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Equation of state and transport coefficients for dense plasmas
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We hereby present a model to describe the thermodynamic and transport properties of dense plasmas. The
electronic and ionic structures are determined self-consistently using finite-temperature density functional
theory and Gibbs-Bogolyubov inequality. The main thermodynamic quantities, i.e., internal energy, pressure,
entropy, and sound speed, are obtained by numerical differentiation of the plasma total Helmholtz free energy.
Electronic electrical and thermal conductivities are calculated from the Ziman approach. lonic transport coef-
ficients are estimated using those of hard-sphere system and the Rosenfeld semiempirical “universal” corre-
spondence between excess entropy and dimensionless transport coefficients of dense fluids. Numerical results
and comparisons with experiments are presented and discussed.
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[. INTRODUCTION a transition, as smooth and physically correct as possible,
with solid state physicEl6]. Moreover, it should bab initio
Early theoretical study of matter at high density and highand have a high degree of intrinsic consistency. Finally, its
temperature was aimed at understanding pressure balandesign should be flexible and modular enough in order to be
and energy flow in stellar interiof4]. Since the 1980s, there easily improved and modified through the implementation of
has been a growth of interest in the atomic properties of honew physics without having to build another model from
dense plasmas, motivated by laboratory experiments involscratch. Clearly, the model should get rid of the standard
ing high-power pulsed lasers. More recently, the interest hasimplified descriptions of ionic distributiorfisolated ion
been enhanced by the possibility of producing plasmas ne&phere, uniform positive background, perturbation theory,
solid density and at temperatures in the range 0.1-1 keyseudopotential approach, and linear response theory.
with ultrashort duration laser pulse. Some experiments havéhis is the cornerstone of the whole issue. The description of
also been carried out to measure the electrical resistivitgense plasmas is a nonlinear and coupled problem, in which
[2—4] or the optical reflectivity[5,6] of strongly coupled it is acknowledged that neglecting altogether the details of
plasmag7]. In this field, combined pressure, electrical resis-ion correlations and their effect on the thermodynamics of
tivity, and internal energy variation measurements of warnthe model will one day lead to failure, one way or another.
dense aluminum and titanium plasmas have been recentipdeed, the ionic contribution to the equation of state is un-
performed[8,9]. derstood to be relatively small in itself, especially in high-
Though much is known about the equation of state andnaterials, and when compared with the electronic part. How-
transport coefficients for most materials under many condiever, their indirect influence in providing boundary condi-
tions [10], there are domains where common theories ardions for the electronic equations can be much more signifi-
guestionable or way out of their range of validity1,12. cant, and may have an important impact due to the strong
This is typically the case for strongly coupled plasmas in thdever arm effec{17].
density-temperature plane between solid and plasma called This document presents a first-principles approach that
warm dense mattef13]. This equilibrium thermodynamic provides some answers to the aforementioned problems. Our
regime can be encountered in planetary interiors, cool dengaodel is based on the neutral pseudoatdPA) concept
stars, and in laboratory experiments. The knowledge of equad8]. This means that the plasma can be considered as an
tion of state of such strongly coupled plasmas, characterizeeiffective classical system of virtual neutral particles, i.e., a
by Coulomb potential energy between plasma particlesollection of NPA interacting via an interatomic effective
greater than their average kinetic energy, is therefore crucigiair potential®. Electrons of the NPA satisfy a Schiager
and challenging. But this task is extremely difficult to equation with an effective potentisll.¢;. Ves and® expres-
achieve due to the complex and subtle coupling betweesions are established using a variational principle based on
ionic and electronic structures. Indeed, any model that is sughe Gibbs-Bogolyubov inequalityGBI) [19]. This means
posed to describe dense plasmas, and warm dense mattertivat we find the best one-electron Hamiltonian, in the sense
particular, should solve the following problenid4]. It  of the Gibbs-Bogolyubov inequality, i.e., the best NPA one-
should be able to calculate the average electron-density pr@lectron density, to represent the original many-body Hamil-
file around an ion in the plasma, determine a self-consistertbnian of the overall electron and bare nucleus neutral system
average ionization of the plasma, compute the interactioh20]. BothV.; and® are determined by the electronic struc-
between ions, the total Helmholtz free energy of the plasmature and the ionic distribution of the plasma. In order for the
and the largest possible set of ionic and electronic transporhodel to be computationally tractable, the density functional
coefficients. It should also be valid in the high-density andtheory (DFT) within the local density approximatiof.DA )
high-temperature domain where the Thomas-Fermi approadk used to estimate the exchange-correlation effects, and the
is known to work well[15], and be robust enough to ensure Gibbs-Bogolyubov inequality is again employed to look for
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the best reference system, i.e., one component plé&@8&  andH, the electron Hamiltonian, i.e.,

or hard-sphergHS) systems, to get the pair distribution

function of the ionic subsystem from the interatomic effec- p e Z,e?
tive potential® [21-23. In Sec. Il, the general formalism is He=2 >m ™t < ri—r _Z =R
proposed. Mathematical details and additional developments S b
are given in the appendixes. Numericgl results and cpmpar'M(m)'p(p) are nucleugelectron mass and momentum, re-
sons to measurements are presented in Sec. lll. Section IV Spectively.R(r) is the nucleugelectron vector radius. The

()

the conclusion. nucleus (electron indices run between 1 and, (Z|N,).
When there is no ambiguity, the sum limits will be made
II. FORMALISM implicit for conciseness.

) ) ] ) We invoke the Born-Oppenheimer approximation, in
In this section, we derive the expression of the total freqyhich the nuclear and electronic motions are separated. We
energy of the plasma using finite-temperature density funcean treat the electrons quantum mechanically and the nuclei
tional theory, within the local density approximation, and cjassically. In other words, the time scale that is necessary
the powerful variational approach based on the Gibbsfo electrons to adapt to a nucleus configuration change un-
Bogolyubov inequality. Viewing the plasma as a collection ofger the influence of internal forces is much shorter than the
identical neutral pseudoatoms, the variational method engme scale required for nuclei to go from one configuration to
ables one to find the optimum one-electron Hamiltonian thagnother one under the influence of the same forces. This
gives the best approximation of the original many-body totalapproximation is also known as the adiabatic approximation.
Hamiltonian of the plasma. We thus naturally find the ex-we can thus integrate out the electronic coordinates apart
pressions of the effective electron-ion and ion-ion potential§rom the nuclear ones, i.e., the trace over the electronic de-
that describe the electron-ion and ion-ion interactions insid@reeS of freedom must be performed assuming a given and
the system. The NPA electronic structure is found solving gixed nucleus configuration. Of course, one must then trace
Schralinger equation with the relevant effective electron-iongyer the nucleus degrees of freedom to arrive at the final
potential. The ionic structure is found using the GBI to es-statistical average of the observable of interest. From the
tablish a mapping between the effective ion-ion system angjectronic point of view, the third term of the right-hand side
the hard-sphere or the one-component plasma referengg gq. (3) acts as an external potential due to the electrostatic
systems. The knowledge of the total free energy of thenteraction between electrons and nuclei. From the nucleus
plasma gives access to the main thermodynamic quantitiggewpoint, the trace over the electronic degrees of freedom
of interest by numerical differentiation. We then assume thag|iminates the direct two-body electrostatic interaction be-
the Ziman formalism can be used to calculate the electronigyeen electrons and nuclei, and produces an effective indi-
electrical and thermal conductivities of the system. We als@ect interaction between nuclei. The nuclei can thus be seen
provide a means of estimating ionic transport coefficientsys 3 classical gas of particles interacting through pairwise
from either the Rosenfeld semiempirical “universal” g|ectrostatic interaction and immersed in an external field
corresponding-state relationships based on the reduced coffrat causes them to interact through an effective many-body
figurational entropy, or simply using the reference systempteraction. As a result, the quantum mechanical electron

transport coefficients. problem is solved using purely classical forces. However,
since electrons must obey the Pauli exclusion principle, i.e.,
A. Derivation of the total free energy of the system satisfy Fermi-Dirac statistics, the classical mechanical

nucleus problem is solved using both classical and quantum

haraeZ. of a single el N7 el . : forces. To sum up, starting from a two-component system,
chargeZ, of a single element anl, Z, electrons in a volume ; o " glactrons and nuclei, it is possible to reduce the original

V. The .whole_system. s supposed o be ng.utr.al, homOgeﬁroblem to a one-component plasma by eliminating elec-
neous, isotropic, and in thermodynamic equilibrium at tem+qic gegrees of freedom. Yet the underiying electron pres-
perature T. The ion densityp,=N,/V is related t0 the onc0 manifests itself through the effective many-body inter-
W|gner-§e|tz radius aws by the standard formula ,qion, which adds to the electrostatic interaction between
(4ml3)aws=1. llp; is the volume occupied by one pclei. Then, depending on the nature of material and on
nucleus. Inverse temperatuyfeis equal to T, whereks  thermodynamic conditions, we could face an amazing and

Let us consider a plasma containiNg nuclei of nuclear

written as follows: We propose anab initio model to describe self-
p2 consistently the electronic and ionic structures of plasmas.
Hsys=2 —j+V|.+He, (1) This _approach sh_ould be _in agreement vv_ith the Thomas-
T 2M Fermi theory at high density and should give a reasonable

matching with the methods originally developed to describe
whereV,, is the bare nucleus Coulomb potential, i.e., low-temperature condensed matter, i.e., methods based on
pseudopotential and perturbation theories or quantum mo-
> 5 lecular dynamics approaches. Of course, comparisons with
V), ZE Zie 2) _relevant and discrimingnt experiments are esser_1tial for test-
< IR—R|”’ ing the overall theoretical framework. So, returning to Egs.
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(1)—(3), our main problem is to choose a simple, robust,The integrations over nuclear momenta can be carried out
predictive, and computationally tractable strategy to elimi-explicitly, yielding a factor (2rMkgT)/? for each degree of
nate the electronic degrees of freedom, in order to achieviFeedom. Introducing the nuclear de Broglie thermal wave-
the reduction of our system to a one-component plasma. Thiength A = (273#%%/M)¥? and the free energf|® of a per-
most natural idea involves using the fruitful approach em-fect gas,

ployed frequently in various fields such as atomic physics,

molecular physics, or nuclear physics, i.e., to look for the _ geid dNIRdNIP A
best one-electron Hamiltoniad ¢, using the GBI. Our ap- e _J’ N, ,ham, A3N|N !
proach, based on a seminal paper by Kiyokd®@, is very v
different from the NPA approach enhanced by Pefiat], @)
which involves extending the solid- and liquid-state modelswe obtain a more compact equation

to plasmas. This method has been shown to lead to a consis-

tent treatment of the high-temperature fluid phase. However, e A%sys=e~ BRI+ BN Je AV Tr e B(He~pe e)]}
Perrot's method is not variational but perturbative, and its (8)
validity is warranted only if the electronic structure is
“simple,” in the sense of the simple liquid-metal theory. It is
rather delicate to estimate the influence of the neglecte
terms in the free energy expansion. Moreover, as stated by dNIR

the author, complex effects such as molecular- or cluster- trf-- 1= f Y (9)
level formation, which involve charge redistribution and VNI

three(or more ion interactions cannot be dealt with. This is

not the case with our approach, which can be refined to en- Now, let us find a lower bound te™#%sys usingl:leo and

In this expression, symbol “id” stands for ideal and is a
ahorthand notation for

rich the physical description, if needed. the GBI. Inserting+ H, nearH, in Eq. (8), using
As is usually the case in statistical mechanics, we have to i R

decide in which ensembles we are going to treatNheu- Tr[e AHeoreNef. . 1]

clei and theN,Z, electrons. Since in the thermodynamic (- Deo= T '

limit, i.e., Ny—o, V—o, N,/V=p =const, results do not

depend on a particular choice, let us choose ensembles that g0 — B(Feo el

lead to simple and convenient calculations, and which seem e Preo=Tr[e Peom teTel], (10)
close to the physical properties of the systems of interest.
According to the adiabatic approximation, it seems normal té
treat theN, slow nuclei in the canonical ensemble and the <e_ﬁ(ge_geo)> = o BlAe—Flag)eo (11)
fastN,Z, electrons in the grand canonical ensemble. Let us e~ '

introduce the nuclear chemical potentia|, the electron e naturally find that

chemical potential,, and the electron number operaldy. y o
Since electrons are treated quantum mechanidly, and e~ Blsys= g~ BF "+ BuiN, tr)[e~ AV~ Fleo~ BHe~Heoleo],

H. become operators and should be réags andHe, re- (12)
spectively. The grand potential of the systéy sis equal to

and the well-known property

Now, let us determine what kind of trial one-electron Hamil-
e Bsys— aBmN| Tr[e—ﬁ(l:isys—ﬂel:le)], (4) tonian we use. In general, some electrons in the system are

localized in the neighborhood of a nucleus or cluster of nu-
where Tr means trace over electronic and nuclear degrees éfei and occupied bound states. The others are in continuum
freedom. As for electrons, the trace is performed over thétates. However, let us leave bound states of cluster to one

complete Fock space and is noteq Twhereas for nuclei, side, i.e., molecularlike orbits in the present work. This is our

the trace is referred to as,Tand simply read as first assumption. In other words, there is no overlap of eigen-
functions between two different atomic sites. The electrons

leRlep of the system that are trapped and tightly attached to nuclei

Tr{---}= J N, |h3N| b (5)  are called bound electrons. The other electrons that move in

the whole space or belong to all nuclei are called delocalized
or free electrons. We define an ion as the system consisting

mation, Egs.(1)—(3), and remembering that the nuclear of one nucleus and some bound electrons belonging to it.

quantities are usual numbers that commute with electron ogJOWeVer. the density profile of the continuum electrons is
erators not stationary due to the nucleus motion. So, these electrons

tend to pile up near the nuclei in the sense of the adiabatic

B approximation, and shield or screen the ionic charges. There-

e Alsys= PN Tr,{ exp — oy 2 sz—,BV“) fore, it is physically reasonable to consider the system com-
) prising an ion plus the part of the continuum electrons, which

. . helps to shield that particular ionic charge, such as an
xTre[eB(He“eNe)]]. (6) “atom,” i.e., a neutral atomic system. Though this particular

whereh is the Planck constant. Using the adiabatic approxi-
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ion will not be screened by the same continuum electrons

during its motion, there will be a fraction of the free elec- ‘D(R)ZZEx(R)—ZWat(RHJ pe(Nva(r—R)dr.
trons that will shield this particular ion on average, in the (18)
sense of the statistical mechanics. So, it seems possible to

consider a plasma as being constructed by such virtual atomge NPA electronic densitg(r) is equal to

or neutral pseudoatoms. We come thus naturally to our sec-

ond assumption that all atoms in the system have the same

electronic structure. This means that we do not yet discrimi- pe(1) =2 folea(n)I?, (19
nate the different charge stages of the plasma. Consequently, "

we introduce the following unperturbed Hamiltonian opera-

tor: where

1

n:]__’_e.B(gn*/-"e) ' (20)

HeOZEJ_: 2 SnA;rnéjm (13

where éan and &, are creation and annihilation operators and with

acting on quantum statein the jth ion and satisfy the anti-

commutation relationgA5) and (A6) in Appendix A. Equa-

tion (A5) means that two electrons are independent of each j pe(r)dr=2, (21)
other when the first electron is in one ion and the second is in

another ion. Since we suppose that neutral pseudoatoms ¢9 ensyre charge conservation. This is accomplished by ad-
not interact with each oth.er, the trla_ll one—elgqtrqn energy justing the electronic chemical potential,. Ex(R) is the
does not depend on Iabel Neglecting relativistic effects, exchange energy coming from two groups of electrons be-
one-electron wave functiog,(r) and energye, are solu- |onging to different ions, one placed at the origin and the
tions of a Schrdinger equation with a central symmetric giher atR. What is important to note is the precise cancel-
effective potentiabe(r): lation of the bare nuclear electrostatic interactign due to

72y2 screening. Indeed, the one-electron Hamiltortthyg, where
- W-&—veff(l’)}(pn(r):sngon(r). (14 the oyerlap of elgenfunctlons' between two dlff_erent atomic
sites is neglected, naturally induces an effective two-body
ion-ion potential®(R;;) depending on the relative distance
between ions andj. Moreover, these are the only terms that
N = 77" Trare functions of nucleus positions due to the effective sepa-
Once choserHo, the thermal average of the Hamiltonian yation between ionic and electronic degrees of freedom. In-
He, written in the second-quantification formalism, can beserting Eqgs.(15) and (16) inside Eg.(12), the trace over
performed using the eigenstatesfebgo; both Q¢ and(ﬂe nucleus positions only concerns terms involving the effective
—|:|e0>eo can be obtained in closed form. The derivation ision-ion potential. This multidimensional integral has a very

The trial potential ve(r) must be determined self-
consistently but is still unknown at the stage of this work.

detailed in Appendix A. The final result reads clear physical interpretation. From the theory of simple lig-
uids[22], we know that
~ ~ e? pe(rpe(r’)
(He—Hep)eo=N E(O)——ff—, drdr’ ox
e~ Meo/eo™= Ni| Ex 2 [r—r’] tr, ex;{—gE (D(Rji)) —e BFY (22)
7

+N f (v (r)dr—f (rv r)dr} )
L) Pe a Pe eftl whereF g is the excess free energy of the systenNpfons
1 722 interacting via the pairwise effective interaction potential
+ = Z _z= +¢(Rji)} (15) ®(R). We thus find the expression on which the GBI will be
271 IRl applied,
and
Q
N =0+ 0, (23
|
Qeo=— Fl >, In[1+e Ak, (16)
" where(), and (), may be interpreted as the ionic and elec-
where tronic contributions to the grand potential per nucleus, i.e.,
id ex
Z,€? pe(r’) R OFg
vat(r)=—W+e2 |re_—r,|dr’, (17) QI_N_I+N_I_MI (24)
and and
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CRTHRRO) - UREN)

tot NI

1
Qe=-3 ; In[1+e~Alen~#e ]+ Ey(0)

e[ [ pelNpelr’) | pI
_?j J—|r_r,| drdr +J'pe(r)uat(r)dr +3f Grel(VRID(R)AR+ Qe+ Zipe,  (28)

_ d o5 the GBI for ions(electron$ says thatF;,; is minimum for
pe(Mver(r)dr. (25 any variation of\ (p,) at fixedT, N, Z,, V, andpe (\). As
shown in Appendix C,

At this stage, we have a relatively compact expression for JF
the grand potential of the systefd s, in which the only Ztot
unknown is the NPA electronic densijpy . Once determined, I\
so are the effective potential¢;, the electronic contribution leads to
Q., and the effective ion-ion potential, but not the excess
free energyFg". This is a serious and crucial drawback be- 50 (\ . R)
cause we need to know this quantity to calculate the total > %[CD(R)—CDref()\eff,R)]dRzo,
free energy of the system, and by extension, the bulk equa-
tion of state. This delicate question has been a recurrent and
difficult task for many years in the theory of simple liquids whereas
[21,22. The simplest strategy is to apply the GBI to the ionic
contributionF§* too. Though many systems can be used as OF ot
reference systems, the number of choices is drastically re- Spe(T) =0 (32)
duced if we take into account the constraints that such a
reference system should obey in order to test the GBI effileads to
ciently. We must have access to the excess free energy, the
excess internal energy, and the radial pair-correlation func- _ OEx(0) OEx(R)
tion over the entire fluid domain. Moreover, the main trans- Uef1) =val)+ 5 +p'f valr =R+ 50
port coefficients, i.e., self-diffusion, shear viscosity, and ther-
mal conductivity, must be known analytically in the same Xgref(N,R)dR. (32)

conditions. To our knowledge, the HS and the OCP system

are the only many-body systems that can pass this test ar%quations(30) and (3.2) Qetermine the effective _parameter
can be selected as two possible reference sysfagisLet Neis Of the reference ionic system and the effective electron-

us denote=e(\), USX(N), ref(N,R), and® o (\,R) the ion potentialv.¢¢, respectively. EquatiofB0) is rather stan-

ref ref . - dard. Equatior{32) needs some comments. The electrostatic
excess free energy, the excess internal energy, the radial pair

distribution function, and the pair potential of the reference artresults in a simple charge superposition. This means that

system. We assume that this reference system can be 0 calculate the electrostatic potential at a given radius, we

scribed by a generic parameter Extension to many param- only need to add the electrostatic potential of the NPA lo-
yag P . yp cated at the origin and the electrostatic potential of the other
eter case raises no problem. As shown in Appendix B, th

NPA of the plasma, with the conditional probability that
: : : ex ’
GBI applied this time td-,, leads to there is a NPA at the origin, hence the presence of the pair
distribution functiong,.¢(\,R). The exchange contribution
Nip is more complicated to interpret, except if we consider the
ex ex _r1ex )

Fo<Fref(M)=Urer(M)+ 2 f Gref(MR)P(R)AR. DFT in the LDA, where a similar conclusion may be drawn
(26) using the exchange potential. Indeed, this exchange contri-
bution is also the most delicate one to calculate, simply for

Care must be taken when a OCP system is employed due &mputational time reasons. As for electrons, we have
the neutralizing background always implicitly assumed foradopted the numerical schemes of the DFT in the LDA pro-

this inequality. Finally, by Perdew and Wand25] at zero temperature. These

schemes have been implemented after intensive comparisons
with experiments. As for consistency, we have kept the same
approach for ions using the Gordon and Kji&6] method to

0 (29

(30

sts< I:ild + F(reé(f()\) - U?é(f()\)

=

N, N, estimate the exchange contribution within the effective ionic
pair potential.
+ %j Uret(N,R)P(R)AR— 11, + Qq. (27 The whole equations obtained up to now are exact in the

sense of the variational GBI method using the trial one-

electron HamiltonianH.y and the reference ionic system.
Introducing the total free energy per NPA of the systéepy ~ One understands that choosing both otHes and reference
as ionic systems to improve the description of physics will lead
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to different equations but the cornerstone of the formalismand the use of Chebyshev polynomif®y]. It can be seen
i.e., the GBI approach, remains the same. It is very interestthat any model incapable of passing this test is definitely
ing and encouraging, because one does not have to changeorrect.

the complete theoretical formalism to add new effects, if we

keep the GBI method of course. Assumptions have been

clearly enhanced; improvements are easily localizable, but C. Transport coefficients

this does not mean that their implementations are straightfor- Transport coefficients such as self-diffusion, viscosity,

ward. However, as already apparent here, two main problemgeyma| conductivity, or electrical conductivity are the most
will quickly arise, i.e., the mapping between the effective fnqamental dynamical parameters that reflect the nature of
ion-ion potential _and the p_alr_dlstrlbutlon function that al- e interparticle potentials and characterize the thermody-
lows the calculation of the ionic part of the free energy andhamics of the system. A theory developed to describe the
the question of exchange and correlation. Before improving, |k thermodynamic equilibrium properties is not usually
physics with the inclusion of new effects, we think that we g,aranteed to be particularly capable of predicting dynamic
must keep in mind the two aforementioned difficulties, in hroperties of systems, such as transport coefficients. Since in
order to obtain computationally tractable equations to comgyr model, ions form a classical system of particles interact-
pare to experiment. This can be done either for equation qhg via an effective pairwise potentidi, we could use clas-

state or transport coefficients. sical molecular dynamics as a postprocessor to estimate
transport coefficients using well-known techniques from
B. Equation of state simple liquid theory. However, following recent studies

The entire formalism presented up to now has been implenade on the Yukawa one-component plasif®CP) sys-
mented in the SCAALP model in order to describe the mi-tem, we estimate the self-diffusion, the shear viscosity, and
croscopic properties of dense media. Once the NPA eledhe thermal conductivity of dense plasmas from the transport
tronic densityp, and the effective parametkg,; of the ionic coefficients of the ionic reference systéhS or OCB [23].
reference system have been determined, it is a simple task foreover, we also recommend the use of the elegant method
calculate the total free energy of the systBi, using Eqs.  Proposed by Rosenfeld, which relates the transport coeffi-
(25) and(28). Nearly the whole thermodynamic quantities of CIENts to the equation of sta28,29. This approach consists
interest may be obtained by simple differentiationfaf,  ©f USing a semiempirical universal corresponding-state rela-
with respect to temperatuféand volumeV (or mass density tionship, for the dimensionless transport coefficients of dense

p). For instance, internal enerdy, pressureP, and entropy fluids as functions of the reduced configurational entropy.
Sare given by the standard expressions The same author has extended this technique to dilute fluids,

established by many simulations. The Rosenfeld approach is

IFworl IBFtot)’ powerful for many reasons. First, an accurate, theoretically
U=Fio=T—7| = B based approach to dense-fluid transport coefficients is still
v v lacking. Second, no convergent perturbation theory of trans-

port coefficients has been established. Third, the brute-force

— IF ot computer methods can be used to estimate transport coeffi-

AV cients, but these methods are considerably too time consum-

ing, for the same accuracy, than those designed to measure

IF ot equilibrium properties and cannot be considered as black-
S=-—77 5 (33 pox routines. Fourth, this analytical relation between trans-

Another very important quantity is sound spegg which
can be calculated from the formula

P
N

(9Slop)|y P

T | - (34
‘T (0S/9T)|, aT‘p

port coefficients and excess entropy allows us to estimate,
for instance, self-diffusion, shear viscosity, and thermal con-
ductivity from the equation of state of monoatomic fluids
with arbitrary pair potentials. In summary, one realizes all
the benefits of the Rosenfeld approach to estimate transport
coefficients knowing only the excess entropy of the system
of interest. This method is as useful as Enskog’s original
recipe relating transport coefficients to thermal pressure. De-

Indeed, since our model is thermodynamically self-i5ils and the whole formulas of interest can be found in Ref.

consistent, we know that internal energyand pressuré
satisfy the fundamental equation

oU
N

P
=T— -P.

= (35)
T 9Tl

[23], where such methods have been extensively applied and
discussed.

Many and well-characterized experiments using either ex-
ploded wires or isochoric plasma closed vessel have been
performed for electrical resistivity. Since in these regimes,
electrical conduction mostly originates from electrons, we

A large amount of work has been done to solve numericallyconsider it interesting and valuable to calculate also elec-
the self-consistent mean-field equations of the SCAALRronic electrical resistivity with the SCAALP model. The

model in order to respect E¢35). This is achieved by the simplest plasma resistivity calculations use the Spitzer for-
severe constraints concerning the convergence parametersila, which make use of many simplifying assumptions,
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such as the Saha theory in hot plasma physics. Some other [
approaches have been proposed to calculate resistivity for 10t |
any kind of plasmas. However, most of these models were g
intended to facilitate on-line hydrocode calculations. Since

we are rather interested in af initio and microscopic ap- é I

proach, we have adopted the extension of the Ziman formula ;a; 10° L

to finite temperature. Our method is similar to the one pro- 2 g

posed by Perrot and Dharma-warddB8,14]. This method & — QEOS

has been discussed at length so we will not elaborate any ; - asfg:cﬁm .
further. Any readers who are interested should consult the 10" | o EAM |
original papers. Indeed, results obtained with this method g * Exptdata |7
should be considered as a good first approximation requiring ol
further corrections depending on specific experimental con- 3 4 5 6 7 8 9 10
ditions. Since the Ziman formula corresponds to the simplest Density (glem’)

variational solution of a transport equation, higher-order FIG. 1. Aluminum cold compression curve considering

terms arising from other basis functions become importanti%CAALP Quotidian equation of statéQEOS [31], embedded

certain problems. This must be thg case, for inlstance, fo tom model(EAM) [32], all electron method33,34, and experi-
nearly neutral plasmas where the Ziman formula is expectef,ental data points35,36.

to be too rustic in such conditions. Calculating some other

linear .transport properties, suph as thermql conductivity, i?espectively. Experimental data poif&5,36 are also given.
then simple to carry out and will not be considered He&.  \yg gee that the overall behavior of SCAALP is good. The
excellent agreement at high compression with TFD was ex-
IIl. COMPARISONS TO EXPERIMENT pected to prevaib priori but the fair agreement with solid
In this section, we test the accuracy of the SCAALPState physics, i.e., EAM or a!l eI_ectron model at low densny,.
model by comparing its predictions to experimental results!S rather encouraging. This indicates that we may be confi-
We have chosen to concentrate first on aluminum. Many exdent concerning the predictions of the SCAALP model in the
perimental data concerning equation of StE©S quanti- boundary domain between solid state physics and plasma

ties and electronic electrical conductivity are available forPhysics. _ _ o

this simple metal. Its EOS is often considered to be an accu- 1he aluminum equation of state at high pressure is inves-
rate standard for EOS studies. However, the exact evaluatidipated with SCAALP by calculating the Hugoniot curve

of thermodynamic properties may be very difficult to obtain, Starting from normal condition of temperature and pressure,
even for such a “simple” materigl12]. From a theoretical '€ 300 K and solid densﬂy. The Hugoniot curve obtained
point of view, no theory exists that can describe the bulkVith the SCAALP model is compared to Sesame, QEOS, and
properties over the entire temperature-density plane. TheXPerimental datg37] in Fig. 2. We can see that SCAALP
Sesame EOS for aluminum consists, for instance, in a patcﬁgsults are as accurate as EOS data table and semiempirical

work of subregions covered by various theories. There is af’0d€ls. Moreover, they emphasize the thermodynamic do-
area which is not addressed by any theory. It is only accessdg@in Where the Hugoniot curve strongly depends on elec-
by numerical interpolation from the adjacent regions wherdronic structure, i.e., beyond four times solid density where
data are available. The “unknown” area, roughly defined by

0.1<p<2 gcm? and 1<T<50eV, is such that the WF I T T T 7T %
plasma is strongly couplefill]. For aluminum, this area X Expt. data
belongs to the warm dense matter field. This is a regime o H (323]3752
between solid and plasma, where the description of physics —— SCAALP
is complicated due to the strong interaction between par-
ticles, i.e., ions and electrons. It is only recently that experi-
mental data become available in order to validate calcula-
tions in these particular thermodynamic conditions.

The SCAALP model is tested first in the cold dense re-
gime relevant to solid state physics. Of course, our model,
designed to describe the properties of plasmas, is not ex- 107~
pected to give an accurate description of bulk properties in
this domain. However, it is interesting to see how SCAALP 10 e 1 . -H
behaves when it progressively leaves its domain of validity, 2 4 6 8 10 12 14 16
i.e., decreasing temperature to go from plasma to solid. We
have plotted in Fig. 1 the cold compression curve consider-
ing SCAALP and three other theories of increasing accuracy, FIG. 2. Aluminum Hugoniot predictions using SCAALP, Quo-
i.e., quotidian equation of StattQEOS [31], embedded tidian equation of statéQEOS [31], and Sesamf10,11] (S3718
atom model(EAM) [32], and all electron methofi33,34], are compared to experimental d&&¥].

Pressure (Mbar)

Density ( g/cm3)
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Temperature (eV) 1.5 I T [ T | Y | -

21.1 163 100 46 13 i 1

1()-3 =—I LIL| I T T mrrirri I T = i T

,g 6E, = ] R 4

4 - _ | |

g - a«j 1.0 i i
b 2 a\S

& ) = B i

g 0F : : ot -

i sF 3 2 - —# QEOS | -

= 4 m Expt. data . & 05 03718 |

2 [ | — scaaLp i —— BLF -

2 2F | ——. PDW T W VASP 1

B 107 bed ] ; —— SCAALP|

67 2 3 4567 2 £ O EPI .

0.1 1 0.0 4 1 v T 571 T

Density (g/em ) 20 40 60 80

. s . . Internal iation (MJ,
FIG. 3. Electrical resistivity of aluminum as a function of den- ernal energy variation (MI/ke)

sity. SCAALP and Perrot and Dharma-wardafDW) [30] calcu- FIG. 4. Pressure of aluminum at a density of 0.1 gémas a

lations are compared to experimental d&dd. Temperature is fynction of internal energy variation. Theoretical results from five
scaled on the upper axis to show the conditions of the aluminum foEos models are compared to experimental @gja

these measurements.

the double shoulder corresponds to ionizationLoind K~ Simultaneously. This major advance constitutes a stringent
shells, respectively. We have checked that the HugoniogXperimental constraint for any model designed to describe
curve tends to the classical limit equal to four times solidstrongly coupled plasmas because the warm dense regime is
density at very high pressure. The cause of these shoulderstfze key point for testing the consistency between liquid metal
well known [38]. They correspond to the competition be- and hot plasma treatments. As for equation of state, we see in
tween the release of energy stocked as internal energy withinig. 4 that SCAALP results agree well with experimental
the shell and the pressure of free electrons. When ionizatiohalues. In the EPI regime, QEOS is not very accurate but this
begins, the energy of the shock is used mainly to depopulatéct was already known. The most surprising result is the
the relevant shells and the material is very compressivediscrepancy between quantum molecular dynani@siD)
However, the pressure of free electrons in increasing numbé@lculations and EPI data. In fact, in the regime of partially
finally dominates again and the material becomes more difionized plasmas, the equation of state predictions obtained
ficult to compress. from QMD are as accurate as the results from the interpo-
In Fig. 3 we compare the electronic electrical resistivity lated Sesame tables. As for electrical resistivity, we see in
calculated by SCAALP in the conditions of the experimentFig. 5 that the agreement of SCAALP with the experiment is
performed by Benaget al. [4]. This experiment is very in- €xcellent, either concerning the EPI measurements or the ex-
teresting because the thermodynamic path inside the diagraptoded wire measuremenfg,3]. This is good news, with
density temperature starts in the supposedly wellfegard to the simplicity of our approach based on the Ziman
characterized plasma phase, i.e., high temperature and Iof@rmula, which is known to be too crude in nearly neutral
density, crosses the entire unknown interpolated region, and
ends in another well-determined liquid-metal phase, i.e., low nl Lol L

IS
1
)

temperature and nearly solid density. SCAALP predictions 4 0 O EPI B
are very good at low and high temperature, and the general 24 ¢ Exploded wire ||
tendency of the experimental curve is well reproduced. The -—-PDW

same trend is found by Perrot and Dharma-wardd@iaw) 107 — SCAALP

[30], though the disagreement at low temperature with ex-
perimental data is more pronounced. However, neither
SCAALP nor PDW can describe the finer structure around
0.2 gcm 3. This is quite surprising because this partais
priori not the most difficult one to describe, from a theoret-
ical point of view[39].

The Hugoniot curve and the experiment of Benagel.
[4] were done by varying both temperature and density. A
breakthrough in the field was made recently by the EPI
group, who performed isochore measurements of pressure,
internal energy variation, and electrical resistivity of an alu-
minum plasma at 0.1 gcni in the warm dense matter re- FIG. 5. Electrical resistivities of aluminum at 0.1 g cfcalcu-
gime[8,9]. The originality of the work consists of recording lated by SCAALP and by Perrot and Dharma-wardéPBW) [30]
two equation of state quantities and one transport coefficierdre compared to experimental dgfa-4,8.

Electrical resistivity (€2 m)

Temperature (K)
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40F T | | | 1 I symmetry, and consider the treatment of molecules or clus-
ters. Derivation of equations is tedious but relatively simple

to obtain. It is just a matter of algebra, once settled the over-
all theoretical framework. The use of a ionic reference sys-
tem could also be bypassed, connecting directly the pair dis-
tribution to the effective ion-ion potential using Monte Carlo

or molecular dynamics simulations. These techniques are
very powerful and many interesting results have been ob-

35

3.0

Electronic density (10 cm™)

2.5 _— tained with them. However, they are not black-box algo-
xpt. data . T L .
——- ACTEX rithms and we think it is unrealistic to try to implement them
20 —— SCAALP |- inside the convergence process. However, they could be of
-------- PDW great utility once achieved the overall convergence of the
sk I I | | P4 SCAALP process, i.e., as postprocessors for some particular

diagnostics(microfield distribution, nearest-neighbor distri-

0 10 20 30 40 50 60 70 bution, dynamic structure factor, transport coefficignts

Temperature (eV)
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except at lower temperature where PDW calculations differ
from the resistivity measured by the exploded wire tech- APPENDIX A: STATISTICAL AVERAGE
nique. USING ONE-ELECTRON HAMILTONIAN
We end this section by comparing SCAALP electronic
density estimates to measurements for a beryllium plasma at A - - A
solid density{42] in Fig. 6. From these experiments, the ratio 2V€ra0&He)eo Of the electronic Hamiltonian paH. of the
of delocalized to localized electronic densities can be optotal Hamiltonian of the system given in E(®), using the
tained from the analysis of x-ray Thomson scattering. At loweigenstates of the one-electron Hamiltontag, [19,46,2Q.
temperature, the agreement between SCAALP, ACTEXWe recall that
[43,44), the Perrot and Dharma-wardana’s approéh], . .
and experimental results is good. In these conditions, Tro[e AHeomreNolf. .. }]
SCAALP predicts a density of states perturbed by resonances ({- Deo= e Ao '
due to quasibound states. Predictions of all these first-
principles but different models are similar and close to ex-
perimental results.

In this appendix, we are going to calculate the thermal

efﬁQeO:Tre[efﬁ(ﬁeofﬂ-e'{‘e)]’ (Al)

whereN, is the electron number operatgt the inverse tem-
IV. CONCLUSIONS AND PERSPECTIVES perature, andu. the electronic chemical potential. Starting

) o from Eq.(3), it is easy to find a more convenient expression
In this paper, we have presentedainitio and compu- of H, using second-quantification operator algebra
tationable model to describe the thermodynamic and trans- ¢ 9 q P 9 '

port properties of dense plasmas. The electronic and ionic R R
structures are determined solving mean-field equations, He:f WT(ryh(r,{RHW(r)dr,
which are deduced from a variational approach based on the
Gibbs-Bogolyubov inequality. This ensures a self-consistent 1 - -
treatment between the electronic structure, found solving an + EJ J Wi
effective one-electron Schdnger equation using the density
functional theory within the framework of the local density (A2)
approximation, and the ionic distribution, found from the .
Gibbs-Bogolyubov inequality employing OCP or HS as ref-With
erence system. Confrontation between theoretical and experi- 52y2 7 e2
. . . e

mental results available in the literature of dense plasmas, h(r {R})=— - ,
i.e., cold curve, Hugoniot curve, ionization, electrical resis- 2m T [r—Ryl
tivity, and calorific properties, shows that SCAALP predic- R
tions are good. and where the electronic field operatdr(r), which is a

We could also proceed from spherical to nonsphericafunction of electron and nuclei positions, can be written as

e2

|r_r,|\lf(r YW (r)drdr’,

(A3)
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‘IA’(I')ZE E (Pn(r_Rj)éjn- (A4) (aml ]nzakn3a1n4>__5lk5n ngé‘]lé‘nzn“fnlfn2
j n

+ 5i| 5n1n45jk5n2n3fn1fn2- (AlZ)

& is the annihilation operator acting on an electron with a
guantum staten in the jth ion. These operators verify the The thermal average of the HamHtomeHb is then calcu-

following anticommutation relations: lated as follows:
at a8 1_
i@t = Sii Sams (A5) .
8in Bm} = 1 2o (edeo=21 2 J en (r=R)N(r {RY en(r =Ry drf,
(& &)} =1{8n ,4m} =0. (A6) -

. . + = * R, * -R;
Equation(A5) means that two electrons are independent of 2 ) ni.ny f J ny (r= )% (" =Ry
each other when one electron is in an ion and the other is in )

N i e

another one. Thugi, can be rewritten as Xm‘Pnz(r’_ Ry)en,(r—R)drdr'f,, f
He= *(r—Rph(r{R r—R;)dra] a ,

) IEI nzr:n #0 (F = RONCEARD (T = Ry drindim ——2 nEn f f@on;(r—Ri)QDn;(r —R))

1112
iz > ff (r—Rpeu(r'—R) e’
2Tkl ny, n2,n3,n4 ry 1 en3 ! ><m‘ﬁ’nl(r’_Ri)(Pnz(r_Rj)drdr,fnlfnza
e’ o (A13)
Xmﬁpns(r _Rk)QDn4(r_Rl)drdr a1 ]nzaknsa-ln4 )
or, using Eq(A3),
(A7) y using Eq(A3)
Let us introduce the unperturbed Hamiltonian operé#tgy: (Heeo= E E j en(r=R; )[ 2 R-|
i
Heozz: E Snéanéjn- (A8) X on(r—Ry)drf,+ f f QDn
jon | ] NNy

Since we assume that neutral “atoms” of the whole unper- % R e “R R
turbed Hamiltonian do not interact with each other, the one- 90“*“ )|r '] <Pn2(f )‘D“ (r=Ri)
electron energy, logically does not depend on labjelThe
one-electron wave functiop,(r) and energye, are solu- » , 1 f f X
tions of a Schrdinger equation with a central symmetric drdr f“lfnz .J ny oy #n} (r=Ri)

effective potentiab¢¢(r):

e
2y2 XQDn*(r R)|I’ |§Dn (r' R)‘Pn (r— R)

_W*”eff(f)}%(r)=anon(r). (A9)

xdrdr'f, f, . (A14)

vesf(r), still unknown, must be determined self-consistently
as will be seen below. The thermal average of the Hamil-
tonian A, can be performed using the eigenstates-igf. for (He)eo, With additional terms arising from the various

Derivation is standard but quite tedious. It can be highlynUCIe' of the system. AV acts only on electron coordinates,

simplified if we use the thermal average of a product of two\ge_%?f'neKe as the electron kinetic enerdyalculated at
i - .

operators:

We simply find a finite-temperature Hartree-Fock expression

(Bndm) = o0 O (A10) N D T LA e

wheref, is given by
It is thus quite natural to introduce

1
(A11)

fo= :
exp[A(en=pe)1+1) pe(1)=2 ok (N en(r). (A16)

and the Wick’s theorem to reduce the four operator expecta-
tion values, Since theg,(r) are the same for all neutral atoms,

016409-10
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pe(r—Ry)
Ir—Ry]

%2 fjpe(r—R)pe(r - )drdr,

—%Enlnsz%*(r Ri)@ns (r' —Rj)

<l:|e>90: NIKe_Z Zlezf
1]

2

e
X|I’—I"| <Pn1(r'—Ri)<pn2(r—Ri)drdr fnlfnz

——E >

|#J ny,ny

f f enx (=R ens(r'—R;)

2

xmcpnl(r’—Ri)gonz(r—Rj)drdr fo -
(A17)
UsingT=r—R;, 7'=r'—R;, andR;=R;—R;,
. r-R;
(Hedeo=NiKe— 2 z,ezf pe(_—,')df
5 Ir=Ry|
r-R; r'—R;
+_2 ffpe( )Pe( )ddl”
__E, 2 fj‘Pn*(”‘Pn ~  ~
i ng,n, |r r|
X‘Pnl(’r,)(Pnz('r)d?d?,fnlfn2
__2 2 ff@n*(”@n T _le)
2 {7 nq,ny
|~ ~r|(Pn (s )‘Pn (T— le)drd fnlfn2 (A18)

The fourth and fifth terms on the right-hand side of the abovq;ma"y

equation are the exchange eneigy(R;i=0) and Ex(R;;

#0), respectlvely.(H e) can be put into a more compact

form,

<He>eo=N|Ke+N.Ex<0>+§j Ex(Rji)

-3 e[ e
+_2 ”peq)pffr) "

pe(r_Ri)
s e[,
= Ir=RY|

e2 R; -R;
c ffpe(r )Pe(r J)drdr’
2 1#]

(A19)
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The fourth and fifth terms on the right-hand side of the above
equation do not depend on lakel

pe(T)

7]

”d?’}

dat

Ko+ Ex(0)— z.ef

ffpe(;)_p;fr
+%§J
pre(r R)pe(r -R))

<He>e0 NI

LV 2 [ PelT—RD)
2Ex(R;) 22|ef |r—R]-| dr

drdr’|. (A20)

The part of the above equation that depends on nucleus po-
sitions can be rewritten asvith 7' =r’ —R;):

re? zte pe(T)
2 e ~
ZEX(R”) | | + = |R],| —2Ze |T— Rji| ar
r—
+efjpe |r pe( )d dr’
Z e’ pe(T) }
=2E4x(R f
X( JI) |RJI| I{ |RJI| |le_r|
5 2 pe(T) f f Pe r)pe( ~
Ze =R, dTdT
z%e?
2EX(RJI) |R | Ivat(Rji)+Jpe(?)vat(?_Rji)r
ji
(A21)
where
Z,€? r'
va(r)=— " +? pell’) (A22)

A
the thermal average of the Hamiltoniﬁlrg verifies

Ke+Ex(0)—Z,e2j p‘r(|)

f Jpe(I)pffr )

22
+§Z

1] |R1||

(He)eo=N,
”d?’}

(A23)

+<I>(RJ,)}
where

(D(R)ZZEX(R)_ZIUat(R)""f pe(Mva(T—R)dT.
(A24)

The thermal averagéﬂe()}eo of the one-electron Hamil-
tonianH ¢, reads
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<|:|eo>e0:N|; enfp. (A25) Tre| X —g 2 @ref()\,Ri,Rj){...}”
(L h= & :

efﬁFref()\)

Furthermore, using the second identity of E41),

N e B
Qo= — ?' > n[1+e Alenre], (A26) e ARreiM™ =tr| exp — 5 ;l DN R ,Rj)”, (B3)
n
Indeed, multiplying Eq(A9) by f,¢*(r) on the left, inte- and the well-known property

grating overr, and using Eq(A16), the kinetic energy,
given by Eq.(A15) can also be expressed as <ex

—g; [<1><R”>—<I>ref<x,Ri,R,->])>

X

Ke=> enfn— | ver(N)pe(r)dr. A27
; & jv #(1) pe(r)dr (A27) >exp(—<§2 [qa(Rij)—cbref(x,Ri,Rj)]> ) (B4)
i#] N

Finally, combining Eqs(A23), (A25), and(A27) leads natu-
rally to the working formula for the thermal averagel, ~ We have

Heo)eos 1-€., 1
po(F)paF’ F%Xstéf(k)+<§ ;l [CD(Rij)_(Dref()\vRiij)]>
(He=Heodeo=Ni| Ex(0) = J f =T ~dﬂ GS
Since

+N, fpe('r)vat('r)d?_fPe(T)Ueff(T)dT} .

L 227 Uri(n) = <§§ <1>ref<x,Ri,Rj>> . (B9
+2 3 { +<D(R,)} (A28) : :

2 (7] |RJI| !

we are left with
which is simply Eq.(15).

FE<FEX(N)—USK(N) < 2[¢(R,J)]> . (B
APPENDIX B: STATISTICAL AVERAGE USING IONIC A

REFERENCE SYSTEM . . .
Now, let us introduce the two-particle densif{?’)(R,R’),

In this appendix, we are going to derive E86) starting
from Eq.(22). The proof is in fact a strict application of the
GBI to simple fluid interacting through pair potential
[22,23. We want just to focus on some tricky terms arising
due to the presence of a neutralizing background in the refthen
erence system. So, let us start from E2R), which gives the

5<2>(R,R'>=§j S(|R-Ri)S(R'—R;),  (BY)

excess free energy of a system Nf particles interacting 1 1 , , ,
through a two-body potentiab(R), 2 2‘1 [P(R;j)] X_E dRAR’S(R—R")(S(R,R"),
(B9)
_P _ —,BFeX
tr;| ex 5 2 (R ) e Fro, (B1) or

where 1 pi , , ,
52 [®(R))]) = | dRAR'®(R-R')grer(\,R.R’)
dNIR . A (B10)

trh{---}= f VNI <o (B2)

using the definition of thg,¢;(\,R,R"), namely,
Let us suppose that we have a reference systeid, gfar-
ticles interacting via a two-body potentidh.¢¢(\,R;,R;),
for which the excess free ener§y.;(\), the excess internal
energyU2¢(\), and the pair distributioy,¢¢(\,R; ,R;) are

p29rei(N,R,R)=(6@(R,R")), . (B11)

As a consequence,

known. Note that we do not implicitly assume that the inter- |

action depends only on the relative distance between par- F§>X$F?§f(>\)—ufexf(?\)+7f dRdR’

ticles. We can thus insert in E@B1) = ®¢:(\,R;,R;) near

®(R;;). Then, using XP(R—R’)ges(N,R,R"). (B12)
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The right-hand side is an exact result. Our main approxima- |:'d+|:ref()\) UX(A )
tion concerns the choice of the reference system. Since ourf,;= N dRg,ef(N,R)P(R).
original system is isotropic and homogenous, legepends : (C2)
only on the relative distance between particles, it is reason-

able to choose a reference system with the same property. In et us consider first the minimization with respect to elec-

that case, tronic densitype,
gref()\!RvR,):gref(}\iR_ R,)r (813) 6Ftot
5 =0. (C3
and we find Eq(26), pe(r)
N p As for F{,,, only the fourth term on the right-hand side of
FE<FeX(N)— u,ef(x)+—' L] dR®(R)gye(N,R). Eq. (C2 depends ompe(r) via ®(R), so
(B14) OF,
. | G f AR o R) T (ca)
When no background is included in the reference system, for Pe(r) Ope(r)

instance HS system, then Using the definition of®(R), i.e., Eqgs.(18) and (17), we

N, p, have
ref()\)__ dRq)()\!R)gref()\uR) (815)
SO(R) _SEx(R) _ dua(R)
. . S = S T4l S +Uat(r_R)
However, when in the reference system, the particles do not pe(r) pe(r) pe(r)
simply interact through®(\,R), but with a homogeneous Sv4(r' —R)
neutralizing background; one must also take into account the J pel )e;—dr’. (CH
background-background interaction and some zero-energy pe(r)
reference too. This is a typical situation encountered with th
YOCP system. In that case, one can show that From Eq.(17), we know that
S0 4(r") e?
Nip, N, I'x at = . C6
5T =g [ RO R T R~ R - o

(B16) Yet, if we restrict ourselves to spherical symmetric problem,

We have thus two independent parametérand x. When e,
YOCP reduces to OCP«=0), which is the only case con-

sidered in this work for the reasons explained above in the Vat(’ ~R)=va(lr' =R =val|R=r")=va(R=1"),

main text, we simply have the general form (C7)
N we arrive at
|P|
ref()\)_ —— | dR®(N\,R)h¢¢(N,R). (B17) SO (R) SEx(R) Z|62
= — +oa(r—R
| ~ Spe1) 2 pen) TR PalTTR
In summary, we use EqB15) without neutralizing back-
ground, but Eq(B17) with neutralizing background. We give e?
the general proof for both cases but only the HS system, and f pel ')ﬁdr’. (C8)
so Eq.(B15) is used for the numerical applications presented rer
in this paper. However, since
APPENDIX C: MINIMIZATION OF THE TOTAL FREE Z,e? @2
ENERGY OF THE SYSTEM Uat(r—R)Z—W-i—f pel )| ; |dr’,
- r'—r
In this appendix, we are going to derive E@80) and (C9
(32) applying the GBI for the total free energy of the system
Fiot given by Eqs(28) and(25). The rule is strict but quite We get
intuitive [46,20. We are looking for the smallest upper 150(R) SE(R)
boundF of the true total free energls, = Qg /N + X +0a(r—R), (C10

+Z,ue Of the systenf19]. To do this, we are going to sepa- 2 3pe(r)  pelr)

rate F,,; into two contributions, i.e., an electronic part o ]
which inserted into Eq(C4) leads to

Flot= QetZte., (C1)

and an ionic part Spall) —+Uat(r_R) . (C1y
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As for F{,, given by Eq.(C1), #2y2
0| = —5— T Uess
SFE, 50 s o __ o FImen+(nl |n)
tot _ Fle 5 e (C12 Spe(r) — Spe(r) Ope(r)
Ope(r)  Ope(r) Spe(r) 5|n
. + _—, C19
Using Egs.(25) and(20), en(n| Spe(T) (C19
, But, since(n|n)=1,
Fio ¢ Aew—i) O [ plt) (i)
5Pe(r) n . 5pe(r) 5Pe(r) |r—r’| 5<n|
——|n)=0, (C20
ope(r)
vz, He (r)+f (15 Sall)
' Spe(r) Vat Pe Spe(r) hence Eq(C15). Finally, inserting Eqs(C11) and(C16) into
() the minimum criterium(C3) gives
Ueftf
—Ver(r)— jpe( r——— Spe(1) —————dr’. (C13 ()=o) SEx(0) . f R
. Veffll ) =Uat —5pe(r) P Uat
Using now EQ.(C6) and [p¢(r)dr==,f,=Z2,, 5EX(R)} R -
T N g L L
SFE, ok Sen  OEx(0) o) Spe(r) |77
—= ——+ ——————Fvar) —vesir
Sper) 4 "pe(r) T Spe(r) A el which is result(32).
S0ar(r’) Let us now consider the minimization with respect to ef-
eff H
N Zqr. C1 fective parametek,
5’Ftot_
Yet, a straightforward application of first-order perturbation N (€22
theory to Eq.(14) leads to
SinceF¢,, is independent ok, only F;,, matters. Using Eq.
oe Svesf(r’ C2), we have
n zf e( ,) eff( )dr’, (C15) ( )
Ope(r) ope(r) I ex
‘?Ftot_i Jd ref aUref ﬂJ Ragref()\vR)q) (R)
and N N\ o I\ 2 I\ refii/)-
(C23
e
Ftot _ SEx(0) (D) = verf(r). (C16 Using either Eq(B15) or Eq.(B17) of precedent paragraph,
Ope(r)  Spe(r) we get
Equation(C15 can also be obtained directly from Ed.4) dUre;  Nipy dR D er(N,R) \ R
by noting that eigenfunctiong,(r) are orthonormal. We N 2 I\ Grer(M.R)
adopt for this example the bra and ket Dirac notation, i.e., (MR)
en(r)=(r|n), (n|n")= 8., . Let us multiply on the left Eq. Jref(N,
(14) by (n|, +Prer(NR) ———|. (C24)
ﬁz 2 Differentiating with respect ta. the second equation of Eq.
(n|— +Ueff|”> (C1n  (B3), we get
IF5 1 (\Ri,R)
and differentiate with respect fa.(r). We get mrffe BFreiM —1r, |5 ; M
Sen &(n| h2v2 B
Ope(r) a ope(r) ©2m T 0erf |n> F( 2 i#] ref()\’Ri’Rl'))}
h2v?2 (C25
O\ " am e
+(n n or
M "
FeX /1 « od (>\ Ri.R)
hzvz 5|n> d ref <_ E ref i > (C26)
+(n| T om T Veff Sol1)” (C19 N \2 & .
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remembering the first equation of E@®3). Since we assume Finally, combining Eqs(C22—(C24) and(C27) leads to
the reference system to be homogenous and isotropic, we can

follow the same reasoning of the last part of Appendix A to P d9rei(Netf,R)
arrive at 2 dRT

IF N dP(\,R
ref _ IPIJ' drR ( )
O\ 2 2N

[(I)(R) _(I)ref()\eff !R)]:O:
(C29

IrefMR)- (C2D ich is simply Eq.(30).
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