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Hysteresis and precession of a swirling jet normal to a wall
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Interaction of a swirling jet with a no-slip surface has striking features of fundamental and practical interest.
Different flow states and transitions among them occur at the same conditions in combustors, vortex tubes, and
tornadoes. The jet axis can undergo precession and bending in combustors; this precession enhances large-scale
mixing and reduces emissions of NO'o explore the mechanisms of these phenomena, we address conically
similar swirling jets normal to a wall. In addition to the Serrin model of tornadolike flows, a new model is
developed where the flow is singularity free on the axis. New analytical and numerical solutions of the
Navier—Stokes equations explain occurrence of multiple states and show that hysteresis is a common feature of
wall-normal vortices or swirling jets no matter where sources of motion are located. Then we study the jet
stability with the aid of a new approach accounting for deceleration and nonparallelism of the base flow. An
appropriate transformation of variables reduces the stability problem for this strongly nonparallel flow to a set
of ordinary differential equations. A particular flow whose stability is studied in detail is a half-line vortex
normal to a rigid plane—a model of a tornado and of a swirling jet issuing from a nozzle in a combustor.
Helical counter-rotating disturbances appear to be first growing as Reynolds number increases. Disturbance
frequency changes its sign along the neutral curve while the wave number remains positive. Short disturbance
waves propagate downstream and long waves propagate upstream. This helical instability causes bending of
the vortex axis and its precession—the effects observed in technological flows and in tornadoes.
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[. INTRODUCTION vortex singularity of a given circulatioftharacterized by the
swirl Reynolds number Rewhich is the ratio of the maxi-
The axis of a swirling jet can undergo precession andnum circulation to viscosityand a given force acting along
bending observed, e.g., in tornadoes and in combustorghe axis. Taylof 3], Goldshtik[4], and Serrir{5] studied this
Combustors typically include a pipe followed by a large sud-flow for different applications such as a fuel atomizer, a vor-
denly expanded chamber. The flow issuing from the pipgex nuclear reactor, and a tornagee review by Shtern and
forms a swirl-free or swirling jet in the chamber. This con- Hussain[6] for detailg. A striking feature of this model is
fined flow has two stable states at the same values of contréihe solution loss as Réncreases and reaches a rather small
parameter§l]: in the first state, the jet propagates along thethreshold value.
chamber axis while in the second state, the jet rotates gyro- The solution disappearance via the development of a sin-
scopically around the axis, i.e., precesses. This precession @llarity seems paradoxical and even contradictory for a vis-
a favorable feature of burner applications in, e.g., cement angous flow. For example, Tayld8] found a boundary-layer
glass kilns, because it enhances large-scale mixing angblution which is valid for large Re while Goldshtik[4]
thereby delivers a significant reduction in emissions of,NO proved that the solution does not exist for;R8 (!), and
[2]. Better understanding of the precession formation andsuilloud et al. [7] calculated the exact value, Re5.53, at
multiple-flow-state mechanisms should help us to optimizewhich this solution collapses. Goldshtik and Shtd@i
burner characteristics for minimizing harmful emissions.  showed that a strong near-axis jet develops and the maxi-
To explain the development of precession, we model thenum velocity of this jet tends to infinity as Rapproaches
axisymmetric flow state by a conical similarity solution of Re,,. One would expect singularities to occur in the limit as
the Navier—Stokes equations and then apply a new stabilitiRe;—oe, but not at a finite value. Note that all these results
approach accounting for the base-flow deceleration anwere obtained for a vortex with no axial force.
streamline divergence downstream. A model flow is a jet Serrin[5] explored this intriguing feature in a broader
issuing into a half-space from a point source on a no-slipcontext. He applied the vortex-wall model to tornadoes and
plane. That is, we do not consider the flow from the pipe andjeneralized the problertin order to avoid the collapgeoy
instead replace the pipe with the point source. Also, we neintroducing an additional source of motion—force,
glect the sidewall of the combustor chamber, i.e., consider=4mpr?r ~!A acting along the axis. Her& is a dimension-
the flow in the region whose radial extent is smiddrge less characteristic of the force strength per unit lengtls
compared with the diameter of the chamleipe). It is  the densityy is the kinematic viscosity, andis the distance
shown that the interaction of the jet and the normal wall isfrom the jet origin. Figure 1 shows a schematic of this half-
itself sufficient to induce precession. line vortex, a typical streamline, and spherical coordinates.
The jet axis in the model is a normal-to-plane half-line Figure 2 is a map of the flow patteriighe insets show the
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cently, Shtern and Hussa[i3] developed a more efficient
stability approach that addresses generic disturbafices
including time oscillatingg An important advantage of this
. approach is that it accounts for deceleration and nonparallel-
ism of conical flows and uses neither the parallel flow nor the
boundary layer approximations. This advantage helped to
find new instabilities missed by previous studies and to cor-
rect previous instability result&critical Reynolds numbers
appeared to be significantly smaller
Here we extend this nonparallel stability technique to the
vortex-wall problem where a singularity is located on the
symmetry axige.g., in the Serrin vortgx This allows us to
explore whether the flow becomes unstable before Re
meridional motion on the parameter plank=Re/2 andP  reaches its collapse value. As shown below, not only the

FIG. 1. Flow schematics and coordinates.

_ 2 : => . :

=1+4ARe " [5]. _ _ ~_ instability indeed occurs, but also its presence results in
Serrin [5] proved that the solution exists for arbitrarily bending and precession of the jet axis.

large Re, providedA is properly chosen. However, the col- | the reminder of this paper, we first explore hysteresis in

lapse paradox remained unresolved because such a solutigfyye|s of the vortex-wall flow with and without a singularity
describes a descending fldimset A or a two-cell flow(B), o the axis(Sec. 1), then describe the stability approach

but not an ascending floWC): There is no solution to the (Sec. Ill), stud . - .
. : N . . . 1, y the instability of the Serrin floSec. V),
right of curveF and lineCoin Fig. 2. Serrin mentioned that and finally make concluding remarkSec. \j.

he had failed to prove the uniqueness theorem for the entire

parameter region where the solution exists. Numerical simu-

lations by Goldshtik and Shtef8] revealed that the problem

has more than one solutiof is a fold curve where two Il. HYSTERESIS

regular solutions merge and disappear. They also showed that gafore studying the stability of a swirling jet normal to a

collapse occurs along lin€o, described bk™“=0.13P. 5 we address here some important features of the base
Thgs, there are two different mechanisms of the SOIUt'Or}Iow, e.g., multiple steady states and hysteretic transitions

loss, i.e., collapsg and .fOId’ and only ofllapsg corre- among them, as control parameters vary. As mentioned in

sponds to the singularity development. Both these math-

) . . *ntroduction, these features are typical of swirling flows. In
ematical features correspond to physical effects typical O4ddition to the examples in Sec. I, hysteretic transitions are
swirling flows: (a) strong accumulation of the axial momen- P o Y

tum, e.g., occurring in tornadog8], (b) multiple flow states, observed above delta-wing aircréi] and in diverging vor-
e.g., observed in vortex chambdit0], and (c) hysteretic tex tube's[15]. The most reIe\_/anF for the present ;tudy are
transitions among different flow statpkl]. hystgretlp phenomena occurring in tornaddes and in pre-

All these effects are related to flow stability to infinitesi- C€SSing jet nozzle chambelis|. _ . _
mal and finite-amplitude disturbances. Shtern and Drazin Since hysteresis is a strongly nonlinear effect, its analysis
[12] demonstrated a clear relation between stability ands @ challenge for theoretical and, especially, analytical stud-
hysteresis/folds in a tornado model. Their study, howeveries. In this respect, modelling of practical swirling flows by

was limited to disturbances without time oscillations. Re-conical similarity solutions is beneficial, because it reduces
the Navier—Stokes equations to ordinary differential ones,

03 thus radically easing the analysis. Next, exploiting the fact
0 ! that hysteresis occurs only when Rexceeds a threshold,
asymptotic techniques as Rex can be applied resulting
!\_ sometimes in analytical solutions. These solutions help to
S find multiple (e.g., five[11]) steady flow states occurring at

C
024 B
2 '(// the same values of control parameters and to explain hyster-
k it . ..
4 Co etic transitions among them.
Unfortunately, previous studies of hysteresis in conical

flows have been limited to swirling jets located far away
from no-slip boundaries, while modelling of vortex preces-
sion requires accounting for effects of a no-slip wall. One
F objective of the present study is to fill this gap. In this sec-
0 ;) s T T tion, we consid(_ar two mpdels of sv_virling flows near a no-slip
’ p ’ ’ boundary: the first one is the Serrin vortex having the strong
singularity on the symmetry axis and the second is a new
FIG. 2. Map of the flow states in the Serrin models propor- ~ model with a weak singularity located on a conical surface
tional to the swirl Reynolds number amicharacterizes the axial away from both the axis and the wall. We will show below
force. that multiple flow states and folds occur in both problems.

0.1 1
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A. Hysteresis in the Serrin flow transitions occur, ant) analytical solutions can be obtained

The problem on swirling jets has no analytical solution,i this more generic case as well.
except for some limiting cases. For this reason, together with NOW We explore asymptotic solutions as ;Ree. For
integration of the stability equations, we need also to numeriR&>1, the linear term in the left-hand side @c) becomes

cally solve the base-flow equations described below. For €gligible, i.e.,(2c) reduces toyI'y=0, and thereford’;,

conically similar flow, velocity has the representation,
ve=—vr Y, vy=—v(rsing 1y,
vy=—v(rsingd) " y(x), W=vry(x), (1)

where{r, 6, ¢} are spherical coordinates,is the distance
from the origin, @ is the polar angle, ane is the azimuthal
angle about the axis of symmetzy(Fig. 1), {v,,v,,v 4} are

tends to 0, except at points wheye=0, i.e., the limiting
I'y(x) is a step function. Owing to the different boundary
conditions ofl",(x.)=0 andl'y(1)=Re;, I'y(X) must jump

at somex=X. Consider, first, the case where the jump oc-
curs at an inner point of the interval, i.&,<xs<1. Since
T’} is unbounded ak=xs, ¥(xs) must be zero, and, there-
fore, the conical surface= X, separates different flow cells
(see inset B in Fig. R Inside each cell, the circulation is
uniform and equal to the corresponding boundary values,

velocity componentsY is the Stokes stream function, and
the prime denoteghere and in the paper remainglgiiffer-  T' (x)=0 for x,<x<x, (near-wall region 1, (33
entiation with respect ta=cosé.

Substitution of (1) in the Navier—Stokes equations in I';(x)=Re, for x;<x<1 (near-axis region 2 (3b)
spherical coordinate®.g., Ref[17]), exclusion of pressure,
and simple calculations yield the system of ordinary differ-Next, I')=0 reduceg2b) to F”=0 and thereforef(x) is a

ential equation$8],

(1=x®) ' +2xip— 3 y°=F, (29)
(1-x2)F"=2T,T}, (2b)
(1-x3)Tp=yly, (20

where F is an auxiliary function defined by Ed2b). The
boundary conditions on the symmetry axiss1 (i.e., 6
=0), are

$=0, T,=Re,, F'=2A. (2d)

The first condition of(2d) indicates that the axis is free from

quadratic polynomial(different in regions 1 and)2 Satisfy-
ing conditions(2d)—(2f) yields

F1(X)=—b(x—Xc)?, (4a)

1
F2(x)=—5RE[(1-P)(1-x)—c(1-x)?],  (4b)

where subscripts 1 and 2 denétén regions 1 and 2, respec-
tively, andP =1+ 4A/R€. To determinéd, ¢, andP as func-
tions of X and Reg, consider matching conditions at the
separating surface=x,. At this surface,F(x) and F’(x)
are continuous whilé="(x) undergoes a jump whose value
follows from integration of(2b) acrossx=xs,

a source of fluid, the second condition specifies a given cir- Fi(Xs)=Fu(Xs), F1(xs)=F5(Xs),

culation, so that swirl velocity, ,, has a pole singularity for
Re,;#0 according to(1), and the third condition specifies a

F3(xs) — F1(x) =Re/(1—x2). (5)

given axial force which corresponds to a logarithmic singu-

larity of the radial velocityp, [5]. These two singularities—

From (4) and(5) we obtain

the line sources of angular and axial momenta located on the

symmetry axis—model an entrainment flow driven by a
swirling near-axis jet whose thickness is neglected. We show

b=%Reﬁ(l—xs)<1+xs>*1<1—xc>*2>0, (6

below that this flow has multiple states at the same values of

Re, andA.
It follows from (2a) and (2d) that

F(1)=0. (2¢)

We generalize the Serrin problgi) to a flow inside a cone,

i.e., between the axig=1, and a conical walk= X, where
the no-slip condition yields that

y=Tpy=F=0 atx=Xx,. (2f)

In the particular casex.=0 (i.e., #=90°), the conical sur-

C=(Xs—Xe) (2= Xs—X) (1=X3) " H(1—x;) "*>0, (6b)

P=(1—xg)(1+Xs)  H(1+x)(1—x) L. (60)

It follows also thatF(x)=<0 in the entire intervalx.<x
<1.

For Re>1, the linear terms on the left-hand side (88
become negligible, an®a) reduces to)?= —2F resulting

Y1) =[—2F1(x)]"*=(2b)*(x—x,) and

face, x=x., reduces to the normal-to-axis plane and the Po(X)=—[—2F,(x)]"2 (7)
problem reduces to the Serrin one. We address here the cone
geometry becausé) some vortex devices, e.g., hydrocy- The different signs ofj; and ¢, in (7) are due to different

clones and Ranque tubes, have conical walbis hysteretic

flow directions in the cell§see inset B in Fig. 2 As a result,

016312-3



V. SHTERN AND J. MI

1.25
14
0.757
057

0.257

-0.257

057
-0.75

FIG. 3. Comparison of the numerisolid curve, Rg=200) and
analytical (broken curve, Rg») solutions for a two-cell Serrin
flow. I',, and ¢, are normalized circulation and stream functian,
=cos#, and the inset shows the flow pattern.

there is a jJump in(Xx) from i1 (Xs) = i 10 o(Xs) = — b QS
increasingx passes, whereys=(2b)¥A(xs—x,).

The jumps in circulation and stream function indicate that

PHYSICAL REVIEW E69, 016312 (2004

(P=1/3), and Rg=200; ¢,= ¢(2b)?> andT",=T"/Re,. The
inset shows streamlines and flow directi@nrow). To obtain
the numerical solution, we integrat@) from x=x; in the
both directions(to x=1 and tox=Xx,) starting with 4=0
and tentative values df, I'’, F, F’, andF"” atx=Xx,. Then
we adjust these tentative values to sati€®f) and the first
and second condition@d). The third condition(2d) speci-
fies A (andP), as a function oks. The numerical and ana-
lytical solutions are close but do not coincide at this value of
Re,. In particular, the analytical solution does not describe
the boundary layer neat=x., because it does not satisfy
the conditiony’ (x;) =0 that follows from no-slip.

Now we show that the one-cell solution, corresponding to
a descending flowinset A in Fig. 2, exists at the same
parameter values as those where the two-cell flow occurs.
For the descending flow, Serrifb] proved the existence
theorem atx,=0. Here we construct an analytical solution
for any x. and Rg=1. For this one-cell case, region 2 de-
fined in(3b) occupies the entire flow domain. Therefore, the
inviscid solution for circulation is

Ipo(X)=Re for x.<x=1.

(109

there is a viscous boundary layer near the separating surface,

X=Xg, Where ax increasesy/(x) decreases fronkg to — i
andI'y(x) increases from 0 to Rexccording to(3).
In this boundary layer2a) and(2c) reduce to

—y2 and (1-x3)Tp=yTy.

1
(L=x9)¢' + 2% = 5 4

Introducing the “inner” variablesV = — ¢/ 5 and &= (X
—xg)/(1—x2), and allowing $s—o, we getdV/dé=1
—V?, V=tanh¢, and

1
Yin= — stanh§, Fin=§ Re(1+tanhé). (8)

where subscript “in” denotes thimner solutions(i.e., within

the boundary layer These solutions describe a jet directed

radially outward along the separating surféiceset B in Fig.
2).

The solution]” = 3 Re(1+tanhé), can serve also as a uni-
form approximation for circulation in the entire flow region.
To get a uniform approximation for stream function, we
should combine the inviscid;7), and boundary-layen8),
solutions to construct a composite solutidr]:

e(X)

and ¢.(X) = r(x)tanhé  for xg=x<1.

— i (X)tanhé  for x ,<X=<Xg

9

Here subscript denotes th&eompositesolution.

To determine the parameter range where this solution ex-

ists we addresg6c) which provides the relation betweéh
andxs. As X, increases fronx; to 1, P decreases from 1 to
0. Therefore, the two-cell solution exists in the range ®
<1 as Re—» (see Fig. 2 where large Reorrespond to a
vicinity of the abscissa

Figure 3 shows the numericédolid curve$ and compos-
ite asymptotic(dashed curv@ssolutions atx.=0, xs=0.5

The condition(2f), F(x;)=0, and(4b) yield c=(1—-P)(1
—x¢) ! resulting in

1
Fo=— SRE(1-P)(1-X)(Xx=Xc)(1=x5) %, (10b)

Po(X)=—[— 2F0(X)]1/2

~ SRef(1-P)(LxX)(x X (1-x0) 1]

(100

Subscripto indicates that solution&l0) are valid outsidea
near-wall boundary layer.

Figure 4 shows the outer solutiqd0) (dashed curves
and numerical resultgsolid curve$ at x,=0, xs=0, P
=0.708, and Rg=100 [¢,=¢Re (1-P) Y2 and T,
=I"/Re]. The inset shows streamlines and the flow direction
(arrow). As demonstrated, sufficiently away from the wall,
the analytical and numerical solutions are close to each other
while the two solutions are well apart near the wall. In the
latter case, a viscous layer develops becali§e) is un-
bounded and’,,(x) #0 atx=x..

To find the boundary-layer solution, we introduce the in-
ner variables,

7=B(X—X;), W=—y/[B(1-x3],

y=T/Re,, and ®=-B?%(1—x%)FRe?,

whereB=Rel'(1—x2) =% Applying this transformation in
(28—(2¢), and allowing Rg—x, we obtain the system

dw 1W2 d’w Wdy d*®d 5
dp 20 dg2T  Vdp dpp TV

(11)
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12T 3
d*W/dn’ (0)
1c
1.5 +
0 S
F
X 2c

FIG. 4. Comparison of the numerisolid curve, Rg=100) and -1.5 A R A ——
analytical(broken curve, Rg-»x) solutions for a one-cell descend- 1 2 3 4
ing Serrin flow(see Fig. 3 for other notatiohs d(D/dTI(ﬂf)
The no-slip boundary conditions are FIG. 5. Two solution branches for the near-wall boundary layer

in the Serrin problem. The branches merge and terminate at the fold
point F. The flow is one-cellular (&) and two-cellular (2) above
and below pointS, where the flow separation from the wall occurs.

W(0)=®(0)=y(0)=0. (12)

Matching with the outer solutiof10) yields two more con-

ditions, (when Re andk, are fixed, as follows from(14). The two
dd 1 solution branches merdand then disapperasd®/d 7( %;)
y—1 and d—ez(l—P)R%”Z(l—xc)l’“ as np—o, decreasegand passes the fold poifit). Point S separates
Y (13) one-cell (k) and two-cell (Z) flows (see insets A and B in
Fig. 2.
Alternatively, we can consideit®/d () as a free param-  Figure 6 shows profiles of the radiad(V/d ) and swirl
eter (>0) and find that (y) velocities in the near-wall boundary layer at

dd/dn(~)=3 for the one-cellla) and two-cell(c) flows.
3 1 4P Figure @b) shows the profiles at poir@in Fig. 5 where the
P=1-2Reg "(1-x) W(OO)- 149 fow separation from the wall occurs. These profiles describe
in more detail the near-wall jet sketched by inset A in Fig. 2.
This boundary-layer solution describes a near-wall swirling We see that for any fixed Re1 andP <1 [this limitation
jet directed away from the symmetry axisset Ain Fig. 2  follows from (100)], two branches of solutions exist. This
and also a two-cell flowinset B in Fig. 2 when the second
cell and the separating surfaces are inside the near-wal? 15 o) 2 ©
boundary layer. @ dWdn dwidn
We have solved problerfl1)—(13) numerically using the dW/dn v
following algorithm. Integration of11) starts aty=0 with i T
conditions (12) and tentative values ofi®/d#»(0) and 1] Y
dvy/d#n(0). We run theintegration up ton= »;. Then we
adjustd®/d»(0) anddy/d#(0) by a shooting procedure to Y 05T 0
satisfy conditiong13) at = n;. Next we increasey; until
values ofd®/d (0) anddy/d5(0) become well established
(to this end, ;=10 appears to be sufficiant o — 0 n - S
Figure 5 shows the dependence ai®/d»(0) 0 2 4 ° : ® 0 ’
=d?W/d77(0), which is proportional to the radial shear stress  FiG. 6. Profiles of the radialdW/d ) and swirl () velocities
at the wall, ond®/d#n(»;) [which is very close to in the near-wall boundary layer for the one-cgll, separatior(b),
d®/dn(»)]. As demonstrated, two flow states occur at theand two-cell(c) flows (for points Ic, Sand X in Fig. 5, respec-
same values ofld/dn(«), i.e., at the same values & tively). The variabley is the scaled distance from the wall.

6
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result explains why Serrifb] failed to prove the uniqueness 40
theorem, and, in addition, indicates that two flow states can
occur at the same values of control parameters for any coni- 1 P i
cal (not only planay wall. 1 Jo
Thus, the results of Sec. Il A reveal that hysteresis is a 1
typical feature of the Serrif5] model describing near-wall |
swirling flows. Hysteresis is a typical feature for the Long | T
model[19] of free swirling jets as well11]. Unfortunately, ]
both these models have serious limitations. 1 R, Y,
The Serrin model involves singularities on the axis and, 0
therefore, describes practical flows away from the axis only. I
In contrast, the Long model well describes the near-axis flow
but does not satisfy the no-slip condition at a wall. A reason |
for these limitations is the fact that a regular conical solution, 20
satisfying both the no-sip condition on a wall and the regu-
larity condition on the axis, is identically zefthe rest stafe
Somewhere a source of fluid motion must be located. This . 7. pependence of the velocity components, shear stress,
source is on the axis in the Serrin model and on the conicglressure, and the flow force density on the polar arfer a
flow boundary in the Long model. To better model practicalswirl-free jet induced by a weak singulariigmp in ther, , slope.
flows, where both the near-axis and near-wall regions are
important, e.g., tornadoes and vortex precession, it is reason- _ -/ _ g2y -1 C _E(] 2\ 112
able to locate a source of motidhe., a singularity some- Too=Tot (2X=PTp(1=XD 0 7p=—F(1=X5 775
where in between the axis and the wall. We develop such a
model and explore its features in the next section.

20 -

Vo

and p=(2xy—xF' — ) (1—x?) "1,

T49 Can have a jump whiler, and p are continuous ax
B. Hysteresis in a weak-singularity model =X

of the near-wall vortex The numerical algorithm to solve this problem is briefed

A swirling jet has at least two sources of motion: one forhere. Integration of(2a—(2c) starts atx=1 with (1)
the meridional flow and another for the swirl. Here we model=I'n(1)=F(1)=F'(1)=0 and tentative values dfj(1),
these sources by weak singularities located away from both”(1), andy’(1). [The latter value cannot be determined
the axis and the wall. We place these singularities on a confrom (23 due to the 0/0 indeterminadyFirst, integration
cal surface,x=x;, separating regions of the upward andruns up tox=x; where we introduce the jumpsl’; and
downward flows where the vertical velocity,=v,cos#  SF”, inT'[ andF”. Then the integration continues up to the
—vgsing vanishes, i.e.p,(x;)=0. A motivation for such a wall, x=x.. Next we adjust”(1), '(1), éI'y, andSF" to
choice is that in practical wall-normal vorticés.g., in tor- satisfyv,(x;)=0 and the no-slip conditiong(x.) =T"p(X)
nadoeg circulation is transported by a horizontal wind from =F(x.)=0. Values ofl";(1) andx; remain free and implic-
a remote region toward the vortex axis. Therefore, the suritly specify Re andM:; the later two serve as control param-
face where the velocity is horizontal seems to be an approeters. The results described below are for the planar wall,

priate location for motion sources. X.=0.

At this surfacex=x;, we prescribe jumps if” andI’,. Figure 7 shows the results of calculation for a swirl-free
The F” jump serves as a source of the meridional motionnormal-to-wall jet induced by a weak singularity af
(when the flow is even swirl free as webind thel'; jump  =0.537(or §;=57.5°). All velocity and stress components

serves as a source of swirl. Indeed, we will see that circulaas well as the axial-flow-force density,j are continuous
tion, I'y, achieves its maximum at=Xx;. Accordingly, to  while slopes of pressur@ and 7,, undergo jumps a®
characterize the strength of rotation, we define the swirl Rey= ¢, . The flow is close to the Schlihtin@0] round jet near
nolds number as a ratio of the maximum circulation to vis-the axis though the axial Reynolds number, Re,/v, is
cosity, Rg=I'y(X;). To characterize the strength of the me- moderate (Rg=20); v, is the velocity on the axis.

ridional flow, we use the Long parametdr; which is a ratio This swirl-free jet depends on the flow forcé,, in a
of the axial flow force to the maximum circulation squared, simple way without folds and hysteresis. Multiple flow states

M =2mJ,/Ré, where appears as the swirl Reynolds number,q Rexceeds its
. threshold. Figure 8 shows a map of the flow state on the

Jo= (2= V' —T(2x— —XE'(1—x2)"1 _plane pf control parameteM and Reg. For smgll _R@, there

0 fo( (=919 = N I ) is a single flow state at each value Bf. This is clearly

illustrated by the Rg=16 curve in Fig. 9. This figure plots
the maximum swirl velocity , max Versus the flow forcéM)

at Re=16, 23, and 30also indicated in Fig. B As Re

(for more details see Ref11]). Since, for conical flows, the increases, the slope at the inflection point becomes vertical
tangential stresses and press(gealed bypv?r ~2) are (e.g., the star symbol on the Re23 curve in Fig. 9, which

—F")dx (15
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FIG. 8. Map of the flow patterns on the plaf{@pw force M,
swirl Reynolds number RE for the weak-singularity model. Curve
S separate one-cellower insel and two-cell(upper inseét flows.
There are three flow states in the region between féldsd F’
which merge and terminate at cusp pdtLine L shows the Long
[19] asymptote for foldF as Rg—oe.

correspond to cusiC in Fig. 8), and then three solution
branches developg®.g., I, Il, and Il of the Rg=30 curve in
Fig. 9. As M increasegor decreasgsjump transitiongar-
rows) between two stable flow stat@sand Ill) must occur at
the fold pointF’ (or F) along the Rg=30 curve. Intermedi-
ate branch Il represents the unstable state.

Curve S in Fig. 8 separates regions of one-cdbwer
insed and two-cell(upper insetflows. FoldsF andF’ (see
the Re=30 curve in Fig. 9 merging at cuspC (M

=2.73, Rg=23) bound the region where three flow states,

exist at anyM and Rg (e.g., the Rg=30 curve in Fig. 9.

Outside the region, the steady state is unique. The verticd

line L at M=3.74 is Long’s asymptote t6 as Rg—x. As

Re, increases, the three-flow-state region expands for a Iarg‘ée

range ofM.

150

V¢ max

100 -

50 -

FIG. 9. Development of cus and foldsF and F' as Re
(shown near the curvgincreases. The symbol, nay iS the maxi-
mum swirl velocity asd varies at a fixed. I, I, lll mark different
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800 y
Re =50 I
Vrmax
400 4
0 T -
1 3 5 7
M

FIG. 10. Multiple flow states I, I, and Il[see also insetsat

Re,=50. The symbob, ., denotes the maximum radial velocity as
0 varies at a fixed.

Figure 10 shows the three solution branches gaR86. In
the consolidated jet, the outflow focuses near the axis and the
velocity on the axis is also the maximum radial velocity
Ur max @S 0 varies at a fixed [see Fig. 10a) and the upper
inset for point | in Fig. 1Q. All velocity and stress compo-
nents reach their maximum values also near the gXig.
11(b)]. Since Rg(=50) is rather large, this flow demon-
strates some asymptotic features. In particular, there is a
wide interval of the polar angl®, where circulationl’y, is
nearly uniform and close to its maximum value;RE0[Fig.
11(c)]. The flow coincides with the consolidated Long jet in
the near-axis region €6<¢; but differs in the near-wall
region §;<9<90°.
Solutions at point Il and Ill in Fig. 10 represent annular
jets where the velocity on the axis differs fram 4. The
low is one-cellular for solution I(the middle inset in Fig.
10) while the axial velocity is negative and the flow is two-
llular for solution Il (Fig. 12 and the lower inset in Fig.
10). The solution 1lI, Fig. 12, is close to the two-cell annular
flow calculated in Ref[11] inside the region & 6<6;, but
these two flows differ in the vicinity of the wall. The dashed
branch in Fig. 10 depicts unstable solutions, e.g., at point II.

Thus, three flow states can exist at the same values of
control parameters. This feature is common for the Long,
Serrin, and the weak-singularitgonsidered in this section
models. We conclude that multiple flow states and hysteretic
transitions among them are typical of near-wall swirling
flows independent of where the motion sources are located:
on the axis, on the wall or in between. The hysteretic transi-
tions occur via time-monotonic disturbances as shown in
Refs.[12] and[21,27. In contrast, the axisymmetry breaking
and precession development are due to time-oscillatory in-
stability, as discussed below.

Ill. THE STABILITY PROBLEM

The stability equations for conical flows are derived in
Ref.[13]. Use of the new dependent and independent vari-
ables(as wells as the normal-mode technigjueduces the

solution branches and the arrows sketch hysteretic transitionnear stability problem to a system of ordinary differential

among flow states.

equationg ODE). The new dependent variables are

016312-7
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FIG. 11. Dependence a@#) velocity, (b) stress, andc) circula-

tion I'y and stream functiog on polar angle for solution | in Fig.
10.

ux,o,&m)=v,rlv, v(X,¢,&7)=v, sindlv,

L(X,¢,£,7)=v4r Sin6lv,
P(X, ¢, &,7)=(P—P-)r?/(pv?),

where dimensionless variables v, I', andp correspond to
the velocity componentq, ,v,,v,} and the pressurg, re-
spectively;p.. represents a limiting pressure as>«, p is

the (constank density, andv is the kinematic viscosity. The
new independent variables are
E=1In(rlry),

x=cosf, and 7=uwt/r?,

PHYSICAL REVIEW E69, 016312 (2004
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FIG. 12. The same as in Fig. 11 but for solution Il in Fig.
10.

where a length scale, makes the argument of the logarithm
dimensionless. The normal mode representation for distur-
bances is

U=Uup(X) +Uug(X)E+c.c., v=vy(X)+vye(X)E+c.C.,

p=pp(X)+pg(X)E+c.c., I'=Ty(x)+il4(x)E+c.c.,
whereE = exp@é+im¢—iw7), c.c. denotes the complex con-
jugate of the preceding complex term, complex a, +i¢;
where «, is the growth of the spatial mode with the radial
distance andy; is a radial wave numbem is an (integra)
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azimuthal wave numbel is the dimensionless frequency,
and the subscriptd and d indicate base flow and distur-
bance, respectively.

The real parte, of exponenta characterizes the spatial
stability, asr increases, ifa,<0, the disturbance decays
faster than the base flow; if, = 0, the disturbance amplitude
and the base flow have the samdependencétheir veloci-
ties decay as 1); and if @, >0, the ratio of disturbance to
the base flow amplitude increases withHence,«, <0, «,
=0, anda, >0 correspond to spatial stability, neutral stabil-
ity, and instability of the base flow, respectively.

We consider a flow above the plame=0, with the jet
source(vortex and radial velocity singularitiedocated on
the axis of symmetryz (Fig. 1). Therefore, the flow region is
O<x<1. Th_e axis Pf _symmetry IS a source of motion V\,’here FIG. 13. Flow and stability map on the plafswirl Reynolds
the vortex S'_ngl'”amx"e" nonzero C'rCUIat'Omnd the axial number Rg, axial forceA}. Vertical (dashedl and S lines separate
force are given for the base flow. This yields thaf(1)  regions of different flow patternsee insets CurvesC andF show
=0. The other boundary conditionsy(1)=Iq(1)=0 and  where collapse and fold occur. The flow is stablestable below
v4(0)=1"34(0)=uq4(0)=0, are the same as in R¢L3]. (above curvel.

To find a nontrivial(eigensolution for the normal modes,
we should seek complex eigenvalues of eithdbr a given  ing to the collapséaccordingly, curve is below curveC in
real o (spatial stability or w for a,=0 (temporal stability. Fig. 13. At A=0, for instance, the critical Reynolds number
This paper focuses on neutral disturbances, for which thef them=1 instability is Rg=5.05 while the collapse value
results of the spatial and temporal stability approaches aris Rg=5.53.
identical (sincea,=0 andw is rea). However, to find neu- For A<O, the instability can occur at either smaller or
tral characteristics of the Serrin vortex, we use the spatidlarger Rg than Reg,,, depending on the magnitude Af The
stability approach. The reason is that all eigenvalues afe  critical Re, can exceed Rg because the corresponding flow
known for Rg=A=w=0 and anym [20]. Eventually, by in-  belongs to the solution sheet that spreads from the abscissa,
creasing Rgand A (which characterize the strength of the Re,=0, up to the fold curvé= in Fig. 13. A part of this sheet
base flow, as well as frequency, we find « by the Newton  (which is located above cundeup to curveF) and the other
shooting procedure using thevalue found at previous pa- sheet(which is located between curvé&€sandC) correspond
rameters for an initial guess. Applying this algorithm for ato unstable flows.
few spectral branche&hat have the largesk, at Reg=A Consider this instability in more detail for a specific value
=0) we find what disturbance mode is the most dangerousf A. To this end, we choosA=0 (i.e., no axial force act-
i.e., have the smallest critical values of Rd A. The nu-  ing), where the axial Reynolds number, Rev,/v, where
meric technique of the stability studies is similar to that de-v, is the velocity on the axis, is bounded for a regular solu-

scribed in Ref[13]. tion. The critical parameters aA=0 are Rg=36.4, ¢;
=2.66, w=—3. Figure 14 showsa) frequencyw= w/Re,,
IV. INSTABILITY OF THE SERRIN VORTEX (b) radial wave numbera;, and (c) phase velocityC

= wl/ a; for neutral disturbancegeal v and a,=0) as Rg
Figure 13 shows the results for the Serrin vortex on theyaries.C is the disturbance wave speed normalized by the
control parameter planeaxial-force strengthh, swirl Rey-  pase-flow velocity on the axis.
nolds number Rg. CurveC corresponds to the collapse of  pgsitive w indicates that the helical disturbances rotate
the Serrin jet, the regular solution exists only below thisaround the axis in the same sense as the base swirling flow,
curve forA>0. This solution describes a one-cell ascendingand negatives corresponds to counter-rotating disturbances.
flow (right inse}. For A<O, the flow map is more compli- Figure 14a) shows that the critical disturban¢eccurring at
cated. There are descending one-cell flows in the region behe smallest R@ is counter-rotational(because w<0).
low curve S (lower inse} and two-cell flows above curvd  While frequency changes its sign along the neutral curve, the
(upper inset Two flow states occur at the sarAeand Rgin  wave number remains positiy€ig. 14b)]. The phase speed
the region bounded by curves andF. The corresponding of neutral disturbances changes its sifig. 14(c)] together
solutions merge and disappear as; Rereases and passes with w. PositiveC corresponds to disturbance waves propa-
the fold curveF. One of these solutions terminates as de-gating downstream in the base flow and negat/eorre-
creasing Regpasses the collapse cur@ while the other sponds to waves propagating upstream.
exists for any|ReJ<Re where Rg(A) is a value of Rgon Since the disturbance energy propagates not with the
curveF. phase but group speésipeed of a wave grojipve have also
We have found that as Rencreases, then=1 helical  calculated the group speeG,=dw/da;, at each point of
mode first becomes growing. CurVve“Instability” ) shows the neutral curve. Figure 15 shows both the grdsplid
the critical values of Reas a function ofA. For A=0, the  curve and phasédotted curvéfor comparison. While mov-
instability occurs for smaller Rehan Rg=Re,, correspond-  ing along the neutral curve from the upper to lower branch,
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first the phase speed becomes negafilese to the critical
point on the upper branghand then the group speed be-
comes negativdat Rg=250 and a;=1.48 on the lower
branch. Therefore, the instability is convective for Reose
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FIG. 15. Group C4, solid curve and phas€C, dotted curvgof
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FIG. 16. Radial velocity of the base flow () and disturbance
meridional €,,) and swirl (Es) kinetic energy dependence on polar
angle 6 for the critical Reynolds number & =0. The fact that
disturbance energy reaches its maximal near the inflection point of
the base flow indicates the shear-layer character of the instability.

to the critical value and becomes absolute for largg Re
(>250).

Figure 16 shows the radial velocity profile for the base
flow, v,, and the disturbance kinetic energy, separately for
the meridional, E,=|ug|?+|vg|?/(1—x?), and swirl, Eg
=|T'4l?/(1—x3), components at the critical value of Re
=36.4. SinceE,,, is significantly larger thaikg, the instabil-
ity affects more the meridional floww¢ anduv,) rather than
the swirl (v,). The fact thatE,, reaches its maximum near
the inflection point ob,(6) indicates the shear-layer mecha-
nism of instability.

Thus, the critical disturbance is counter-rotating<(0)
and develops due to shear-layer instability. Such an instabil-
ity being single-helical fh= —1) shifts the jet center away
from and rotates the jet around the axis of symmetry of the
base flow, i.e., induces the development of jet precession. To
describe the finite-amplitude precession, the nonlinear stabil-
ity and bifurcation of the secondary flow state established
must be studied. This is beyond the scope of this paper and a
subject for further study.

V. CONCLUSIONS

To understand the mechanisms of multiple flow states and
precession, two intriguing and practically important phenom-
ena observed in vortices normal to a wall, we have consid-
ered conically similar models of the base flow and have ex-
plored the flow stability.

New analytical solutions of the Navier—Stokes equations
obtained herein explain the multiple flow states in the Serrin
model of a near-wall vortex. In addition, we have developed
a new model where no singularity occurs on the vortex axis.

016312-10
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This model well describes both the near-afiis contrast to  new stability approach for(strongly nonparallgl conical

the Serrin mode[5]) and near-wallin contrast to the Long flows[13] to the Serin model where singularities are located
model[19]) flow regions. A weak singularity on a conical on the axis. Numerical solutions of this stability problem
surface located away from both the axis and wall modelseveal that, as the swirl Reynolds number increases, helical
forces driving the flow. This singularity corresponds to disturbances of the azimuthal wave numies 1 first be-
jumps in the swirl shear stress and in the slopes of the mecome growing. This instabilitybeing saturated to a finite-

ridional shear stress and pressure. amplitude statecan induce bending and precession of the
Our numerical results for this model show that folds andvortex (Or Swir"ng JeD axis observed in practica| swir"ng

hysteresis develop as the swirl Reynolds number exceedstgyws.
threshold. These results, together with those for the Serrin

(this paperand Long(Shtern and Hussairi1]) models, sug-

gest that multiple flow states are typical of the near-wall
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