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Long-wavelength thermocapillary instability with the Soret effect
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We study the onset of Marangoni instability of the quiescent equilibrium in a binary liquid layer with a
nondeformable interface in the presence of the Soret effect. Linear stability analysis shows that both monotonic
and oscillatory long-wavelength instabilities are possible depending on the value of the Soret yuiSbés
of long-wavelength nonlinear evolution equations are derived for both types of instability. Bifurcation analyses
reveal that in the regime of monotonic instability square patterns bifurcate supercritically and they are preferred
in competition with roll patterns. Hexagonal patterns bifurcate transcritically and the condition for the emer-
gence of steady stable hexagonal patterns is derived. In the case of oscillatory instability, traveling and standing
waves are found to bifurcate supercritically in the narrow range of the Soret parameter and traveling waves are
found to become the selected type of flow.
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[. INTRODUCTION encompass the work on double-diffusive phenomena and
their applications in oceanography, chemistry, metallurgy,
Various transport processes encountered in technologgeology, geophysics, etc. For a review on the convection in
and nature are owing to or affected by simultaneous action dayers of a binary liquid with the Soret effect the reader is
temperature and solute concentration gradients. Differeneferred to Ref[6].
configurations of those gradients were discussgdn the If the liquid layer has a free surface, the surface-tension-
context of buoyancy-driven convection. Similar settings cardriven(Marangon) convection, caused by the dependence of
be also considered in regards with the surface-tension-drivesurface tension on both the temperature and the solute con-
convection in the no-gravity environment. Relevant ex-centration, can appear. In a majority of mixtures surface ten-
amples are different techniques of materials processing, e.gion decreases with temperature and increddesreases
crystal growth, from binary or multicomponent liquid mix- with concentration of an inorgani@rganio solute. There-
tures. Many of them, especially those employing the floatindore, if a layer of a binary mixture is subjected to both tem-
zone and temperature-gradient methods, involve large tenperature and concentration gradients, nonuniformities of
perature and possibly concentration gradients imposed ithose at the free surface lead to the emergence of surface
various directions relatively to the melti]. shear stresses that can under certain conditions destabilize
The buoyancy-driver(Rayleigh convection in a binary the quiescent base state.
mixture has been a subject of an extensive investigation, in There is a significant amount of research done on the
both the theoretical and experimental aspects. It is now welMarangoni instability in a pure fluid laydi7]. However, to
known that simultaneous presence of two or more compothe best of our knowledge the literature is scarce with a re-
nents with different diffusivities in a liquid layer may lead to search on double-diffusive and Soret effects in the context of
a variety of new phenomena. Specifically, if two or moreinterfacial phenomena. Linear stability analysis of the quies-
components with different diffusivities are present in a fluidcent equilibrium in a layer with a free surface under the
and their gradients make opposing contributions to the fluicaction of independent temperature and concentration gradi-
density, a possible source of instability can be created. Fognts across the layer was carried out by Castillo and Velarde
instance, a layer subjected to a stabilizing solute concentra8—10] and by McTaggarf11]. It was found that when both
tion can exhibit an oscillatory instability when a destabiliz- the thermal and solutal Marangoni numbers are positive, i.e.,
ing thermal gradient across it opposes the forf2érUnder  the shear stresses induced separately by thermal and concen-
some conditions, the characteristic spatial scale of convearation components enhance each other, the quiescent state
tive patterns is large. In that case a long-wavelengtitan lose its stability monotonically. However, when the cor-
asymptotic approach can be appli&). Two main physical responding Marangoni numbers have opposite signs, i.e.,
situations are possible her@) the temperature gradient and when the shear stresses induced separately by thermal and
the concentration gradient have independent sourcesolutal components counteract, the instability is mostly oscil-
(double-diffusive convection (ii) the temperature gradient is latory. The case where the solute concentration gradient is
imposed, while the concentration gradient is generated spoproduced by the Soret effect was considered in Réfa-—
taneously due to the Soret effect. Extensive revi¢d$]  15]. A specific type of oscillatory instability due to the exci-
tation of capillary-gravity waves by the Marangoni effect
was discovered in Refl16].
*Corresponding author. FAX: 972-4-829-5711. Email address: Investigations of nonlinear aspects of the Marangoni con-
meroron@tx.technion.ac.il vection in binary liquids are much more rare. Ho and Chang
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[17] analyzed, by means of amplitude equations, the flow Vi + (V- V)V =—p IVp* + uV AV, (1b)
dynamics in the neighborhood of the double-zero point, i.e., !
a point in the space of parameters where monotonic and os- Tf* FVELVT* = (V2T (10)

cillatory instabilities compete. Bergeoet al. [18] studied
numerically the two-dimensionalD) Marangoni convec-
tion in binary mixtures in a container. Recently, 3D oscilla-

tory convective regimes were studied by Bestehorn and Coli- . . .
net [19] by direct numerical simulations of the Herev®, T*, p*, andC* are fields of the fluid velocity,

hydrodynamic equations, as well as on the basis of the mod&fmpPerature, pressure, and solute concentration, respectively,
complex Swift-Hohenberg equation. Let us mention also the’> ¥» D, anda are, respectively, kinematic viscosity, thermal
experimental wor20] devoted to the combined Rayleigh- diffusivity, mass d|ff_u§|V|ty of th_e mixturep is its reference
Marangoni convection in a binary solution. Linear and non-and the Soret coefficient, density,=(dx«,dyx,dz«), andt*

linear analyses of long-wavelength coupled double-diffusiveS UMe. B .
thermocapillary instability were carried out by Braverman_ 1he boundary conditions at the bottom rigid surface re-
and Oron[21]. The nonlinear theory of the long-wavelength flect the no—sllp condition fqr the veloqltles, a specified heat
monotonic Marangoni instability in a pure liquid was devel- lux and mass impermeability, respectively,

oped in Refs[22—2§. In the case of the oscillatory instabil- . . . .

ity we refer to the nonlinear theories developed for the buoy- vi=0, Tu=-a Cu=ca at z'=0. (2
ancy convection in a binary fluid in Refi27-29.

It is the purpose of the present work to study the impor—t. At the free nor:.defomt]rz]abltla(. surfa(t:_e tge bgundary gf)t.nd"
tant case of convection in a binary liquid layer witborly lons are, respectively, the Kinémalic boundary condition,

conducting boundariesvhere the quiescent state is unstableheat transfer governed by the Newton's law of cooling, and

with respect tolong-wavelengthdisturbances. Here, in the mass impermeability:
limit when the heat flux across the layer is fixed, uniform
variations of the temperature and of the solutal concentration
are neither damped nor amplified. When large-scale horizon- N - .
tal modulation of both the temperature and concentration KCox—aq(T*-T3)=0 at z*=d, ()
fields is imposed, flows are generated by the surface-tension ) o ) )

gradients which can lead to a long-wavelength instability. Invherek is the thermal conductivity of the mixture, is the

the present paper we first carry out the linear stability analy!@te of heat transfer by convection at the free surfeges

sis of the system and find both long-wavelength monotoni¢he unit vector in thez* direction, andT? is the sustained
and oscillatory modes of instability in various parameter doiemperature of the ambient gas phase. Also, the balance of
mains. The long-wavelength nonlinear analysis is performedangential stresses at the free surface is given by

next to derive sets of evolution equations for both the mono-
tonic and oscillatory Marangoni instabilities in a binary lig-
uid in the presence of the Soret effect. The obtained equa-

— * i H H *
tions are then used for the analysis of pattern selection. whereV, =(dys«,dyx) andu® is the projection of vectov
onto the plane normal te,. Under the assumption of linear

dependence of surface tensienon both temperature and
Il. STATEMENT OF THE PROBLEM AND GOVERNING concentration
EQUATIONS

C +V* - VC*=DVZ2C* + aDV?T*. (1d)

v*.e,=0, kT, +q(T*—T%)=0,

wixU* =V o, (4)

T*,C*)=0g— o(T* = T* )+ 0,(C* — C*),
We consider a layer of an incompressible binary liquid of o )= 0=l )t o )

an infinite extent in the longitudinal directions and y* Eq. (4) is rewritten in the form

and thicknesdl lying on a rigid plane and exposed to the

ambient gas phase at its nondeformable free surface. The wipu*=—o V, T*+c.V,C* at z=d, (5

layer is subjected to a transverse temperature gradient,

—a,a>0. Itis assumed that the film is sufficiently thin, so wherein o= —do/dT*, o.=doldC*, n=vp is the fluid

that the effect of buoyancy can be neglected as compared tdscosity, andT; and C} are, respectively, the reference

the impact of the Marangoni effect. The Soret effect is astemperature and concentration. For most aqueous solutions

sumed to be present. Surface tensipris assumed to be of inorganic salts surface tension decreases with temperature

dependent upon both temperatdré and solute concentra- and increases with salt concentration, hence the values of

tion C*, o=0¢(T*,C*), and therefore thermocapillary and ando are positive for this choice of a mixture. For aqueous

solutocapillary effects are taken into account. solutions of organic solutes surface tension usually decreases
We now proceed to the formulation of the mathematicalwith concentration, and therefore in this casg will be

model used in what follows. A set of governing equations innegative.

the presence of the Soret effect and when static gravity is We define the dimensionless variables of the problem as

incorporated into the pressure terms is given by P

V.vr=0, (12 =t (Xy"zY)=d(xy,2), (U*,V*)=§(u,v).
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pVK

d2

o@ad
T*=T%+adT, C*=—

Cy

p* = p. (6

c

This yields the dimensionless form of the governing equa
tions

V.v=0, (73
vi+ P Y(v-V)v=—Vp+V?y, (7b)
PT,+v-VT=V?2T, (70
SCG+L . VC=V2C+ V2T, (7d)

and the boundary conditions are rewritten as
v=0, T,=—1, C,=x at z=0, (79

v-e,=0, T,+BT=0, C,—xBT=0,

JU+MV(T-C)=0 at z=1. (7f)

Here
v v _aog _qd
P_K, S_D, X_ O_tv _ky
O'tadz 1
= , andL ‘== (8)
MK P

are, respectively, the Prandtl, Schmidt, Soret, Biot, Ma-
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The boundary conditions, Eg&) and (3), are rewritten
as

v=0, T,=0, C,=0 at z=0, (108
w=0, T,+BT=0, C,—xBT=0,
IU+MV(T-C)=0 at z=1. (10f)
Introducing normal perturbations in the form
(v,p,T,C)=exp(ikx+ t)(v,p,T,C) (12)

into Egs.(10) with w being the growth rate of the perturba-

tion with the wave numbek and using the streamfunctioh
to express the components of the two-dimensional flow field

v results in

T 2K+ K= (Y KED), (129

T — k¥ T = wPT+iky, (12b)

C" - KT+ x(T"-KT)=wSC—ikyL %, (120

=0, y'=0, T'=0, C'=0 at z=0, (12d
J=0, T'+BT=0, T’ —xBT=0,

PY+ikM(T-C)=0 at z=1, (12¢

rangoni, and inverse Lewis numbers. It should be empha-

sized that in virtually all physical settings>P and there-

fore the relevant range for the inverse Lewis numbers is

where prime denotes derivative with respectto
We study here the case of the long-wavelength instability
of the system with poorly conducting boundaries. According

B=¢'B, Y=e¥, (13

L™ i>1. . . :
The base state whose stability will be studied here id° this we introduce the scaling
given by
1+B
Vo=0, To=—2z+ B Co= xz+const, po=const.

9

IIl. LINEAR STABILITY ANALYSIS

We now study the stability of the base state given by Eq
(9) of the two-dimensional system in the plane#) with
respect to infinitesimal disturbances in the same plane. |
this sectionV = (dy,d,).

Linearization of Egs(7) around the base state, E®)
results in

V.v=0, (109
vi=—Vp+V?, (10b)
PT,—w=V?2T, (100

SC+L Yyw=V2C+ yV?T, (10d)

wherew is thez component of the fluid velocity field.

01631

wheree is a small parameter serving therefore as a measure

of supercriticality. The Marangoni number is expanded near

the stability threshold as
M=My+M,oe?+Mye*+ .- .. (14)

The dependent variables and the growth rate are also ex-

panded into series of powers ef

(W, T,C)=(Vy,Ty,Co) + €(¥,,T,,Cp)

+64(\P41T41C4)+” ] (15)

0=t w,+ twst - -. (16)
The details of the following derivation are presented in Ap-
pendix A.

The dependence of the growth rate on the Marangoni
number arising from the zero value of the characteristic de-
terminant, see Appendix A, is determined by the quadratic
equation
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PSA3+[P+S—S(x+1)mg]Ag+1—(1+ x+xL Hmy=0,

PHYSICAL REVIEW E69, 016313 (2004

17

where A is the rescaled growth rate of the disturbance definedl gswoK 2 andmy=My/48. The explicit expression for

Ao(mg) reads

S+ 1mo—(P+8) + S(x+ 1)’ i — 25[S(1— x) — P(1+ x) Mo+ (S— P)?

0=

2PS (18
|
Equation (18) determines two instability modes, the 1
monotonic one and the oscillatory one, that will be next con- Xo=———————, (22
1+l L2

sidered separately.

A. Monotonic instability mode

SubstitutingA =0 into Eq.(17), we find that the mono-
tonic instability boundary is determined by the relation

Mo=4g 1+ y(1+L H] L (19

The critical value of the Marangoni numblek, is positive if
X= X1»

1
1+L° Y

X1~ (20

and negative ify<y;. Recall that in the case of the standard
thermocapillary effect ¢;=—do/dT*>0) the positive
(negative Marangoni number corresponds to heatingol-
ing) from below. In this paper we will consider only the case
of positive Marangoni numbers.

Differentiating Eq.(17) with respect toM,, we find that
at the critical Marangoni number

dAg [1+x(1+L )2
dMo  48P[1+x(1+L *+L"?)]

(21)

Thus, we find thatlAy/dMg is positive if x> x»,

M—M,

—B(1+yx)+ 78

and negative ify<y,. Note thaty;<x,<0 for any (posi-
tive) values ofL.

We come to the conclusion that in the cage y, both
Mgy anddA,/dM, are positive. This means that the growth
rate is negative foM below the critical valuevi, and posi-
tive above the critical value, i.e., the boundawy= M, is
indeed the threshold of the monotonic instability of the equi-
librium state.

If the parametery lies in the intervaly;<x<yx,, then
M>0 butdA,/dMy<<0. It follows thus thatM is actually
the boundary obtabilizationof the monotonic mode which
is unstablebelowthat boundary and stab&boveit. We shall
see in the following that in the case<y, an oscillatory
instability appears with the threshold lower than that given
by Eqg.(19).

If x<x1, the instability appears for negative valuedvbf
BecausedA,/dMy<0, it is developed in the supercritical
region,M<M,<O0.

Equation(A12) yields the expression for the growth rate
Wy,

M. 1 4
8 15Mo K

X[P(1+x)+Sy(1+L H] 1,

wp=| — B(1+x)+ ——=K2my2—

(23

where mg=M y/48. Equation(23) can be rewritten in the
form

K1+ x(1+L"1H]?— %k4p[1+x(1+ L™Y]

wWoy=

It follows from Eg. (24) that the growth rateo has a local
minimum atk=0 and its value there is negative, i.e., the

instability is long-wavelength, when the denominator in Eq.

(24) is positive and thé3 term in the numerator is negative.

e*P[1+ x(1+L 1+L"?)]

(24)

B. Oscillatory instability mode

The oscillatory instability boundary is determined by the
relation A= *i€)y, where the oscillation frequend, is

Thus, the condition for the long-wavelength instability to bereal. Using the dispersion relati¢7), we find that oscilla-

monotonic isy> y».

tory instability appears in the region1<y<y, at
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481+L° 1Y
0T (25)
L™ (1+x)
with the frequency
1\/ 1+ y(1+L +L7?)
0"sV 1+x (26

Details of the derivation in the case at hand are given in

Appendix B.
As in the case of the monotonic instability, the solvability

condition at fourth order of approximation determines the

correctionw, to the eigenvalue. We present here only the
expression for the real part of the coefficieny which de-
termines the growth rate of the oscillatory instability

B

2P

(1+ x)K2M,
96P

K*moF (x)
120P2s

R w,]= (27)

wheremy=M,/48 and

F(x)=x[2(S?*=SP+P?)—3(S+P)]+P(—-4S+2P-3).
(28)

In order to ensure that short-wavelength disturbances dec
one has to require thdt(y)<0. Recall that the oscillatory
instability exists in the interval-1<y<y,, where y, is
determined by Eq(22). The functionF(x) varies linearly

between the values that it takes at the ends of this interva

namely,
F(—1)=S(—2S-2P+3)
and
F )= — S?P(4S+4P+3) 29
S+ SP+P?

Thus, the oscillatory instability is long-wavelength in the
whole interval of its existence, i5>3/2— P, which makes
F(—1) negative. The Schmidt numb8is positive and typi-
cally large, and this condition is therefore satisfied.

It is important to emphasize that the frequency of oscilla-
tions wg at the onset of instability i©(e?), while the char-
acteristic growth rate of oscillations Ref) is O(e*). This
result will be employed in the nonlinear stability analysis of
the oscillatory instability, see Sec. VI.
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FIG. 1. Neutral curves for both long-wavelength monotonic and
oscillatory instabilities and for various values of the inverse Lewis
numberL ~1. The thick and thin curves correspond to the mono-
tonic and oscillatory modes, respectively. The solid, long-dashed,
and dot-dashed lines correspond_to! = 20,100, and 1000, respec-
tively.

Bumber for the oscillatory mode decreases with' reach-

ing a limiting curveM ,=48(1+ ) ! in the limit of L™!

—o0, On the other hand, the critical Marangoni number for
he monotonic mode increases with* when y<0 and de-
reases whe>0.

IV. LONG-WAVELENGTH NONLINEAR ANALYSIS FOR
MONOTONIC INSTABILITY

In this section we study the nonlinear evolution of the
three-dimensional system in the regime where the instability
is long-wavelength. We use the technique of asymptotic ex-
pansions to derive a set of nonlinear evolution equations de-
scribing the spatiotemporal dynamics of the system.

The set of dimensionless governing equations and bound-
ary conditions, Eqs(7), is given by

Ut P (U V)utwu )=~ Vp+V2u+u,,, (303

Wi+ P (u- V)w+ww,]=—p,+ V?w+w,,, (30b

Figure 1 summarizes the results of linear stability analy-

sis. It displays the neutral curves for both long-wavelength

monotonic and oscillatory instabilities far *=20,100, and
1000. For a fixed value df ! long-wavelength monotonic
instability sets in fory> y,. In the particular case of a pure
liquid corresponding tgy=0 the instability{30] is known to
be monotonic with the critical Marangoni humblgry=48.

At x= x, the long-wavelength oscillatory branch bifurcates

off the monotonic one and manifests the instability threshold

when —1<y<x,. This long-wavelength oscillatory insta-
bility disappears whery=—1. The bifurcation structure re-
mains the same for ani '>1. The critical Marangoni

V.-u+w,=0, (309
PO,+u-VO+wO,—w=V?0+0,,, (300
SS+L YU VS +wS,+ xw)
=V +3,,+x(V?0+0,), (308
u=w=0,=3,=0 at z=0, (30f)
w=3,-yBO=0, ©,+BO=0,
JU+MV(O—-2)=0 at z=1. (309

016313-5
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The functions®(x,y,z,t) and%(x,y,z,t) constitute the de- G=—x(1+L H[F=({FN)], (38)
viations of temperature and concentration from their respec-

tiye quilibrium yalqes, Eq(9), and vectoru is a two- where((F))=L [ [F(X,Y,7)dXdY, and the integration is
dimensional projection ofv onto the x-y plane. Here carried out over the domain of periodicity in theY plane
subscripts denote the derivatives with respect to the corress the arear. The relationship38) shows that the average
sponding variables,V=(dx.d), V?=d;+d;, and V*  temperature disturbance per unit afé&)) may change in

=(V?2 . . o time due to imperfect insulation of the boundaries, however,
The Marangoni number near the critical point is repre-the average concentration disturbance per unit 4(63)
sented in the form =L£71JG(X,Y,7)dXdY does not change in time in the

absence of solute sources.

Applying the solvability condition at second order yields
the set of evolution equations in terms of the functidi®
=F(X,Y,7) andE(X,Y,7), when the latter has the meaning
of the mean-flow stream functioffior details, see Appendix

M=Mg+M,e?+Mye*+- -, (3D

where My is the value of the Marangoni number at the
threshold of instability, and is a small parameter serving
therefore as a measure of supercriticality.

Introduce the rescaled spatial and temporal variables byc):
X=ex, Y=ey, Z=z, 7=¢". (323 aP F+ B(1+ x)F+ y,V?F + y,V*F + 33V - (VFV?F)
The Biot numbeB is assumed to be small, +y4VA(|VF|?)~ ysV - [VF|VF|?]
B= €4ﬂ. (32b) + ’)/6( axF ﬁyE_ &YF&XE)
The appropriate scaling for the fluid velocity and pressure =PxL Y (1+L"Ha(((F))), (393
fields{u,w,p} is chosen as
2 2 936 2 2
u=eU, w=e?W, p=II. (320 V2E=— 35 (WFVZ0xF —FV?9F),  (39b)
The dependent variables are represented as the series in pow-
ers of e, where
0 2 4
Uy ju® Ut U a=1+x(1+L7HL72),  y3=EMy(1+x+xL Y
W W w2 w4
_ 2 4
0| |e@| lea| T ew| T o= (1+x+xL7Y),
S 3.(0) (2 S (4
33 ClbxtxLt I+ x(1+LTHHLTY)
BT Ep T 10 !

The details of the derivation are given in Appendix C.

The solution of the problem at zeroth order is
Cl+xaLlTt . [1+x(1+L 1 +L"?)]

OO=F(X,Y,7), SO=G(X.Y,7), (34) a0 5 '
0= - —
U®=12m,z(2-32)V(F-G), (359 o= 1+ y(1+L Y (1+L 2],
WO =12m,z4Z—-1)VA(F-G), (35b)
ye=—2[1+x(1+L1+L"?)]. (399
MO=110(x,y,7)=—72m(F - G), (36)

Equationg39) will provide us with the details of the weakly
nonlinear dynamics of the system when the instability is
monotonic. Note that Eq9399 and (39b) are similar to
those derived in Ref[25] in the case of long-wavelength
Marangoni instability in a pure liquid when the terf(F))

wherem,= M /48 andF andG are functions yet unknown to
be determined later.

The solvability condition gives the critical value of the
Marangoni number

_ —1yq-1 vanishes.
Mo=48 1+ x(1+L )] As it is known from the simulation of the long-
thus wavelength Marangoni convection in a pure liquid, the mean
flow is of minor importance in the case of regular patterns,
mo=[1+x(1+L"H] L. (37 but it is crucial for the dynamics of defects and for the de-

velopment of a spatiotemporal chal@l]. In the case of a
It follows from the solvability condition at second order that two-dimensional layer lying in th&-Z plane Eqgs(39) re-
functionsF and G are related to each other via duce to the single evolution equation

016313-6
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aPF +B(1+x)F+ 71(;§(F+ 72(;;1(; the critical wave number ik=1. We consider here the dy-
namics of the system at large times, therefore the right-hand
+(5¥3+ ¥a) 9L (IxF) 21— 3 vs9x[ (IxF)®] side term in Eq(419 vanishes.
=PxL™H1+L™Y a,(((F))). (40)

A. Rolls versus squares

It is important to emphasize that the dispersion relation giv- We denote ag$ a small parameter being a measure of the
ing the relationship between the linear growth rate of thedistance between the critical and actual values of the Biot
disturbance and its dimensionless wave number, as obtaingfimberb=1- 52, scale time asr= 6%r;, and seek for a

from Eq. (40), is identical to that given in Eq24). solution of Eq.(41a in the form of series in powers of,

In the limit of large Prandtl numbeR>1, Egs.(39) re- = §F, + 6°F,+ 63F5+---. Substituting these into Eq.
duce so that both theg term in Eqs.(398 and(39b) vanish. (413 one obtains at first order ia,
Under the transformation
ViF,+2V2F + F,=0. (44)
T:CITl! F:CZJ:! (X,Y):C3(§,ﬂ),
The solution for Eq(44) is now chosen as

with
40Py, 7o) 12 2y, 12 F1=Aq(7)c0s{+By(7)C0S7, (45)
(P (1) (2" o
71 Y2 71 whereA;(7) andB,(7) are real amplitude functions of the
, . , planform. Note that the planform is a roll when eithgy
Eq. (398 is rewritten in the form =0A;#0 or A;=0B;#0. The planform is square when
F, +bF+2ViF+ ViF— V- (V. F|VF|?) Bi=As. , ,
! Elimination of secular terms in the problem at third order
+5,Vi- (VWFV2F)+5,V2(|V,.F|?) in ¢ yields a set of the amplitude equations in the form
=xL H1+L Ha ™t o, ((F)), (418 dA; . )
__:Al_FlA _FzAlB y
d 1 1
where T
—4 —4
Y3C3 C1C ¥4C3 C1Cp B(1+x)cy dB, 3 2
- = = —_:B_FB_FBA, 46
S1 wp %2 wp b g go b1 tiBim e (46)

(41b)
where
and V,=(d;,d,), Vi=dz+d5, Vi=(V5)? Note that Eq.
(419 is similar to that derived by Knoblodi24] for the case  T'y=%[27+4(s;+25,)2]>0, T'p,=3(1—2s3+4s;s,).

of long-wavelength Marangoni instability in a pure liquid for (47
infinite Prandtl number and for large times, so that the right-
hand side term there vanishes. In the particular case of the roll pattern in thelirection,

In what follows we will enforce periodic boundary condi- A1#0,B;=0 the set of amplitude equations, E@6), re-
tions for F(X,Y,7) in the X-Y plane. Integrating Eq399  duces to a single equation
over the domain of periodicity yields

dA;
aPa(((F))+B(L+X)((F)) oA TAL (48
=PxL Y 1+L Yo, ({((F))), (42
L VP A similar equation is obtained in terms Bf, for the rolls in
which reduces to the # direction. As the coefficient of the cubic term of Eq.
. (48) is positive for all values of the Soret numberand the
I(((F)))=—BP (F)). (43 inverse Lewis numbel ~2, roll patterns bifurcate supercriti-

cally. The amplitude of the corresponding steady roll pattern
is obtained byA; =1/\3+4(s;+ 2s,)°/9.

In the particular case of the square pattekp=B,, the
amplitude equation obtained from the reduction of E¢§)

Thus, ({(F))=cons exp(—BP~17) and ((F)) vanishes in
the limit of large times.

V. BIFURCATION ANALYSIS is
In this section we derive nonlinear amplitude equations dA
i - 1
for patterns of three !(lnds, _n_am_ely, rolls, squares, and hexa ——=A1—(F1+F2)Ai, (49)
gons, and study their stability in the case of large Prandtl dr

number. To achieve this goal we notice from E4la that
the critical value of the rescaled Biot numbehis 1, while  where
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[, +T,=[45— 3252+ 88s;S,+ 1655]. (50) S,—S; 9 s,(975,+113,) s,(5.+25,)
Mmoo Mgt T T g
Substitutings; ands, from Eg. (41b) into Eq. (50) and (56)
taking the limit of large inverse Lewis numbker !, Eq.(50), -
yields andA,() is a real amplitude of the general solution of Eq.
(44) at second order id.
C+T.= 16+ v2L 2+ 302P 2L ~3 _ Defining a fgnctionA(T) vig_A=A1+. _5A2 one can com-
12 25p2[ X X bine Eq.(55) with the solvability condition at second order
in 4 to obtain
+ P2(1125+268¢°L %], (51)
dA
which is positive. Thus, in the limit of largé ~! square d—_zsgr(é)A+)\2A2—5)\3A3, (57)
T

patterns bifurcate supercritically, and the amplitude of the
emerging pattern i&;=B;=(I"';+T,) "2

We now turn to the study of stability of both roll and
square patterns. The fixed points of the dynamical systerﬂ1
[Egs.(46)] (A;=*T';*2,B;=0) and A;=0B,=+I;'?
represent roll patterns, whilgA;=B;==(I';+T,) *?]

being accurate to(45?).

Turning back to the values of time; anda= 5A being

e amplitude of the hexagonal pattern one obtains the am-
plitude equation in the form

represents a square pattern. da
Linear stability analysis of both the roll patterns reveals §=5a+ Npa2—\gal. (58
that they can be stable only whern<@';<1. However, in !
the relevant limit of large inverse Lewis numbérs*, It is found that in the limit ofL~1>1 the coefficient\ is
ositive.
1-Ty= - ¥MZAL8+0(L )<0, (52

It follows from Eq. (58) that the amplitudeag of steady

which implies that the roll patterns are unstable. hexagonal patterns satisfies the relationship

Stability analysis of the square pattern shows that one of 5=Nga2—\,a,. (59)
the eigenvalues of the stability matrix is always negative, s

while the other is negative wheln,<T';. In the physically  Thus two possible steady hexagonal patterns can emerge for

relevant limit ofL = 1>1, ,
A5
I,—T=$Mox*L 8+0(L™")<0. (53) 6=A=— =

N, (60)

Thus, the square pattern is stable in the limit of latge". |y the fimit of large inverse Lewis numbets ! one obtains
This result obtained for the case of binary liquids matches

that obtained for pure liquids in the case of small Biot num- 225 1070685L

— _ 2
bers. A=~ 9508 " 25201032 O (61)

B. Hexagons The stability analysis in the framework of the amplitude
equation(58) shows that in the subcritical regiaf<0 one

of the solutionsag for Eq. (59) is linearly stable, as well as

: . ; .the trivial solutiona=0 corresponding to the quiescent state,
while the sought form of the solution remains the same as iMhile the other solution of Eq59) is unstable. In the super-
Se\c;\.IVA. follow th vsi ted by Shiil critical region 6>0 both of the solutionsa,, are stable,

_ Ve now Toflow the analysis presented by iman anc\Nh”e the solutiona=0 is unstable. Note, however, that the
Slvashlnsl_<y{25] for stablllty of hexagonal patterns pbtamed ansatz54) and the amplitude equatid68) ignore the phase
as a solution of Eg(44) at first order of expansion ia, disturbances that make one of the solutiagainstable. For

o £ \/57] a general discussion on stability of hexagonal patterns the
Fi=A(7)| cosé+2 (;osE COST , (54) reader is referred to Reff32].
We conclude with the study of the flow direction in the
— _ R stable hexagonal patterns we have investigated here. Accord-
whereA, () is a real function of timer, yet unknown. ing to Eq.(54), the sign ofF; in the center of the hexagon
Elimination of secular terms in the problem at third Orderpositioned aroundt= =0 coincides with the sign of,
in & yields while the stable branch of the hexagons amplitude, if the
dA phase disturbances are taken into account,as0 when
1 3 N,>0 andA;<0 when\,<0. As follows from Eqs.(56)
—=A1+2NAA—N5AT, 55 2
dr 1o oheTz Rt 9 nd (41b) A ,=(y4— ys)C3 “c1C,/(2aP), and therefore the
sign of A, coincides with that of y,—y3=—(1+y
where +xL™H/A0P+[1+ x(1+L "1+ L"?)]/2. In the domain of

Let us now choose a different definition of by b=1
— & and a different scaling of time according te=|4d| 4,

016313-8
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monotonic  instability, y>x;=—1/(1+L *+L"?), 1  wave numbers. Similar to the case of the monotonic instabil-
+x(1+L *+L"?)>0, and 1 y+ L *=[1+x(1+L" ! ity, we expand the Marangoni number in the form of ER{L)
+L"?%)]—-xL"%2>0. and introduce the rescaled spatial variables

Thus, we can conclude that the sign pf— y; depends
on P. If P<P,,P,=0.2(1+x+xL H/[1+x(1+L?
+L~2)], then\,<0, a cold spot emerges in the center of X=ex, Z=z. (63)
the hexagonal cell, and the flow is directed downwards. IfI ntradistinction to th f the monotonic instabilit
P>P, , a hot spot emerges in the center of the hexagonaln contracistinction to the case ol the Monotonic Instabiity,

cell, and the flow is directed upwards. Because in the physi\-Nhere it was sufficient to use only one “slow” time scale,

cally relevant case of “1>1, P, ~0.2. <1, and therefore 7= €%, the description of the oscillatory instability should
) * . )

W(£=0,7=0)>0 for practically anyP. In the oppositéun- be based on the consideration of two slow time scales,
physica) limit of L>1 we reproduce the resuR,=0.2

known in the case of a pure liquid. T=¢2t 7=ét (64)
VI. LONG-WAVELENGTH NONLINEAR ANALYSIS FOR Indeed, it was shown in Sec. lll that the frequency of oscil-
OSCILLATORY INSTABILITY lations isO(€?), while the characteristic growth rate of os-

— . . cillations isO(e*). The streamfunction is rescaled as
A. Derivation of amplitude equations

The present section is devoted to the derivation of the y=eV. (65)

amplitude equations governing the oscillatory instability. We _ o _ .
shall restrict ourselves to the consideration of two-1he details of the derivation are presented in Appendix D.

dimensional flows in the-z plane. Using the streamfunction ' "€ solution of the equations at zeroth order is given by
¢ and eliminating the pressure, we rewrite the system of

equationg30) in the form OO—F(X.T,7), SO=G(XT.7,

V2¢t+P71[‘//ZV21r/fx_ l/foZl/fz]=V4lJ/, (629

WO =12my(Fy—Gy) (22— 23, (66)
PO, + _ L h=V2 2 where F and_G are amplitude functions, yef[ .unknown, and_
Ot 40, 40,1 =770, &2 mo=M /48 is the rescaled value of the critical Marangoni
number.
S8+ L Y,3 — S ,— xih) = V23 + y V20 Substituting Eq.(25) for the leading-order threshold of
Z<X X<z X 1

(620 the oscillatory instability, we can rewrite the solvability con-
dition at second order as

Y=y,=0,=3,=0 at z=0, (620
L™ 'x—1 B
Fr=—7—FxxtmMoP 'Gxx, (67)
L P(1+x)
y=3,-yBO=0, ©,+BO=0,
L~ 1+2+ L ixy—1
Yt M(0,—3,)=0 at z=1. (620 Go= Xe o XZ Gy (69

Xtp(tr ) X L (1t )
In this sectionV?= 92+ 2.
According to the results of the linear theory, in the limit of ~ Substituting Eqs(66) and the solution of the problem at
small Biot numbers, Eq(32b), the oscillatory instability second order into the solvability conditions at fourth order,
takes place near the threshold in a narrow interval of smallve obtain the following amplitude equations:

2

1-my Mo B M, Mo 1 2
Qr+F,=—5—Quxt 5 Rax™ 5F = 285 (Fxx= Gxx) — 555 (13+ 4P+ 12¢) (Fi) xx
mg -1 -1 mg -1 1y 2 48mg 2
Mg Mg Mo(1+x) mo(l+x) mex
“‘Wps[(s_X)Fxxxx_PGxxxx]_ﬁ 1- 3 + P 3 L™ (Fxxxx— Gxxxx), (69
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1 mg 1 mox M x xmg( 4
Rr+G,=x st e Qxx‘*’(g‘ T) Rxx*‘@(Fxx_Gxx)+ 20P 1+ 5+13L 1 (GRxx
2 2 2
mox ., 4 ) mgx ., 4 48mg .
2

. 144 Mox -
—(x+2L " HGy}1x+ W(L 1G>2<Gxx_XF§<Fxx)+m[Gxxxx+(X_|— D Fsxxxd

+M 1+@(1+ )—@(1+ +xL H|(F — Gyxxx) (70
10P ) X)" 3 XTX XXXXT OXXXX) -
|
The solvability conditions foQ andR determine the evo- dF; , )
lution of the amplitude$ and G in the slow time scale-. Fz(wz—KﬂFﬂ —wo|F 19)F 1, (73

Note that a similar approach was used by C28] in the

case of Rayleigh-Beard convection. dF
-1

dr

=(wp— ko F_1|?— kol F4|)F 4, (74)
B. Traveling and standing waves

The crucial issues that can be addressed by means Qfherew,= w,, +iw.; is the linear complex growth rafev,,
weakly nonlinear amplitude equations are the type of bifur-getermined by Eq(27)], k1= k1, +ik1; and ko= Koy +1 Ko;
cation (supercritical vs subcriticaland the stability of spa- e complex Landau constants. The real parts of the Landau
tially periodic traveling and standing waves. These queStionéonstantylr and x,, determine the type of bifurcation and

are considered in the present section. _ _ govern the selection of a specified kind of waves, either trav-
The leading-order amplitude equations, which describ&jing or standing one. Indeed, taking

the oscillations on the time scale characterized by the vari-
able T, are linear. Thus, any superposition of waves with Fo=r.e%, F_,=r_,e'1 (75)
arbitrary wave numbers satisfy these equations. We restrict

ourselves taspatially periodicsolutions wherer;, 6;, j=+1, are real, and substituting EF5) into

F(X.r T):Fl(q-)e‘(KX*QOKZT)jL F,l(r)e‘(*KX*QOKZT) Egs.(73) and(74), one finds

+c.c., (71) dry

E:(wzr_Klrri_Keral)rly (76)
G(X,7,T) =, Fy(7)€/ (X 2K (7@l KX~ 0ok
dr, 2 2
+c.c., (72 a- =(wor— Ky Ty — Ko TPl (77
where (), and a, are determined by Eqg26) and (B1), ) ) , )
0 2 y Eqs26) (B1) (equations forg;, j==*1, are irrelevant A straightforward

27/K is the spatial period of the wav€,;(7) andF _(7) < | : ;
are amplitude functions, yet undetermined, and c.c. denoted@Pility analysis shows that the standing wave solutipn
CompleX Conjugate. =r,1=\/w2r/(K1r+K2r) IS Stable |f Klr+K2r>0, Ky
Substituting Eqs(71) and (72) into Eqgs.(69) and (70), = Kar, While the traveling wave solutions, = Jwy/kyy,
yields a nonhomogeneous linear system for functi@rand -1=0, andr;=0, r _1=Jwy /ky, are stable ifxy >y,

R. The corresponding solutions can be found in the form >0.
The direct computation yields

3 3
- 2
Q= 2 2 Qum(7)e/MXnok D, 24KAL(1+L)
=—3n=-3 ' — 2r _ 2y -1 -2
3 3
R= 23 23 Rn'm(T)ei(mKX_nQOKZT)- Kor=2Ky; -
m=-3 n=—

. . Recall that the oscillatory instability takes place when
For the pairs Q; 1,R; 1) and Q-1 ,,R_1 1) one obtains sets

of linear algebraic equations with determinants equal to zero. 1
The corresponding solyability conditions yield a set of non- X<X2= - ————<0.
linear amplitude equations 1+L 1+L~
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In the relevant case df<1, we find that the bifurcation of ceeds the valug,=—(1+L *+L"2) "1 y>y,, and the
traveling and standing wave solutions is supercritical only ifcritical value of the Marangoni number ¥lg,,=48 1

x belongs to the narrow interval +x(1+L" Y]t The oscillatory instability sets in when
—1<x<yx» and the critical value of the Marangoni number
Xe <X<X2: X&=—3L+O(L?). (78) IS Mgosc=48(1+ L)(1+ x) %, while the frequency at the

threshold is determined by E@26). In the intervaly<x;

In the latter case, standing waves are unstable, thus the trav=— (14 L) ! the monotonic mode is unstable when the
eling waves are the selected kind of flow. Otherwise, a subvalue of the Marangoni number is below the critical value
critical instability of the equilibrium state, which cannot be which is negative.
studied by means of a weakly nonlinear theory, takes place. Long-wavelength nonlinear analysis of both monotonic
and oscillatory instabilities yields sets of nonlinear evolution
equations that govern the spatiotemporal dynamics of the
system. In the case of monotonic instability, as in the case of
, o _a pure liquid, one of the two equations is of evolution type,

We now discuss the distinctions between the amplitudgyhile the other is elliptic and describe convective effects in
equations obtained for the Marangoni convection in a binaryhe layer that vanish when the Prandtl number of the liquid is
liquid and those obtained for a pure fluid. large. Bifurcation analysis based on the evolution equation

The main specific feature of the Marangoni convection infor a binary liquid with large Prandtl number yields ampli-
a binary liquid is the existence tiireeslowly varying fields, tude equations for roll, square and hexagon patterns. It is
namely, the fields of temperatufe concentratiorG, and the  shown that roll patterns are found to be unstable, while
mean flowE. In the case of a pure liquid, only two fields, square patterns are stable in the physically relevant limit of
and E, are present. A peculiarity of the concentration is itslarge L ~1. Hexagonal patterns are found to bifurcate tran-
global conservation due to the absence of solute sources. scritically, and a steady stable hexagonal pattern is possible.

In the case of the monotonic instability, the fielgndG ~ We expect that the hexagonal pattern appears in the subcriti-
are directly related to each other by the expression given ifal region corresponding to E(0), and it is replaced by the
Eq. (38). Therefore, the fiel@ can be easily eliminated from Square pattern at a finite value bf—M,. Because the sta-
the set of governing equations, and the latter are similar t®ility analysis based on amplitude equations is not reliable
those obtained for a pure fluidee Refs[25,26)), except for for finite M —M,, we postpone the elucidation of this ques-
the additionalglobal-control term on the right-hand side of tion to the future strongly nonlinear analysis. In the case of
Eq. (393, which turns the amplitude equation into an inte- oscillatory |n$tab|I|ty the set of nonllne;ar equations consists
grodifferential one. However, this feature of the amplitudeOf two equations of evolution type. It is found that bifurca-

equationg39) does not affect the long-term dynamics of the:'r?g ?;nb%th siand<|ng a\r;v?]érrivellrlg_vséall_visbléng;Jp?rr]crtlﬁicsal N
system, because of the relatit4B). YEX s =X = X2, X :

In the case of the oscillatory instability, the Ieading-orderrange of the Soret number standing waves are found to be

lati h rerized bvime delavdetermined b unstable, while traveling waves appear to be stable. Numeri-
oscillations are characterized bytime delaydetermined by ¢ study of the nonlinear evolution equations derived in this
the complexparametera, [see Eq.(B1)]. Two-component aner s not attempted here and will be the scope of the
functions F,G) and @Q,R) are used for the closed descrip- f ture work.

tion of the system evolution. In the case of the Rayleigh- Finally, in contrast with the case of Marangoni convection
Benard convection, such functions have been used by Co pure liquids at the present time there are no experimental
[29]. Note, however, that the final Landau equatiér® and  studies on the Marangoni convection in thin layers of binary
(74) are written in terms of thescalar amplitudesF; and liquids available in the literature. Based on the importance of
F _1, because the spatial Fourier components of the fields these systems in the process of crystal growth such experi-
andG are not independent. Similar amplitude equations werenents would be more than desirable. We hope that the results
earlier derived in the context of the RayleighrBed convec- obtained in this paper will stimulate the researchers to carry
tion by Pismer{28]. out experiments with relevant binary liquid systems and to

This paper presents linear and weakly nonlinear analysegompare their findings with those presented here.
and an investigation of pattern formation in long-wavelength
Marangoni instability in a binary liquid layer open to the ACKNOWLEDGMENTS
ambient gas phase with poorly conducting boundaries, when The research was partially supported by the Israel Science
the Soret effect is taken into account. The liquid layer isFoundation founded by the Israel Academy of Sciences
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Linear stability analysis reveals that both monotonic and
oscillatory modes of instability exist here. It is found that The resulting set of equations and boundary conditions is
monotonic instability sets in when the Soret numlyeex-  written as

VII. DISCUSSION AND CONCLUSIONS

APPENDIX A: LINEAR STABILITY ANALYSIS—
MONOTONIC INSTABILITY
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T" 262KV + KV = we? (V" — 2K2T),  (Ala)

T — 2K T=we?PT+ie2KT, (A1b)

C"— 2K2C+ x(T"— KT = »e?SC—i KL 1V,
(Alc)

¥=0, ¥'=0, T'=0, C'=0 at z=0, (Ald)
T=0, T'+BeT=0, C' —e*yBT=0,
V" +iK(Mo+ €M+ ---)(T-C)=0 at z=1. (Ale)

We integrate Eqs(Alb) and (Alc) over the interval & 7

<1 and the resulting integral relations serve us as solvability At second order the equations and boundary conditions

conditions
(PT) 1 ~ (T)
€@l (s +'K62<—xl- HEHEKT B4 4T
(_:ﬂzl)
=Bl o | (A2)

where(f)=[5fdz.
At zeroth order of approximation one obtains

PHYSICAL REVIEW E69, 016313 (2004
Ch+xTy=0, (A3c)

Wo=0, W,=0, T,=C4=0 at z=0, (A3d)
\I’OZO, \I’6+|KMO(TO_C0):O, T(,):O, C(l):O
at z=1. (A3e)

The solution of the problem, Eq6A3), is given by

Vo=3:iKMo(a;—a,)z%(1-2), To=a;, Co=ay,

(Ad)
wherea, anda, are constants yet unknown to be determined
later.
read

P —2K2W = wo Wy, (A5a)
T)—K2To=iKW¥y+ woP Ty, (A5b)

Cy—K2Co+ x(Ts—K?Tg)=—iKxL MW+ 0,S G,
(A5c)
¥,=0, ¥4=0, T,=0, C,=0 at z=0, (A5d)
\PZZO, ,2,+|KMO(TZ_C2)+|KM2(TO_C0):0,

T,=0, C,=0 at z=1. (A5e)

vy =0, (A3a)
, The solvability condition, Eq(A2), at second order of
To=0, (A3b) approximation yields
a 0 A AoP+1-mg Mo 6
A = ith A;= A
a7l 0] W ATl g b mo(14LY) AgS+1-moy(1+L7Y)) (A6)
|
wheremy=M /48 andwy= A oK?. Co=by+12y(1+L HKA 24— 25— 47D,
Equation (A6) yields the relationship between the con- (A8C)

stantsa, anda, in the form
a,=—x(1+L Ha,. (A7)

In what follows we will choosea; =1, so thata,=— x(1
+L7Y).
The solutions of EqsiA5) read

V,=48K3( 42— 52°- &72°)

+iK[12(b;—by)mg+ M,m, 1(2—2%),  (A8a)

T,=b;—12K%(574— 52°— %79, (A8b)

whereb; andb, are integration constants.
The solvability condition, Eq(A2), at fourth order of
approximation yields

l_mo mo
x(1+moL™1)

by
Az( bZ) =r W|th A2: 1—XmOL_1

(A9)

and
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r APPENDIX C: LONGWAVE NONLINEAR STABILITY
E(r ) ANALYSIS—MONOTONIC INSTABILITY
2
In terms of the variables and parameters defined by Eq.
M, K2 (32, Egs.(30) read
Z2aMo = 7z~ (Pw+ BK ™2
48 15 €*U_+ e2P Y (U- V)U+Wa,U]= — VII + €2V2U+ d,,U,
- 4—§XL‘1m51+ TEXL HHSopx(1+ LK 2
e*W,+ 2P (U- V)W +Wa,W]
(A10) = — e 29,11+ €2V>W+ 95 ,W, (C1b
As operatorA,; is singular, Eq(A9) has a solution if and V.U+3d,W=0, (C10

only if vectorr is orthogonal to vectos,
€*PO_+€2(U-VO +Wd,0 — W)= €?V20 + 35,0,

( l—l—X) (C1d)
s=| _1 |, (A11)
€*SS _+ 2L HU- V2 +Wa,S + xyW)
being an eigenvector corresponding to a zero eigenvalue of =€?V23 + 07,5 4 x€?V20 + xd7,0, (Cle
the adjoint operatoA) ,
U=W=9,0=4,5=0 at Z=0, (C1f
r.s=0. (A12)
W=4,3— xBO=0, d,0+BO=0,
APPENDIX B: LINEAR STABILITY ANALYSIS—
OSCILLATORY INSTABILITY dU+MV(0-2)=0 at Z=1, (Clg

The constantg,; anda, in Eq. (A7) can be chosen as  where hereafteW =(dy,dy) and V2=a§(+ a\z(.
We integrate Eqs(C1ld) and (Cle over the interval O
1-L Ty —iQeS(x+1) =<Z=1 and the resulting integral relations serve us as solv-
a;=1, a,= 1oLt - (BL)  ability conditions

. . _ 4 +e? . + + W) — €2(72
The solutions of Eqs(A5) in the case of the oscillatory Pe'o{8)+e(VU-VO+ W30 +W)=eX(V70)
instability read —(8,9)|525=0, (C2q

5

_3?2+Z4 Se*9 () + €L HVU- VI +Wi,3 + yW)

—eX(V?2 +xV20)=0, (C2b

V,=iK3(1+iQuP)(2+iQg)

6

1+ x(1+L 7 +L72) iQ,
: _ %o

L™ Y1+ y) 2

+iK3(1+iQyP) 2

z

where here or{f)=[3f dZ. It should be noted that the total
contribution of the two terms containing the second deriva-

61 y(1+L 14072 4 10, , ';\r/es wrtjh_ respectt:dln Eq. (C2) vanishes due to the bound-
— + y conditions aZ=1.

S L Y (1+yx) 5 5 At zeroth order of approximation reckoning from Eg.
_ (C1b) that 9,I1(®=0, one obtains
12K (1+L71) b b
+ m( 17b2) d,VO=v11O 5, WO=5,113), v.UO+5,WO=0,
(C33
iIKM, L™ 1+ ) (1+iQqP)
+ 4 1+L_1 (22_23)1 (Bza) (922(")(0):0. (9222(0)“‘)((922@(0):0, (Cgb)

u®=0, w®=0, 4,09=0, ¢,35@=0 at z=0
=p,— 2 i 15415 1.2 ’ v Yz 4 '
To=b1— 12K (1+iQ¢P) (552"~ 352>~ 322°),

(B2b) W©=0, 3,U0+M;V(@©O-30)=0, 4,60=0,
Co=bo+12¢(1+L HKA(1+iQoP) (L2~ 55— 477, 0,50=0 at z=1. (C30
(B2¢)

The solvability condition, Eq(C2), at the zeroth order of
whereb, andb, are integration constants. approximation yields
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0 H 1-mg Mg
AV = ith A=
o) Wi Y(1+L tmg) 1—xL"tmy)’
F
V=V? g (C4)

Equation(C4) yields the relationship between the functions

F and G in the form

G=—x(1+L HIF=((F)1, (€5

where((F))=L "1 [F(X,Y,7)dXdY and the integration is
carried out over the domain of periodicity in theY plane

of the areal. The relationshigC5) shows that the average

temperature disturbance per unit ak€é&)) may change in

time due to imperfect insulation of the boundaries, however

the average concentration disturbance per unit at&>

=L fG(X,Y,7)dXdY does not change in time in the

absence of solute sources. It is noteworthy that &)

follows from Eq.(C4) when the conditions of periodicity in

the X-Y plane and boundedness BfandG are imposed.

At second order the equations and boundary conditions,

Egs.(C1), read
9,0 =-v2uO@+vII@+p-1[(UO.v)u®©

+W(®4,U)7, (C6a

972 WP) = —V2WO) + 5, TTH + P I(UO). v)wWO

+ WO g,W0)], (Céb)

V-U®@+9,WP) =0, (C60)

3770@)=-v20 )+ (U©®. VOO +W©5,0© W),
(C6d
97723 =-v25O—(v200+4,,0(%)
+L Y U@ v O+ W05,3 04 )W),

(Cée
u@=0, wW®?=0, 4,0@=0 4,5@=0 at Z=0,
(Cef)

w@ =0,

I UP+ MV (0@ -3@)+ M,V (0O-3)=0,

,02=0, §5,5@=0 at z=1. (C69

The solutions of Eqs(C6) read

0@ =Q(X,Y,7)+(§—3Z%)V*F+mypsVH - VF

+mop,V?H, (C7a

PHYSICAL REVIEW E69, 016313 (2004

SO=RXY,7)+ (- $Z2) VA F+G)
+ m0L71p3VG -VH _XL71m0p4V2H _X®(2),
(C7b

VJ+24mypsV V2H + ZV[48myR

1
@=|Z7z2_
u (ZZ 4

2
0

7
—48mp(1+x)Q—MyH]+ PeV(IVHI?)

P

144m3 144m3
5 P7VHV?H+—

—(1+x)V(VH-VF)],

+ Z[L " V(VH-VG)

(C70

(2) 2 4 202 L

2

12my 2 2 2
—-R} ~ 35p P9V (|VH[*)+p,V-(V°HVH)]

an
+—272V2[(1+ x)(VH-VF)—L Y VH-VG)]
+p.V2Y, (C7d
1 =12my(32%—2Z)V2H+J, (C7o

whereH=F—G,
p1=322—3Z5 p,=—1475+287°-1277- 2872,

ps=42°-32'~3, py=2'-32°~ %,

ps=32'= 3204 A7, =12~ 2%+ B2~ 47,
b= — 424+ 82512 32,

Pg=3Z5-57%+272, pg=142°-2125+97"— 1472

andJ=J(X,Y, ), which satisfies the equation

mg

35P

—3M,V2H+72mV R~ (1+ x)Q]

+ 2 miVI L 'VH-VG—(1+x)VH-VF].
(C8)

V3)=-— [432V2(|VHI|?)+ 936V - (V2HVH)]

The solvability condition, Eq(C2), at fourth order ine
written in vector form yields
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0 . PF . BO© X (UO). VO + W©)5,0@ —WR) + YO ©). U@ y20@) .
0| =9 sG 0 (L=1(UO). TS L WO00,3 @) W@+ v3 0. @) —v2(s@ 4 yo@) | €9
|
Equation(C9) can be recast into the form v=v,=0,=3,=0 at Z=0, (D1d)
Q V=3,-€*vBO=0, O,+e'O=0, V,,+M(Oy
A, V3| R|=T, (C10
-24)=0 at Z=1 (D1e
where The boundary-value problem, Eq®1), is solved using
the asymptotic expansion in the form E@3). At zeroth
1—mp(1+y) mo order of approximation we obtain

A2= | mox(1+x)L 2

1—moXL1) - (C1Y
The Fredholm alternative for EqEC4) and (C10) yields the
orthogonality of vectors ands,

1+x
r-s=0 wheres={ _1 |&(X,Y,7) (C12

is the eigenvector corresponding to a zero eigenvalue of the

adjoint operator] .
Equation(C8) can be rewritten as
mg
- 35P

+72myV[R—(1+ x)Q]

Vi= [432V(|VH|?)+936V2HVH - 3M,VH

+28m2V[L VH - VG—(1+x)VH-VF]+],
(C13

where V-J=0. The vectorJ is divergence-free and two-
dimensional, and thus can be written in terms of a single

function E=E(X,Y,7) asd=(dyE,— dxE).

APPENDIX D: LONG-WAVELENGTH NONLINEAR
STABILITY ANALYSIS-OSCILLATORY INSTABILITY

Equations(62) are rewritten in the rescaled variables up

to O(€*) terms in the following form:
€V 777+ €M (W 22,4+ V) + P H X (W V¥ 72— V¥ 727)
+ e (V¥ yxx— ¥ yxPxx2)]

_ 2 4
=W2727t 26 Wyxxz7t € Wyxxx,

(D1a)
€2P®T+ €4P®T+ €2WZ®X_ Ez\Px®z+ 62\PX

:€2®xx+ @Zz, (le)

62[SET+ L_l(q’zzx_ \I’Xzz_X\I’X)] + 64827-

= €% xxt+ 277+ X(€20xx+ O 77), (D1o

v, =0, (D2a)
09)=0, (D2b)
3P+ x08)=0, (D20)

vO0=0, v®=0, 0®=0, 3@=0 a z=0,
(D2d)

vO=0, ¥H+M0-2)=0, 0P=0,

s®=0 at z=1. (D2e)
At second order the boundary-value problem reads

2 0) (0 — 1 (0)gs (0 0)gr (0
W7+ 2W 7=V PTHY DU v QW D)),

(D3a)

02+0Q=PoP+vPe©+w® (D3
2@ +3Q+ x(0F +0Q)

=sEP+SP I PER—x v (), (D39

v@=0, ¥@P=0, 0P=0, 3@P=0 at z=0,
(D3d)

V=0, WH+M(0P -2+ M0 -3)=0,

0@=0, 3P=0 at z=1. (D3¢
The solvability condition for the subsystem of equations and
boundary conditions determinin®(® and 3(? gives the
following leading-order amplitude equations that govern the
evolution of the temperature and concentration disturbances,
F andG, on the time scald@ = €t,

Fr=—P Ymy—1)Fyx+moP 1Gyy, (D4)
Gr=x(S™ +mgP 1) Fyx+ (S 1= xmeP ™) Gyx,

(D5)

where my=M_y/48. This linear system of equations repro-
duces the results of the linear stability analysis, &7).
The solution of the boundary-value probléid3) reads
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3 1.1
(2)— _ _75 4_ "2,
0 Q(X,T,T)+m0( A A

2
X (Fyx— Gyx) +Mg| —3Z%+423— g) Fy(Fx—Gy),

(D6a)

3 2

(@)=
v 140P

PHYSICAL REVIEW E69, 016313 (2004

3 1 1
(2)— -1 —75_ 54, T2 __
S@A=R(X,T,7)+ x(1+L )mO(SZ %+ 52 15)

-1 4 3 2
X(Fyx— Gyo) +moP ™| —32%+42%— &

X (Fx=Gx)(SGx—xPFx), (D6b)

{Gy[ 35M ;P +48m3(19+ 21S+ 21P(1+ x) + 01(Z)) Fyx— 48m3(19+ 425+ q1(Z)) Gyx]

+Fy[ —35M,P— 48m(2)(19+ 42P(1+ x) +qq(Z))Fxx+ 48m(2)(19~|— 21S+21P(1+ x) +091(2))Gxx]
+28Mg[ 60P(Ry— Qx) + Paa(Z) (P 1= xS™HF xxx— S 'Gxxx)

—(2P0y(Z) = 2Pmy(1+ x+ xL ™ H +my(1+ x)d2(Z))(Fxxx— Gxxx) 1},

where q1(Z2)=—-6Z—622+82%-62%0,(2)=3+2Z
—372, Q(X,T,7), andR(X,T,7) are unknown functions.

At fourth order we shall write only the boundary-value

problem for®® and>®),
0+0@=PP+PEV+¥PeQ)+yPe@
~vOe@+p@ (D7a)
S+3Q+x(05) +0)

=53 +530 4+ " Yw@sQ+ P52

— w3 @ @), (D7h)
o¥=0, 3M=0 at z=0, (D70)

0M+p00=0, 3P-—ype®=0 at z=1.
(D7d)

(D60)

Integrating equations ovet and using the boundary con-
ditions, we arrive to the following solvability conditions:

PF.+P(O@)1+ (¥ @)+ (W0 @) —(0@) -+ BF
=0, (D8)

SGHS(E@) =L (@) +L WP @)y
_<2(2)>XX_X<®(2)>XX:01 (D9)
where the identity

(‘I’zx_ ‘Px®z> :<‘I’z>x

was used to simplify the algebraic derivations.
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