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Eigenmodes and growth rates of relativistic current filamentation instability in a collisional plasma
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| theoretically found eigenmodes and growth rates of relativistic current filamentation instability in colli-
sional regimes, deriving a generalized dispersion relation from self-consistent beam-Maxwell equations. For
symmetrically counterstreaming, fully relativistic electron currents, the collisional coupling between electrons
and ions creates the unstable modes of growing oscillation and wave, which stand out for long-wavelength
perturbations. In the stronger collisional regime, the growing oscillatory mode tends to be dominant for all
wavelengths. In the collisionless limit, those modes vanish, while maintaining another purely growing mode
that exactly coincides with a standard relativistic Weibel mode. It is also shown that the effects of electron-
electron collisions and thermal spread lower the growth rate of the relativistic Weibel instability. The present
mechanisms of filamentation dynamics are essential for transport of homogeneous electron beam produced by
the interaction of high power laser pulses with plasma.
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I. INTRODUCTION dense plasmf32,33. The physics underlying this phenom-
enon is just the CFl as mentioned above. This type of insta-
Relativistic laser-plasma interactions have been a topicability leads to nonlinear filamentation and coalescence of the
issue for the past decaflg], in the context of ignitor physics relativistic electron beanf7,34—3§ and the formation of
of inertial confinement fusion, aiming at additional fast heat-strong magnetic field$§35-37,39,4Q In the astronomical
ing and subsequent ignition of highly compressed targets bpoint of view, one often encounters such morphology in a
means of an external intense laser puBke The laser pulse variety of celestial objects, particularly, in the astrophysical
drives relativistic currents, compensating return currents, anfbts[41]. State-of-the-art observations by utilizing very long
creates a pattern of counterpropagating currents which atgaseline interferometry have revealed the filamentary struc-
subject to current filamentation instabilitiéSFl) including  ture of the jets[42], involving transverse magnetic fields
the Weibel mod¢3]. In the theoretical arena, numerous ver-143]. More recently, large-scale toroidal magnetic fields have
sions of analytical and numerical methods have been devepeen discovered in the Galactic Cenféd], accompanied
oped in the past, to explore this type of instabiliids-17..  with splendid filamentary radio ar¢d5,46].
In general, the physical mechanism of the electromagnetic Regarding the ignitor physics of laboratory plasmas, the
CFl is explained as follows: When the compensation of theeffects of collisions and beam thermal spread play a signifi-
counterpropagating electron currents is disturbed in theant role in the CFI caused by the ultrahigh relativistic cur-
transverse direction, magnetic repulsion between the tweents through ablative coronal plasif@7], whose density
currents reinforces the initial disturbance. As a consequenceises fromn.~10%* cm™3 (cutoff density to ~10%° cm™3 (a
a larger and larger magnetic field is produced as time inthoysand times solid densjtyover a radial distance of
creases, degrading the transport properties. Many efforts 12 ;,m [47]. The role of collisions in a laser-produced
have been devoted to this crucial problem, both related tgjasma has been discussed in the early literature by Motz
laboratory electron beani$8—2( as well as to astrophysics [4g], though the description was restricted to the nonrelativ-
[21-23. Concerning laser interaction with plasmas, for thejstic fashion. It is important to note that the collision fre-
low (nonrelativistig intensity regimes the inverse brems- guency invokes additional parameter disturbing the universal
strahlung absorption is known to predominate around th@jensity scaling, in terms of the time scale of a plasma oscil-
cgtoff region, Where. the Weibel-type instability associatedjgtjon periodw;el and the spatioscale of a skin deftho,,
with temperature anisotropy can take pld@4,29. In the  \hich is valid only for collisionless regimes. In fully relativ-
ablative plasmas, the collisional and related nonlocal effectiic regimes, the collision cross section should be evaluated
were investigatedi26]. _ _ by using the Mott scattering formu[d9]. Presuming a small
The original motivation for this work was triggered by angle scattering and averaging over the angle vield the

more recent publications that have been quantitativelyeciron-ion collision frequency that can be definedvas
treated with the counterstreaming relativistic CFl in the COI'z(n-Y 1c3)(T'/ u3), wheren, is the number density of ions
1 el ’ I 1

lisionless limit[27—-29. A series of works could be linked =

with the ignitor physics by irradiating a relativistic laser Yei=4m(Ze?/mg)® In A, T'=(1+u?)™, p=pe/mec, and
pulse: Fast ignition of the compressed fuel requires at leadle: Mo, Z, and InA are the electron momentum, the electron
10-100 kJ of external energy to be deposited withitd ps ~ 'est mass, the av_eraged charge number, and the Cou_lomb
into the precompressed cof0]. If carried by 1-10 MeV logarithm, respectively50], and the_ electron-electron colli-
electrons, it implies a current of 0.1—-1 GA which exceeds thesion frequency is given ase.=(2/Z)v;. Introducing the
transport limit of about 100 kA31], by more than a factor current neutral condition ofi,/n,=[v,/c[<1, wheren,
~10°. The essential feature is the breakup of the relativistin,, andv,, are the beam electron density, the plasma elec-
electron beam into many filaments when propagating irtron density, and its velocity, respectively, we find the ratio
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of Vei/wpezZﬂl/zfsa/zesnil/z(mocz)—3/2(ni /ny)3n A for the plex eigenmodes are investigat(_ad_ for the cases including the
3 effects of electron-electron collisio(Sec. Il A), electron-
ion collision (Sec. Il B), thermal correctiongSec. Il O,
and for the special case without collisional and thermal ef-
72/ |n A fects(Sec. 11l D), as well as, for the case with an asymmetri-
( ) (1) cal configuration of counterstreaming curre(&ec. Il B,
5 closely relevant to ignitor physics. As a matter of conve-
nience, formulas of the growth rates are explicitly written
Equation(1) indicates that indeed, collisional effects are im- down for some interesting cases. Finally, Sec. IV is devoted
portant in the supersolid density regionsre=10?2 cm 3,  to concluding remarks.

and particularly, for the Lorentz plasma wil>1. In addi-

plasma return current. When assumimg~n.~10°* cm~
to be almost constant, the ratio can be estimated as

Yei o N
10°° cm 3

wpe

tion, the beam thermal spread will occur there, since the Il. GENERALIZED DISPERSION RELATION
electrons penetrating through the ablative corona are ex- OF THE RELATIVISTIC CURRENT
pected to be thermalized via the collisional and collisionless FILAMENTATION INSTABILITY

dissipative process¢86]. The thermal effects involved with

: A. Basic equations and assumptions
the ratio of the transverse temperature to the total energy of

beam electron, i.e5 Ty, /(I'mec?) with expected values in ~ Begin with the nonlinear beam-Maxwell equations that
the range less than unif$7], which also disturbs the afore- include both friction and pressure terms. Assuming the ions
mentioned scaling. to be at rest and to provide a uniform charge-neutralizing

In this paper, | present fundamental eigenmode propertiedackground, we study the relativistic dynamics of two uni-
and growth rates in the linear stage of the CFI including thd0orm, counterstreaming electron currents by employing the
effects that violate the universal density scaling. The theoryollowing set of equations in the dimensionless form,
is expanded in fully relativistic regime on the basis of the an
self-consistent beam-Maxwell equations. To the best of my —2-V.j,=0, 2)
knowledge, a comprehensive treatment of electron-electron ot
and electron-ion collisional effects on relativistic counter-
streaming electron currents with thermal spread has not been 9Pa
carried out, so far. For the symmetrically counterstreaming ot
currents, | found that collisional and thermal effects are

+(Va- Vpa) = = (E+VaXB) = veiPa— ved Pa— Pa)

likely to lower the growth rate of the relativistic Weibel in- _ VP, &)
stability. The most significant result is that the finite colli- Noa '

sional coupling between electron and ion creates the growing

oscillatory and the growing wave modes, which stand out for JB

long-wavelength perturbations, and in the moderate to strong VXE=- gt (4)
collisional regime, even for short-wavelength perturbations,

the growth rate of the oscillatory mode exceeds that of the JE

suppressed Weibel instability. In this aspect, the present work VXB=—+ ; Ja, 5)

goes beyond the framework of the well-established theory of

electromagnetic instabilities. The asymmetric configuration

effects of the counterstreaming currents are also investigated V-E=1-2 n,, (6)

by using a slow return current approximation. Furthermore, | a

argue that the collisional coupling between electron and elec-

tron creates a growing wave mode, but its growth rate igvhere va=pa/y1+p3, ja=—Nava, and the subscripg
lower than that of the suppressed Weibel instability. It is also=1, 2 labels the two electron components @nthbels the
shown that thermal effects participate in lowering the growthcountercomponent od, viz., a=2, 1 fora=1, 2, respec-
rate of the Weibel instability. Although, in the case that in-tively. In particular,ve; and v, describe the electron-ion and
cludes thermal corrections, the present calculation is valiglectron-electron momentum exchanges, and the other nota-
for the smaller wave numbéras shown later, the most in- tions are standard. For normalization, | have used the ini-
teresting rang&~ wp/c can be fairly covered. tially uniform densityn,, the speed of light, and the elec-

In order to spell out these subjects, the present paper on plasma frequencyoy.= JVamnge?/m,. Note that the
organized as follows: In Sec. Il, the linear theoretical analy-Poisson Eq(6) is equivalent to a combination of the conti-
sis of the relativistic CFl is expanded systematically. Thenuity Eq.(2) and the Ampere-Maxwell E(5).
basic equations introduced in Sec. Il A are linearized so as to According to a procedure similar to that developed by
obtain a dispersion relation of the CFI along the mannelCalifanoet al. [27], | investigate the behavior of small am-
outlined in the Appendix. The generic dispersion relation isplitude perturbations by linearizing Eq&)—(5). | impose
presented in Sec. Il B, and its approximate expressions armurrent neutrality o&,ng,v0,=0, Wherevy,=v X are the
derived in Sec. Il C. In Sec. lll, for an application, the newly initial velocities inx direction. Under the current neutrality,
derived equations are solved for typical parameters of courthere exists no magnetic field initially. The CFl is studied in
terstreaming relativistic currents, and the properties of comthe x-y plane. In order to derive the dispersion relation, all
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perturbed quantities are assumed to be in the form ofm[w,(k/w)?]

F(y,t)=Fexdi(ky—wt)]. As a result, a magnetic field
=(0,0B,) and a corresponding electric fiele= (E,,E,,0)

are generated. The purely transverse mode is investigated in
detail throughout this paper, i.ek,=0 and k,=k#0,
whereas the longitudinal mode such as two-stream instability
with k,#0 andk,=0 is not taken into account at the mo-
ment. The pressure of each electron components is connected
with its density by a polytropic relation, which depends on
the characteristic frequency and wave numbek of the
mode being considered. As it is well known, in the case that
the ratio of w/k is much larger than the electron thermal

== (07 + 0 50 A1+ 70, )(1-9, %)
— (5 + Q550 A~ (37 + Q350 )0, P
—[(1+ 70 %) = (3 2+ Q150 D]
X[(Q7+ Q50 D) +(Q5 + 0350, )0, ]
—[(Q+ Q50 A (7 + QA0
+(Qar + Qapr ( Q8 + Q450 )10 2. (TD)

speed, the adiabatic exponent pf=3 is adequate for the Here, 7 is defined in Eq(10b) Iater,QlZz:(k/w)Z, and fur-

polytrope[48,51]. Henceforth, | assumeR,/n3=const, so
that VP,=3T,,Vn,. Then, we get a closed form of the
linearized Eqs(2)—(5). The background ions are supposed to
be fixed on the short time scale eﬁfw;el. Along these as-
sumptions, in the nonrelativistic limit Eq$2)—(6) involve
the resistive transverse wave modes and longitudinal wave
mode with thermal correction which were discussed in Ref.
[48].

B. The dispersion relation including collisional effects
and thermal corrections

The extended dispersion relation of the relativistic CFlI

including collisional and thermal effects is then found self-
consistently. In collisionless cases the dispersion relation that
can be expressed as functions of and (/w)? does not
include the imaginary unit=/—1 explicitly and contains
the purely real and purely imaginary solutions«(k) [27].
The purely real solutions consist of the pairs of the positive
and negative solutions, corresponding to purely oscillatory
and/or purely oscillatory wave modes, while the purely
imaginary solutions are concomitant with the complex con-
jugate solutions, to yield purely growing and purely decaying
(dampedl modes.

In the collisional case considered here, the dispersion re-
lation includes the imaginary unit explicitly. Hence, the so-
lutions of w(k) may depart from the real and imaginary axis
in the complex plane. In this sense, hereafter we refer to such
solutions, i.e., complex eigenmodes with real and imaginary
part, asdephasing mode8elow, | explicitly write down the
generalized dispersion relation containing the dephasing
modes. After some manipulations outlined in the Appendix,
the dispersion relation can be obtained in the complex form
of Rd w,(k/w)?]+i Im[w,(k/w)?]=0, where

Re w,(k/w)?]
=[(1+ 70, )~ (07 + 0150, )]
XL+ 70 ) (1= 0 ?) = (Qo + Q550 ?)
— (03 + 0350 )0 21— (057 + Q550
X[( Qg7+ Qi )+ Qg+ Q30 D Q%]
[+ Q50 D) (7 + Q50 P)
— Q5+ Q70 A ( Q7+ Q50 D102, (79
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thermore, ;> andQ);; 5 are defined by

_ Noa — Noa
Q2= —5¢1, QA= ——>dbra
11 g FO,awz ¢1 117 ; FO,awZ d’T,a

_ No, _ No,
Q7= T =Y, 9122,T:E Tl azl/fT,Ei (8a)
a loaw a

a loaw
_ Noa — Noa
21 3 Fg,awz ¢2 21T 5 ngawz ¢T

_ No, _ No,
Q2= Fe_azlﬂzv szz,TZE Felzlﬂﬂ (8b)
a 0a® a 0a®

2

2
no 1% Ng U
_2 aY0a —2 0,aY0,a
Q = Q = [ ——— _
31 Ea Fo,awz ¢a,aa 31T Ea Fo,awz ¢T,a,a-

2
02— Noaloa 0o2 _2 Noaloa .
2= T2 Vaa 21 & T2 ¥raa;
a 0a®@ a

(80
_ Noaloa _ Noaloa
Q7= b, Q5= = bra
41 ; FO,awz ¢l 41T g FO,awZ ¢T,a
Ng qU Ng g
-2 0aY0a -2 0,aY%0,a
Oy = rﬁlﬂb Q42T_2 F—ZlﬂTii
0a® a 0a®
Ng aU Ng a0
-2 0aY0a -2 0a“0a
Q43 2 Paar Q43T_2 2 ¢T5aa
Fovaw a Fovaw

wherel'y,=(1-v§,)  “?is the Lorentz factor, ang> and
stand for the dephasing factors which can be expressed as

&+ 2vm  &Teat (14T
¢>1——¢ . bra= ) ,
_2vmé&in o VTawnd
'7[/1_ ¢ 1 T,a— ¢ 1
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1 2527- electron collisions and2) only electron-ion collisions, and
b=, Ir=——, then for(3) To,#0 and(4) T,=0, without collisions.
&> X : :
_ ~ _ ~ 1. The case including electron-electron collisional effects
Yo=—Veiba, Yr=—TVeib1, _
_ For the case 0P..#0, 7¢;—0, andTy,—0, the dephas-
&1 2v(v+t uzaleo) ing factors of Eq/(9) asymptotically lead to
a,a )
' ¢
1+2(1+ vgn) V26
ExToat (14 v(v+ vaBed I T Prdeoli mam e
¢T,§,a: - d) ’ ee
b1 b7 0;
B _21}_51(’}+U§a7)ee) ¢T ¢T,a ¢T,a,a
a,a ’
' U (1—vz)?
=00 Vg
v (v+vgabed T Vee
l/’T,E,a: - w '
b1 b1 a PrEa—0. (11
_ _ g2 2
=—yY=§&+4v°, 9
oI h © Therefore, in Eq.(8) we readQ;7, Q57, QF7, Q%
and the abbreviations are —0, and Eq.7) then reduces to
V=Teet Vei, Re(w?,Q; )~ (1- Q7 A)[(1- Q%) — (1+ Q30 %]
k 11 21 31 k
V1=v+ Ve, - 0,720,202, (129
1.2 _qa~2
(=14 Ve, =147, lm<w2,nk‘2>~—(1—915)95229;2—Q;fmmk‘(z- )
12
E=0—12 E=0+V3 (103
Instead of Eq(8), | introduce the definitions of
=Lt T=2 Toar Ta=8ToatToa:i (10D ] ]
Q,ZZ 0,a \Q,z: 0a
Voa ' Ea: Fo'awZ, ? za: Fg,awz,
via:U_'a, (100)
0a Np U
andVee= Vel 0, Vei= veilw, andTo,=3Tg4/Tg,. In col- a 1oa®

lisionless limits, it follows that in Eq(109 », v;—0, and

{1, o, €1, €,—1; for infinitesimal thermal spread, in Eq. o Noaloa R 0al0a

(10b) 7, T, Ts—0; and for symmetrically counterstreaming 0572=2 T o2 => T o2 (130
. . a 0a a 0a

currents ofvg 1= —vg5, in EQ. (100 vgz=—1. It is noted

that thf seC(_)de order terms for thermal correct|on_ of thfe formwherew’2=w2/(¢>ga+inga), which may be rewritten as
of ~(Toaf2 %)= have been neglected, as explained in the ' ’

Appendix. The corresponding conditidh, ,Q, <1 turns
out to be consistent with the results obtained later, as well as, w
with the aforementioned adiabatic condition | w|vp 5
<1, wherev, ,~ T, is the electron thermal speed. When
assuming the normalized frequencies and7,; to be con-
stants, the dispersion Eq(7) can be expressed as

202y 2.0-2y— : o
Re(®, Q) ) +ilm(»®,, ) =0, which contains, in gen-  5_ o indicating that indeed, dephasing effects vanish.

eral, ten complex solutions @é(k), consisting of five pairs Making use of Eqs(13) and (14), the approximate disper-
of positive and negative solutions. In a special case, the¥ion Eq.(12) can be written in the form of

may include purely real and/or purely imaginary solutions.

1+ 2iVee

12
1+i(1+ vza)Vee

2. (14)

The definitions ofQ; 2, Q,2, andQ,? in Eq. (139 are
recalled later. It is noted that for a trivial case of copropagat-
ing currents withvg 1=vg», i.e.,v33=1, Eq.(14) reduces to

o N 03(1-07%)(1-057)
C. Approximate dispersions for specific cases

L2 02 1—=2 20 —27
In this section, | investigate some specific cases contained KT(1=0;9)(1+05 )+ Q704 7]=0.
in the general result: first fo?o’a:O with (1) only electron- (15
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Equation(15) contains six solutions ofb. One should note ®"?(1-04"H(1-057?)

that the factor of (£, 2), regardless of the transformation ) s s o

of Eq. (14), involves a simple eigenmode of the relativistic —K"[(1-Q7 H(1+Q3 )+Qy "1=0,

plasma oscillation. More details are discussed in Sec. Il A. (21)
2. The case including electron-ion collisional effects where QZ“‘: (QZ_Z)Z- Equation (21) contains six solu-

tions. It is noted that the form of E@21) is quite similar to

that of Eq. (15), though there exist some differences in
dephasing property between the two. For example, the eigen-
mode relevant to the plasma oscillation, which is contained

For the case 0F.«—0, 7,;#0, and?o,a—>0, the dephas-
ing factors of Eq(9) asymptotically lead to

b1, 50— P2= i; b1, b1, D1 aa—0; in the factor (- Q’l’_z), is now undergoing the transforma-
’ {2 ' o tion of Eq. (19). More on these is given later in Sec. Il B
_ and Il E.
Veij
1 aa— o=~ é’_z; Y7 ¥1a¥raa—0.  (16) 3. The case including thermal corrections

For the case 0Vge, 7,i—0, andcli'ovaaﬁo, the dephasing
Therefore, in Eq(8) ;;7—0, and Eq(7) then reduces to  factors of Eq.(9) asymptotically lead to

Re(0?, Q%) ~(1- Q1 A)[(1-Q57) — (1+ Q55 Q, %] b1.b2.bza—1; pr—7=—2T;
-2 -2 202 ~
~ 012 (D22 + 057 5 brabraa— —(T+Toa);
—(Q,20,2-0,20,20,2, 17
(Qai Qs = Oz Ba) e (179 Y1.02, za b7 Y@ Praa—0- (22)
Im(w?,Q, %)~ Q3 [(1-Q57) — (1+ Q3 Q] Therefore, in Eq(8), %, Q55, Q.7 Qu4—0, and Eq.

7) th
—(1- QA (Q7+ 03209 (7) then reduces to
2 0-2
— (020,74 Q20,20 2. (17b) Re w?,Q 9)
~[(1+ 70 D)= (Qf+ Q50 )]
Here, we note the relations of
XL+ 70 A (1= ) - (9512+9512,TQ|:2)
2. _73 072 -2__~ -2
le ~ Ve|911 ) 922 Ve|921 ) _(Q§12+Q§12,TQ|:2)Q|Z2]—(9212—1—9212;(2;2)

Q22~—7Q57, X(Qad+ Q70 O 2, (239

2 —2\
02~ —Tea, 0~ Ty, QF~057. M”25 =0, (23
(18 and we have the relations of
f':rg:n Zeg;?rt:gdw;ys, | properly choose the dephasing boost- Q~r0,2, Q=02 02~0,%. (24
In this case, dephasing effects disappear, and the dispersion
0" =(1+i7e)0? (Vw?), K?2=(1+i7.)k? (Vk?) relation yields purely real and purely imaginary solutions.
(19 Concerning Eq(24), | give the definitions of

Note that in contrast with Eq14), the wave number is also 02=3 Noa 02=3
transformed by the operator in E@L9). Taking account of b T T
the transformation, | give the definitions of

Noa )
a0’ dra: (259

n
-2_ 0a -2_ -2.
Q!I*ZZE nO,a QH*Z:E nO,a QZ _Ea l—,gyawzy QZ,T_TQZ y (25b)
1 = FO,awHZ, 2 = Fg’awr@*
2 2
_ Noaloa _ Noaloa
2_ e ba 2_ _arha .
ag2=3 | oalos g2 =3 e (@0 "= Toqut ' BT % To0f 1
= 0a 7121 = 0a 7/2! (25C)
i i i _ Noalo, _ Noalo,
instead of Eq(8). By using Eqs(19) and(20), the approxi Q; 2.3 0a0a Quz:E a §¢T . (250

mate dispersion Eq17) can be expressed as
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2
Uo

Io

andQ; 2 have already appeared in E43a. Using the defi- 2 w'? ®'?+

wi— —
nitions of Eq.(25), the approximate dispersion E@3) can

instead of Eq.(8). Note that the definitions of2; 2, Q, 2, 1
o1
be written as

kz} =0, (29

1

2

W — 73|
rO)

wherevy=|vg,| andTy=(1-v3) Y2 and the transforma-

[(1+ 70— (07 %+ Q70 9)] tion Eq. (14) reduces to
X[(1+ 70, H)(1-0,°-0,?
L+ 77027205 ©'2=(1+2iVe0 02 (30)
—(Q5+0570,%)0, %]
—(QZZJFQZTsz_z)ZQ[z“O- (26) The first factor of(left-hand side (lhs) of Eq. (29) yields a

simple electrostatic mode, corresponding to the relativistic

In general, Eq(26) contains ten solutions. At first glance, the Plasma oscillationw=* », andw;=0, where

form of Eq.(26) seems to be different from that of E445)
and (21). Indeed, there are some differences in dispersive wr(ro):rgl’z_ (32
property, for instance, the plasma oscillation mode contained

in the factor of[(1+7Q, %) —(Q; >+ Q20 )] involves
the thermal dispersion. In the special case without therm
corrections, however, Eq26) recovers the same form with
Eqg. (21), as shown below.

a?elow, we refer to this eigenmode as oscillatory mode (

mode. It turns out that momentum exchange between elec-

trons and electrons does not disturb the plasma oscillation.
The second factor of lhs of E¢29) contains four solu-

tions. The values of»'? are connected witl»? through the

~ complex operator in Eq.30). Therefore, in contrast to colli-
For the case OF¢,, 7¢—0, andT,,—0, the dephasing sionless casesy? values are of complex, to give

factors of Eq.(9) asymptotically lead to

b1,¢2,Pza—1; dr. P17 drza—0;

4. The collisionless case without thermal corrections

wz(kzﬁ;eevro ,,LL)
1 1

Y1, Wsa b r ¥ ma—O. 27 =5kt 3
0
Therefore, in Eq.(8), Q5% Q7. Q;5—0 and Q.7 _ o
~Q,7, and then Eq(7) reduces to +5gr 1) VA(K? Dee, T'o)expl i (K2 Ve, To) 1|, (32)

0’ (1-0;%)(1-Q,?)
where sgnft=p-)==*1, and
—K[(1-Q75)(1+Q;H)+Q,%1=0, (29

2~ — 21,2 ~2 212 =,
where Q2 have been defined in Eq25), and Q,* AK? Tee, o) = VBA(K? 756, o) + C2(KZ Tee To),
=(Q;2)2. It is found that Eq(28) maintains the form simi-
lar to Egs.(15) and (21). This dispersion Eq(28) exactly 2(2I2+ 472 1) 1
inci i i i 2~2 _ 14 0 ee 2
coincides with that obtained by Califar al. [27,28]. B(k?, 75, o) =k*+ + =5,
(1+492)I'3 '
lll. EIGENMODE PROPERTIES AND GROWTH RATES
OF THE RELATIVISTIC CURRENT FILAMENTATION 87,2 1)
INSTABILITY IN A COLLISIONAL PLASMA C(K2Tge,Tg) = — — 2

. | . . (1+47g)1'5

In the following, we find the solutions contained in the
approximate dispersion Eqgl5), (21), (26), and(28). The
complex eigenmodes are explicitly written down, and sur-
veyed for wide parameter ranges of counterstreaming relativ-
istic currents.

1
(k2 Vee, o) = =tan *

5 (33

C(kzﬁ;eeer)
B(k?756.I'0) |’

Note the relation oA+B>0 andA—B=0.

Moreover, | rewrite Eq(32) in the form of the polar co-

At first, | seek the solutions of E415) in terms ofw. Let  ordinate: w= = |wg|exp(6y), where wy and 6, are purely
us consider the symmetrical configuration of counterstreamreal numbers. For the sigris) each, we have two solutions
ing currents such asy;=ng,=0.5 [33], having vg ;= with u=u, andu_, which are referred to as positive mode
—vgp,. The choice of the parameters may be instructive for(p mode and negative moden( mode, respectively. The
making a direct comparison between the present results arstjuared magnitude and the polar angle of the complex eigen-
the previous onef27]. Equation(15) can be then cast to modes are given by

A. Eigenmodes including electron-electron collisional effects

016401-6
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2

2012 ~ 1 2, 1 2~ 2012 ~
wO(k 1Vee7F01/-L):§ k+ 1—~_3+Sgr(:u“)a(k aVee7F0) +ﬂ (k 7VeEIFO)= (346)
0
1 -s k2 Voo, I
Oo(K? Tee I, ) = Stan™* 19““ VU Teelo) | (34D
k?+ F§+Sgr(/1«)a(k217/eearo)
0
|
respectively, where ing the purely oscillatory wave modef{,=0; 6o+
= > =), whereas the vectors of themode direct the imagi-
(k2o To) = \/A(k Vee.['g) +B(K !Vee'F0)>0 nary axis, reflecting the purely growingéd,=/2) and
rveert 0 2 ’ purely decaying €,,— m= — 7/2) mode. The unstable mode
just represents the electromagnetic Weibel instability in a
)~ \/A(kz,?ee,l“o)—B(k2,7/§e,l“o) collisionless plasma, which is discussed in Sec. Il D later.
B(K"Vee,I'o) = 2 =0. As shown in Fig. 1a) for k=3x10" 3 for the small but

(35) finite value ofv,, the vectors of th@ mode depart clockwise
o from the imaginary axis. A3, increases, the real compo-
One should note that E¢34b) restricts its pargmeter range nents of the vectors increase, while the imaginary compo-
to —m/4<§,<0, because the argument of right-hand side,ents decrease. In this aspect, such a growing wave mode is
(rhs) of Eq. (34b) is negative definite, i.e., the ratio is/+  considered to be the dephasing Weibel mode with reduced
for the p mode and+t-/— for then mode. In order to recon-  growth rate. In the strong collisional regime, the polar angles
struct the pqlar angles consistent with the argument, | appross the vectors of the growing and decaying mode approach
priately define wop=|wo(n=pn)| and Ooy=0o(n=m+) g, = /4 and 6,,— 7= —37/4, respectively, and the vec-
for the p mode, andwo,=|wo(n=w-)| and on=0o(  tors shrink, reducing both their real and imaginary compo-
=p-)+m/2 for then mode. Note the allowable parameter pents. The vectors of the mode do not largely depart from
ranges of —m/4<60y,<0 and m/4<6g,<m/2. For thep  ihe real axis for the small value &f
mode with —/2/2<sin6,<0 and \2/2<cosf,=<1, the As seen in Fig. (b), for the moderate value of=3
complex eigenmodes of w=wqpexp(fp,) and o= x 1071, the trajectories of tha mode are similar to those for
— @op€XP( Oop) = wopeXdi(bop+m)] reflect decaying and the smallerk value. As for the vectors of the mode, | now
growing waves, respectively. Thus, the phase of the decayingnd the clockwise deviation from the real axis. This repre-
and growing waves propagates towarand —y direction,  sents the decayinglf,<0) and growing @o,+ 7<) elec-
respectively. On the other hand, for themode withy2/2  tromagnetic mode. In the moderate collisional regime, the
<sinfy=<1 and 0<co0s6,,<+/2/2, the complex eigenmodes magnitude of the deviation angles tends to be large, though
of w=wnexpiby,) and w=— we,exp(by,)=weexdi(fn the maximum value is found to be small, compared with that
—)] reflect growing and decaying waves, respectively. Infor the n mode. In the strong collisional regime, the vectors
contrast to thed mode, the phase of the growing and decay-of the p mode are likely to return to the real axis, reducing
ing waves propagates towasdand —y direction, respec- their magnitude. For comparison, the fixed vectors ofdhe
tively. mode are also plotted in the Fig.(&,b. In these cases, the
In Fig. 1 for the typical current speed of,=0.9 (', magnitude of the vectors is larger than that of ghandn
=2.29), | show the polar coordinate plots of the complexmode.
eigenmodes» for given wave numberg, varying electron- For thep andn mode, the angular frequency of the oscil-
electron collision paramet&,.. The trajectories ob» can be lations can be defined by (u=u )= woc0s6,>0 and
compared to those of the arrowhead of vectors. In the colliw,(u=w_) = wy,c056y,=0, respectively; and the linear
sionless limit of7,—0, we readA~B andC—0 in Eq.  growth rate can be defined by(u=u )= — wqSin 6p,=0
(33), and B—0 in Eq. (35), so thatf,—0 in Eq. (34b. andy(u=u_)=wg,SinHy,>0, respectively. They are sum-
Hence, the vectors of themode direct the real axis, reflect- marized as follows:

1
k?+ F_"Sgr(/*)a(kzﬁ;eevro)}a (363

1
wr(kzﬁ;eevro ,,lL) = E\/ZO)(Z)(kzﬁ}ee!FO) +
0

(K%, Vge,T 1 203k Do, —k2+i+ k2, Ve, I’ 36h)
V(K" Vee, g, ) 2 wo( VeerL'0) Fg sgn(u) a(k®,Vee,I'g) |- ( )
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FIG. 2. The linear growth rates of Eq. (36b) including the
effects of electron-electron collision, as a function of the wave num-
ber k, for 7,,=0.1 (solid curve$, 1 (dot-dashed curvgsand 10
(dotted curves The p andn mode refer to the unstable modes for
pn=pun, andu_ in Eq. (36b), respectively. Here, | have chosen the

parameter oby=0.9, settingv,;=0 and"T’O,a=O.

Here, note the relation ofy, (u)>y(u.) and w,(u_)
<y(u-).

In Fig. 2 forvy=0.9, | show the growth rate of Eq.
(36b) as a function of the wave numbkrfor given collision
parameter®,..=0.1, 1, and 10. For the mode, it is found
that the collisional effects lower the growth rate for kI
maintaining the dependence ¢k for small value ofk, as
well as, the saturation property for large valuekofSuch
asymptotic properties of the growth rate can be also seen in
the purely growing Weibel mode in a collisionless plasma
[27,28. In addition, the collisional effects create thenode
due to the dephasing mechanism mentioned above. The
growth rate has the dependenceyofk? and y>k ™! in the
small- and largedk region, respectively, taking a peak around
the moderate value &€ Such a peak tends to be prominent
for V,e~0(1), andthen decreases &g further increases,
as consistent with Fig. (b). As a result, the growth rate
cannot exceed that of the mode corresponding to the
dephasing Weibel mode with reduced growth rate. Within the
present framework, it seems that both modes do not defi-

FIG. 1. Polar coordinate plots of complex eigenmodes containe%tew cut off the growth of short wavelength perturbations.

in dispersion Eq(29), in the parameter range of 10<7Ve<10
for (a) k=3.0x 1072 and(b) k=3.0x10"': w= = wo,exp(fy,) for

p mode(solid curves with filled circlesand w = * wq,exp(6y,) for

n mode(solid curves with filled squar@sThep andn mode refer to
the definition of, in Eq. (348, wo,=|wo(n=px-)| and wg,
=|wo(n=p_)|, respectively, and in Eq34h), 6y,=Oo(u= )
and 6p,= 0g(pe=p_) + w2, respectively. For comparison, | also
plot the fixed points ofv=+T'; 2 for o mode(open circles The
horizontal and vertical line crossing at the center correspond to thelode are separated at = I"
real and imaginary axis, respectively. The plotseotan be com-
pared to, e.g., as indicated by arrows labelea abe trajectories of

In Fig. 3, forvy=0.9 andve.=1, | show the growth rate
v as a function of the angular frequenay of Eq. (363,
varying the wave numbeét as a parameter. The growth rate
of the n mode turns out to be larger than that of fhenode
for all k, which is in contrast with the case including only
electron-ion collisional effects, as shown in Fig. 8 later.
Moreover, | found that the angular frequencies of prendn
0 ?=0.29, and the oscillation
frequency of thep mode is always higher than that of the
mode. The separation frequency, whete, /ok— +0, is

arrowhead of the vectors, whose magnitude is scaled logarithmitower than the frequency of E¢81) for theo mode, i.e., the

cally by the left axis. Here, | have chosen the parametev pof
=0.9, setting¥=0 and To,=0. Note that for (a) k=3.0

plasma cutoff frequency. The relation &b, / k>0 for both
the p and n mode ensures that the direction of the group

X 1073, the vectors of th mode do not largely deviate from the velocities coincides with that of the phase velocities of car-

real axis. For an explanation, see the text.

rier wave. For large value & the oscillation frequency of
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FIG. 3. The linear growth rate of Eq. (36b) vs the angular FIG. 5. The linear growth ratg for the p andn mode given by

frequencyw, of Eq. (369 for the p mode(solid curvé and then  Eq. (36D as a function of the wave numbérfor v,=0.5 (solid
mode (dotted curvg varying the wave numbek as a parameter. curve), 0.9 (dot-dashed curvgsand 0.99(dotted curvg Here, |
Here, | have chosen the parametersgf 0.9 andv..=1, setting  have chosen the parameterigf,=1, settingv,;=0 and?ova=0.
Tei=0 and?oya:O. For comparison, the angular frequency ofthe Note that the dot-dashed curves fay=0.9 are the same as those

mode given by Eq(31) is also indicated by a bold arrow. shown in Fig. 2.

the p mode goes far beyond the relativistic plasma frequency3.11 MeV), respectively. For small value & both thep
while the growth rate decreases. These properties again agnd n mode seem to increase their growth ratesIis
pear in the case including electron-ion collisional effdst®e  increases. For large value kf however, such properties ap-
also Fig. 8. pear merely in weak to mild relativistic regime. Namely, in
In Fig. 4 forvy=0.9, I show the growth ratg as a func-  strong relativistic regime, the growth for largetends to be
tion of the collision parametep, . for given values ofk suppressed, for example, as for thenode, the saturation
=0.01 and 1. Itis found that for moderate valu€igf, the level of the growth rate decreaseslasincreases. The peak
growth rate of thep mode takes the peak value, which tendsof the growth rate of thp mode is likely to shift to the
to be well pronounced especially far-O(1). Forexample, smallerk region, reducing its value. Although, the energy
for k=1 the growth rate takes the peak p&5.8x10 % at  dependence of the mode appears again in the case includ-
7¢¢=0.63. In the weak collisional regime, it has dependencéng electron-ion collisional effects, the mode significantly
of y*Vee, but on the other hand that of tihemode is almost  changes its property, as shown below.
constant, to give, e.gy=0.51 fork=1. In the strong colli-
sional regime, the growth rates of both theand n mode

decrease, to exhibit the asymptotic behavioryefi_ and

yoc7/;e°'5, respectively. | seek the solutions of Eq21) in terms ofw. In the case
In Fig. 5 forpe.=1, | show the growth rate as a func-  of the symmetrically counterstreaming currents with;

tion of k for given values ofvy=0.5, 0.9, and 0.99, corre- =ng,=0.5 andvg=—v,, EQ.(21) can be cast to

B. Eigenmodes including electron-ion collisional effects

sponding tol",=1.15(79.0 keV}, 2.29(611 keV), and 7.09 5
( n2__ i n2 n2__ i _ //2+ E k//2 =0 (37)
1005 i T T AR ¢ FO ¢ ¢ Fg ¢ FO ,
a -1
g0 wherevo=|vo, and'y=(1—v3) 2 Note that Eq.(37)
[ has the same form as E@9) for the previous case. How-
€ 102 ever, now allw? and k? values are being dephased by the
£ transformation Eq(19), to provide the eigenmodes signifi-
g s cantly different from those derived from E(R9). The first
& 10 2 factor of Ihs of EQ.(37) contains a modified electrostatic
i k=0.01 ] mode of the relativistic plasma oscillation. The eigenmode
4] ,>/_\ may be written in the form ofw=*(w,—iw;), and the

102 10" 10° 10’ 10®*  growth rate can be then defined by= w;, that is,
Electron-electron collision parameter ¥,
FIG. 4. The linear growth rate for the p andn mode given by o (7}2. Iy)= Y(Vei To) = Vei
Eqg. (36b) as a function ofv,, for k=0.01 (solid curve$ and 1 et o \/1?053/4(‘73;), e e \/lfoggm(;m)'
(dotted curveps Here, | have chosen the parametewgf 0.9, set-
(38)

ting 7;=0 andT,=0.
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It is found that the dissipative effects owing to the electron-eigenmode identified by Eq38), for convenience, a®
ion collisions create the growing and decaying oscillatorymode.

mode, which seemingly carries its phase toward

The second factor of lhs of E¢37) contains four com-

—y andy direction, respectively. As far as ignoring thermal plex solutions. Along the manner explained in Sec. Il A, |
and asymmetrical effects of counterstreaming currents igxpress the solutions in the polar coordinate formwof
concerned, this mode is independent of wave number, so that|wo|exp(f,), where wy and 6, are purely real numbers.
the group velocity is null. Note that in the collisionless limit For the signg+) each, we get two solutions. The squared

of 7¢;—0, Eq.(38) reduces to Eq(31) which denotes the

magnitude and the polar angle of the complex solutions are

relativistic plasma oscillation. In this sense, we refer to thegiven by

1 1
wo(k Veinloip)= 2§ \/[gzk + +Sgr(/~l«)(a+ve|ﬂ)

2

F—Z‘+sgrw>(~veia—ﬁ) (399

0

- __Sgr(,“)(”ela B)

1

F3

1
Ho(kz,’iei ,Fo,/.L) = Etal’f

§2k2+

respectively, where
(k27 ,To) +B(K2, 72, Tp)
a(kz,?ei,l“o)z \/ eir1t 0 5 ei 0 >0,

\/A(kz,?ei o) —B(K273,,T)
5 =0

B(kzﬁ;ei JLo)= )

(40)

and

AK2,De;,T o) = VB2(K2,75;,Tg) + C2(K%, ¢, Tg),

2(2I'3—1) , 1

2r3—1)
ry )

Note the relation oA+B>0 andA—B=0. Below, | refer
to the solutions withu=pu, and w_, asp mode andn
mode, respectively. As is the case with E84b), Eq. (39b
holds a parameter range efw/4< 6,<0, because the argu-
ment of rhs of Eq(39b) is negative definite, i.e., the ratio is
—/+ for thep mode and+/— for then mode. Thus, recalling
the definitions of wop=|wo(u=pw)| and Ogp=O(x
=u,) for the p mode, andwg,=|wo(=px_)| and 6,
=0g(p=p_)+ /2 for the n mode, the complex eigen-
modes w=* wg,exp(fy,) denote the decaying+) and
growing (—) wave that carry their phases towayéhind —y
direction, respectively; and= * wy,exp(6y, denote the
growing (+) and decayind—) wave that carry their phases
towardy and —vy direction, respectively.

(k2 Vew ):(1_7’ei)k4+

C(K?, Vg, Io) = 27K?| K?+ (41)

1 , (39
+ sgn u)(a+7,iB)

In Fig. 6 for the current speed af,=0.9, | show the
polar coordinate plots of the complex eigenmodesfor
given wave numberk, varying electron-ion collision param-
eter ;. We compare the trajectories of to those of the
arrowhead of vectors. In the collisionless limitaf— 0, we
readA~B andC—0 in Eq. (41), and 8—0 in Eq. (40), so
that 6,—0 in Eqg. (39b). Hence, the vectors of the mode
direct the real axis, reflecting the purely oscillatory wave
mode @, =0; 600, + 7= ), while the vectors of the mode
direct the imaginary axis, reflecting the purely growing
(6gn=m12) and purely decaying é,— 7= — 7/2) mode.

The unstable mode represents the electromagnetic Weibel in-
stability in a collisionless plasma.

As shown in Fig. €a) for k=3x 102 for small but finite
value of7,; the vectors of thep mode depart clockwise from
the real axis. Adve; increases, the real components of the
vectors decrease, while the imaginary components increase.
The magnitude of the deviation angles is larger than that in
the case including only electron-electron collisional effects
[compare Fig. @]. In the strong collisional regime, the vec-
tors shrink, reducing both their real and imaginary compo-
nents. This is the decaying and growing electromagnetic
mode, which possesses the allowed range of polar angle of
—7l4<6p,<0 and 3m/4<6y,+m<m, respectively. For
the parameter range 0f,; being considered, the vectors of
the n mode do not largely depart from the imaginary axis,
that is, the purely growing Weibel mode is not so dephased.
The most remarkable property can be seen indheode.

For 7,;#0, the vectors leave the real axis, andias in-
creases the magnitude of the deviation angles increases. As
consistent with Eq(38), at7,;=1 the vectors of the growing
and decaying oscillatory mode have the angles @#3and
—ml4, respectively; and in the strong collisional limit, as-
ymptotically approachs/2 and—#/2, respectively.
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In Fig. 6(b), for the moderate value &=3x 10!, Inow collisional regime, there is decrease both in the real and
clearly find, for7,;#0, the clockwise deviation of vector imaginary components. As a result, the electron-ion colli-
pairs of p, n, ando modes. This essentially means that all sional effects lower the growth rate of tilemode, namely,
modes are in phase lag, because of the frictional nature dhe dephasing Weibel mode. Note that the trajectories of the
collisions. The vectors of thp andn mode exhibit the be- vectors of theo mode are the same as those displayed in Fig.
havior similar to that displayed in Fig(ld). In contrast with ~ 6(a). For the moderate value &f the magnitude of the vec-
the case for smak, the polar angles of the vectors of the tors of then mode is found to be comparable to that of the
mode cannot reach to7d4 and —#/4, and in the strong mode.
collisional regime the vectors are likely to return to the real For thep andn mode, the angular frequency of the oscil-
axis, reducing their magnitude. On the other hand, the vedations can be defined by, (u=u )= wgc0s6,>0 and
tors of then mode largely deviate from the imaginary axis w,(u=u_)= wg,€0s6,,=0, respectively; and the linear
until the angles reach ta/4 and —3w/4. In the weak colli-  growth rate can be defined by(u=u ;) = — wqpSin 6p,=0
sional regime, the vectors increase the real components amhd y(u= u_) = w,Sin >0, respectively. They are sum-
decrease the imaginary components, whereas in the stromgarized as follows:

1
Fé"‘Sgr(M)[a(kZﬁ/ei T0) +TeiB(K Tei To)]

2~ 1 2/1,2 ~, 2
o (K261, To,)== V 205(K%,76;,I'o) +| K2+ — : (429
2 fz(Vei
1 2~ ~ 2~
1 FWLSQF(M)[a(k Veir ') + VeiB(K, Vei o) ]
YK Tei To) =5 N 205(k? Tej, To) —| K2+ T (42b)
el

Here, note the relation ofv,(r.)>y(x.) and w,(u_) found that for large value &, the growth rate of the mode
<y(u-). is larger than that of the mode, which is always larger than
In Fig. 7 forvy=0.9, | show the growth rater of Eqs. that of the p mode. Note that, for thgp and n mode,
(38) and(42b) as a function of the wave numbkifor given  dw,/dk>0, and the angular frequencies of both modes are
collision parameterg,;=0.1, 1, and 10. For the mode, the clearly separated at the frequency af,=0.2, where
collisional effects lower the growth rate, especially in thedw,/dk— +0. As a result, the oscillation frequency of the
largek region where the growth rate tends to saturate. Irmode is always higher than that of themode. These fea-
contrast to the case including only electron-electron colli-tures could be also seen in Fig. 3 for the case including
sions, the growth rate for smad) which has the dependence electron-electron collisional effects.
of yxk, is found to be not so depressed due to the electron- In Fig. 9, forvy=0.9, | show the growth rate of Eq.
ion collisional effectsicompare Fig. 2 Thep ando mode,  (38), and(42b) as a function of the collision paramefg;
which appear owing to the collisional effects, are prominentfor given values okk=0.01 and 1. In the weak collisional
for the parameter oF,;~O(1), andsufficiently surpass the regime, the growth rates of theand p mode are both pro-
n mode in growing long-wavelengttsmallk) perturbations. portional to7,;, while the growth rate of thex mode is
This feature is in major contrast to the case including onlyalmost constant. For smallky the growth rates of the and
electron-electron collisional effects. For the larger collisionp mode can more readily exceed the growth rate of rthe
parameter, it is noteworthy that even in the lakgesgion, mode, and for the moderate valueigf, they take the peak
the growth rate of th@ mode exceeds that of themode, values. The growth rate of themode can, even for larde
i.e., the suppressed Weibel mode. This is one of the mosixceed that of the mode, and takes the peak 9£=0.41 at
important results in the present paper. In the ldtgegion, 7,=1.4. The growth rate decreasesiasfurther increases,
the growth rate of th@ mode decreases, showing the depen-showing the dependence gf<7,%°. It is also noted that in
dence ofyeck™*, and is far below that of tha ando mode.  the strong collisional regime, the growth rates of fhendn
In the smallk region, the growth rate of themode is almost  mode have the dependencies pt7,' and y<7,%°, re-
independent ok, and is always smaller than that of the  gpectively. As would be expected, anyhow, all modes are
mode. That is,y(Pei,lo = +) =[(V{a—1)/(2L,T'3)1*?  suppressed in the strong collisional regime.

<Teil (VT oL3% for ;>0 andl'y>1. In Fig. 10 for7e;=1, | show the growth rates of Egs.
In Fig. 8, forvy=0.9 andv.;=1, | showy of Eq. (42b (38) and (42b as a function ofk for given values ofv

as a function of the angular frequeney of Eq. (428, vary- =0.5 ([,=1.15), 0.9 [(=2.29), and 0.99[(,=7.09). It

ing k as a parameter. For comparison, in the-y plane, I  should be remarked that for the lower current speed,othe

also plot a fixed point given by E¢438) for theo mode. Itis  mode becomes most dominant. In contrast to the case includ-
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FIG. 7. The linear growth rates of Eq. (42b) including the
effects of electron-ion collision, as a function of the wave nunkber
for 7,;=0.1 (solid curveg, 1 (dot-dashed curvg¢sand 10(dotted
(a) /2 curves. The p and n mode refer to the unstable modes far

=u, and u_ in Eq. (42b), respectively. Hair lines for each;
show the linear growth rate of Eq. (38) for the o mode. Here, |
have chosen the parameters 1gf=0.9, settingve.=0 andrroya
=0.
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similar to that shown in Fig. 5, namely, in weak to mild

relativistic regime, the saturation level of the growth rate
increases ak increases, while in strong relativistic regime,
it tends to decrease. In sméllregion, the growth rate seems

to increase a¥'j increases, since its curve, roughly propor-
tional to k, shifts to the smallek region. Such an apparent

redshift can be also seen in the latgesgion for thep mode.

(V)
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C. Eigenmodes including thermal corrections

In Eg. (26), | seek the solutions in terms af. Regarding
the symmetrically counterstreaming currents rgf;=ng
=0.5,v04=—g2, andTg;=Tg,, EQ.(26) can be cast to

(b) -n/2

FIG. 6. Polar coordinate plots of complex eigenmodes contained 1 0° — ey ey s e
in dispersion Eq(37), in the parameter range of 10<7.;< 10’ for : 10
(@) k=3.0x102 and (b) k=3.0x10" 1 w= = wq,eXP(fy,) for p ARJ o-mode
mode(solid curves with filled circlesand w = * wg,exp(f,,) for n o
mode (solid curves with filled squargsand Eq.(38) for o mode ',-" » 10°
independent ok (hair solid curves with open circlesThe p andn ”"“°df,f" 10 |
mode refer to Eq(39) for u=u, and u_, respectively, and the - - 10" ]
definitions ofwq,, wg,, Bop, andéy, are the same as those in Fig. _ ,..-"' k=102
1 caption. The horizontal and vertical line correspond to the real L -~ p-mode
and imaginary axis, respectively. The plotssban be compared to L .
the trajectories of arrowhead of the vectors, whose magnitude is 1 '2"'..‘.’....‘.. T X A
scaled by tlhe ~Ieft axis. Heie, I have chosen the parameter, of 105 10°% 10° 102 10' 10° 10'
=0.9, setting7,,=0 and Ty,=0. Note that for _(a) k=3.0 Angular frequency o /o
X 1072, the vectors of thew mode do not largely deviate from the rope
imaginary axis for the parameter range being considésed text FIG. 8. The linear growth rate of Eq. (42b) vs the angular

frequencyw, of Eq. (429 for the p mode (solid curvg and then

ing only electron-electron collisional effects, tlieand p  mode(dotted curvg varying the wave numbéras a parameter. An
mode monotonically reduce their growth rates Igg in- open circle indicates the point given by E&8) for the o0 mode.
creases, and soon tlemode is overcome by the mode  Here, | have chosen the parametersgf0.9 andv.;=1, setting

from largek region. The energy dependence of theode is ~ ¥¢=0 andT,,=0.

-h
Q
T

Growth rate y/o)pe
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10 ————r————r———rrr 10—
3 Standard relativistic
g g Weibel pode -------- i
8 8 (% %, 7,=0)
=10 =
2 2
g 10’ |
£ £
-2
e ;™
0] (]
I p-mode 1
10'3 NPT | NPT P | PR 10'2 L | L | L
102 10’ 10° 10' 10? 102 10" 10° 10'
Electron-ion collision parameter v, Wavenumber kc/o,
FIG. 9. The linear growth ratg for the p andn mode given by FIG. 11. The linear growth rater as a function of the wave

Eq. (42b) as a function ofi; for k=0.01 (solid curveg and 1 nymberk for To=0.1 (solid curve andT,=0 [Eq. (48b): dotted
(dotted curver Hair solid curve shows the linear growth rageof curve] [27]. Here, | have chosen the parametersvgf 0.9, Feo
Eq. (38) for the 0 mode, which is independent &f Here, | have  —q andy,,=0.
chosen the parameter 0f=0.9, settingve.=0 and?ova=0.

where To=Ty,. Note that Eq.(44) is of the order ofw,

~T'5 Y2, and therefore, the assumptid(), ><1 requires
3Tok?<1, which is consistent with the aforementioned rela-
tion of ~I'yTok?<1. Equation(44) just corresponds to the
=0, (43)  relativistically extended dispersion of the Bohm-Gross wave
with nonzero group velocitye.g., see Ref.48] for the non-
relativistic limit). In contrast to Egs(31) and (38), we find
the thermal dispersion terms characterized-by,k? in Eq.

w?(w?—4Tok?)

~ 1 ~
(0= 4Tok?) = —(0*~3Tok?)
0

2 k27

1) _v
T

3 O(wz— 3Tok?)k?

wherevo=|vgal, To=(1—v§) Y2 andTy=To,. The first _ _ _
factor of Ihs of Eq.(43) contains four purely real solutions, (44). Physically, this reflects the Debye screening by elec-

but two of them are found to be inconsistent with the as{rons[51]. In the limit of Tok?—0, Eq.(44) reduces to Eq.
(31) for oscillatory mode.

sumption OﬁOQ'Z2< 1 (not show. The ot~her two solutions Moreover, the second factor of Ihs of E43) contains six
can be expressed as=+ w,, and for 4'5Tok*<1, we 0b-  so|ytions. Numerical calculation indicates that these consist
tain of four purely real solutions and a purely imaginary solution
concomitant with its complex conjugate= *iw;. For the
) 1 3_ ., purely growing mode that is of interest here, we can define
w;(k%,To,I'g)~ \/T*O 1+ §T0k ' (44 the linear growth rate ag= w;. In Fig. 11 (solid curve, |

show vy as a function of the wave numbkifor v,=0.9 and
To=0.1, as an example. It is found that the thermal effects

10° simply lower the growth rate of the purely growing Weibel
3 instability, at least, in the range &~ O(1). Note that in
310! contrast to collisional cases, the thermal effects do not take
: part in dephasing the purely oscillatory and purely growing
® 5 mode, but merely give rise to the mode-dispersion which can
. 10 reduce the growth rate.
H
2103
o D. Eigenmodes of collisionless case without thermal
. i 1 corrections
1 01 o3 1oz i i 1o In the collisionless limits without thermal corrections, the

dephasing operators in Eq4.9) and(30) asymptotically ap-
proach unity, vanishing their imaginary parts. Then, Egs.
(29), (37), and(43) degenerate into a unique equation,

Wavenumber kc/mpe

FIG. 10. The linear growth ratg for the p andn mode given by

Eqg. (42b as a function of the wave numbé&rfor vy=0.5 (solid 2
curve, 0.9 (dot-dashed curvésand 0.99(dotted curvg Hair lines 2 i 2 2 i I Yo K2|=0, (45)
for eachvy showy of Eq. (38) for theo mode. Here, | have chosen @ I'y @@ 1"8 @ Iy o

the parameter db,;=1, settingv,.=0 and'~l'0,a=0. Note that the

dot-dashed curves/line far,=0.9 are the same as those shown in

Fig. 7. where vo=|vo,] and Ty=(1-vj) Y2 As expected, Eq.
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(45 has the same form with Eq$29) and (37). The first 10°.
factor of lhs of Eq.(45) yields the plasma oscillation mode g
given by Eq.(31). 8&
The second factor of lhs of Eq45) contains four solu- = | . 4
tions. In contrast to collisional cases, the valueswdfare o 10 3
obtained as purely real numbers. Concerning the polar form & 7. ]
o= *|wg|expifdy), Egs.(34) and(39) reduce to :§ \ o-mode h
310 2L n-mode p-mode -
2,10 Sy, 1 5 1G] : Asymmetric currents ]
wo(k5 g, pm)= > ke+ F+sgr(,u)\/A(k ,Fo)‘, : (10% hot; 90% cold)
o L
46 - 3 . Ll ol L ol PP
(46 1010‘3 102 10" 10° 10'
6,=0, (46b) Wavenumber kc/cope
where, FIG. 12. The linear growth rater as a function of the wave
5 number k for asymmetrically counterstreaming currents wf;
5 o, 2@l o, 1 =0.9 andvg,= — 0.1 With ¢ ,=0 (crossesandv,;,=1. For the
Ak, o) =K+ rs + T8 (47) latter case?ei,=1), solid, dashed, and dot-dashed curves show

0 0

Recalling the definitions ofwgy=|wo(u= )| and 6y,
= 0, for the p mode, andwg,=|we(u=px_)| and 6y,= 6,

+ /2 for the n mode, Eq.(46b) leads tofy,=0 and 6y,
=q/2. It is, therefore, found that for the mode, the real
solutions of w= = wq,exp( fpp) == wg, describe the purely
oscillatory wave mode, while for the mode, the imaginary
solutions of w= * wg,exp(by,) = =iwg, describe the purely
growing (+) and purely decayingd—) mode. The phase
properties are shown in Figs. 1 and 6.

Now, the angular frequency of the oscillation and the lin-
ear growth rate can be defined by = wq,>0 andy= wy,
>0, respectively. Taking the inequalityA>k?+ (1/'3)
into consideration, the angular frequency and the growth rat
can be expressed as

1/2
w,(K?T ):i A(K?To)+| K2+ ! (489
r 40 \/E 1o Fg )
1 1\ 142
v(kz,Fo)=E VA(K?,T o) — k2+Fg} . (48b

respectively. Note the relation @, >vy. In Fig. 11 (dotted
curve, | show the linear growth rate of Eq. (48b) for vg
=0.9, as a function of the wave numbderThis growth rate

is just of the relativistically extended electromagnetic Weibel

instability in a collisionless plasmi29]. It is found that for
I'3k?<1 and I'3k®>1, Eq. (48b simply exhibits the
asymptotic property ofy~ \/1’02— 1k and y~ \/(Foz— 1)/1"03,
respectively. It might be instructive to compare Fig. 11 with
Figs. 2 and 7 for the case including collisional effects. It is

confirmed that this mode is in a special case of the mode¥here, instead of Egs(19) and (20), use

presented in Sec. Il A-I1ll C.

E. Eigenmodes including asymmetric effects
of counterstreaming currents

For another comparison, we are concerned with an asym-
metrical configuration of counterstreaming currents. First, in

Eq. (28) for the collisionless case, | change the parameters t

of then, o, andp modes, respectively. Here, | have $gt,=0 for
both the cases. For comparison, | also ptdbr a symmetrical case
of vy= 0.9 without collisionghair dotted curvg which is the same
as the dotted curve shown in Fig. 11.

an asymmetrical, though still current-neutral initial beam
configuration withng ;=0.1 (v;=0.9) andng,=0.9 (Vo>
=-0.1). Note that the corresponding beam-to-plasma den-
sity ration,n,/n,~ 10, is of relevance to electron transport
in the context of ignitor physics. Here the electron beam
density could be estimated ag~n.~10" cm 2 and the
plasma density as,~10n. [37]. Itis around the low-density
foot of steeply rising density profile of laser-ablative plasma
EA'?]' where the filamentation dynamics may be most promi-
Aent. As shown in Fig. 12crossey it is found that for such
parameters the growth rate reduces by a factor 10 in the
smallk region and by factor/10 in the saturation region.
The strong reduction is, more or less, favorable for energetic
electrons to propagate through the ablative corona surround-
ing a highly compressed ignitor plasma.

In the denser region, electron-ion collisions might play an
important role in attenuatinglow return currents, owing to
the relation of ¢/ wpp) (Veil wpe) ~t=(Ny/Ne) ¥y ¥2<1,
where vy,; and w,;, denote the beam electron-ion collision
frequency and beam electron plasma frequency, respectively.
At this juncture, in order to take account of the collisional
effects more plausibly, one may replace the dispersion Eq.
(21) with

0}(1-017%)(1-057
—K[(1-Q775(1+ 953+, *]~0, (49

"2 __
a _(1
+i7eia) w? and
n n
n—2__ 0a n—2__ 0a
Ql _E T n2» QZ _2 FS n2»
a lpaWay a 1oa®Wa
2
Ng aU Ng 50
n—2__ a“0a n—2__ 0ab0a
QS _2 F n2» Q4 _2 F "2 (50)
0 a loawy a 1l pa®Wy
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respectively. For simplicity, we set the current parameters to (ii) Effects of electron-ion collision suppress the relativis-
the same as the previous oneg;;=0.1 (vo;=0.9) and tic Weibel instability, especially for short-wavelength pertur-
Noo=0.9 (vo,=—0.1), but now providing the slow return bations. The effects create growing oscillatory and wave
current with I'p,~=1 to be resistive such a%.;,#0 mode. For long-wavelength perturbations, the growth rates
(>7ei1). Numerical calculations indicate that Eg9) con-  of both modes tend to exceed the growth rate of the sup-
tains six complex solutions, consisting of three pairs of thepressed Weibel instability. For the stronger collisional cou-
positive and negative solutions. For the three unstable modgsing, and lower current speed as well, the growth rate of the
each, one can define the growth ratesyas| w;|. oscillatory mode can, for all wavelengths, exceed that of the
In Fig. 12, | showy as a function ok, for the collision  suppressed Weibel instability.
parameters 0fie; ;=0 and7,;,=1, as an example. It is (iii ) Effects of thermal spread simply suppress the relativ-
found that as a whole the wave number dependence itself istic Weibel instability, at least, in a moderate wavelength
similar to that for the symmetrically counterstreaming casesange.
(compare Figs. 7 and 10The purely growing mode; » For the asymmetrically counterstreaming case, the relativ-
=0: crossepis disturbed due to the collisional effects on the istic Weibel instability for the symmetrical case is strongly
slow return current to yield the mode, namely, the dephas- suppressed, though the electron-ion collision still affects the
ing Weibel mode. However, the dephasing effects result irslow return current, creating the unstable modes, as men-
only a slight increase of the growth rate. As shown in Fig. 12tioned above in resulfi).
(solid curve for ¥, ,= 1 the increasing rate is about 14% at ~ The important point is that, in general, the growing oscil-
most arounck=0.5. | mention that for the larger collision latory mode is created by dephasing a purely oscillatory
parameter, the growth rate of themode is depressed below mode, and the growing wave mode is created by dephasing
that for the collisionless#;,=0) case. In addition, the either a purely oscillatory wave mode or a purely growing
dephasing effects create the unstable modes analogous to ti@de. While the collisional effects invoke phase lag, reflect-
o andp mode that were introduced in Sec. Ill B. The growth ing the inverse transformation of Eqél4) and (19) for
rate of the correspondingmode now quite weakly depends €lectron-electron and electron-ion collision, respectively, the
on the wave number. Both the modes are found to surpagbermal effects do not dephase the purely oscillatory, oscil-
the n mode in growing long-wavelength perturbations, aslatory wave, and growing mode, but involve mode disper-
shown in the figure. In particular, for the parameter region ofsion. Hopefully, intense laser-plasma interaction experiment
Teio~O(1), thegrowth rate of theo mode exceeds, even in will be able to reproduce these fundamental consequences,
the short-wavelength region, that of tmemode, that is, though they were derived by leaving out longitudinal modes,
along the mechanism elucidated in Sec. Ill B, the electroncomplexities of mode-coupling, and so forth.
ion collision affects the slow return current, even if the for-
ward beam current is in the collisionless regime. This conse-
guence is consistent with the previous results obtained by ACKNOWLEDGMENT
carrying out the fully relativistic and electromagnetic particle
simulation for asymmetrically counterstreaming electron cur-
rents in plasm437].

| am grateful to J. Meyer-ter-Vehn for a useful discussion.

APPENDIX: DERIVATION OF THE GENERALIZED
IV. CONCLUDING REMARKS DISPERSION RELATION INCLUDING COLLISIONAL

_ _ _ _ EFFECTS AND THERMAL CORRECTIONS
In conclusion, | have systematically investigated the de-

tails of collisional and thermal effects on the relativistic cur- In this appendix, | briefly explain the derivation of Eg.
rent filamentation instability, generalizing dispersion relation(7). By linearizing the continuity Eq(2), the density pertur-
of the beam-Maxwell system. For specific cases, the approxpation Of electron componena is described asn;,
mate dispersions have been derived and applied to the inst&NoaQ (P1ay/Toa), WhereQ, *=k/w, andp,,; stand
bility analysis of typical counterstreaming relativistic elec- for the first order quantities éfdirectional momentum of the
tron currents, relevant to ignitor physics. For thecomponenta. Making use of the relations ofp;,
symmetrically counterstreaming cases, the particular results E; /(i w — v¢;), which are obtained by linearizingcom-
are summarized as follows: ponent of the vector Eq3), the first order momenta, , ,

(i) Effects of electron-electron collision suppress the rela-can be expressed as functions of the first order electric fields
tivistic Weibel instability for all wavelengths. The effects E;;. Substituting these expressions into the linearized con-
newly create a growing wave mode, but its growth rate istinuity equation mentioned above, | obtain the first order
always lower than that of the suppressed Weibel instability.equations for density perturbation in the form of

Na it voali T(1-Toaldi *+iv) +iVeevalEryt (1= Toald *+ivy)Eyy
Noa Twlpa (1= ToaQy 24i0)(1-TozQ 2+iv) +72,

(A1)
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for w#0. Here, the abbreviations of E¢LO) have been used. Substituting the expressionp,@fi, Eq. (A1), andB,,=
—Q[lEl,x derived from Eq(4), into the linearized Eq(5), yields the first order equations Bf ;. For the manipulations, the

second order terms for thermal correction of the form-ff . %2 in the products of, e.g., (2T 10 2 (1-ToQ, %) are
neglected, such that 7,10 2) (1 -T2 ) ~1—(To1+To2) Q) °=1—TQ, 2 Finally, we arrive at the equation of the
form of Dj'(k,w)Elyimo (VEy;), where the determinant of the dielectric tensor is

DK, )| ={(1+ 70 ) (1=, ?) = (Q3 +105) —[(Qor+iQ50) + (37 +i103) 10, 2
(1+ 70, ) = (QP+iIQ) — (Q G +HiIQ Q2

— QA+, % T S
(Qair 327y [(9432+|Q442)+(9432,T+|Q442,T)QkZ]Qk1

—[(Q2+i1Q D)+ ( Q5+, 210, (A2)

Here, the definitions of Eq8) have been used. Fdr# 0, the dispersion relation can be defined|B(k,w)|=0, to give
Eq. (7).

As it is well known, if the imaginary part of the complex eigenvalueis much smaller than the real part, one can calculate
them by the Taylor expansion methfll]. However, this is not the case being considered, as seen in Figs. 1, 3, 6, and 8. That
is why, | have attempted to directly solve the complex &f.to extract the eigenvalues.
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