-dimensional analytical predictions are in
agreement with the exact numerical simulations when
wo/w,=<0.1, and still close approximatidithe absolute val-
ues of the relative errors are within 10% the simulations
till wo/w,, reaches 0.4 for th®,<P, case, and 0.5 for the
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Po=P. andPy>P, cases. For the sanve,/w,,, the higher the relationy= — Rj~R,/w?,, theno=»w? /w3, where the
the input power, the better the approximation. The approxiproportional coefficienv is determined only by the material
mations of the(1+2)-dimensional analytical results to the property, and V| has an order of 1. For examp|e’ if the re-

corresppnding numerical ones are a little bit worse than th%ponse of the material is assumed to be the Gaussian func-
(1+1)-dimensional cases.

WhenPy=P., Eq.(13) is simplified to a soliton expres-

tion (15), it can be shown that=1 independent oD. For

the strong nonlocality, we have,,/w>1. Supposing we
take W,,/Wo=5, then it is observed thapz~rw2z/wgk.

For local Kerr soliton, it has been shown that the phase shift

B expi ¢z)
Ps(r,2)= ,n_D/4W(2)+ D/2( ,y77)1/2k

¢1z=12/(2kw}) for (1+1)-dimensional casgl5]. Comparing

the results between the strongly nonlocal and the local cases,
we observe that the phase shift for the formenis,(wo)?
where¢=3D(40/3D—1)/(4w3k), o=R,/yw3, and¢zis  times (about two order larger than that for the latter pro-
the phase shift after propagating a distazcélhe spatial videdw,,/wy=10. Figures 7 and 8 are the comparison of the
soliton of this kind existing in the strongly nonlocal media is phase evolutions from our model and the numerical simula-
called the strongly nonlocal optical spatial soliton. A stronglytion, and Table Il gives the relative error between the nu-
nonlocal optical spatial soliton with any width can propagatemerical and analytical results of the on-axis phase slope. Ob-
in the media as long as its powé, equals exactly the viously our phase solution is in very close agreement with
critical powerP, defined in Eq(7). It should be paid atten- the numerical simulation whemw,/w,, is much smaller than
tion that o is a parameter determined by the initial beam1; while our result is still closely approximate to the numeri-
width and the material property. To illuminate this, we usecal simulation wherw,/w,, becomes gradually bigger, ap-

sion
r2
exp — —=|, 16
o (16)
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numerical simulation(dashed curvesfor the (1+2)-dimensional  eam propagation in the Gaussian-shaped response material when
beam propagation in the Gaussian-shaped response material WhﬁQ/PC=2.5. For the numerical result, the parametgy/w,, is 0.1,

Po,/P.=0.7. For the numerical result, the parametgr/w,, is 0.1, 0.2, 0.3, and 0.4, respectively, from down to up.
0.2, 0.3, and 0.4, respectively from down to up. T ' '

the large phase shift of the strongly nonlocal optical spatial

proaching but being less than 1, no matter that1 or 2. i iah f f ial value i lica-
We, therefore, conclude that the phase shift of the Gaussiatﬁg:ons might be found to be of potential value in applica

shaped spatial soliton can be very large during it propagates
in strongly nonlocal media comparable to its local counter-
part.

In the same way, the phase shift for nonsoliton case can . _ .
be obtained by analyzing E¢L1). An important content of the solution search for nonlinear

The physical origin of the phenomenon can qualitativelyeq,uations is the stability {:malysis of _their solutions. The sta-
be understood from the term “nonlocality.” Nonlinear non- Pility property of the particular solutio13) to Eq. (3) for
locality means that the nonlinear polarization of media with 2N initial condition(14) has been obtained. The mathemati-
small volume of radius, (r,< any wavelength involved cal prerequisites for this s_tablllty_demonstratlon are only cal-
depends not only on the value of the electric field inside thi<UUS specially Schwarz inequality, as well as the other three
volume (at the present time and in the pagiut also on the néqualities in elementary mathematick?], and no more
electric field outside the volume under consideration. Thétdvanced mathematical knowledge is needed. Only the con-
stronger the nonlocality, the more fields are involved to con<!USion is given here; details about the formal proof will be
tribute to the polarization, hence the larger phase shift i9iven elsewhere.
obtained.

The effective generation of a large phase shift is very TABLE I. The exact numerical results, the analytical results,
important for the modification, manipulation, and control of and their relative errors for the maximurfsr minimums of the
optical fields based on the principle of interference, espe@n-axis normalized amplitudey(0,2)|/¢(0,0) in the (1+1)-
cially in the optical switching16], hence the finding about dimensional case.

IV. PROOF OF THE STABILITY OF OUR MODEL

's Wo /Wi, 0.1 0.2 0.3 0.4 0.5 0.6
1.25 For the parameters in Fig. 1(0,2)| has the minimum
2 12 R ER? 0919 0894 0869 0837 0799 0.750
ERpe ARP 0922 0.910 0911 0911 0912  0.906
ES . s R RE%)® -03 -18 -48 -88 -141 -208
= ' ,,'//" ‘\\ . s For the parameters in Fig. 2
g M e R N ER 0.996 0985 00967 00941 0.910  0.864
§ 1frakEie=coges=an rantaoagopecs: AR 1.000 1.000 1.000 1.000 1.000  1.000
0.95 Y/ =01 RE(%) -04 -15 -34 -63 -99 -157
09 . . . . , For the parameters in Fig. 3%(0,z)| has the maximumn
0 ! 2 s 4 > ER 1.078 1116 1.082 1.118 1.111 1.134
Propagation Distance’ Z/(ng) AR 1.082 1.131 1.115 1.176 1.195 1.250
RE(%) -04 -13 -30 -52 -76 —102

FIG. 5. Comparison of analytical solutidisolid curve$ with
numerical simulation(dashed curvesfor the (1+2)-dimensional
beam propagation in the Gaussian-shaped response material whiR:

4ER: exact numerical results to Eq4) and (14).
analytical approximate results to ED),

Po/P.=1. For the numerical result, the parametey/w,, is 0.1,
0.2, 0.3, and 0.4, respectively, from down to up.

|’p(0vz)|ma>[| lﬁ(O,Z)|min]/l/l(0,0)=(PO/PC)lm.
‘RE: relative errors, RE (ER—AR)/ER.
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TABLE Il. The exact numerical results, the analytical results, whereIl is a finite constant. Then we have the fact that as
and their relative errors for the maximuni@r minimums of the long asf—0, u will be trend 0, i.e., W (x,z) — (r,z).
on-axis normalized amplitudd(0,2)|/(0,0) in the (1+2)-
dimensional case.

V. COMPARISON OF OUR MODEL WITH

Wo /Wi, 0.1 0.2 0.3 0.4 SNYDER-MITCHELL MODEL

For the parameters in Fig. 44((0.2)| has the minimum In the case where the characteristic length of the material

ERa 0.846 0.791 0.7471 0.655 Wy, is much larger than the beam widih in the other words,
AR 0.851 0.827 0.829 0.830 that mathematicallyw,, trends to infinite or relativelyw
RE(%) -11 —43 -109 267 trends to zero|y(r’,z)|? within the integration of Eq(3)
For the parameters in Fig. 5 can be considered to b& function of the variable’ such
ER 0.990 0.960 0.913 0.846  that the last term of Eq(3) equals zero. If the last second
AR 1.000 1.000 1.000 1.000 term of Eq.(3) is considered to be zero, it can be dropped.
RE(%) -1.0 —-4.0 -95 —-181 Therefore, for the conditions under consideration, without
For the parameters in Fig. §y(0,2)| has the maximum taking its last two terms, i.e., zero-order terms rofinto
ER 1.159 1.234 1.147 1.208 account, Eq(3) can be simplified to the linear model sug-
AR 1.170 1.279 1.244 1.383 gested by Snyder and Mitchgll]
RE(%) -0.9 —-3.6 —-8.3 —14.4
a1(/f(0,2)|ma>{| (,/I(O,Z)|min]/l/1(0,0)= (PO/PC)UZ- 0"1// M d J 1
i— —(rDl—w)——pyP0r2¢=o. (19
Assume that¥(x,z) is the solution of the following gz (b-lar or 2

Cauchy problem:

i£+ﬂvf\p+p\pf Ro— Z(x—x’)z [T (x',z)|2dPx’ As mentioned in the foregoing, the evolution of the beam
Jz 2 width and the phase-front curvature is determined by the
_ , D quadratic term of, while the phase’s evolution comes from

=0, xx'eR?, z=0 (173 the zero-order term af. Hence it is obvious that the results

W (x,00=Wo=yo+f(x), xeR", (17 aboutw andc from our model are the same with that from
; ; _ ; Snyder-Mitchell model. Because they emphasized on the

heref th t t =

\k/)vy gg ((1)(‘)1)5 @ random perturbation ang= y(r.0) given evolution of the beam width, however, Snyder and Mitchell

did not discuss the phase evolution in Rf].
Except the difference in form, there is another difference

between two models in methodology. Our model is obtained
by direct expansion oR within the integration, buR is first

f (Jul?+]ul?r2+ |V, u*)d°x taken out from the integration and then expanded to yield

Snyder-Mitchell model. As has been mentioned, this requires

mathematicallyw,, tends to infinite or equivalently tends

to zero. As a result, degree of nonlocality in our model is

Let u(x,z)=V¥(x,2)— (r,z). We have rigorously dem-
onstrated thati(x,z) satisfies the inequality

sﬂf(|f|2+|f|2r2+|Vif|2)de, (18)

1800 400 180
300
1200 120
200 .
600 60 FIG. 7. Comparison of the results about the
100 phase from our moddkolid curve$ and the nu-
£ @ ) © merical simulatior{dashed curvedor the (1+1)-
g 0 0 0 dimensional beam propagation in the Gaussian-
@ 0 4 8 12 16 0 4 8 12 168 0 4 8 12 16 shaped response material wheg= P . Another
S 100 60 40 initial condition is (8) Wq/W,=0.1, (b) Wo /Wy,
3 80 20 =0.2, (0) Wo/wy,=0.3, (d) wy/w,=0.4, (e)
& 40 Wo/w,=0.5, and(f) wy/w,,=0.6. For simula-
o 60 ) )
20 tion results, there are included three phase curves
40 20 10 corresponding to the on-axis and two-sidexat
20 . = *w, phases, which are a little bit different and
() (e) ® I
0 0 0 cannot be distinguished by eye.

0 4 8 12 16 0 4 g8 12 16 0 4 8 12 16

Propagation Distance, z/(wgk)
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o 30 7 10 L7 =0.2, () wp/w,=0.3, (d) wy/w,=0.4, (¢
15 P Wy /w,=0.5, and (f) wy/w,=0.6. There are
20 10 y/ three numerical phase curves a little bit different
5 ,/ from each other corresponding to the on-axis and
10 5 4 two-side at+wg, which cannot be distinguished
(d) (e) (f) by eye.
0 0 0
2 4 6 8 2 4 6 8 2 4 6 8

Propagation Distance. z/(wgk)

weaker than that in Snyder-Mitchell model, and our modelspatial soliton should be large to maintain its propagation.
confirms the results about the beam width and phase-fror@ur analytical results are confirmed by the numerical simu-
curvature for a single beam obtained from Snyder-Mitchelllation of the NNLSE. The comparison of our model with

model in more extensive degree of nonlocality. Snyder-Mitchell (linean model shows that our model con-
firms the results about the beam width and phase-front cur-
VI. CONCLUSION vature for a single optical beam from Snyder-Mitchell model

. . ) ) in more extensive degree of nonlocality.
We discuss the evolution of the optical beam in the  Note addedRecently we were happy to have read the
strongly nonlocal cubic nonlinear media with the arb'trarYIatest papefRef. [18]). In this paper, it was claimed that the

symmetric and real-valued response functions. A model i ematic liquid crystals are indeed one of the strongly nonlo-

pres_e_nted, and its exact ana_lytlc_al _solut|on IS obtguned. Thgal nonlinear media, hence the observed optical spatial soli-
stability property of the solution is rigorously obtained. We

show the equivalence of the evolution equation for the bean%Ons n the n(-_zmatlc liquid crystaksee Ref.[19])_ are the
width to Newton’s second law for the motion of a particle in accessible solitons suggested by Snyder and Mitchell. Before

classic mechanics, and the optical spatial soliton is equivalis Work, it would be considered that the strongly nonlocal

lent to the rest state of the particle. A phenomenon is prefonlinear media had not been discovetsee, for example,
dicted that the phase shift of the strongly nonlocal opticalRef- [10]). Representing the second milestone in nonlocal

optical spatial soliton investigatior(¢he first one is Snyder

TABLE IIl. The exact numerical results, the analytical results, and MitCheII’Q, this WOFk(R_ef- [18]) WO_U|_d_ stimulate more
and their relative errors for the normalized on-axis phase sippe POth theoretical and experimental activities towards a thor-

= ¢Lg, whereLz=wZk is the Rayleigh distance. ough understanding of the nonlocal optical spatial solitons. It
would be possible, therefore, that the large phase shift of the
Wo /W, 0.1 0.2 0.3 0.4 0.5 0.6 strongly nonlocal optical spatial solitons would be observed
b_1 in the nematic liquid crystals.
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