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We propose that efficient acceleration of electrons in vacuum and underdense plasmas by an intense laser
pulse can be triggered in the presence of another counterpropagating or intersecting laser pulse. This mecha-
nism works when the laser fields exceed some threshold amplitudes for stochastic motion of electrons, as found
in single-electron dynamics. Particle-in-cell simulations confirm that electron heating and acceleration in the
case with two counterpropagating laser pulses can be much more efficient than with one laser pulse only. Two
different diagnoses show that the increased heating and acceleration are caused mainly by direct laser accel-
eration rather than by plasma waves. In plasma at moderate densities such as a few percent of the critical
density and when the underdense plasma region is large enough, the Raman backscattered and side-scattered
waves can grow to a sufficiently high level to serve as the second counterpropagating or intersecting pulse and
trigger the electron stochastic motion. As a result, even with a single intense laser pulse only in plasma,
electrons can be accelerated to an energy level much higher than the corresponding laser ponderomotive
potential.

DOI: 10.1103/PhysRevE.69.016407 PACS nunier52.38.Kd, 52.35.Mw, 52.50.Jm

[. INTRODUCTION effectively when a self-focusing channel is formed. On the
other hand, two of us find that very efficient acceleration by
The mechanisms leading to significant acceleration ofhe intense laser pulse also occurs in the presenceraha-
electrons in laser-plasma interactions have been the topic #rsestochastic field15]. The oscillation energy of electrons
many theoretical and experimental studies over the past twiiside the laser pulse can be unlocked by the stochastic per-
decades. With the development of tabletop ultraintense lafurbations. The essential role of the perturbations is not to
into particle beams have been attracting renewed attentiof€"€by to allow for net energy transfer. In that work, the
due to their potential applicatiofd—3]. These include the transverse stochastic field is left as a free parameter. Until
fast ignition of ICF targets by high current multi-MeV elec- recently V\éﬁ fciund that thei Rﬁm?n ?:}ckscﬁttered wave can
tron beams[4,5], generation of collimated energetic ion SEIVe as the fransverse stochastic dd]. oreover, we
. find that another counterpropagating laser field with a rela-
beams through electron heating and accelerdt&ncom- . . 2
. . tively small amplitude can play a similar role as the stochas-
pact x-ray andy-ray source for laser-driven radiography,

: tic perturbations in dephasing the electrons.
laser-driven nuclear processgs,3,7,4, and compact and P P 9

I | ke-field | 13 Af In the similar interaction configuration, one notes that the
ow-costed laser wake-field accelerators, g&-13. Afew o, itation of periodic accelerating structures has also been

mechanlsms of I_aser-dnven electron acceleration h_ave begBund with counterpropagating laser pulses in underdense
proposed, including plasma-wave acceleraf@®a13], direct  piasma[21]. It is associated with theoherent motionof
laser acceleration with the assistance of additional fields og|ectrons driving by the two colliding laser pulses slightly
by the laser ponderomotive for¢&4—-18, and mixed accel- detuned by the electron plasma frequency. Here, in contrast,
eration from both the transverse and longitudinal fieldsour mechanism of electron acceleration is associated with the
[19,20. The first two mechanisms usually occur in laser in-stochastic motiorof electrons, which occurs when the am-
teraction with underdense plasmas, while the third case usylitudes of two laser pulses exceed some thresholds, now
ally finds in laser interaction with overdense plasmas. easily accessible with current ultrashort laser pulses employ-
This work is devoted to an extended investigation of aing the chirped pulse amplification technology. Moreover,
kind of direct laser acceleration of electrons, i.e., the stochaghe present mechanism is insensitive to their frequency dif-
tic heating and acceleration of electrons in counterpropagaterences of the two laser pulses. In plasma at a few percent
ing intense laser field§17]. It was found earlier from of the critical density, the Raman backscattering wave of the
particle-in-cell(PIC) simulations that, when an intense laser driving pulse can serve as the counterpropagating laser pulse,
pulse with a slowly rising front propagates in underdensewhich could be intense enough to trigger stochastic accelera-
plasma, electrons can be accelerated significantly far beyortibn if the driving pulse has an intensity over\?
the ponderomotive potential level of the incident pulse.~10® Wcem 2 um?. Stochastic heating could be respon-
Meanwhile, the excited plasma wave remains at a very higlsible for the hot electron generation observed in PIC simula-
level. Further studies reveal the presence of the betatrotions by Adamet al. [22], where it is found that the hot
resonance acceleration mechanigl6], which works most  electron generation is closely associated with parametric in-
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stabilities. Stochastic heating of electrons in a standing wave 1.0
formed by incoming and reflected waves in front of a solid  osF
target has been suggesi@3]. Therefore the present mecha- -
nism works widely in relativistic-intense laser interaction &
with underdense plasma. It may also help to explain how the %=
maximum electron energy can exceed the dephasing limit for -1.0 —————== = 1.0 OSSR
. . . . -05 -04 -03 02 -01 0.0 05 -04 -03 -02 -01 0.0
particle acceleration from plasma wave breaking observed ir ,, ‘
some PIC simulation$24]. Experimental evidence of sto- 10 £
chastic heating has been revealed recently with the use ¢
two crossed laser pulsé25]. e
The paper is organized as follows. Starting with the
single-electron dynamics calculation in Sec. Il, we calculate
the electron trajectory in momentum phase space in twa
counterpropagating or intersecting plane electromagnetic 4
waves. We calculate the Liapunov exponent to examine if  3:
there exists stochastic motion, from which we obtain the <23
15
0
1

threshold amplitudes for stochastic motion. In Sec. Ill, we
present particle-in-cell simulation results to show how elec- .
trons can be accelerated much more efficiently with the pres- 76755 55 04 02 00 4o o8 o6 os 05 o0

ence of a counterpropagating pulse than without it. Using g/om g/on

different diagnoses such as the angular directions of elec-

trons and separating energy gain or loss due to the transverse FIG. 1. Surface of section plots @& — &;=2N [for frames
field from that due to the longitudinal field, we confirm that (a)—(d)] or £&,=2N [for frames(e) and (f)] for electron motion in
electron acceleration observed in the simulations is causegbunterpropagating laser field@) a;=a,=0.3 andw;=w,; (b)
by the laser fields rather than by plasma waves. Two2:=1.0, 8,=0.1, andw;=w,; (c) a;=2.0, a,=0.1, and v,

dimensional effects are also discussed. A summary is giver @2; (d) 2;=1.0, 8,=0.42, andw;=w,; (6) a;=1.0, a,=0.1,
|n Secl IV_ and (1)1:(1)2; (f) al:l.O, a2:0.1, (1)220.8(1)1.

where i=1,2, {&,=x—t+ ¢, and &=Ky(x+1)+ ¢y, the
frequencies of the two laser pulses as¢ and w,, respec-

It is well known that the motion of single electrons in a tively, x andt are normalized te/w; andw; *, respectively,
plane electromagnetic wave is integraf26], and the maxi- K2(=w;/c) andw, are normalized ta, /c andw,, respec-
mum kinetic energy of electrons is determined following thetively, and ¢, and ¢, are constants. The first pulse propa-
initial conditions. However, if there is a perturbation to elec-gates in positives direction and the second one propagates in
tron motion in the plane wave, such as another plane wavBegativex direction. The Hamiltonian for electrons is given
[27-29, a static electric or magnetic fie[d4], or a random by
perturbation[15], the corresponding Hamiltonian is usually
not integrable. In general, stochastic electron motion sets in H=[1+(P+A)?]*2 (€h)
when certain thresholds of the wave amplitudes are exceeded
[30]. In this case, the maximum kinetic energy of electrons isyhere the canonical momentub= p—A is normalized by
not determined, and acceleration of electrons to much highef c and vector potentiah by mc?/e. SinceA is independent
energy than in a single plane wave is possible. There havgs y, one finds thatP,= constantp,,. For simplicity, we
been considerable studies on electron motion in multiwavgssumep,=0 in the following. Therefore the longitudinal
systemg14,27-3Q. Based upon the single particle dynam- mqtion can be described by Hamiltoni&h=[1+p)2<+(pyo
ics, it has been proposed by Mendonga and Dove|llthat thgrAlJrAz)z]l/z_ This Hamiltonian is still more complicated
formation of suprathermal electron tails observed in lasetnan that for electron motion in counterpropagating plasma

plasma interaction may be explained by the occurrence Qfayes[27]. Even in the nonrelativistic limit, making the ca-
stochastic motion of electron in two electromagnegen) nonical transform withy=x—t, F,=7p,, andp,=p,, as-
il 7 n X1

Waves[29,3j]_. prever, th_is and (_)the_r earlier studies on sumingpyo=0 ande=a,/a;<1, the resulting Hamiltonian
electron motion in a standing longitudinal plasma wave or,

) e contains two perturbation terms oscillating at different fre-

two electromagnetic waves have been limited to the problemy ,ancies.
of the stochastic instability near the separatrices, and mostl
in nonrelativistic electron motion. The potential of this sto-
chastic instability in particle acceleration in plasma with A. Surface of section plots
powerful lasers focused up to relativistic intensities has not The instability regime for stochastic motion can be exam-
been fully explored before. ined in geometry by use of surface of section plots. Figure 1

We start by considering the electron motion in two collid- shows the surface of section plots &t— &;=2N or &,
ing planar laser fields in vacuum. The laser pulses can be 2N for two lasers at various amp"tudeS, wheé\ds an
described by their vector potentia=a;(£;)cos¢)y=Ay, integer. When the two laser pulses are at the same frequency,

II. SINGLE-ELECTRON DYNAMICS IN VACUUM
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the Hamiltonian is a periodic function @f at a period ofr 2
on the surface of section & — &;=2N. When the ampli-

tudes of the two pulses are the same, the electron trajectories 1
in longitudinal momentum space are symmetric about zero

as shown in Fig. (). Electron trapping is found around . 0
(py,€1)=(0,— (2N+1)=/2) by the ponderomotive potential
resulting from the beating of the two laser pulses. Stochastic
motion first appears around the separatices. According to the L
KoImogorov-ArnoId-Mosel(KAM)'theoren[SO], therg eX|st_ -2_0.6 04 07 B0 07 04 GE
many KAM tori around a separatix. Local stochastic motion

sets in when nearby KAM tori overlaf82]. Thresholds for Py
local stochastic motion have been estimated to be about ' '
a;a,=1/16 by Mendoncd29]. When the amplitude of the
forward-moving pulsa, is larger thara, for the backward-
moving pulse, the electron trajectories become nonsymmet-
ric about zero; stochastic motion of electrons spreads widely
in positive momentum space. The larger the amplitage

the wider the region for stochastic motion in positive mo-
mentum space, as shown in Fig$b)t-1(c). For a givena,,

the width for stochastic motion scales roughly proportional
to aZ. One notes that there remains regular motion for elec-
trons trapped aroundp(,&;)=(0,0), where acceleration
cannot occur. However, with the increaseagfor a, further,

this trapping island is gradually suppressed. Before it is fully
suppressed, bifurcation occurs at certain amplitudes when
the primary trapping island splits into two parts as shown in
Fig. 1(d). This shows a transition of the stochastic motion
from a local to a global one, where, in the latter case, elec-
trons initially at rest or with small energy will be driven into
stochastic motion and gain energy from laser fields. We have
checked the surface of section plots on the surfgge

= 2N, which show similar features as stated above, except
for that the corresponding Hamiltonian changes wittat a
period of 2ir. Figure 1e) shows an example of the section  FIG. 2. Electron motion in momentum space in one plane elec-
plots on the surfacé,=2N. Up to now, we have taken the tromagnetic(em) wave or two plane em wave$a) a;=2.0 and
frequencies of the two pulses to be the same. If the frequencg,=0.0; (b) a;=2.0 anda,=0.2; (c) a;=2.0 anda,=0.3.

of the second pulse is changed, the basic features about the

stochastic character are qualitatively similar, as shown irspace. The larger the amplitude of the second wave, the
Fig. 1(f), for an example. This indicates that the stochastidarger the momentum space and the maximum longitudinal
motion is not sensitive to the frequency difference of the twomomentum, as illustrated in Figs(&? and Zc).

pulses.

Figure 2 shows the trajectories of a test electron in mo-
mentum phase in vacuum with a single infinite plane em
wave A, or two counterpropagating plane em wavésg The Liapunov exponents can provide a quantitative mea-
+A,. In a single em wave, the momentum of the electron issure of the degree of stochasticity for a given Hamiltonian
determined by{2,26] p,+A;=C; and y—p,=C,, where system, which enable us to judge if stochastic motion sets in
C; andC, are constants. IE;=0 andC,=/1+ a21/2, then for a trajectory[30]. Let the test electron initially at rest and
one finds the solution with zero average drifting velocitythe amplitudes of the infinite planar laser pulses increase

B. Threshold amplitudes for stochastic motion

given by from zero in a function tar(t, ) with t, =507 and r the time
of a laser cycle. The Liapunov exponents are calculated
ps—all2 when the laser fields reach the peak amplitudes, atnda,
Py=—Aq, pxzma (2)  for t>2t, . As either the amplitude, or a, increases, the
1

Liapunov exponents increase suddenly as the laser ampli-

tudes exceed some threshold amplitudes. Fig(aeshows a
wherea; is the amplitude of pulsé;. Figure Za) shows the typical example of the calculated Liapunov exponents for
parabolic line betweep, andp, as described by Eq2). If  different field amplitudes, which show a sudden increase as
there is the second counterpropagating wave, the electraan, is enhanced to 0.3 while keepiag=1.5. We assume that
trajectory in the momentum space is no longer confined tdull stochastic motion occurs when the corresponding Li-
the parabolic line. Instead, it spreads in the momentunapunov exponent increases suddenly to exceeding 0.1 as the
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\ 1 . ’
Y\ e Bifurcation L § .
< g the colliding laser fields becomes regular again and further
0.51 % i acceleration of the electron is not possible.
—y
055 iy, 4 T T C. Electron dynamics in intersecting laser pulses
00 05 10 15 20 25 30 35 We consider a geometry shown in Fig. 4, where two laser
a, pulses intersect at an anglerand interact with an electron

initially located at the coordinate origin. In this case, we
FIG. 3. (a) Liapunov exponents for a test electron moving in have two different cases for the laser pulses, i.e., the case for
counterpropagating laser fields with different incident field ampli- P-polarized planar pulses if the vector potential is inside the
tudes. (b) Threshold amplitudes for stochastic motion in counter-xy plane and that fo6-polarized pulses if the vector poten-
propagating laser fields obtained numerically for electrons with dif-tial is perpendicular to they plane. For theP-polarization

ferent initial velocities. Also shown are the thresholds for local case, the vector potential for the planar pulses in vacuum can
stochastic motion by Mendonca and for the occurrence of bifurcape written as

tion for trajectories trapped in the fundamental island around
(Px.£1)=(0,0). A=a;(&)cog §)(XxcosaFysina), i=1,2,

field amplitudes increase. Since we start with the test elegwhere Osa<= pi/2, & =ycosatxsina—t+iyy, and &,
tron at rest initially, the obtained thresholds should be asso=Ka(Yy cosa—xsina—t)+¢,, x and y are normalized to
ciated with the global stochasticity around the fundamenta$/ w1, t is normalized tow; *, ky=(w,/c) and w, are nor-
trapping island in the surface of section plot. This is shownmalized tow,/c and w,, respectively,s; and ¢, are con-
in Fig. 3b) by the solid line marked witly,,=0. It is ap-  stants; the upper and lower cases in the symboland *+
proximatelyaj,a,~1/2, which is larger than that estimated @ppeared above and later correspond=td and 2, respec-
by Mendonca for local stochastic moti¢29], but close to tively. For theSpqlarlzat|on case, the vector potentials of the
that for the bifurcation of the primary trapping island. One tW0 pulses are simply

notes that fol;>2.0, the thresholds fa, slightly increase .

with a;. This can be attributed to the fact that for a givan Ai=ai(§)cod &)z, i=1.2

the width of the primary trapping island increases wath

such that the electron motion tends to become regular. If th&/sing the canonical transforf, = (t —y cosa)Pr, one finds
initial longitudinal momentum of the test electron is nonzero,Py= —cosaPr, T=t—ycosa, and the new Hamiltonian:
the threshold amplitudes can either reduce or increase. IH(Py,Pt X, T)=y(Py,Pt,X,T)+Py. Since the new
particular, if the initial velocity is positive such as driven by Hamiltonian is independent of timeexplicitly in terms of
the ponderomotive force at the front of the forward-the new variables, one finds

propagating pulséwith amplitudea,), the threshold ampli-

tude fora, reduces significantly for the regime af>a,, as Py—vycosa=C, ©)
shown in Fig. 8b). Forv,,=0.5, for example, the threshold

amplitude of the counterpropagating puésereduces to only where C=p,,— y,C0sa is a constant withp,q and y, the
about 0.1 or less whea,>1.5. In addition, we mention that initial values of they component of momentum and the
the so-called global stochastic motion is only limited to therelativistic ~ factor, respectively, P,=p,—A,=p,+(A;
region between some upper and lower boundaries in longi=Az)sin« for P polarization and®,= p, for S polarization.
tudinal momentum, beyond which, the electron motion belet tan6=p,/p,, assumingp,=0 when the laser pulses
comes regular again. For example, if the longitudinal velocpropagate away and recalling =1+ p2+ p§, one finds the
ity of the test electron is sufficiently larger, its trajectory in angular direction of electrons satisfies

016407-4



EFFICIENT ACCELERATION OF ELECTRONS WITH . .. PHYSICAL REVIEW B9, 016407 (2004

y2—1 -1z Again one can obtain Eq4) by transfor_mingp§ and_p;O
tan(0)=*| ——————— 4 back to the laboratory frame and substituting them into Eq.
(ycosa+C) (8). The x-component equation takes the form of

Note that this relation is independent of the laser polariza- dp, 1 g
tion. It can reduce to different limits as discussed elsewhere L — (Pl + A +A,)2 (9)
[33]. With the integral constant E¢3) and another on@, dt’ 2y" ax’

= const accounting for thatl is independent of the coordi- ) T T X T I ) i

natez, one only needs to solv@,. Therefore it reduces to Wherey’=(1+p,”+py+p,") “*“with p, andp; described

the same problem of solving thecomponent of momentum Py EQ. (8). Therefore, for both the>- and S-polarization

as in the case with counterpropagating laser pulses. cases, the problem of electron dynamics in intersecting laser

Alternatively, if one transforms all variables into a frame gmse?’b rzdgceé t07solving thecpmlponenthof momentum
moving with velocityV,=yc cose, then the two pulses ap- escribed by Eqst/) or (9) as similar to that in counter-

ear as counterpropagating pulses. The four-vector for frepropagating laser pulses.
b bropagating pu y . The difference for the electron dynamics betweenRhe
qgquency and wave number in the moving frame are

Ll o s . . . and Spolarization cases can be illustrated by the surface of
(o7, Kiy Ky kip) = (wisine, Tkgsina,0,0). For P-polarized oo o0 hiots Assuming that the two pulses are at the same
laser pulses, the components of the four-vector potential arﬁ‘equency and electrons are at zero momerpido< py
=0) in the laboratory frame in the absence of laser field,
we find that the right-hand sides of Eq¥) and (9) are
periodic in terms of¢; at the surfacet,—&;=2Nmx for P
and S polarization, respectively. The period isr2for the
P-polarization case, while it becomesr for the
Spolarization case. Figure 5 shows the surface of section

, , plots in the py ,£;) plane até,— £;=2Nm for both theP-

dp’ dA X

—=—-V(V-A)+V¢', (5)  andSpolarization cases when the two pulses are at the same

dt’ dt’ frequency. Frame&)—(d) are forP polarization and frames

(e)—(h) are forS polarization. By comparing these plots, one

where the momenturp’ is normalized tomc, the velocity  concludes that stochastic motion is more easily triggered for
v’ normalized toc, the vector potentiaA’=A;+A), the P polarization than forS polarization. Meanwhile, for the
scalar potentialp’ are normalized tanc?/e, and the firstv same laser amplitudes, the momentum space for stochastic
acts onA’ only. For theP-polarization case, substituting the motion is larger forP polarization than forS polarization.
four-vector potential into Eq(5), one can find two integral When the two pulses are at different frequencies, one can

(&1 Al Al A) = (£ Aicosa, Aicosa, + A;,0),

assuming =0 in the laboratory frame, whereA;
=a;(&)cosE +i), & =ki(=x'—t")sina+¢,. The equa-
tion of motion for electrons in the moving frame is

constants of motion from itg andz components: make the surface of section plots at the surfge 2N,
The results are qualitatively similar as for two pulses with
Py=PyotA2—A1, P;=Ps; (6)  the same frequency stated above.

In a similar way, we calculate the thresholds of stochastic
where p§0 andp., are the initial momentum components of motion when the two pulses are intersecting with an angle by
electrons in the moving frame. Note that if transform'p(g solving Egs.(7) and (9). Figures 6a) and Gb) show the
back to the laboratory framp);:(py—ycosCz)/sina and threshold amplitudes for a test electron initially at rest, where

Pyo= (Pyo— YoCOSa)/sina, and substituting them into Eq. two pulses intersecting at angles ofr2 60° and 90°, re-

(6), we obtain Eqs(3) and (4) again. The resultinge com-  SPectively. Obviously, they depend upon the intersecting
ponent of Eq(5) reduces to angles. Moreover, for both cases they are found to be larger

than that given in Fig. @) for the case with counterpropa-
dp, 1 g gating puIs.es a=180°. The threshold amplitudes tend to
X —(p§o+A2—A1)2, 7) increase with the decrease of the intersecting angle. In par-
dt’ 2y" x' ticular, whena=0°, i.e., two pulses copropagate, there is no
stochastic electron motion for two pulses at arbitrary ampli-
wherey’ = (1+py+p,*+p,?) Y2 with p; andp, described tudes since the corresponding Hamiltonian becomes inte-

by Eq. (6). grable. Figure 6 also indicates that the threshold amplitudes
For the Spolarization case, the corresponding compo-for S-polarized intersecting pulses are slightly larger than for
nents of the four-vector potential are simply P-polarized pulses.
(&7 Al Aly Az) =(0,0,0A). lll. ELECTRON HEATING AND ACCELERATION
o _ _ _ IN PLASMA
Substituting them into Eq(5), one finds two integral con-
stants of motion for ity andz components: A. One-dimensional particle-in-cell simulations
L ., To confirm this acceleration mechanism, we have per-
Py=Pyo, P;=PxpTA1TA;. (8 formed numerical simulations with PIC codes. We first try to
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FIG. 6. Threshold amplitudes for stochastic motion when a test
s _ 2 = electron moves in the two intersecting laser fields For the inter-
G 0 0 <04 —00 G0 <68 —B.E —0:3 =0 <64 65 secting angle 2=60°; (b) for the intersecting angle®=90°.

V2 /2w . L
A o mum energyy—1= ai/Z when electrons are with zero initial

FIG. 5. Surface of section plots &— &= 2N for electron  Velocity [15], which is y—1=4.5 fora; =3.0. However, if
motion in intersecting laser fields eithBror S polarized at inter- ~ there is the second pulse, the maximum kinetic energy can be
secting angle 2=90°. (a) a,=a,=0.3 for P polarization:(b) a, ~ More than three times that without it. This can only be attrib-
=a,=0.5 for P polarization;(c) a;=1.0 anda,=0.1 for P polar-  uted to the stochastic acceleration since there is no other field
ization; (d) a;=1.0 anda,=0.5 for P polarization; (e) a;=a, except for the laser fields. Meanwhile, the amplitudes of the
=0.5 for S polarization;(f) a;=a,=0.9 for S polarization;(g) a;  two pulses already exceed the thresholds for stochastic elec-
=1.0 anda,=0.1 for S polarization;(h) a,=1.0 anda,=0.5 forS  tron motion as shown in Fig.(B) [see the curve fou,g
polarization. =0.8]. This is due to the fact that the ponderomotive force

of the first pulse preaccelerate electrons to a longitudinal
simulate it with a one-dimensionélD) PIC code since it is  velocity pX/y=ai/(2+a§)=O.82, so that the amplitude of
essentially a one-dimensional effect. In simulations, thehe second pulse can be as small as 0.1 for the occurrence of
plasma slab is homogeneous, which occupies a regidn of stochastic motion. We find that the temperature tends to be
=500—20Q\, where\ is the incident laser wavelength. We saturated after interaction for a certain period of time. This
leave enough vacuum space on both sides of the plasma slatan be explained partially by surface of section plots, which
The laser pulses, which are semi-infinite and at the samshows that stochastic motion is found only in limited phase
frequency, increase to the maximum amplitudes in 50 lasespace around the separatices. For very energetic electrons,
cycles. We have divided the simulation box into 50 or 100their trajectories remain regular, and therefore net energy
cells/wavelength to ensure a high accuracy in the numericaain from the laser fields does not occur. This simple ex-
integration. ample demonstrates obviously that the second counterpropa-

We first set the electron density=0 in the PIC simula- gating pulse can trigger the stochastic motion, which leads to
tions. In this case, there is not any induced electrostatic fieléffective energy transfer from laser fields to electrons.
in the simulation box, and the laser pulses are actually inter- Figure 7b) shows the case when the laser pulses interact
acting with many test electrons distributed homogeneously invith a plasma slab at the density= 0.0In; (n. is the critical
vacuum. Figure (&) shows the electron energy distributions density. Similar to the previous case in vacuum, both the
obtained using a semi-infinite pulse with a peak amplitudeslectron temperatures and maximum electron energy are
a,; = 3.0 and without or with the second counterpropagatingnuch higher in the presence of the second pulse, even
pulse at an amplituda,=0.1. In the case of without the though it is only with an amplitude,=0.1. Note that the
second pulse, electrons can only be accelerated to the mayieaks neary—1=3 in the distributions are due to the pon-
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----- a,=3.0, a,70.1, t=400 {
—-—-a,=3.0, a,=0.1, =200

f(v)

0 10 20 30 40 50 60 70 80

y—1
8,=3.0,8,~05 FIG. 8. Electron energy distributior{got normalized from 1D
—t=200 PIC simulations.(a) The plasma slab is with a thickness bf
g, | e =400 | 5 =50\ but with an increased density at=0.04,. A semi-infinite
= ““'-..,,_ laser pulse is incident with a peak amplitudg=3.0; (b) the
= W 3 plasma slab is with a thickness bf=200\ and with a density at
%1 (c) n=0.0In.. Shown are the distributions & 600r.
Rl
. . '-::‘,;Iﬁlii‘ii if one increases the amplitude of the second pulse, the cor-
40 60 80 100 responding electron temperature is also enhanced within in
-1 the same time duration, as shown in Figc)7 for example.

In passing, we mention that if we change the initial phases of
FIG. 7. Electron energy distributior{aot normalizedifrom 1D  the incident laser pulses, the electron energy distributions
PIC simulations of laser interaction with test electrons in vacuum orcan be changed. This is most obvious for the relatively low
a plasma slab at a density=0.0In, and with a thickness ot~ energy part in the energy distributions. However, the high
=50N. (a) With test electrons in vacuum a&t400r; (b) with the  energy tail appears to be not very sensitive to the initial
plasma slab at=400r; (c) with the same plasma slab but at dif- phase differences of the laser pulses.
ferent laser fields dt=200r and 40@-. The incident laser pulses are

semi-infinite and their fronts meet &t 100r. B. Effects of the density and length of the plasma slab

deromotive push with semi-infinite pulses, which would be If fixing the length of the plasma slab, but increasing the
absent for pulses with finite duration. In comparison withplasma density, one finds that electron can be significantly
Fig. 7(a), for the same counterpropagating laser pulses, eleg@ccelerated to well beyond the ponderomotive potential
trons are accelerated to a higher temperature in plasma tha@vel, even if one uses a single laser pulse only. Figtae 8

in vacuum. This is related to the induced strong electrostati€lisplays electron energy distributions when the initial plasma
fields near the plasma-vacuum boundaries, which tend tdensity is increased to=0.04n. while retaining its length
draw these accelerated electrons outside the plasma slal=50\ and the pulse amplituda,;=3.0 as in Fig. ). It
back, and then they are further accelerated by the laser fieldgows that the highest electron energy is larger than the pon-
to other stochastic regimes with high initial energies. Thisderomotive potential by over one order of magnitude. Alter-
may also be attributed to the electron acceleration in théatively, if one fixes the plasma density, but increases the
presence of an arbitrary stochastic field, where there is ntength of the plasma slab, we also find significant accelera-
upper limit for the maximum electron enerfiy5]. Here this  tion of electrons with a single laser pulse. In Figb}g we
stochastic field can be considered as a combination of thplot energy distributions when the plasma length is increased
second pulse and the induced electrostatic field. In additiorfo L=200n while retaining the plasma density=0.01n,
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-0.03 -0.2
-02 - - 80 120 160 200 240 280 320 80 140 200 280 320 380
x/X x/\
_O. 1 1 1
0 300 400 500 600 FIG. 10. Electron distributions in the longitudinal phase space
¥t found when a semi-infinite laser pulse at the peak amplitade
=3.0 propagates through a plasma slab, which is initially at a den-
0.3 T T T sity n=0.01n. and with a thickness df =200\. The lower frames
0zl (b) i show the longitudinal electric field in the simulation baa) At t

=300r; (b) att=800r.
0.1}

0.0 eration can work continuously, leading to the energy distri-

butions given in Fig. &).

04r On the other hand, Fig. 9 shows that the amplitude the
0.2t Raman backscattered wave changes from period to period in
0 ) , , a random way, i.e., it appears like a stochastic transverse
200 300 400 500 600 field. As a result, the electron acceleration in these cases can
t/t be explained alternatively with the mechanism proposed in

Ref.[15], even though the Raman backscattered wave does
FIG. 9. Raman backscattered light from 1D PIC simulationsnot appear like a white noise as adopted there. Assume there
when a semi-infinite laser pulse with peak amplittwe=3.0 is 5 3 planar laser pulse with amplitudg and a transverse
incident onto a plasma slab with a density=-0.0Inc. (@ The  gy4chagiic fieldR(t), where the latter is simply in a Gaussian
pl_asma s_,lab is with a thickness bf=50\; (b) the plasma slab is random distribution with(R)=0 and (R(t)R(t'))=D &(t
with a thickness of.=200\. . . - .
—1t"), hereD the diffusion coefficient in momentum space
normalized bym?c?w,. Direct numerical calculation with
and the pulse amplitude; =3.0. In these two examples, the he equation of motion in a way described in Rd5] shows
electron acceleration is closely associated with the excitatiofhat electrons can be accelerated up to a temperature of 12
of Raman backscattered wavg22,34-37, which achieve ey and to the maximum energy around 50 MeV within the
amplitudes even higher than 0.1 and trigger the stochastigyteraction time of 150 laser cycles for the laser amplitude
acceleration. a,;=3.0 andD=0.01. This is comparable to what is ob-
To illustrate more clearly the effects of the plasma densityseryed from PIC simulations at similar conditions. Alterna-
and length, we plot the Raman backscattered waves in Figgyely, the acceleration process can be described by a Fokker-
9@ and 9b) for plasma slabs at the same density pjanck equation[38]. Numerical calculations with this
=0.0In; but with different lengthsd. =50\ and 20Q, re-  equation produce a temperature scaling for hot electrons

spectively. Note that at such a density, reflection from thesimilar to that found in Ref{15] and in the PIC simulations
vacuum-plasma boundary is neglectable as compared to thg discussed later.

Raman backscattered wave shown in Fig. 9 according to the To see how electrons are accelerated with time, we plot

well-known Fresnel formula. IL =50\, the backscattered electron distributions in the longitudinal phase space at dif-
wave appears with a high amplitude only in a time durationferent times. Figure 10 is obtained for the case when a single
less than 100 laser cycles. Therefore, it can assist to accelgaser pulse propagates in a plasma slab with a length of
ate electrons only within this time domain. Beyond this time=200\. Figure 1@a) shows the snapshot when the laser
domain, the amplitude of the corresponding backscatteregulse front propagates just through the plasma slab. Electron
wave is too low to trigger the stochastic electron motion, asnergy increases continuously with time and in space from
illustrated by the corresponding energy distribution in Fig.the right to left up to beyond the ponderomotive potential of
7(b). For the same plasma length but at a higher density suctihe laser pulse. One notes that the induced electrostatic field
asn=0.04., the time dependence of the Raman backscatis at a quite low level. Therefore electron acceleration
tered wave appears similar to Figa2 However, its ampli-  through plasma-wave excitation can be excluded. At later
tude is much higher so that stochastic acceleration can susime, electrons are accelerated to a higher level as shown in
tain a long time, leading to the energy distributions givenFig. 10b), where electrostatic field remains to be at a low
Fig. 8(@. Similarly, if L=200n, the high-amplitude Raman level except near the plasma-vacuum boundaries. These fig-
backscattered wave appears in much long time domain evaures serve as an obvious evidence of direct laser acceleration.
if n=0.0In.. Therefore, the mechanism of stochastic accelMore evidences about this are given as following.
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360 ‘ ‘ ) 360 [ For y>1+ ai/2, this formula predicts a smaller angle along
300} (@) | 300! the forward direction than_that. predicted by Ef0). Figure
~ 240t ! o ~ oa0t 11(b) shows the angular directions of electrons by two coun-
< g0t e terpropagating laser pulses in vacuum. Obviously @4)
1=} S mmammen ge0 agrees with the numerical simulations better than E€)
o 120f 7 15 120 &/ does for those most energetic electrons. Figure)1ldhows
60 | k: 60| i the angular direction of electrons accelerated by a single
0 ; : 0 pulse in plasma. Even in this case, Efjl) agrees with nu-
0 2 4 6 0 merical simulations better than E@LO) does. This in turn
7-1 indicates that the stochastic acceleration with two counter-
360 : 360 [Fmy propagating pulses is responsible for the most energetic elec-
200t 300 g trons in this case because of the excitation of Raman back-
—_ i scattered waves. When the second counterpropagating pulse
o 240} @ 240 ff ; i ; = .
@ e is additionally applied, the directions of high energy elec-
2 1807 & B0 trons agree with Eq(11), as shown in Fig. 1d). For those
o 120¢ o 1204 electrons with relatively low energy that does not follow Eq.
60 & 60 [ (11), the induced electrostatic field should be a responsible
o [T 0 | B e factor[33].
o 2 4 6 8 10 0 10 20 30 In PIC simulations, there is another way to check whether
y-1 y-1 the energetic electrons gain energy from the transverse laser

fields or from the induced longitudinal fields. It is to make
FIG. 11. Angular distributions of electrons vs the relativistic use of the relatiory=1+1'+T, , following the equation of
factor y under the interaction of either a single laser pulse or twomotion for electrongd13,16], whereI' = —det'Exvx and
counterpropagating laser pulsé_a) With test elect_rons in vacuum I = —fédt'ELvi , E, andE, are the normalized longitu-
whena, =3.0 anda,=0.0; (b) with test electrons in vacuum when jing| and transverse electric fields, respectively. HEfe
a,=3.0 anda,=0.1; (c) with a plasma slab at density=0.0In;  giands for the energy gain due to the longitudinal electric
and thickness =50\ whena, =3.0 anda,=0.0; (d) with aplasma o1y \yhile T, represents the contribution of direct laser

Slaf’ OatldeTnhs'mzo'Olr:F da|r_1 d th'cﬁnefi‘zfoﬁ 1\'73%(1' acceleration by the transverse field. The energy gain from the
3;=0.1. The gray solid line is for tam) =+ 1/y(y"~1)/a; laser field is eventually directed in the longitudinal direction

and the gray dashed line is for taf)= = v2/(y—1). through the Lorentze force. Figure 12 shows examples of
_ _ _ electrons distributed in th&~I", space found from both
C. Evidences of direct laser acceleration 1D and 2D PIC simulations of the interaction of two coun-

In the case of electron acceleration in counterpropagatinéfrPropagating laser pulses with underdense plasma slabs. It
laser fields, one expects that energetic electrons move préemonstrates that electrons are accelerated mainly by the
dominantly along the propagating direction of the more in-transverse laser fields in all these cases.
tense one of the two pulses whap>a,, as suggested by
Fig. 1. In the case of electron acceleration by a single laser D. Two-dimensional effects
pulse, there exists a well-known formula relating the energy

of scattered electrons to the anglewhich is given by[2,18] PIC simulations in 2D geometry can introduce new ef-

fects such as Raman side-scattefi@gy], return electron cur-
tan 6)=*=[2/(y—1)]*2 (10 rents in the surrounding regions of the laser beam center, and
new acceleration mechanism such as the betatron resonance
mechanisn 16]. As a result, it is expected that electrons can
Figure 11a) shows the angular directions of electrons accelhe accelerated to a different level from the 1D simulations
erated by a single laser pulse in vacuum, which is well defor the fixed laser pulse and plasma parameters. To check
scribed by Eq(10). Here the forward-moving pulse propa- how stochastic acceleration works in the 2D geometry, we
gates alongd=0°. In the case with two intersecting laser conduct a series of 2D PIC simulations. Snapshots of the
pulses, the angular directions of electrons are related to thegbtained energy distributions are given in Fig. 13. In the 2D
kinetic energy by Eq(4) in general. Therefore it is interest- geometry, there are two different cases for the incident laser
ing to check if the hot electrons observed in the simulationgulses, i.e., they arP polarized if the electric field compo-
also follow this relation. In case with counterpropagating la-nents are within the simulation plane Srpolarized if the
ser fields, we haver=90° andC=p,, in Eq.(4). However,  electric field components are perpendicular to the simulation
in the presence of the laser fields, one should @sep,,  plane. Figure 1@ shows the energy distributions either
+(A;—Ay)sina. If pyy=0, the value ofC ranges from O to  with or without the second counterpropagating pulse for the
a, for a;>a,. Therefore the high energy electrons basicallyP polarization case. As the same as that found in 1D PIC
follow simulations, with the presence of the counterpropagating
pulse, electrons are accelerated to much high level than with-
B 5 ) 1 out it. Figure 18b) displays the energy distributions for the
tan(6)==[(y"—1)/a;—1] "~ (1) spolarization case. It is obvious that the mechanism of sto-
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FIG. 13. Snapshots of electron energy distributioms normal-

) o ) ized from 2D PIC simulations of laser interaction with a plasma
FIG. 12. Electron energy gain from longitudinal fields vs that g|ap at density=0.01n, and thickness =50\ att=140r. (a) For
from transverse laser fields when the two counterpropagating lasghe p polarization; (b) for the S polarization. The laser pulses are

pulses interact with a plasma slab at density0.01In. and thick-
nessL=50\. (&) From a 1D PIC simulation for;=3.0 anda,
=0.1 att=300r; (b) from 2D PIC simulation fora;=3.0 anda,
=0.2 att=160r when the incident pulses aRepolarized;(c) from
2D PIC simulation fora;=3.0 anda,=0.2 att=160r when the
incident pulses ar& polarized.

chastic heating and acceleration also works in this case. Fur-
thermore, in the presence of the second counterpropagating
laser pulse, it appears that electron acceleration in the
P-polarization case is more efficient than in the
Spolarization case. This can be partially attributed to set-in
of the betatron resonance mechanidr] in P polarization,
which is absent irS polarization. However, one also notes
that, without the presence of the counterpropagating pulse,
electrons are accelerated to a similar low level for the two
polarization cases.

Corresponding to the electron energy distributions, the
quasistatic current and magnetic field in the presence of the
second pulse are found to be significantly increased than that
without it. As shown in Figs. 14) and 14b), the peak qua-
sistatic magnetic field in the case with the second counter-
propagating puls¢even though at an amplitude=0.1) is
more than three times larger than that without it. We note that
the maximum quasistatic currents and magnetic fields found

semi-infinite.

y/A

0 20 40 60 80 100120

80 £ 0.073
60 I
40 o
20
0 -0.073
0 20 40 60 80 100120
x/A

for the two polarization cases are comparable, even though FIG. 14. (Color onling. Quasistatic magnetic fields from 2D

the maximum electron energy found for tRepolarization
case is much higher than for tiepolarization case when the
counterpropagating laser pulse is applied.
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PIC simulations of laser interaction with a plasma slab at density
n=0.0In. and thicknes& =50\ att=160r. Both the laser pulses
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E. Electron energy scaling triggering the stochastic motion. Particle-in-cell simulations

To see the dependence of electron temperatures on tfsoow that this mechanism can be dominant in laser interac-
pulse amplitudes, we take a plasma slab with a thickness ¢ton With underdense plasma, where the counterpropagating
L=50\ and at a low densityn=0.01n, to avoid the high wave could either be the Raman backscattered/side-scattered

Raman backscattered wave. A series of 1D PIC simulation&¥@ve of an incident pulse in underdense plasma or the re-

have been conducted by changing eitagror a,. For the ected wave of the pulse from overdense plasma regions.

interested forward acceleration rather than the isotropic heagnerget_ic elecprons generateq thr_ough this scheme move
ing, we usually take,>a,. Through these simulations, it is predominantly in the propagation direction of the pulse with

found that, at early time well before the hot electron heatin elatively high‘?r intensities.  In addi“O.r" 'ghe Raman

gets saturated, the hot electron temperature and the ma ackscattered/side-scattered wave of a high intensity laser

e e|ectron, energy scale proportional toa’a’t’s pulse can also serve as a stochastic field, which dephases
172 ’

. ) ; . ) electrons and thereby allows for net energy transfer from the
wheret is the interacting time duration§;, &, andds are  |aser to electrons as suggested in R2§].

factors related to pulse profile and amplitudes. For the case |, the interaction of subpicosecond intense laser pulses
with semi-infinite laser pulses, we have rouglily~2 and ith plasmas at moderate densities such as a few tens percent
6,~0.5; while for pulses with finite pulse durations, we of the critical density, the present acceleration mechanism
have roughlys;~1 and 6,~0.5 after the laser pulses pass may play a dominant role for observed particle acceleration.
through the plasma region. These two different scaling lawsy this circumstance, it can be more efficient than the well-
with the intensity of the first pulse can be associated withnown mechanism of self-modulated laser wake-field accel-
different ponderomotive pushes in these two cases. Witration (SM-LWFA), because electron acceleration by a
pulses with finite durations, electrons experience not only an3sma wave is limited by its phase velocity. The SW-LWFA
initial forward ponderomotive push at the leading edge bufs efficient only in tenuous plasma, where the phase velocity
also a corresponding opposite push from the pulse tail, whergs the generated plasma wave is so high as very close to the
the Ia_ltter_reduces the_ final energy gain. _Scalm_g to the timgacuum speed of light. In plasmas at moderate densities,
duration is normally likes;~0.5-1.0. This scaling agrees powever, the Raman backscattering can be easily excited to a
qualitatively to what we found before for electron accelera-yign |evel and trigger the stochastic acceleration of electrons.
tion by an intense laser pulse in the presence of a stochastity relativistic-intense laser pulses, the Raman backscattered
field [15,38, where it is found that the hot electron tempera-3nq side-scattered waves of the incident laser pulses can
ture scales proportional to the square root of laser intensitye excited even if the plasma density is larger than
a_md_deper?ds relatively _weakly upon the_: Ievel_ O_f the stoch_as-: 0.251,. This is partially owing to the relativistic effect and

tl_c field. Finally, fo_r an intense pulse with a finite but suffi- partially owing to the merging of the Raman scattering insta-
ciently long duration such as a few hundred laser cyclesyjjiry with the relativistic modulation instability in the wave-
even if the opposite ponderomotive push from the pulse taij,qcior spacé22,34—37. As a result, the stochastic heating
may obviously change the electron energy spectrum arounglyq acceleration of electrons should occur throughout all un-

the ponderomotive potential level, it cannot change the engergense plasma regions where the intense laser pulse can
ergy spectrum significantly at the regime with a much higherpropagate.

energy level.
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