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Analysis of orbital decay time for the classical hydrogen atom interacting
with circularly polarized electromagnetic radiation
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Here we show that a wide range of states of phases and amplitudes exist for a circularly péGijzeldne
wave to act on a classical hydrogen model to achieve infinite times of stalbiity no orbital decay due to
radiation reaction effectsAn analytic solution is first deduced to show this effect for circular orbits in the
nonrelativistic approximation. We then use this analytic result to help provide insight into detailed simulation
investigations of deviations from these idealistic conditions. By changing the phase of the CP wave, the time
tq When orbital decay sets in can be made to vary enormously. The patterns of this behavior are examined here
and analyzed in physical terms for the underlying but rather unintuitive reasons for these nonlinear effects. We
speculate that most of these effects can be generalized to analogous elliptical orbital conditions with a specific
infinite set of CP waves present. The paper ends by briefly considering multiple CP plane waves acting on the
classical hydrogen atom in an initial circular orbital state, resulting in “jump-like” and “diffusion-like” orbital
motions for this highly nonlinear system. These simple examples reveal the possibility of very rich and
complex patterns that occur when a wide spectrum of radiation acts on this classical hydrogen system.
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I. INTRODUCTION we also expect that the results may prove helpful in revealing
better why the classical analysis can in some cases provide
The hydrogen atom has received renewed attention in thexcellent insight into the behavior of Rydberg atomic sys-
past decade or so, due to studies involved with Rydbergems. For example, the literature is full of such observations,
analysis, chaos, and scarrifi-4]. Classical and semiclas- such as in the extensive paper of Rf], p. 291: “Where
sical analyses have been found in the past to offer helpfulhe quantitative agreement between experimental data and
insight and predictability on the behavior of Rydberg-like classical calculations is good for threshold field amplitudes
atoms. However, in these previous interesting works involvfor the onset of ‘ionization,’” the classical theory gives keen

ing classical and semiclassical analyses of ionization behaJSight into the semiclassical dynamics. Conversely, where
ior and chaotic and scarred orbits of Rydberg systéses the quantitative agreement breaks down is a signature for the

for example, Refs[2,3,5-8, and cited references thergin importance of quantal effects. Often this occurs where the

N, c I . nonclassical behavior is, nevertheless, still anchored in subtle

the radiation reaction term in the Lorentz-Dirac equa{i®h . S ) i
o ) ) : ) .ways to the classical dynamics in and near nonlinear reso

descrlb!ng the behavu_)r of classical charged |_o<_)|nt partlcl_es Rances.” Pushing on such understanding should prove to be
rarely, if at all, considered. Although physicists certainly helpful in modeling, as simply as possible, the surprisingly

agree that this term is necessary in a consistent classical ele&')mplex behavior that has been reported for Rydberg-like
trodynamic treatment of classical charged parti¢@s12, gy gtems. We are hopeful to be able to use such models in
still, this is the term that persuaded physicists in the ea”)fechnology application situations.

not a viable explanation for atomic behavior, as it would\yhen, why, and possibly why not, the theory of stochastic
necessarily result in a collapse of the electron’s orbit in aelectrodynamic$¢SED) holds for the simple classical hydro-
time of about 1.% 10 ! sec. This observation, and other gen atom. As reported in much more detail elsewtjége-
apparently nonclassical effectslackbody radiation, photo- 18], SED is an entirely classical theory of nature that con-
electric effect, etg, spurred the development of Bohr’s siders the interaction of classical charged particles with
atomic model, followed by the more complete work by electromagnetic fields, using Maxwell’s classical electro-
Heisenberg, Schadinger, Dirac, and others of quantum me- magnetic equations, while also considering that an equilib-
chanics. rium situation for particles and fields at temperatire O
Nevertheless, our recent wofk3-15 has revealed a necessarily requires the presence of classical electromagnetic
number of interesting situations as a result of the very nonzero-point(ZP) radiation. This idea has revealed a number of
linear behavior of the Coulombic binding potential, as wellsurprisingly quantum mechanical-like properties to be pre-
as the small but steady action of the radiation reaction damgdicted from this entirely classical theory. However, when at-
ing force, and the presence of applied electromagnetic radiaacking realistic atomic systems in nature, rather than simple
tion acting on the classical atom. Our intention is to continueapproximate systems like the simple harmonic oscillator, se-
this development, building upon previous work to includevere difficulties have been reported in the plist,18. We
the effects of multiple plane waves. We expect at the venhave been suspicious that some of these difficulties may sim-
least to continue to uncover interesting and surprising resultgly be due to the inherent difficulty of analyzing the subtle
of the nonlinear behavior of this classical system. Howevernonlinear effects of a Coulombic binding potentjaB,20];
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the present study, along with other work to be presented imtended to report on work already finished or in various
the near future, is intended to help address some of thesstages of completion, including a full relativistic examina-
points. tion, and the situation that is of great interest to us, namely,
Indeed, our work in Refl21] shows that a detailed simu- when a radiation spectrum is present that may possibly result
lation of the effects of classical electromagnetic radiationn @ thermodynamic equilibrium state with the classical
acting on a classical electron in a classical hydrogen potertom. In anticipation of this work, in Sec. V we briefly ex-
tial, results in a stochastic-like motion that yields a probabil-amine the interesting question of what happens when multi-
ity distribution over time that appears extremely close to thé?/ane waves act on the orbiting electron. As should be evi-
ground state probability distribution for hydrogen. Clearly dent from Refs.[13—-15, this simple classical hydrogen
there are tantalizing physical aspects yet to be understod@foPlem presents a rich range of interesting nonlinear phe-
here of the ramifications of this work. These particular simu-"omena with just the simple consideration of a single elec-
lations are extremely computationally intensive. Howeverfomagnetic plane wave acting. However, with multiple
for large orbits, as would typically occur in a Rydberg atom,Plane waves, the range of possibilities grows considerably
the computations would become enormously smaller, therebyyider, as illustrated in Sec. V. As shown there, jump-like
providing an efficient computational tool for addressing Ry-Pehaviors are fairly easy to create.
dberg atom behavior. Thus, in summary, we believe this re-
search direction should provide an excellent technology re- Il. ANALYSIS OF INFINITE STABILITY CASE
lated simulation tool for studying much of Rydberg atom . . .
dynamics, while also providingthge means for andergtandin As discussed in Ref.13], when a classical electron of

much deeper ramifications of SED and its possible basis fof1@sSm and charge-e, follows a circular orbit of radiua
much of quantum mechanics. about an infinitely massive and oppositely charged point

Except for a preliminary result to be considered in theNucleus, and when a CP plane wave is directed along the
concluding section of this paper involving many p|anenormal to the plane of the orbit, then by choosing the fre-

waves, the present paper considers a single classical circd*"%Y of the plglne waye to be equal to the orbital fre-
larly polarized(CP) plane wave interacting with the classical AUency. orec=(e“/ma’)™, and by choosing the phase of
hydrogen atom. This atomic system will be treated here agw_e velocity of th_e electron and the elect_rlcfleld to be a_lllgned
consisting of a particle with charge e and rest massn, with each othel(l.e.., make (-e)E to be in the same direc-
orbiting an infinitely massive and oppositely chargedtion as the velocityz), then the amplitudé\ of the electric
nucleus. In Ref[15] we carried out a perturbation analysis, field of the plane wave can be chosen to perfectly balance the
showing in more detail why some of the nonlinear behaviorgadiation reaction. The condition found was

occur as first discussed in R4fL3]. In particular, for the

classical electron moving in a near circular orbit, with an 2e%w,

applied CP plane wave normally directed at the plane of the A= m#wcﬂ;, ey
orbit, then quasistability of the orbit can be achieved pro-
vided the amplitude of the electric field of the plane wave
exceeds a particular critical value. The result is a constant
spiralling in and out motion of the electron, with the spirals
growing larger and larger in amplitude, until finally a critical

herer=2e%/3mc°.
However, we can generalize this very specific scenario
and achieve similar conditions of perfect stability for the

point is reached and then decay of the orbit occurs. As show ase W?r?nA>AC' F'g;”ef ;Lhnll:strates Itzh? bast'ﬁ Idela. By
in Ref.[14], this same behavior also occurs for more general, aving he comptl)nen Of Ae orc&(ez) roml edp ane
but more complicated, elliptical orbits, where now an infinite V&€ I thex—y plane, ofe cos(), to be equal and oppo-
set of plane waves is required to achieve the same effec ite to the radiation reaction, then the angular frequency of

where the plane waves are harmonics of the period of th8'® orbiting particle can stay constant. Moreover, by allow-
orbit Ing a slightly different angular frequency in the orbiting mo-

In Sec. Il of the present paper, we begin by providingtion from what would occur if the particle was only under the
more geﬁeral conditions than cor;sidered in HaB) for influence of the Coulombic binding potential, so that now we

achieving perfect stability for the interaction of a single cPa/lOW @# w¢, then an orbit of constant radiascan be main-
wave with the classical hydrogen atom. This example Willta'ne‘?' . . .
provide clearer physical insight into why the effect of the Bel_ng more sp_eC|f!c, we can write the nonrelativishiR)
phase of the CP plane wave, in relation to the motion of th¢?duations of motion in polar coordinates as

orbiting electron, is so extremely important in changing the
time to decayty of the classical electron’s orbit. Section I

then turns to a detailed simulation analysis of a wide range of
conditions influencingy . Many of these results seem physi-
cally very unintuitive. Section IV then turns to explain and 5nq
analyze some of these subtleties, by making use of some of

. e? r ,
m(r—r¢?)=—— +27e*— +eAsin(f—owt—a), (2
r r

the perturbation work in Refl15]. o2
Finally, Sec. V ends with a few concluding remarks on m(r 6+ 2r )= — T—€+eAcos( 60— wt—a), (3
where we anticipate this work is headed. Future papers are r2
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which can readily be solved to obtain
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0= wg 5 *(Twe)

This solution is exact for our nonrelativistic case. To low-
est order in fw.), and whereA/A. is not just a very small
fraction slightly larger than unity, then we can expand the
above in terms of the smalks(,7) parameter to obtain

5 112
2
FIG. 1. Diagram at=0 showing the initial orientation of the wzwa[ 1i(7w0)(ﬁ_1) ] ’ (10)
velocity vectorv, the electric force from the plane wave-€)E, ¢
the Coulombic binding force-e?r/r3, the negative of the centrip- where terms of orde®[(wr )2] have been dropped.
etal acceleration times the masgo?r, and the radiation reaction Turning to Eq.(7), we obctain
force [Eq. (5)], when the classical electron is beginning a circular '
orbit of radiusa. By carefully selectinge, for A>A., and by
choosing the frequency of the plane wave to match the orbital a=cos !
motion, a perfect balance can be achieved.

A. o

N wc) . (12

. . _ This result yields the exact value af We of course assume
where the radiation reaction has been attributed largely to thg — o
=A..

force from the Coulombic binding potential, and approxi-

As for the = signs in Egs.(9) and (10), one can show
mated as in Refl15], but now written in polar coordinates d as(9) (10

upon substituting back into Eq&Z) and(6) that one needs to

above as use the plus sign when<Qa</2, and to use the minus
) ) sigh when— 7/2<«<0. It should be noted that whem/2

2¢* d | —e?z| .2re’r . 7e%0 <a<n, or — w/2< a< — , then the radiation reaction can-
Freac™ 3¢c3 dt 12]m s T e @ not be balanced by-{e)E [see Eq(7) or refer to Fig. 3 and

infinite ty is then not possible.
In order for a perfect circular orbit to be maintained, we Thus, _for each valge oh, whenA>Ac, there are two
. . . . frequencies that we will calb,. andw_, corresponding to
would need to impose that=a, r=0, r=0, 6=wt, 6 o'+ gigns in Eq.(9), and the two corresponding angles
=, #=0; then our NR approximation tBe,creduces to  from Eq. (11) that we will call @, and a_, such that a
perfect circular orbit can be maintained indefinitely for this
idealistic situation. In Fig. 1, all vectors—(e)E that can
)eAc- (5 vyield infinite stability lie in the top half semicircle—{ /2
<a<+m/2). From Eq.(11), ¢, =—a_. In Fig. 1, a,

h he radiati . | in th ial d_Would be directed as shown, aq >0, with (—e)E tilted to
Thus, the radiation reaction only occurs in the tangential disne et of the velocityv. The corresponding angular fre-

rection for circular motion. It is clearly a very small force, quency ofw, would satisfyw. > w., wherew is the an-

since 7~6.3x10 %*sec, w~4.5x10°sec! for Qo
_ . 7 : 2 2 gular frequency whena=0 and A=A,. Likewise, a_
=05 A, S0 (@7)~2.8x<10 7, while e/a’~1.9<10" stat would be directed in Fig. 1 such that. <0, or, (—e)E is

o S st e o e 0 he gt of e vloiy, wih h coresponding
Equations(2) and (3) red tg 9 " angular frequency of_ being such thatv < w,.

quation an reduce to The differences between_, w., andw, are in general
quite small, since the dimensionless quantity of.f) is
, € . such a small number for most atomic radii of interest in Egs.
Mo a= ;+eAS|n(a), ©) (9) and (10). Fora=0.5 A, (w.7)=2.8x10"7, so for this
radius,w, , w_, andw, differ in the seventh decimal place
for A=10 statvolt, the fifth decimal place fgx=100 stat-
0= _(ﬁ eA.+eAcod a). (7)  Volt, the fourth decimal place foh=1000 statvolt, and the

Wc third decimal place for A=80000 statvolt. Likewise,
whether one used . , w., or w_ in Eq. (11) will have a

Hence we have two equations and two unknowns, namely, correspondingly small effect oa_ and a_, with the most
and w. Solving for w yields the quadratic equation significant factor again being that, = —a_ .

- Tezw - e2 A @
Freacm — 0 2 :_0(0)7)_2:_0 -
a

a We

2
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As can be shown, wheA=A., then the+ sign in Eq. @
(9) holds, and we obtainn=w. and =0, as expected.
Moreover, since for reasonable values AfA. such that 5.07x10° T T T
(twc)(AIA) <1, thenw,~w_~w;, SO our exact NR re-
sult of Eq. (11) reduces toa.~cos YA./A), with a, =

t, =3.48x1 0% sec

l<

—a . A
What is interesting about these two solutions for a perfect ¢ 5.027x10° H ” .
circular orbit is that thew, solutions, with7/2<a, <0, A }
form what we will call “stable solutions,” meaning that if s
one makesx or w slightly lesser or greater than the pre- E

scribed values ofr, and w,, then one can still obtain a 4.983x10° “

very long time before decay occurs; hentg, although no

longer infinite, will still be large. In contrast, the  solu-

tions, with O< o_ < — 7/2, form what we will call “unstable A

solutions,” meaning that if one makesor o slightly lesser ~ Ampiitude 4.94x10* — — — 2
or greater than the prescribed valuesaof and w_, then ™" 0 BB 180T 27750 8710
near immediate decay in the orbit begins. This result occurs Time (sec)

even though the precise values @f and w_ provide an (b)

orbit with an infinite value oty. The contrast seems fasci-

nating, and will be discussed more in the following section

involving detailed simulation results. 5.04x10°

t,=3.48x10™ sec
Ill. SIMULATION STUDY OF Tg

In Ref.[15], simulation results were shown illustrating the
very large range ofy that can exist, simply by changing,
while holdingA fixed. Figure 2 illustrates the typical type of
results found, this time foA=300 statvolt andx= — /4.

We will definety precisely to be the point indicated in Fig.
2(b), which seems to be a key characteristic of the onset of
orbital decay, namely, where the radial oscillation only rises \ . .
to about the halfway point of previous oscillations, then 32x10™ 330107 34x10°  35x107  3.6x107
starts to undergo a steady, oscillatory decline. Time (sec)

Using this definition ofty, Fig. 3 shows our simulation
results after carrying out calculations as in Fig. 2 for a range FIG. 2. (a) r vst for the classical electron in the scheme starting
of values ofa, and for a range of values @ These calcu- in the orbital condition of Fig. 1, withA=300 statvolt anda=
lations were carried out for one frequency value of the ap-— 7/4. The pattern shown here is fairly typical, namely, the ampli-
plied CP plane wave, namely,. . More specifically, all tra- tude of thg radial oscillations g.radu.ally increa'sez the peripd also
jectories were started in a circular orbit wih 0.5 A, with gradually increasefbetter seen in Fig. (®)], until finally orbital

an applied CP plane wave with the indicated valuéaind decay sets in(b) A blown-up view is shown of the vst curve in
« as in Fig. 3, and with an angular frequenay (a), near the point where orbital decay setstip, as indicated, is

=(ezlma3)1/2. This is the proper frequency for a constant defined in this paper as the point where the radial oscillation only

circular orbit(in the NR approximationif either (1) no ra- rises to about the halfway point of previous oscillations, before

. . - . beginning a steady, oscillatory decline. Up until the decay point, the
.dlatlo_n TeaC“O“ ?XISteq and no CP plane wave existe@)or period and amplitude of the oscillation gradually increases. The
if radiation reaction existed, bt=A. and «=0.

. peaks change shape due to the nonlinear behavior, until finally the
Four values ofa.. , from Eq. (11), corresponding to the yansition occurs. After the transition, the oscillations become
values ofA=5.419, 6.0, 10, and 1000 statvolt are labeled ingmalier and smaller.

this diagram. As can be seen, they fall at the center of the
peaks of thety vs « curves. If the plane waves had the predicted infinitety peak shows up in Fig. 3, singe in the
precise values ob=w, from Eq.(9), thenty would indeed plane wave expressions was not taken tawhe, but rather
be infinite (we have also confirmed this point via specific the slightly different value ofv.. We should mention that
simulation testing However, the simulations in Fig. 3 were our simulation testing of the unstable peakeat and a_
carried out with the very slightly different value e=w.in  does reveal its existence for each valuedpbut, one needs
the CP plane wave, so, the peak valuesofs « for these to increase the precision of the numerical calculations to
curves do not appear to be infinite, but, they are indeed vertrack the particle orbit out to larger time values; the higher
large and sharply peaked, and rather difficult to find exactlythe precision imposed, the farther out in time the simulation
by pure simulation methods. predicts before decay begins. It certainly appears thatthe
Moreover, in correspondence with the earlier commentys o curves do peak ab_ ,«_ , for each value of\, but the
made about the unstable peakeat anda_, no sign of the shape of this peak appears as that of a n&dunction.

5.00x10°

Radius (cm)

4.96x10°
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o=0 0=0.141r 0=0.318%r 0=0.498xn 5.10x10°° ————T—7—
exp(-15
-T -0.5% 0 l %.57‘: +n p-15)
2.00%10™° gy fr—r—r— 5.05x10° |k exp(-20)
[ ] - exp(-25)
[ A=1000 statvolt exp(-30)
0 [ 5.00x10°
150107 A-10 statvott [ ] % !
1§ ] E: _
% A=6 statvolt ~ad s 1 ©®  4.95x10°
[1] 3 ' it . L
& 100x10™ | I - -
© I > i 1
h L A=5.419 statvolt He J N
[ gﬂ: H | H \ 4.90x10° |
i
- ifraly |
5.00x10™"" HiYE ‘\ 4 i
B ,'"-:\ - L 4.85)(10'9---l---l---l---l---
i it Y oo T 0 2x10™  4x10™  ex10™  sx10™  1x10™
- ] \ L
L . . ~y .
0.00 Bl r——r s I ~' . ‘.‘~ g Time (SGC)
T -0.5n 0 0.5n +r

FIG. 4. Plot ofr vst with one CP plane wave present, attempt-
o ing to numerically simulate one of the_ ,w_ situations. The ini-
FIG. 3. Plot oft, vs a, for several conditions oA=5.419, 6.0, tial radius was 0.5 A. The conditions imposed on the CP plane

10, and 1000 statvolt. The points indicated along the curves werd/@Ve WereA=1000 statvolt, along with the values of andw_

the ones actually calculated, using the method of Fip).2The &S calculated from Egs(1l) and (9). The adaptive time-step
dotted lines drawn were curve fits, put in to simply illustrate the BUrlisch-Stoer algorithm from Ref22] was used to computevst

trends better here. As analyzed in Sec. II, each of the curves havefgr the different indicated relative precision conditions. As can be
near infinite peak foty. The peaks were drawn in here knowing seen, even vv_hen a relative precision of exB())Awas imposed, the
their proper location from the analysis in Sec. I, but they were alsoalgor'tth stillonly predicted .thatr~_0.5 up o abc};\]t
verified by using these calculated peak positions in simulation run <10 _ Sec whereas the analytic solution predicts #a0.5

to verify thatty does appear to be infinite at these locations. for all time.

i , ) A=5.419, 6.0, 10, and 1000 statvolt. For any fixed value of

Clearly, the behavior ofy near thew ., peaks is consid-  the widths of these peaks become increasingly broader,
erably different from the regions near the, ,« ., peaks. when the value ofA larger becomes. For example, for

Figure 4 helps to clarify the points made about the=5 0x 10~ sec, the width of thé\=A_ peak(i.e., the one
w_ ,a_ solutions. This figure contains our results fovst indicated at 5.419 statvolt, from E€l)] is zero, so this peak
based on numerically solving Eq) and(3) for a=0.5 A has the character of &function. In turn, the angular widths
andA= 1000 statvolt. As proven in Sec. Il, the_ ,a_ result  of the A=5.419, 6.0, 10, and 1000 statvolt curvestat
should be exactly=0.5 A for all t. However, as can be =5.0x10 *!sec in Fig. 3 become increasingly wider with
seen, the numerical predictions do not yield this result veryincreasingA, being approximately 0, 0.07, 0.167, and
easily. Here we followed the adaptive time-step Burlisch-0.30m, respectively.
Stoer algorithm, as described in R¢22], which we have Second, thety vs a curves for increasing values &
found to be an extremely good algorithm to use when ondecome increasingly more alike. For example, although not
plane wave is presentAll of our single plane wave numeri- shown, we report here that th&=80000 statvolt curve
cal results reported here, and in Ref$3-15, used this looks nearly identical to the eye to the=1000 statvolt
algorithm) The labels on the curves of “exp(l5),” etc.,  curve; only by zooming in somewhat would one detect a
indicate the relative precision we imposed on each step dfifference. Indeed, from Eqsl1) and(9) one can prove that
the algorithm. As can be seen, even when huge increases in, — + /2 asA—o. Evidently, the shape of thg vs «
numerical precision were imposed, from exd®) to curve forow=w., as in Fig. 3, also goes to a limiting shape
exp(—30), the simulation only yielded~0.5A up to asA increases.
about 4x 10~ sec, which is about 280 orbits; after that, the  Third, it is interesting to note that for large valuesfofhe
radius changed rapidly to about 0.492 A, and then a steadglaces oft4~0 are neaw= — w/2. For smaller values oA,
oscillatory radial decay began. In contrast, for the corresuch as forA=6 statvolt in Fig. 3, a region of values of
sponding a. ,w, solution, even after 510 ®sec we exist wherety>0; however, outside this region, one can see
found that the radius only fluctuated in value in the seventiihatty~0, meaning that immediate decay sets in at the start
decimal place when only a numerical precision ofof the simulation. In Fig. 3, the region of nonzerpvalues
exp(—20) was imposed. Clearly, any “noise” present, suchfor A=6 statvolt extents roughly fronax=—0.147 t0 «

as from numerical imprecision, then the ,w_ result will ~ =0.337. It is interesting to note that the results from simu-
not be obtained, whereas the, ,», solution is far more lation of points wherey curves go to zero on the left side of
easily approximated. each peak, appear close in value to the position of the un-

Some other interesting characteristics can be noted froratable infinitety peaks fora_, w_ that can be calculated
Fig. 3. First, there are four peaks shown, corresponding tanalytically.
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FIG. 5. (a) A schematic figure is shown here to help better illustrate the effeat @ bothty as well as the amplitude of the spiralling
motion, for the situation wheA>A.. Each pair of mirror points, such as A and,AB and B, have nearly the same value tf for A
>A.. Figures Bb)—5(d) contain plots ofr vst, for a=0.5 A. Each plot contains two vs t curves, one forx=— 7/4, and one for the
“mirror case” of a=—3/4. (b) A=1000 statvolt;(c) A=300 statvolt;(d) A=100 statvolt. As can be seen, Aslecreases, the behavior
between thea=— 7/4 and a= —37/4 curves becomes increasingly different, in agreement with Fig. 3.A=ot00 statvolt, thea=
—3m/4 curve is not even stable. Also apparent is the decrease in amplitude of the spiraling motion, and the detyeassedecreases.

For A>A., as seen in Fig. 3, a very symmetrical patterndifferent asA is decreased in Figs.(® and 5d), in corre-
occurs about the horizontal axis in Fig. 1, with the longestspondence with what we should expect from Fig. 3.
decay time atx~ 7/2, and the shortest decay time occurring
at a~—7/2. Figure %a) shows a way of organizing the

eff.ectslo_f.a on ty for this situation ofA>AC, where each IV. ANALYTIC ANALYSIS OF t4
pair of initial anglese, such as would be given by A and A
B and B, etc., in Fig. %a), have nearly the same value tgf We now turn to a more detailed analysis on the time to

(for A=1000 statvolt, as well as nearly the same radial os- decay,ty. In Ref. [15], we showed that by expressimgt)
cillatory amplitude. More specifically, fok>A,, a curve of ~=a+ &(t) and the polar anglé(t) = wt+ ¢(t), where|5/a|
r vst, as in Fig. 2, has an initial oscillatory amplitude that is iS treated as being small compared to unity, and likewise for
nearly zero fora~ m/2; this is also the point at whicty is | ¢/w|, then simplified and more easily analyzable differen-
the largest. Similarly, fore~— /2, the initial oscillatory tial equations in terms of(t) and ¢(t) can be obtained than
amplitude is at its largest value, with orbital decay setting inthose of Eqs(2) and (3). Several levels of approximation
almost immediately. were discussed in Ref15], with what was called the “P2”
Figures %b)—(d) each compare the same “mirror” angles level being the simplest approximation found that still pro-
of a=— 7/4 anda= —37/4 in Fig. 5a), and show how the vided a fairly good level of accuracy in most cases. In par-
r vst curves are nearly identical looking fé A, [i.e., Fig.  ticular, case P2 predicted the key features of the oscillatory
5(b) with A=1000 statvol, but become progressively more radial motion, namely, the increase in oscillatory amplitude
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Period o leftof (@) Period to right Figure Ga) shows ¢(t) vs t near the orbital transition
transition point. cut about in half. region of decay whem=1000 statvolt andv=—m/4. At

%\\/l\ each peak, of cours¢=0, andd?¢/dt?<0. As can roughly

be seen, as the transition point to decay is approached, each
peak becomes wider and wider, which means that the curva-
ture becomes increasingly smaller, [@?¢/dt?| tends to
zero.[This property of the peaks of thé vst curve gradu-
ally becoming wider and wider, the closer to the transition
point, was first pointed out in Reff15]; see Fig. 4c) in Ref.
- [15].] Thus, |d2¢/dt?| decreases in magnitude from points
A—B—C, with d2¢/dt?<0. At point D in Fig. 6(a), the
transition point, the curve roughly goes through an inflection
point, with ¢~0 and d?¢/dt?~0. This condition can be
used as an approximate condition for calculatipg

From Eq. (12, with d?¢/dt?~0 and ¢~0, then

; i 1 ) : ) L ’ N . 3
CoS(@p— a)~w rameA or
3.553x10™" 3.597x10™" 3.64x10™ =) A

0, Cases P1 and E
virtually on top of
each other.

¢, Case P2

0 — (wt)

" 0, Case o

o

Time (sec) wiram
p(t=tg)= (ﬁtran"w’a'_i_cc’§:L . (13
o, case E ¢, case P1

For A=1000 statvolt,a=0.5 A, and a=— /4, then Eq.

2.5 T — T o (13) predicts that¢p~0.78 at pointD in Fig. 6(@), which
; agrees well with numerical calculatiofisee Fig. &)].
2r ¢about078 ¢.case P2 7 Further insight can be gained if we definét) to be the

for case P2 angle at timet between the velocity vectar(t) of the elec-

tron and the force vector-{e)E(t). For the geometrical
situation chosen herésee Fig. 1, where the counterclock-
wise angular direction is taken to be positive, the particle

$=6— (o)

05 F : I gﬁ%ﬁﬂ:&? starts aia, andv(t=0) is along they direction, thenv(t) is
b ] from t=0. at an angled(t) + (7/2) with respect to, while (—e)E at
; time t is at an angle with respect to of a+ (7/2)+ wt.
o5 / i Hence
1 i i . " w T
3.625x10™  3.631x1072  3.637x10™ 3.644x10™ A(t)Z( o(t)+ 5]~ a+ E+wt) =¢dp(t)—a. (19

Time (sec)

FIG. 6. Plots of¢= 6— wt are shown here for the case where The initial value ofA att=0 is —a, since$=0 att

A=1000 statvolta=0.5 A, anda=— /4. () The main curve to - 0~ The angl&\(t) will initially vary between two points in
observe here is “Case E,” wherg(t) vst is shown for the “exact  Fi19. 7(). In the case oA>A., if a is initially at point K in
case,” solving Egs(2) and (3). However, cases P1, P2, and O, Fig. 5@), thenA(t) will initially oscillate roughly (not quite,
which are different perturbation approximations discussed in Refbecause the problem is not exactly symmetrical to either side
[15], are also superimposed here to show how well they comparedf o=+ 7/2) between K and K, with its center being ap-
(b) Blown-up view of the transition poirlD in (a). ¢(ty) is seento  proximately at the point ofp=0, a=+m/2, or A,iq=
agree reasonably well here with prediction. — /2. However, the amplitude of the range®dfwill gradu-

ally increase, as will, accordingly, the amplitude &tt), as
with time, and the rapid change to orbital decay. The P2 setbserved in Fig. @). Decay then sets in whel(t) reaches

of equations were the value of, from Eqs(14) and (13),
d’¢ 3eA 2¢ : w3ram
Rt -7 o) — 2_ it — P |
g2 am 1+ 30 cofdp—a)—3(wr)w —T(wT)wd A(t=ty)=A,=C0S ( oA (15)
=0, (12 Figure Ta) illustrates the above, while Figs(bj and 7c)

_ zoom in to show different aspects of tAdt) vst curves.
combined withé(t)/a~ — (2/3w) ¢(t), and the initial condi- As noted in Ref[15], in the P2 approximation, the terms
tions of =0, ¢=O, ands=0 att=0. These two equations
and the initial conditions will enable us to make a simplified b icos(d)— a)—Tw?r
analysis of the transition point behavior at decay. 3w
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FIG. 7. Plots of A(t)=[¢(t)—«] vs t, for
A=1000 statvolt, for several different values of
a. In (a), the “mirror” angles of a=—3w/4,
—al4, as well asa=0,7, as well asa=37/4,
/4, all have nearly identical values tf, which
can be identified in@) by the near vertical lines
arising at the decay points in these curyes.,
A(t) rapidly increases when orbital decay be-
gins]. Note thatA(ty)=cos Yw*ramed), from
Eq. (15), agrees well with predictionb) zooms
into the early time region ofa) to show the dif-
ferences between th&(t) vst curves fora=
—37/4 and — 7/4, as well asa== and 0.(c)
zooms in on the last region of thg(t) vst curve
for a=m/4. Each of these\(t) curves behave
fairly similarly. The A(t) vst curve fora= /2
can also be seen i), although its amplitude is
still very small. As discussed in this paper, if we
were to repeat this examination for smaller values
of A, one would see increasing differencestin
for these mirror angles, since, as seen in Fig. 3,
the ty vs a curves become centered around dif-
ferent values ofr, other thanm/2, asA/A; be-
comes smaller.

in Eq. (12) are the origin for the increasing amplitude of lyzed in Ref.[15], which predicts the initial oscillations very
oscillation, the increase in periodicifpne can discern the well, but never changes the oscillation shape and just contin-
latter feature in Fig. )], and the rapid transition to orbital ues on forever without orbital decay.

decay. If it was possible to force these terms to equal zero, This insight offers another way to investigate situations in
then case P2 would reduce to the approximate €sma- Fig. 3 where near infinitey occur. Forcinge[ 2/3wcos(p
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—a)—7w?7] to be zero cannot be accomplished with onethe results analyzed here for circular orbits can be general-
fixed value ofa if ¢ is changing with time. However, it can ized to the more complicated situation of elliptical orbits,
be accomplished if¢ is made to be constant, by forcing just as occurred in Reff13,14]. Referenc¢14] deduced the
d?¢dt?>=0. The above term will then equal zero and theplane wave spectrum that would be required to overcome the

radial oscillations, via the P2 approximation &{t)/a~ radiation reaction effect to maintain an elliptical orbit, then
— (2/3w) ¢ (1), will then not changer, will then remain fixed turned to find the unexpected nonlinear behaviors that occur
atr=a. as the amplitudes of this plane wave spectrum were scaled.

Since in the situations examined hete=0 att=0, we Likewise, we expect to find equally interesting results as
can find the condition to make E@12) result in ¢ being Phases are systematically altered. In turn, these relatively
constant for all time by substituting in zero fgfr, ¢, and simple changege.g., scaling of a”?p"t“‘?'e?' and systematic
d?¢/dt?. Equation(12) then reduces to changes of phasgsf electromagnetic radiation acting on the.

classical hydrogen model are but small subsets of the infi-
3eA nitely rich range of radiation conditions that could occur in a
——cog —a)—3(wr)w?=0, (16) normal physical environment, in part from what an experi-
am menter might ingeniously impose, as well as what naturally
exists due to thermal and, more generally, nonequilibrium
radiation conditions. Many recent experiments have already
been carried out to examine such behaviors for actual Ryd-
A berg systems, such as in Reff§,23].
_C). (17) Finally, we wish to end this paper by briefly mentioning
A other interesting nonlinear phenomena of this classical sys-
) . ) . tem. First, in Fig. 8a), two CP plane waves were chosen to
This result agrees nicely with our earlier exact result of Edinfluence the orbital motion; their angular frequencies were
(11), since, as analyzed earlier from E@0), o~w;. More-  gelected to be slightly different, but close to the initial orbital
over, this analysis provides us another insight for points ingngular frequency of the classical electron. As can be seen,
Fig. 3 that lie near, but not right at=«. , namely, that jymp-like motion was produced. It should be noted that ap-
when ¢ is small, which translates in the P2 approximation toproximately 10000 orbitgthe orbital period is about 1.4
S(t)/a~—(2/3w) ¢(t) being small, or the radial oscillations x 10~ sec forr=0.5 A) occur for this simple scenario be-
|8/a|<1, then we can expect a long tinig before orbital ~ fore the onset of orbital decay. During this time, four very
decay sets in. clear and relatively rapid jump-like transitions occur. Adding

more plane waves with similar changes in frequency can

V. CONCLUDING REMARKS readily create an increase in jump-like behaviors, with larger

jumps becoming more likely the larger the amplitude of the

The present paper began by noting that there exists a faTP plane wave. Figure(8) illustrates this point of increasing
larger range of conditions of infinite stability for a CP plane the number of CP plane waves and its effect on quasistabil-
wave acting on a NR classical hydrogen atom than the singlgy. The quasistability region, up to the point of orbital
case ofa=0 andA=A, that was noted in Ref13]. Spe- decay, increased from about kK40 ?sec to about
cifically, for each value oA>A., there are two values af  5.0x 10 ! sec between Figs.(8 and 8b), while the num-
such that a circular orbit will continue indefinitely in the ber of small jumps increased from four to about 25, and the
highly idealized scenario described in the present paper. lilumber of orbits increased from approximately 10000 to
this classical scenario represented physical reality, then onlg6 000. Figure &) is particularly interesting, in that it pro-
one of these values, the, , a, solution, would be readily vides a conceptual way to see how stability can be roughly
observable, since any small deviation from the, @_ so-  maintained, yet a region of radial dimensions can be sampled
lution appears to lead to near immediate orbital decay. in a diffusion-like pattern.

We should also clarify further the meaning of the stable Figure 9 illustrates “resonance-like” properties of plane
solution of thew ; , a result, since any noise or other slight waves acting on orbital motion. Our earlier work in Refs.
perturbation that enters the system, as of course would hapi3,14] analyzed related aspects of this phenomena for cir-
pen in a real physical situation, alters this otherwise perfectiyular and elliptical orbits, respectively. One curve in Fig)9
aligned situation and appears to eventually lead to decayepresents the case where an electron starts in a circular orbit
Nevertheless, the size tf will still in general be quite large  of radius 0.525 A, with no plane waves acting=£0), so
for small deviations from the idealized solution®f. , «, . that steady orbital decay occurs. The second curve in Fig.
Figure 3 helps to understand this point, since the simulationS(a) represents a similar situation, but now where a CP plane
carried out in Fig. 3 did not use , as the frequency of the wave is constantly acting, witA=100 statvolt,a=0, and
CP waves, but rathew., which is slightly different from an angular frequency corresponding to an electron in a cir-
o, . We note that the widths and locations of the peaks;of cular orbit of 0.5 A. As can be seen, as the electron’s orbit
vs a in Fig. 3 are quite interesting. A& approacheé\., the  decays from 0.525 A to 0.5 A, the effect of the CP plane
width of the peak oty vs @ becomes infinitesimally narrow. wave on the orbital motion becomes increasingly more pro-

Although we have not pursued the following idea in anynounced, resulting in a jump-like behavior near0.5 A,
sort of detail yet, it seems quite reasonable to us that most dbéllowed by a continued fluctuating decay in orbit, but with

or, from Eq.(1) and usingw = w., since that was the basis of
case P2 in Ref(15], then

a=cos !
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S 5.00x10° i [
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Time (sec) 4.6x10° 4.8x10° 5.010° 5.2x10°
FIG. 8. (a) Plot of r vst for the case where the initial radius is Radius (cm)
0.5 A, and there are two CP plane waves present, both with o
=0. One CP plane wave h#ds=100 StatVOlt, with an angu|ar fre- FIG. 9. (a) Plot of r vs t for two S|tuatl0ns, both where the

quency corresponding to an orbital circular motion of radius 0.5 A, electron starts at=0.525 A, but one where no CP plane wave is
while the other hasA=500 statvolt, with an angular frequency Present A=0), while the other case has a CP plane wave present
corresponding to an orbital circular motion of radius 0.505 A. TheWith A=100 statvolt,a=0, and an angular frequency correspond-
two horizontal lines indicate these radii. As can be seen, jump-likdnd to an electron in a circular orbit of radius 0.5 fh) The maxi-
motion occurs between the radii corresponding to these two anguldpum radius minus the minimum radius for each fluctuation inrthe
frequencies(b) Plot ofr vst, as in(a), but now six CP plane waves VSt curve in Fig. 9a), vsr, are plotted here for three situations. In
are present, all witkk=0. The circular orbital radii Corresponding each case the electron starts out in a circular orbit, with a CP plane
to their angular frequencies are indicated. These radii and the anyave acting, withA=100 statvolt ancx=0; the three curves are
plitudes of the plane waves are: 0.485 A and 500 statvolt; 0.490 Adue to the presence of a single CP plane waves of angular frequency
and 500 statvolt; 0.495 A and 500 statvolt; 0.500 A and 100 statcorresponding to a circular orbit of radius 0.48 A, 0.49 A, and

volt; 0.505 A and 500 statvolt; 0.510 A and 500 statvolt. 0.50 A, respectively. As can be seen, these response curves are
sharply peaked. Changing the amplitude of the applied CP plane

fluctuations becoming increasingly smaller as the electron’svave changes the magnitude of this response, although the shape

radius steadily decreases below 0.5 A. Interestingly, the twatays fairly similar forA not too large.

radial curves foA=0 andA=100 statvolt are quite parallel

to each other, aside from the fluctuating and jump-like beof a single CP plane wave, with=100 statvolt andx=0;

havior of theA=100 statvolt curve. in one case the angular frequency of the CP plane wave
Figure 9b) shows three curves pertaining to three differ- corresponds to a circular orbit of radius 0.50 A as in Fig.

ent situations, each one where the electron has bee®{a), while the other situations have the CP plane wave fre-

“dropped” in a circular motion from an upper radius value, quency corresponding to circular orbits of radius 0.49 A and

then allowed to decay to a lower radius while in the presenc®.48 A, respectively. The axis of Fig. 9b) represents the
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magnitude of the fluctuations of the radial motiore., each (a)
peak minus each succeeding minimum in curves likeAhe T T T T
=100 statvolt trajectory in Fig.(®)]. The intent of this fig- 2.0x10°
ure is to attempt to characterize the resonance-like effect o
plane waves acting on the electron’s motion. As can be seen
the response in Fig.(B) is sharply peaked. We note that this —~ 1.5x10*
response is a very nonlinear function, depending on severag
factors, including the radius and the amplitude of the CP;
plane wave. We intend to report on these effects in more.g 1.0x10°®
detall in future work. &

We have found such resonance-, jump-like, and diffusion-
like behaviors as seen in Figs. 8 and 9 to be fairly easy to  ¢.5x10*®
produce, as well as a range of other interesting nonlineal
phenomena, such as “catching” the electron, “kicking it”

[4,23,24, etc. All of this work we expect to lead to greater 0.0 1 1 1 :
understanding and insight into both practical technological 0 0™ ex10™  ex10™  1.2x10™  1.5x10™
possibilities as well as very basic and fundamental physical Time (sec)
ideas. Clearly, there are surprising and subtle nonlinear ef-
fects that are difficult to anticipate, even for such simple (b)
cases as the ones examined here involving simply a single¢ 25 T T T T T
CP plane wave acting on an electron in a near circular orbit. 287x10"s

Moreover, we have carried out numerous other simulation 448 x 10 s
experiments attempting to go well beyond these simpler situ- 20F ]
ations, by investigating the possibility of simulating the ef- 8.20x 10 s
fect on the classical electron’s motion due to the hydrogen sl |

Coulombic binding force plus classical electromagnetic zero-
point radiation, as well as due to other radiation fields of
interest. In work to be reported elsewhédd], we describe 10
our simulation results to date for the classical hydrogen atom

in the presence of classical electromagnetic ZP radiation

Most notably, this work has yielded a probability density 0.5
distribution for the classical electron in close agreement with

the quantum mechanical ground state of hydrogen from . \
Schrcdlnger’s wave equaﬂon. Figure &) shows' a typlcal' °'°0_0 05 10 15 20 o5 3.0
trajectory of a classical electron based on this simulation . e

work, from which probability density distributions were cal- Radius (A)
culated in Ref[21]. The number of plane waves in the simu-
lation of Fig. 1@a) was enormously larger than our earlier
simpler examples in Fig. 8, namely, this simulation involves FIG. 10. (a) Plot of r vst for a classical electron starting in a
~2.2x 10° plane waves. The distribution of amplitudes and circular orbit of radius 0.53 A, with=2.2x 10° plane wave acting
phases for these plane waves was chosen to represent a sgiring the simulation. The amplitudes and phases were chosen at

tion of the classical electromagnetic ZP radiation Spectrumt.he beginning of the simulation and then held fixed throughout the
As can be seen in Fig. 18, the classical electron main- remainder of the simulation. The values of these amplitudes and

tained a quasistability behavior, in that it's orbit did not col- phases were chosen to represent one stochastic realization of a sec-
lapse into the nucleus nor ion,ize to infinity; however, it's tion of the classical electromagnetic ZP radiation spectrum. Refer-

quasistability occurred in a stochastic manner, with it's ra_ence[21] discusses the specifics in more detéil. Nine classical

dius araduallv increasina and decreasing due to the radi electrons were tracked in time, each starting at 0.53 A'in a circular
L 9 yi . 9 9 %rbit, but then subsequently not constrained. A different realization
tion’s effect on its motion.

; . . of the classical electromagnetic ZP radiation spectrum was assumed
Figure 1@b) shows more recent simulation results thatfo, each simulation, although all had 771,692 plane waves acting,

differ from those of Ref[21] in that a “window” algorithm  ranging in angular frequency from 50 sec! to 4.6
approximation described in Ref21] is not imposed. The x 10 sec’. The top three curves show the times up to which
simulations in Fig. 1() only go out to about one-hundredth point the percentage of time was spent at each radius by the en-
the time in Ref.[21], yet the computational time for Fig. semble of nine electrons, as each evolved in trajectories like those
10(b) was about 50% larger than the already lengthy 55 CPUn Fig. 10@). The bottom curve was calculated from the ground
(central processing unitlays reported in Ref21] on a Pen-  state of hydrogen via Schdinger’s equationP(r) = 42| (x)|?

tium 4, 1.8 GHz, processdgactual time 5 CPU days on 11 =4r?/ajexp(—2r/ag), where ag=#2/mé. Carrying out these
processors due to the difference of the “no-window” versus lengthy simulations farther in time, we expect the histogram
“window” algorithm. In Fig. 10(b), an ensemble of nine curves computed by simulation to converge closely Rér)
classical electrons were started at 0.53 A and tracked over a4r?/agexp(-2r/ag), as they did in Ref{21].

Schroedinger Eq.
Prediction

P(r) (A™)
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time of 2.87x 10 B sec, 4.4&% 10 B sec, 8.2x10 ¥ sec  very beginnings for exploring statistical mechanical-like

(about 2000, 3000, and 5000 revolutions, respectjvety-  ideas for stability conditions that result in the ground state

responding to each of the three curves in FiglbLOAs can  probability distribution found in Ref21]. These results can-

be seen, the ensemble average is marching nicely toward thm®t help but reawaken the idea that the main basis of SED

expected ground state distribution calculated from Sghro theory may in fact be corre¢tt6—18. Clearly, though, far

inger’s equation, which we expect to find once enough orbitsnore work needs to be done to examine all the other aspects

have been tracked over to correspond with the longer runs i6f quantum mechanical phenomena for atomic systems, be-

time in Ref.[21], where indeed this ground state distribution fore this conclusion can be made; we are presently pursuing

was obtained. We expect to report in future work on the fullsych investigations. Whatever the outcome, it should be quite

results of this simulation experiment as well as considerabl\:lear that the range of classical physical behavior is ex-

more extensive experiments presently in progress. tremely rich, as already revealed here by the very simple
Undoubtedly, such results will come as a surprise to mosgonsideration of a classical charged particle in a near circular

physicists, as only classical electrodynamics is involved ingrpit about a classical nucleus, while acted upon by a single

these simulations. We note that the work discussed in thep electromagnetic plane wave.

present paper, as well as in Ref&3-15, was critical in

terms of developing the ideas and methods for carrying out

such investigations to compare classical dynamical effects ACKNOWLEDGMENTS

with quantum mechanical predictions. The work of the

present paper, which identifies the much wider range of sta- We thank Professor Timothy Boyer for reading the first

bility conditions for the classical hydrogen atom under fairly draft of this paper and for his encouragement and helpful

simple applied radiation conditions, may well serve as thesuggestions.
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